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Abstract. Many fields can profit from the introduction of robots,
including that of education. In this paper, our main focus is the ad-
vancement of the Synthetic Tutor Assistant (STA), a robot that will
act as a peer for knowledge transfer. We propose a theory of a tutoring
robotic application that is based on the Distributed Adaptive Control
(DAC) theory: a layered architecture that serves as the framework of
the proposed application. We describe the main components of the
STA and we evaluate the implementation within an educational sce-
nario.

1 INTRODUCTION

Robots are now able to interact with humans in various conditions
and situations. Lately, there has been an increased attempt to develop
socially interactive robots, that is, robots with the ability to display
social characteristics: use natural communicative cues (such as ges-
tures or gaze), express emotional states or even establish social rela-
tionships, all of which are important when a peer-to-peer interaction
takes place [20]. In fact, given the current technological advance-
ments, we are now able to develop robotic systems that are able to
deal with both physical and social environments. One of the greatest
challenges in the design of social robots is to correctly identify all
those various factors that affect social interaction and act in accor-
dance [43]. Indeed, different studies have shown that the complexity
in the behavior of robots affect how humans interact with robots and
perceive them [30, 55, 7, 52].

There are many fields that can profit from the introduction of
robots [13], they include health care [9], entertainment [18], social
partners [8] or education [21, 41]. Here we focus on the latter, by ad-
vancing the notion of the Synthetic Tutor Assistant (STA) (see sec-
tion 3) which is pursued in the European project entitled Expressive
Agents for Symbiotic Education and Learning (EASEL). In this per-
spective, the robot STA will not act as the teacher, but rather as a
peer of the learner to assist in knowledge acquisition. It has been
shown that robots can both influence the performance of the learner
[41] and their motivation to learn [29]. One of the main advantages
of employing a robotic tutor is that it can provide assistance at the
level of individual learners, given that the robot can have the ability
to learn and adapt based on previous interactions.
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Through education, people acquire knowledge, develop skills and
capabilities and consequently form values and habits. Although there
exist several educational approaches that could be considered, here,
we will focus on Constructivism [35]. Constructivism proposes an
educational approach based on collaboration, learning through mak-
ing, and technology-enhanced environments. Such approach aims at
constructing social interaction between the participant and the STA
as it implies a common goal for both learners-players [45].

We consider tutoring as the structured process in which knowl-
edge and skills are transferred to an autonomous learner through a
guided process based on the individual traits of the learner. Here
we present an approach where both the user model and the STA are
based on a neuroscientifically grounded cognitive architecture called
Distributed Adaptive Control (DAC) [51, 47]. On one hand, DAC
serves as the theory which defines the tutoring scenario: it allows
us to derive a set of key principles that are general for all learning
processes. On the other hand, it is the core for the implementation
of the control architecture of the STA, the robotic application. Fol-
lowing the layered DAC architecture, we propose the STA that will
deploy tutoring strategies of increasing levels of complexity depend-
ing on the performance and capabilities of the learner. The DAC the-
ory serves as both the basis for the tutoring robotic application, user
model as well as for the implementation of the STA. Such design
guarantees a tight interplay between the robotic application, the user
and their interaction.

The present study is organized as follows: first, we present the
background theory of the tutoring robotic application, the DAC the-
ory, and we describe the tutoring model applied. Furthermore, we in-
troduce the key implementation features of the STA based on DAC.
To assess the first implementation of our system, we devised a pilot
study where the STA performs the role of a peer-teacher in an edu-
cational scenario. The proposed scenario consists of a pairing game
where participants have to match an object to its corresponding cat-
egory. The setup was tested with both children and adults. The game
had three levels of increased difficulty. Questionnaires distributed af-
ter every interaction to the players were used to assess the STA’s
ability to transfer knowledge.

2 DAC COGNITIVE ARCHITECTURE AND
LEARNING

To provide a model of perception, cognition and action for our sys-
tem, we have implemented the DAC architecture. [51, 47]. DAC is a
theory of mind and brain, and its implementation serves as a real-time



neuronal model for perception, cognition and action (for a review see
[49]). DAC will serve both as the basis for the tutoring model as well
as the core of the implementation of the STA.

