
PALAIS: A 3D Simulation Environment
for Artificial Intelligence in Games

Patrick Schwab and Helmut Hlavacs1

Abstract. In this paper we present PALAIS — a virtual simula-
tion environment for Artificial Intelligence (AI) in games. The envi-
ronment provides functionality for prototyping, testing, visualisation
and evaluation of game AI. It allows definition and execution of ar-
bitrary, three-dimensional game scenes and behaviors. Additionally,
PALAIS incorporates a plugin system that supports swift integration
of custom AI algorithms. As a result, PALAIS effectively reduces the
effort necessary to research, develop, prototype and showcase behav-
iors used for non-player characters in games. Finally, we demonstrate
the power of the provided plugin system by exemplarily extending
the functionality of PALAIS with an external module. PALAIS is avail-
able at http://www.palais.io.

1 INTRODUCTION

The development of game AI typically requires a testbed environ-
ment to validate and visualise results in a virtual-world scenario.
Game developers and researchers frequently employ either game en-
gines or custom-coded game scenes as their testbed environments.
Using these environments for simulation has several disadvantages:
suboptimal code reuse, significant barriers to entry and increased
development time over using a more domain-specific environment.
PALAIS attempts to solve these issues by providing commonly re-
quired functionality, such as a graphical user interface (GUI), loading
required assets, data visualisation, scripting, entity management and
rendering, in an existing, accessible framework. Having this frame-
work in place enables the user to focus her efforts on AI-related code.

Moreover, custom-built solutions are often not easily distributed.
We propose a container format that stores all scene-related assets in
standardised formats. In PALAIS these scene containers are called
scenarios. Any instance of PALAIS can execute these scenarios. The
scenario structure, which is further described in section 3, and its
distribution process is depicted in figure 1. The scenario structure al-
lows users to share their scene definitions, graphical assets and game
AI. This simplified distribution process gives others the opportunity
to learn from, and build on, existing work. Consequently, our tool is
also suitable for use in game AI education. Teachers can utilise the
provided environment to supply students with interactive demonstra-
tions of game AI techniques. We believe this form of hands-on edu-
cation, where students can monitor and adapt execution parameters
in actual game scenarios, can significantly increase the accessibil-
ity of game AI. Similarly, the simulation environment can serve as a
demonstration platform for researchers to showcase their algorithms
and techniques.

1 University of Vienna, Faculty of Computer Science, Research Group
Entertainment Computing, Austria, email: a0927193@unet.univie.ac.at
and helmut.hlavacs@univie.ac.at










scenario

logic

plugins
assets 






Figure 1. A schematic overview of the scenario structure and its
distribution.

2 RELATED WORK
As mentioned, game developers and researchers commonly turn to
commercial [15][7], open-source [14] or in-house engines for AI
simulation. These general game engines overlap in functionality
with PALAIS, particularly in the 3D rendering domain. PALAIS is
more suitable for the simulation of game AI, because it provides
the domain-specific functionality required for game AI development.
Other toolkits, such as MASON [11], BREVE [10] and NetLogo
[17], also provide full simulation environments. A significant draw-
back of some of the listed alternative simulation toolkits is the lack
of extensibility via native code. Game developers strive to reach the
maximum performance possible with the available computational re-
sources. Thus, time-critical AI code for games is frequently written
in native code. Our proposed simulation environment pays tribute to
this by offering a plugin system [6] that allows extension through
native, dynamically loaded libraries. The plugin system enables de-
velopers to test, prototype and evaluate the same native code that they
use in their game engine. Ultimately, the ability to interface with na-
tive plugins also leads to more independent AI code compared to
alternative simulation environments, because only the minimal nec-
essary application programming interface (API) is exposed to plu-
gins. Although the level of abstraction is not as high as it is with
realisation-independent approaches. For example, [16] present such
an realisation-independent approach.

Additionally, PALAIS provides a scripting API to increase its gen-
eral accessibility and suitability for rapid prototyping. The scripting
API is accessed via ECMAScript [5]. ECMAScript is one of the most
widely-understood programming languages. Its most notable imple-
mentation is JavaScript, which is used to perform client-side script-
ing in Internet browsers. As a result of its prevalence, ECMAScript
is a natural choice to provide scripting functionality in PALAIS.

To summarise, compared with the mentioned, existing works, the
key distinguishing features of PALAIS are domain-specific function-
ality, interactivity, accessibility and extensibility.





user interface scripting API plugin API

OGRE

Qt

provides 3D
rendering

renders GUI

script engine

evaluates

adds 
bindings

reads reads /
writes

scenario data (actors, knowledge)

reads /
writes

user
 

scenario logic 
(JavaScript)

plugins
(C++)

interface

reads

Figure 2. A schematic overview of the most significant interactions
between the internal components of the simulation environment and its

external accessors.