2.1 Distributed Adaptive Control (DAC)

Providing a real-time model for perception, cognition and action,
DAC has been formulated in the context of classical and operant con-
ditioning: learning paradigms for sensory-sensory, multi-scale sen-
sorimotor learning and planning underlying any form of learning.
According to DAC, the brain is a layered control architecture that
is subdivided into functional segments sub-serving the processing of
the states of the world, the self, interaction through action [48], and
it is dominated by parallel and distributed control loops.

DAC proposes that in order to act upon the environment (or to
realize the How? of survival) the brain has to answer four fundamen-
tal questions, continuously and in real-time: Why, What, Where and
When, forming the H4W problem [50, 49]. However, in a world filled
with agents, the H4W problem does not seem enough to ensure sur-
vival; an additional key question needs to be answered: Who?, which
shifts the H4W towards a more complex problem, H5W [46, 39].

To answer the H5W problem, the DAC architecture comprises of
four layers: Somatic, Reactive, Adaptive and Contextual, intersected
by three columns: states of the world (exosensing), states of self
(endosensing) and their interface in action (Figure 1). The Somatic
Layer represents the body itself and the information acquired from
sensations, needs and actions. The Reactive Layer comprises fast,
predefined sensorimotor loops (reflexes) that are triggered by low
complexity perceptions and are coupled to specific affective states of
the agent. It supports the basic functionality of the Somatic Layer in
terms of reflexive behavior and constitutes the main behavioral sys-
tem based on the organism’s physical needs. Behavior emerges from
the satisfaction of homeostatic needs, which are also regulated by an
integrative allostatic loop that sets the priorities and hierarchies of
all the competitive homeostatic systems. Thus, behavior serves the
reduction of needs [25] controlled by the allostatic controller [42].

The Adaptive Layer extends the sensorimotor loops of the Re-
active Layer with acquired sensor and action states, allowing the
agent to escape the predefined reflexes and employs mechanisms
to deal with unpredictability through learning [14]. The Contex-
tual Layer uses the state-space acquired by the Adaptive Layer to
generate goal oriented behavioral plans and policies. This layer in-
cludes mechanisms for short, long-term and working memory, for-
mating sequential representations of states of the environment and
actions generated by the agent or its acquired sensorimotor contin-
gencies. The DAC architecture has been validated through robotic
implementations[19, 42], expanded to capture social interactions
with robots [52, 39] as well as providing novel approaches towards
rehabilitation [47]. Here, the implementation of DAC serves two
main purposes. On the one hand, it acts as the grounding theory for
the pedagogical model: it allows us to derive and deduce a set of key
principles that are general for all learning processes. On the other
hand, DAC is the core for the implementation of the STA.

2.2 Phases of learning

Based on the formal description of learning from the DAC architec-
ture which has been shown to be Bayes optimal [48], we will focus
on two main principles as it has a dual role within EASEL. On one
hand, DAC is the core for the implementation of the Synthetic Tutor

Figure 1. The DAC architecture and its four layers (somatic, reactive
adaptive and contextual). Across the layers we can distinguish three

functional columns of organization: world (exosensing), self (endosensing)
and action (the interface to the world through action). The arrows show the

flow of information. Image adapted from [49].

Assistant (STA). On the other hand, following the layered architec-
ture, the STA deploys pedagogical strategies of increasing levels of
complexity.

First, DAC predicts that learning is bootstrapped and organized
along a hierarchy of complexity: the Reactive Layer allows for ex-
ploring the world and gaining experiences, based on which the Adap-
tive Layer learns the states of the world and their associations; only
after these states are well consolidated, the Contextual Layer can ex-
tract consistent rules and regularities. We believe that the same hier-
archy is applicable in the pedagogical context. Secondly, DAC pre-
dicts that in order to learn and consolidate new material, the learner
undergoes a sequence of learning phases: resistance, confusion and
resolution. Resistance is a mechanism that results from defending
one’s own (in)competence level against discrepancies encountered
in sensor data. In DAC these discrepancies regulate both percep-
tual learning and the engagement of sequence memory. Consistent
perceptual and behavioral errors lead to the second phase, namely
confusion, the necessity to resolve the problem and learn through
readapting. Confusion modulates learning as to facilitate the discov-
ery and generation of new states to be assessed on their validity. In
other words, to assist in performing abduction. Finally, resolution is
the very process of stabilizing new knowledge that resolves the ear-
lier encountered discrepancies and errors. This DAC-derived learn-
ing dynamics have been grounded in aspects of the physiology of the
hippocampus [40] and pre-frontal cortex [32], and they reflect the
core notions of Piaget’s theory of cognitive development assimila-
tion and accommodation through a process of equilibration [37, 56].

Human learners show a large variability in their performance and
aptitude [16] requiring learning technologies to adjust to the skills
and the progress of every individual. For learning to be efficient and
applicable for as broad a range of students as possible, individual



differences need to be taken into account. The critical condition that
has to be satisfied, however, is that the confusion needs to be con-
trollable so that it adjusts to the skills and the progress of individual
students. This is consistent with the classical notion of Vygotsky’s
Zone of Proximal Development which is the level of knowledge that
the learner can acquire with external assistance of a teacher or a peer
[54]. Individualization thus serves the identification of this epistemic
and motivational level.

Monitoring, controlling and adjusting the phase of confusion is
what we call shaping the landscape of success. This approach is
consistent to the notion of scaffolding, a technique based on helping
the student to cross Vygotsky’s Zone of Proximal Development. The
concept of controlled confusion, as well as of individualized train-
ing, has already been tested in the context of neurorehabilitation us-
ing DAC based Rehabilitation Gaming System (RGS) which assists
stroke patients in their functional recovery of motor deficits [10, 11].
RGS indeed effectively adjusts to individual users in terms of dif-
ficulty, allowing for an unsupervised deployment of individualized
rehabilitation protocols.

Within the DAC architecture, the processes of learning are not
isolated within single layers but they result as the interplay among
them and the external world [51]. Although both the processes of
learning deployed in the current experiment (resistance, confusion,
resolution) and the layers of the DAC architecture (Reactive, Adap-
tive, Contextual) constitute a specific order and initial dependencies,
their relation is not fixed. Depending on the learning goal (learn-
ing a new concept, contextualizing new information within a broader
scale, etc.) the tutoring may be focusing on one of the three layers.
In order to systematically traverse the three phases of learning distin-
guished here, the user is guided through a goal-based learning.

By incorporating DAC within the educational framework, our aim
is to be able to create the feeling of resistance and confusion to intro-
duce new knowledge specific for every individual student. Adjusting
to the skills and the progress of individual students may result in
keeping the process of acquisition motivating; so it is essential that
despite helping the student to overcome certain difficulties, the task
remains challenging enough.

3 THE SYNTHETIC TUTOR ASSISTANT (STA)

The STA emerges as the interplay of the three layers of DAC archi-
tecture. It is the STA that provides individualized content, adapted to
the needs and capabilities of each student. Here we layout the frame-
work for the implementation of the STA within the DAC architec-
ture. The Reactive Layer provides the basic interaction between the
student, tutor and teaching material through a self-regulation system
and an allostatic control mechanism. It encompasses the basic reac-
tion mechanisms guiding the student through the learning material in
a predefined reactive manner and is based on a self-regulation mech-
anism that contains predefined reflexes that support behavior. Such
reflexes are triggered by stimuli that can be either internal (self) or
external (environment) and are coupled to specific affective states of
the agent.

The Adaptive Layer will adjust the learning scenario to the needs
and capabilities of the student based on the user model that is on-
line updated throughout the analysis of the interaction. To do so,
the STA needs to assess the state of the student (cognitive, physi-
cal, emotional), learn from previous interactions and adapt to each
student. This knowledge will support the rich and multimodal inter-
actions based on a the DAC control architecture. Finally, the Con-
textual Layer will monitor and adjust the learning strategy over long

periods of time and over all participating students through Bayesian
memory and sequence optimization. In the pilot experiment reported
here, we are assessing the properties of the Reactive Layer of the
STA in an educational scenario.