3 SCENARIO STRUCTURE

Scenarios are the entity corresponding to a given game scene in
PALAIS. They encapsulate specific game situations defined by users.
The common use case is to define scenarios that provide a minimal
environment for evaluation of AI behaviors and algorithms. Essen-
tially, these scenarios are self-contained packages that include the
assets, logic scripts and plugins necessary to execute a game scene.
The following sections describe the components of a scenario.

3.1 Assets

The term ’assets’ in the context of scenarios refers to all scene-related
data files that don’t contain, native or interpretable, code. Typically,
assets mainly consist of the files needed for rendering the scene, such
as 3D mesh data, textures and materials. PALAIS can load scene files
created with external 3D modelling tools like [1]. However, PALAIS

currently only supports the scene and mesh formats native to OGRE.

3.2 Logic Scripts

Logic scripts are the files containing ECMAScript code. PALAIS in-
terprets these files at runtime. Since no compilation is required, the
user can simply reload scripts after changes. The ability to reload
scripts allows for frictionless development of behaviors, as the re-
sults of code changes can be evaluated quickly.

3.3 Plugins

Plugins are the other group of code attached to a game scene. Plug-
ins, unlike logic scripts, contain compiled code. Plugins are standard
shared libraries. Their specific file format depends on the operating
system (OS) and the processor architecture for which the code was
compiled. Relying on platform-specific formats impedes the porta-
bility of scenarios across platforms. However, we accept this price to
support the integration of precompiled code. In practice, this means
that a scenario must contain plugins compiled for every required tar-
get platform.

Figure 3. The GUI of PALAIS after loading a scenario. The left panel lists
all active actors in the game scene. The right panel shows the knowledge

inspector. The center panel displays a rendering of the scene itself.

4 PROGRAMMING MODEL
We call programmable entities within a scenario in PALAIS actors. A
generic key-value store, labeled blackboard, represents the individual
knowledge of every actor. As the naming suggests, blackboard sys-
tems [3] inspired this form of knowledge representation. We chose a
blackboard architecture because it offers flexibility and is conceptu-
ally easy to grasp and use for developers. To represent global knowl-
edge, the game scene itself incorporates a blackboard as well. For
visualisation, all actors must be connected to a rendered object in the
3D game scene. PALAIS implicitly makes all rendered objects within
a game scene available as actors. Additionally, native or interpreted
code can instantiate new actors at runtime.

4.1 Time Simulation
All code instances, native and interpreted alike, receive notifications
of time advances. These tick events are independent of the frame rate
of the simulation and represent fixed, simulated time steps. PALAIS

adjusts the simulation speed by adapting the rate at which it emits
these tick events relative to the passed time. This ensures the simula-
tion results are the same, regardless of simulation speed.

5 INTERFACES
Figure 2 depicts a general overview of the interfaces of PALAIS.
PALAIS exposes several external interfaces to fulfil the previously
mentioned requirements.

5.1 Graphical User Interface
For users, the main external interface is the graphical user interface
(GUI) provided by the runtime of PALAIS. Its main purpose is to
display the data related to the currently active scenario. Most impor-
tantly, it displays the current state of the scenario in a 3D game scene.
We integrated the open-source rendering engine OGRE [14] with the
Qt framework [4] to provide a cross-platform GUI and 3D view. The
GUI (figure 3) allows the user to configure certain rendering param-
eters, such as the camera’s 3D orientation, zoom level and viewing



direction. The user can also view blackboards of the scenario and
actors in the knowledge inspector panel of the GUI.

5.2 Scripting API
The scripting API is another external interface of PALAIS. The script-
ing layer is primarily meant to enable definition of arbitrary sce-
nario logic as well as to facilitate rapid prototyping of algorithms
and behaviors. PALAIS integrates a scripting engine to interpret EC-
MAScript code. The scripting API provides access to the currently
loaded scenario and its actors. Scripts are able to read and write
knowledge to the blackboards of the scenario and the actors. Lastly,
scripts can consume core functionality provided by the runtime en-
vironment, e.g. dynamic actor instantiation, destruction and ray cast-
ing.