3.1 Behavioral modulation
In case of the STA, the main purpose of the self-regulating mecha-
nism of the Reactive Layer is to provide the tutor with an initial set
of behaviors that will initiate and maintain the interaction between
the STA and the student. Grounded in biology, where living organ-
isms are endowed with internal drives that trigger, maintain and di-
rect behavior [25, 38], we argue that agents that are endowed with
a motivational system show greater adaptability compared to sim-
ple reactive ones [2]. Drives are part of a homeostatic mechanism
that aims at maintaining stability [12, 44], and various autonomous
systems have used self-regulation mechanisms based on homeostatic
regimes [6, 3].

Inspired by Maslow’s hierarchy of needs [33], Hull’s drive reduc-
tion theory [25] and tested in the autonomous interactive space Ada
[15], the robots behavior is affected by its internal drives (for exam-
ple the need to socialize - establish and maintain interaction). Each
drive is controlled by a homeostatic mechanism. This mechanism
classifies the drive in three main categories: under, over and within
homeostasis. The main goal of the STA is to maximize its effectivity
(or ”happiness”) as a tutor assistant, by maintaining its drives within
specific homeostatic levels. To do so, the STA will need to take the
appropriate actions. These states are focusing on the level of interac-
tion with the learner and its consistency. Coherence at the behavioral
level is achieved through an extra layer of control that reduces drives
through behavioral changes, namely the allostatic control. Allostasis
aims at maintaining stability through change [34]. The main goal of
allostasis is the regulation of fundamental needs to ensure survival
by orchestrating multiple homeostatic processes that directly or indi-
rectly help to maintain stability.

The allostatic controller adds a number of new properties of the
STA-DAC architecture, ensuring the attainment of consistency and
balance in the satisfaction of the agent’s drives and foundations for
utilitarian emotions that drive communicative cues [53]. This ap-
proach strongly contradicts the paradigm of state machines stan-
dardly employed in comparable approaches and, in general, within
the robotics community. State machines provide a series of closed-
loop behaviours where each state triggers another state in function
of its outcome. Here, drives are not associated on a one-to-one ba-
sis with a specific behavior. Instead, each behavior is associated with
an intrinsic effect on the drives and with the usage of the allostatic
controller, drives, and therefore behavior, change as the environment
changes. With such design, drives modulate the robot’s behavior
adaptively in the function of every learner and the learning environ-
ment in general. Although in our current implementation, the map-
pings are hard-coded as reflexes (Reactive Layer), according to the
DAC architecture, the mappings should be learnt through experience
to provide adaptation.

3.2 The setup (software and hardware)
The DAC architecture and framework proposed are mostly hardware
independent, as it can be applied in various robotic implementations
[19, 42, 53, 31]. Here, the implementation aims at controlling the
behavior of the robot and it involves a large set of sensors and effec-
tors, designed to study Human-Robot Interaction (HRI). The setup



(see figure 2) consists of the humanoid robot iCub (represented by
the STA), the Reactable [23, 27] and a Kinect. The Reactable is a
tabletop tangible display that was originally used as a musical instru-
ment. It has a translucent top where objects and fingertips (cursors)
are placed to control melody parameters. In our scenario, the usage
of the Reactabe allows us to construct interactive games tailored to
our needs. It furthermore provides information about the location of
a virtual and physical object placed on the table and allows a preci-
sion that can hardly be matched using a vision based approach. In our
lab, we have employed the Reactable in various interaction scenarios
using the MTCF framework [28], such as musical DJ (cooperative
game where the robot produces music with humans), Pong (compet-
itive 2D simulated table tennis game) and Tic Tac Toe. The use and
control of all these components allows the development of various
interactive scenarios including educational games investigated here
and allow the human and the robot to both act in a shared physical
space. An extensive description of the overall system architecture can
be found in [31, 52, 53]. The setup was designed to run autonomously
in each trial, being the allostatic control the main component for pro-
viding the guidance for the learner/player during the task.

Figure 2. Experimental setup of the robot interacting with a human using
the Reactable for the educational game scenario. In the image you can see
the participant holding an object used to select an item from the Reactable

(round table with projected images of countries and capitals). The
participant is facing the iCub. The projected items are mirrored, so each side

has the same objects.

4 TOWARDS ROBOTIC TEACHERS

In order to test the implementation of the STA-DAC as well as to
evaluate the effectiveness of our scenario depending on different so-
cial features of the robot, we conducted a pilot study where the robot
had the role of a tutor-peer.

The aim of the experiment focused on testing the effect of social
cues (in this case, facial expression and eye contact) in HRI during
an educational game. The goal was to test whether the variation of
these social cues could affect the knowledge retrieval, subjective ex-
perience, and the very behavior towards the other player.

4.1 The educational scenario

The first question raised during the development of the STA is
whether it can be an effective peer for the learner, both in terms of
the social interactions and the impact on learning. Hence, the focus of
this experiment is to study whether the modulation of certain behav-
ioral parameters (based on the DAC architecture and the proposed
behavioral modulation system), such as the use of eye contact and
facial expressions, can change the acquisition of knowledge of a spe-
cific topic and the subjective experience of the user. On the one hand,
eye contact can strengthen the interaction between the learner and the
STA, for gazing can affect the knowledge transfer and the learning
rate [36]. On the other hand, facial expressions can be used as a re-
inforcement of the participant’s actions (the robot displays a happy
face when the participant’s choice is correct and a sad face when the
matching is wrong), and could be considered as a reward.

The game-like scenario which we deployed is exercising Gagne’s
five learning categories [22]: verbal information, intellectual skill,
cognitive strategy, motor skill and attitude. The game is based in a
physical task, so the participants have to use their motor skills and,
in order to solve the task, they have to develop a cognitive strategy to
control their internal thinking processes. We also implemented three
components of intellectual skill: concept learning, that is, learning
about a topic; rule learning, used to learn the rules of the game; and,
problem solving processes to decide how to match the pieces.

The educational scenario is a pairing game, where participants
need to pair objects appearing on the Reactable to their correspond-
ing categories. The pairing game is grounded in the premises of con-
structivism, where two or more peers learn together. Here the robot
behaves similarly to a constructivist tutor: instead of just giving the
information directly, it helps the student to understand the goal of
the game (and, for example, reminding the subject the correct ways
of playing) and it provides feedback regarding his actions (the robot
only tells the correct answer to the subject when he has chosen a
wrong answer, not before). For example, if the human selects a wrong
pair, the robot indicates why the selection is wrong; it also comments
on the correct selections. The players also receive visual information
regarding their selection from the Reactable: if the selection is cor-
rect, the selected pair blinks with a green color and the object (but
not the category) dissapears whereas the pair blinks with a red color
if the selection is incorrect. The game was tested with both children
and adults and the contents were adapted according their estimated
knowledge. Therefore, for the children the game’s topic was recy-
cling, where the task was to correctly match different types of waste
to the corresponding recycling bin. For the adults the topic was ge-
ography, where the task was to correctly match a capital with the
corresponding country.

The learning scenario requires turn-taking and comprises three
levels of increased difficulty. Both the human and robot had the same
objects mirrored in each side. At each level, they had to correctly
match the four objects to their corresponding category to proceed to
the next level. The gradual increase of the difficulty allows for the
scaffolding of the task, and consequently for the improvment of the
learning process [4]. As mentioned earlier, the game was realized us-
ing the Reactable; the virtual objects were projected on the Reactable
and object selection was achieved either with the usage of an object
or with a cursor (fingertip). At the beginning of the interaction, the
robot verbally introduces the game and is the first who initiates the
interaction and the game.



4.2 Methods
We hypothesized that the combination of eye-contact and facial ex-
pressions strengthens the feedback between the player, the partici-
pant and the participant’s choice, and affects the participant’s sub-
jective experience. As a result, we expected that when exposed to
both behavioral conditions the participants would have a higher both
knowledge transfer and the subjective experience.