5.3 Plugin API
The last external interface to access PALAIS is the plugin API. The
plugin system allows dynamic loading of third-party code. This core
feature makes PALAIS suitable for integration of existing, custom AI
code. The plugin API offers the same functionality as the scripting
API, plus some more advanced features. Also, plugins are able to
expose their functionality to the scripting layer by installing custom
bindings. Custom bindings allow the use of arbitrary interaction pat-
terns between native code in plugins and interpreted code in scripts.

5.4 Using Interpreted or Native Code in PALAIS
In essence, either scripting or plugins can be used to implement the
same resulting scene logic. In fact, internally, the scripting interface
is simply another layer on top of the same functionality. There is a
performance overhead associated with the use of the the scripting
layer, due to the additional code interpretation. Practically, that over-
head means that computationally intensive tasks and tasks that run
multiple times per time tick are more suited for implementation as
plugins. Thus, the suggested workflow is to make all computation-
ally intensive tasks available to the scripting layer via bindings. The
extended scripting API can then be used to orchestrate the scene-
specific logic.

6 INTEGRATING AN EXTERNAL MODULE
To demonstrate the power of its extension system we extended
PALAIS with an external pathfinding module. The module is based
on the A* search algorithm [9]. Our implementation of the pathfind-
ing system follows the one described in [12]. A* pathfinding is a
technique for determining shortest paths. It allows non-player char-
acters (NPCs) to navigate game worlds. In this role, A* pathfinding
is part of the standard repertoire of AI in games. Therefore, it is well-
suited to serve as an example for exhibiting the potential of PALAIS.
In particular, adding the functionality of the pathfinding module to
PALAIS shows how easily existing AI code can be integrated with its
environment.

6.1 Pathfinding Module
The pathfinding module provides methods for constructing and
searching shortest paths on navigation graphs. As is typical for game
middleware, the module is implemented in C++. The compiled, ex-
ecutable code is in binary form. It contains native code that depends

on the processor architecture. Consequently, to integrate the module,
we must exploit the ability of PALAIS to load native code as plugins.

6.2 Plugin Integration Workflow
A shared library must conform to a simple, well-defined interface to
be loadable in the plugin system of PALAIS. In the current version of
PALAIS, said interface consists of just 5 methods. Specifically, it con-
sists of two methods corresponding to the loading and tear-down of
the plugin, two methods corresponding to the loading and tear-down
of a scenario and one method realising the time tick notification. The
methods for the loading and tear-down of plugins give plugins an op-
portunity to initialise and destroy any general setup structures they
require. Similarly, the methods for the loading and tear-down of sce-
narios can be used to initialise and destroy per-scenario bookkeeping
information and to install script bindings with the script engine of the
scenario. Finally, the time tick event initiates all time-dependent or
regularly scheduled functionality. As a complementary measure, the
user can register script bindings to define additional entry points.

6.2.1 Example

As is the case with most custom AI code, our pathfinding module
does not conform to the plugin interface. Adapting existing code to
the defined interface is the integration effort required to make the
functionality of a plugin available to PALAIS. We employ the adaptor
design pattern [8] to adapt the interface of our pathfinding module to
the interface required by the plugin system of PALAIS. The following
steps are necessary to integrate the pathfinding module:

1. First, we use the method corresponding to the initialisation of a
scenario to load the navigation mesh of the currently active sce-
nario. A navigation mesh [12] is a continuous representations of
the walkable area in a game scene. After loading, the pathfind-
ing module constructs a navigation graph from this navigation
mesh. The resulting navigation graph can be searched in response
to navigation requests. Furthermore, we install a script binding to
make the pathfinding functionality available to scripts. These are
the per-scenario steps necessary to provide a pathfinding service.

2. Next, we implement the process of searching a path. The first
step in this process is initiated by script code calling the plugin
via the binding registered previously. In response, the pathfinding
system writes the shortest path to the blackboard of the actor that
requested the shortest path.

3. Lastly, we add the actual actor movement according to the plans
stored in their blackboards. For this, we use the time tick event:
We sequentially check the blackboard of every actor for remaining
paths to determine which actors in the current scenario must be
moved. Finally, we remove a path node from the blackboard, once
the actor that it belongs to reaches it.

This example demonstrates the potency of the blackboard architec-
ture used in PALAIS. Due to the blackboard architecture the plugin
system requires only a minimalist plugin interface. As a result, the
blackboard architecture effectively decreases the effort required to
integrate existing AI code with PALAIS.