To test our hypothesis and assess our architecture, we devised five
experimental conditions (see Table 1) where we varied the gaze be-
havior and facial expressions of the STA. The experimental condi-
tions are: Not-oriented Robot (NoR) (fixed gaze at a point - this way
we are ensured that no eye contact is achieved); Task oriented Robot
(ToR) (gaze supports actions, without making eye contact or show-
ing facial expressions); Task and Human oriented Robot (T&HoR)
(gaze supports actions, eye contact and showing facial expressions);
Table-Human Interaction (THI), where the participant plays alone
with the Reactable, and the Human-Human Interaction (HHI), where
the participant plays with another human. Apart from the HHI, the
behavior of the STA in terms of game play, verbal interaction and re-
action to the participant’s actions remained the same. The aim of the
THI condition is to show the importance of embodiment of the STA
during the interaction; the HHI condition acted as both the control
group and a way of achieving a baseline regarding the interaction.
The children were tested in the NoR, T&HoR and HHI conditions
whereas the adults in all conditions.

Data were collected within three systems: knowledge and subjec-
tive experience questionnaires, behavioral data and the logs from the
system. Participants had to answer pre- and post- knowledge ques-
tionnaires related to the pairing game. For recycling, the question-
naires had a total of twelve multiple-choice questions, including the
same wastes and containers that the participants had to classify dur-
ing the game. The information for creating this questionnaire came
from the website ”Residu on vas” (www.residuonvas.cat), property
of the Catalan Wastes Agency. For geography, the questionnaires
had a total of 24 multiple-choice questions (half of them, about the
countries and capitals and the other half, about countries and flags).
These questionnaires were given to the participants before and after
the game, in order to evaluate their previous knowledge about the
topic and later compare the pre- and post- knowledge results. The
subjective experience questionnaire aims at assessing the STA’s so-
cial behavior. It consists of 32 questions based on: the Basic Empathy
Scale [26], the Godspeed questionnaires [5] and the Tripod Survey
[17]. In the case of adults, there were 74 participants (age M = 25.18,
SD = 7.55; 50 male and 24 female) distributed among five different
conditions (THI=13, NoR=15, ToR=15, T&HoR=16, HHI=15). In
the case of children, we tested 34 subjects (age M = 9.81, SD = 1.23;
23 male and 11 female) who randomly underwent three different ex-
perimental conditions (NoR=12, T&HoR=14, HHI=8).

Table 1. Table of the five experimental conditions.

Embodiment Action Eye Facial
supporting gaze contact Expression

THI No No No No
NoR Yes No No No
ToR Yes Yes No No
T&HoR Yes Yes Yes Yes
HHI Yes Yes Yes Yes

Various conditions of robot behavior based on the interaction scenario

4.3 Results

First, we report a significant knowledge improvement in adults for all
the conditions: THI, t(13) = 7. 697, p <0.001; NoR, (t(14) = 2.170,
p = 0.048; ToR, t(14) = 3.112, p = 0.008, T&HoR, t(16) = 3.174, p =
0.006 and HHI,t(13) = 3.454 p = 0.004. In constrast, in children, there
was no significance between conditions, although our results suggest
a trend in improvement. We expected a difference among conditions,
as we hypothesised that in the T&HoR condition, the knowledge
transfer would be greater than the rest of the conditions. However
this does not occur in neither the adult nor the children scenarios. In
the case of children, we hypothesized that the associations were too
simple; in the case of the adults, it seems that the knowledge transfer
was achieved irregardless of the condition, suggesting that possibly
the feedback of the Reactable itself regarding each pairing (green
for correct and red for incorrect) might have been sufficient for the
knowledge to be transferred.

Regarding the subjective experience, there was no statistical dif-
ference in the questionnaires data from children. We suspect that
such result might be affected by the fact that both the Empathy and
Godspeed questionnaires are designed for adults, and not children.
In adults, although there was no significant difference among con-
ditions for the Empathy and Tripod parts, there was a statistically
significant difference between groups for the Godspeed part, as de-
termined by one-way ANOVA (F(4,35) = 4.981, p = 0.003). As ex-
pected, humans scored higher (HHI, .06 ± 0.87), than the robot in
two conditions (NoR, 2.84 ± 0.72, p = 0.003; ToR, 3.19 ± 0.46, p
= 0.044, but surprisingly not in the T&HoR) and the table (THI,3.02
± 0.56, p = 0.031) (Bonferroni post-hoc test). We can therefore hy-
pothesize that the STA significantly scores lower than a human in all
conditions but the one where its behavior is as close as possible to
that of a human: gaze that sustains action (look at where the agent
is about to point) and is used for communication purposes (look at
human when speaking) and facial expressions as a feedback to the
humans actions.

Regarding the behavioral data, there was a statistically significant
difference between conditions for the mean gaze duration in chil-
dren ( one-way ANOVA (F(2,26) = 8.287, p = .0021)). A Bonferroni
post-hoc test revealed that the time spent looking at the other player
(in seconds) was significantly lower in the NoR (14.70 ± 8.81”, p =
0.012) and the HHI conditions (11.74 ± 8.02”, p = 0.003) compared
to the T&HoR condition (30.97 ± 15.16”)(figure 3). Our expecta-
tion regarding the difference between the NoR and T&HoR condi-
tions was correctly met: people looked more at the agent who looked
back at them. However, we were not expecting a difference between
T&HoR and HHI condition. We believe that the reason why the dif-
ference in mean gaze duration occurs is because humans remained
focused on the game and were mainly looking at table instead of
looking at the other player. Furthermore, there were much less spo-
ken interactions between them. In contrast, in the rest of the sce-
narios, the STA would comment on the actions of the participant,
attrackting attention in more salient way.

In adults, a Kruskal-Wallis test showed that there was a high sta-
tistically significant difference in the time spent looking at the other
player between the different conditions, x2(4) = 15.911, p = 0.003.
The results of the Mann-Whitney Test showed significant differences
between the THI (2.72 ± 5.53) and the NoR (16.37 ± 21.17) con-
ditions (p = 0.026); the THI (2.72 ± 5.53) and the ToR (7.80 ±
7.76) conditions (p = 0.029); the THI (2.72 ± 5.53) and the T&HoR
(19.87 ± 12.01) conditions (p <0.001); the ToR (7.80 ± 7.76) and
the T&HoR (19.87 ± 12.01) conditions (p = 0.028); and the T&HoR



Figure 3. Time spent looking at the other player (in seconds) in children
among conditions. Asterisks ”*” depict significance.

(19.87 ± 12.01) and the HHI (3.66 ± 4.13) conditions (p = 0.002)
(See figure 4). As expected, the more human-like the behavior of the
STA, the more people would look at. The explanation regarding the
difference between T&HoR and HHI in gaze duration is similar to
that of children.

Figure 4. Time spent looking at the other player (in seconds) in adults
among conditions. Asterisks ”*” depict significance.

5 DISCUSSION AND CONCLUSIONS
The goal of the present study is to provide the key implementation
features of the Synthetic Tutor Assistant (STA) based on the DAC ar-
chitecture. Here, we propose the implementation of the STA within
the DAC, a theory of the design principles which underlie perception,
cognition and action. DAC is a layered architecture (Soma, Reac-
tive, Adaptive and Contextual) intersected by three columns (world,
self and actions), modeled to answer the H5W problem: Why, What,
Where, When, Who and How. We explain the basic layers of DAC

and focus on the Reactive Layer that constructs the basic reflexive
behavioral system of the STA, as systhematically explained in sec-
tion 3.1.

DAC predicts that learning is organized along a hierarchy of com-
plexity and in order to acquire and consolidate new material the
learner undergoes a sequence of learning phases: resistance, confu-
sion and resolution. We argue that it is important to effectively adjust
the difficulty of the learning scenario by manipulating the accord-
ing parameters of the task (Adaptive Layer). This function will allow
us for controlled manipulation of confusion, tailored to the needs of
each student. Though it is not in the scope of the present study, in
the future we plan to adjust the parameters of the learning scenario
studied here on the basis of an online analysis of the learners’ per-
formance, interpreted both in terms of traditional pedagogical scales
and the DAC architecture (Adaptive Layer). The learner’s errors and
achievements will be distinguished in terms of specific hierarchical
organization and dynamics. Finally, the Contextual Layer will mon-
itor and adjust the difficulty parameters for both individual students
and bigger groups on a longer time scales. The motivational system
presented is mainly focused on the Reactive Layer of the architecture,
but our aim is to primarily adapt the Reactive Layer to the needs of
STA and teaching scenarios and then extend the STA to include the
Adaptive and Contextual Layers.