6.3 Data Visualisation
Procedures for the in-scene visualisation of data are part of the
core functionality of PALAIS. In addition to providing rendering



Figure 4. A rendering in PALAIS showing the navigation mesh used by the
pathfinding module.

of arbitrary textured meshes, PALAIS provides means for render-
ing coloured primitives, such as lines, circles, quads, cuboids and
spheres. As an example, the pathfinding module renders the naviga-
tion graph using the visualisation primitives of PALAIS. Figure 4 and
figure 5 depict renderings of the navigation mesh and the navigation
graph in PALAIS.

6.4 Accessing the Pathfinding Module

The plugin installs its script bindings when a scene is loaded. In
our pathfinding example, all scripts in a scenario, that includes the
pathfinding plugin, can invoke the process to navigate an actor to a
goal along a shortest path. The script delegates the computation and
handling of the movement to the plugin. This abstraction provided
by plugins also allows the reuse of plugins in different scenarios.

7 CONCLUSION

PALAIS is a powerful environment for the simulation of AI in games.
It caters specifically to the needs of game developers by granting
access to its programming interface via interpreted and native code.
Our exemplary integration of an external pathfinding module demon-
strates that PALAIS is an apt choice for the simulation of scenes that
depend on third-party AI libraries. Additionally, the ability to extend
PALAIS with plugins lowers the barrier to entry for the usage of the
simulation environment, since the same native code, that is used for
the simulation in PALAIS, can easily be shared with game engines.

8 FUTURE WORK

The work on the simulation environment PALAIS is part of a larger,
ongoing project to build a unified framework for game AI develop-
ment. The framework includes functionality for each of the layers
of the game AI model proposed in [12]. Particularly, it encompasses
algorithms that facilitate the implementation of movement, decision
making and strategy for non-player characters in games. Pathfinding,
Behavior Trees [2] and Goal-Oriented Action Planning (GOAP) [13]
are among the standard techniques the framework implements. These
techniques will be integrated with PALAIS in the form of plugins to
provide users with a solid foundation that allows the rapid develop-
ment of AI behaviors. On the feature side, future work on PALAIS

could involve refinement by adding support for physics-based dy-
namics and statistical evaluation of behaviors.

Figure 5. A rendering in PALAIS showing the navigation graph constructed
from the navigation mesh in figure 4.

REFERENCES
[1] Blender Online Community. Blender - a 3D modelling and rendering

package. Retrieved from http://www.blender.org.
[2] Alex Champandard, ‘Behavior trees for next-gen game AI’, in Game

Developers Conference, Audio Lecture, (2007).
[3] Daniel D Corkill, ‘Blackboard systems’, AI expert, 6(9), 40–47, (1991).
[4] Digia Plc. Qt: cross-platform application and UI framework, 2012.
[5] ECMA International, Standard ECMA-262 - ECMAScript Language

Specification, 5.1 edn., June 2011.
[6] Martin Fowler, Patterns of Enterprise Application Architecture,

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002.

[7] Epic Games. Unity engine documentation. Retrieved from
https://www.unrealengine.com/.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, De-
sign patterns: elements of reusable object-oriented software, Pearson
Education, 1994.

[9] Peter E Hart, Nils J Nilsson, and Bertram Raphael, ‘A formal basis for
the heuristic determination of minimum cost paths’, Systems Science
and Cybernetics, IEEE Transactions on, 4(2), 100–107, (1968).

[10] Jon Klein, ‘Breve: a 3d environment for the simulation of decentralized
systems and artificial life’, in Proceedings of the eighth international
conference on Artificial life, pp. 329–334, (2003).

[11] Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and
Gabriel Balan, ‘Mason: A multiagent simulation environment’, Simu-
lation, 81(7), 517–527, (2005).

[12] Ian Millington and John Funge, Artificial intelligence for games, CRC
Press, 2009.

[13] Jeff Orkin, ‘Applying goal-oriented action planning to games’, AI Game
Programming Wisdom, 2(2004), 217–227, (2004).

[14] Torus Knot Software. Object-oriented graphics render-
ing engine (OGRE) Engine documentation. Retrieved from
http://www.ogre3d.org/.

[15] Unity Technologies. Unity documentation. Retrieved from
http://unity3d.com/.

[16] Marco Vala, Guilherme Raimundo, Pedro Sequeira, Pedro Cuba, Rui
Prada, Carlos Martinho, and Ana Paiva, ‘ION framework–a simula-
tion environment for worlds with virtual agents’, in Intelligent virtual
agents, pp. 418–424. Springer, (2009).

[17] Uri Wilensky, ‘Netlogo’, http://ccl.northwestern.edu/netlogo/, Center
for Connected Learning and Computer-Based Modeling, Northwestern
University, Evanston, IL, (1999).