We devised an educational scenario to test the implementation of
the STA-DAC as well as to evaluate the effectiveness of different
social features of the robot (social cues such as eye contact and fa-
cial expressions). The task devised was a pairing game using the
Reactable as an interface, where the robot acts as a constructivist
tutor. The pairing consisted of matching different types of waste to
the corresponding recycling bin (recycle game) for the children and
matching the corresponding capital to a country (geography game)
for the adults. The learning scenario was turn-taking with three lev-
els of increased difficulty. The experiment consists of five different
conditions, described in section 4.2: THI, NoR, ToR, T&HoR and
HHI. Adults were tested in all conditions whereas children in NoR,
T&HoR and HHI. To assess the interaction, the implementation as
well as the effectiveness of the robot’s social cues, behavioral data,
logged files and questionnaires were collected.

In the results, we see that in adults, there are significant differ-
ences in knowledge improvement among conditions. On the other
hand, there is a trend in knowledge improvement in children, but it
is not significant. The results are not sufficient to draw any concrete
conclusions about knowledge retrieval. Nevertheless, we can see that
people scored higher in the post-experiment questionnaire, on the
other hand, results are not enough to identify exactly the reason. It
is possible that the task, though the difficulty increased on each trial,
would still remain relatively easy. That is why we aim at devising a
related experiment where we would exploit the Adaptive Layer that
adapts the difficulty to each individual player.

Our results show that children looked more at the T&HoR robot
than then ToR or HHI. Based on these results, we can conclude that
the behavior of the Task and Human oriented Robot drew more the
attention of the participant than the other human or the solely Task
oriented Robot. The robot was looking at the participant when it was
addressing him; its gaze followed both the player’s and its own ac-
tions, meaning that it would look at the object that the participant
had chosen or the object that it chose. Finally, it would show facial
expressions according to each event: happy for the correct pair or sad
for the incorrect one. Such cues may indeed be more salient and draw
the attention of the player. In all conditions, the robot was speaking,
so it seems that it was the implicit non-verbal communicative signals



of the robot that drew the attention of the participant. In the case of
the adults, the results are also similar. Such behavior is important in
the development of not only social but also educational robots, as
gaze following directs attention to areas of high information value
and accelerates social, causal, and cultural learning [1]. Indeed, such
cues positively impact human-robot task performance with respect
to understandability [7]. This is supported by results like the ones
of [24], where the addition of gestures led to a higher effect on the
participant only when the robot was also performing eye contact.

Finally, the results from the Godspeed questionnaire in adults
show a significant difference in the overall score between HHI and
THI, NoR, ToR but not the T&HoR. Such results were generally ex-
pected, as a human would score higher than the machine. In children,
there was no significance in any of the conditions, however, it may
be the case that the Godspeed questionnaire is not the optimal mea-
surement for subjective experience, at it may contain concepts that
are not yet fully understood by such a young age. Perhaps simpler
or even more visual (with drawings that represent the extremes of a
category) questionnaires would be more appropriate.

Though the knowledge transfer results are not sufficient to draw
any concrete conclusions (as the knowledge transfer is not signifi-
cantly different among conditions), the complex social behavior of
the robot indeed attracts attention of the participant. As for the pilot
study, the authors need to focus more on the evaluation of the system,
and need to introduce a strong experimental design to derive more
specific conclusions. Further analysis of the behavioral data can pro-
vide insight regarding eye contact in terms of error trials, decision
time and task difficulty. In the upcoming experiments we will pro-
vide a better control in the HHI condition. A possible strategy is to
deploy a specific person (an actor) as the other player, to normalize
the characteristics of the scenario between all the subjects.
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