
Performing Facial Expression Synthesis on Robot
Faces: A Real-time Software System

Maryam Moosaei1, Cory J. Hayes, and Laurel D. Riek

Abstract. The number of social robots used in the research
community is increasing considerably. Despite the large body of
literature on synthesizing facial expressions for synthetic faces,
there is no general solution that is platform-independent. Subse-
quently, one cannot readily apply custom software created for a
specific robot to other platforms. In this paper, we propose a gen-
eral, automatic, real-time approach for facial expression synthe-
sis, which will work across a wide range of synthetic faces. We
implemented our work in ROS, and evaluated it on both a vir-
tual face and 16-DOF physical robot. Our results suggest that our
method can accurately map facial expressions from a performer
to both simulated and robotic faces, and, once completed, will
be readily implementable on the variety of robotic platforms that
HRI researchers use.

1 Introduction
Robotics research is expanding into many different areas, par-
ticularly in the realm of human-robot collaboration (HRC). Ide-
ally, we would like robots to be capable partners, able to perform
tasks independently and effectively communicate their intentions
toward us. A number of researchers have successfully designed
robots in this space, including museum-based robots that can pro-
vide tours [10], nurse robots that can automatically record a pa-
tient’s bio-signals and report the results [22], wait staff robots
which can take orders and serve food [17], and toy robots which
entertain and play games with children [30].

To facilitate HRC, it is vital that robots have the ability to
convey their intention during interactions with people. In or-
der for robots to appear more approachable and trustworthy, re-
searchers must create robot behaviors that are easily decipherable
by humans. These behaviors will help express a robot’s intention,
which will facilitate understanding of current robot actions or the
prediction of actions a robot will perform in the immediate fu-
ture. Additionally, allowing a person to understand and predict
robot behavior will lead to more efficient interactions [18, 20].

Many HRI researchers have explored the domain of expressing
robot intention by synthesizing robot behaviors that are human-
like and therefore more readily understandable [29, 13, 21, 5].
For example, Takayama et al. [35] created a virtual PR2 robot
and applied classic animation techniques that made character be-
havior more humanlike and readable. The virtual robot exhibited
four types of behaviors: forethought and reaction, engagement,
confidence, and timing. These behaviors were achieved solely by
modifying the robot’s body movement. Results from this study
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suggest that these changes in body movement can lead to more
positive perceptions of the robot, such as it possessing greater
intelligence, being more approachable, and being more trustwor-
thy.

While robots like the PR2 are highly dexterous and can ex-
press intention through a wide range of body movements, one
noticeable limitation is that there are some subtle cues they can
not easily express without at least some facial features, such as
confusion, frustration, boredom, and attention [16]. Indeed, the
human face is a rich spontaneous channel for the communica-
tion of social and emotional displays, and serves an important
role in human communication. Facial expressions can be used to
enhance conversation, show empathy, and acknowledge the ac-
tions of others [7, 15]. They can be used to convey not only ba-
sic emotions such as happiness and fear, but also complex cog-
nitive states, such as confusion, disorientation, and delirium, all
of which are important to detect. Thus, robot behavior that in-
cludes at least some rudimentary, human-like facial expressions
can enrich the interaction between humans and robots, and add to
a robot’s ability to convey intention.

HRI researchers have used a range of facially expressive
robots in their work, such as the ones shown in Figure 1. These
robots offer a great range in their expressivity , facial degrees-
of-freedom (DOF), and aesthetic appearance. Because different
robots have different hardware, it is challenging to develop trans-
ferable software for facial expression synthesis. Currently, one
cannot reuse the code used to synthesize expressions on one
robot’s face on another [6]. Instead, researchers are developing
their own software systems which are customized to their spe-
cific robot platforms, reinventing the wheel.

Another challenge in the community is many researchers need
to hire animators to generate precise, naturalistic facial expres-
sions for their robots. This is very expensive in terms of cost
and time, and is rather inflexible for future research. A few re-
searchers use commercial off-the-shelf systems for synthesizing
expressions on their robots, but these are typically closed source
and expensive as well.

Thus, there is a need in the community for an open-source soft-
ware system that enables low-cost, naturalistic facial expression
synthesis. Regardless of the number of a robot’s facial DOFs,
from EDDIE [34] to Geminoid F [9], the ability to easily and
robustly synthesize facial expressions would be a boon to the re-
search community. Researchers would be able to more easily im-
plement facial expressions on a wide range of robot platforms,
and focus more on exploring the nuances of expressive robots
and their impact on interactions with humans and less on labo-
rious animation practices or the use of expensive closed-source



Figure 1. Examples of robots with facial expressivity used in HRI
research with varying degrees of freedom. A: EDDIE, B:Sparky, C:

Kismet, D: Nao , E: M3-Synchy, F: Bandit, G: BERT2, H: KOBIAN, F:
Flobi, K: Diego, M: ROMAN, N: Eva, O: Jules, P: Geminoid F, Q:

Albert HUBO , R: Repliee Q2

software.
In this paper, we describe a generalized software framework

for facial expression synthesis. To aid the community, we have
implemented our framework as a module in the Robot Operating
System (ROS), and plan to release it as open source. Our syn-
thesis method is based on performance-driven animation, which
directly maps motions from video of a performers face onto a
robotic (or virtual) face. However, in addition to enabling live
puppeteering or “play-back”, our system also provides a basis for
more advanced synthesis methods, like shared gaussian process
latent variable models [14] or interpolation techniques [23].

We describe our approach and its implementation in Section 2,
and its validation in both simulation and on a multi-DOF robot
in Section 3. Our results show that our framework is robust to be
applied to multiple types of faces, and we discuss these findings
for the community in Section 5.

2 Proposed method
Our model is described in detail in the following sections, but
briefly our process was as follows: We designed an ROS mod-
ule with five main nodes to perform performance driven fa-
cial expression synthesis for any physical or simulated robotic
face.These nodes include:

S, a sensor, capable of sensing the performer’s face (e.g., a cam-
era)

P, a point streamer, which extracts some facial points from the
sensed face

F, a feature processor, which extracts some features from the
facial points coming from the point streamer

T, a translator which translates the extracted features from F to
either the servo motor commands of physical platforms or the
control points of a simulated head

C : C1 . . . Cn, a control interface which can be either an inter-
face to control the animation of a virtual face or motors on a
robot.

These five nodes are the main nodes for our synthesis module.
However, if desired, a new node can be added to generate any
new functionality.

Figure 2 gives an overview of our proposed method. Assume
one has some kind of sensor, (S), which senses some information
from a person’s (pr) face. This information might consist of video
frames, facial depth, or output of a marker/markerless tracker. pr
can be either a live or recorded performer. In our general method,
we are not concerned about identifying the expressions on the
pr’s face. We are concerned about how to use the expressions
to perform animation/synthesis on the given simulated/physical
face. S senses pr and we aim to map the sensed facial expressions
onto the robot’s face.

Basically, we use a point streamer P, to publish informa-
tion from a provided face. Any other ROS node can subscribe
to the point streamer to synthesize expressions for an simu-
lated/physical face. A feature processor F, subscribes to the infor-
mation published by the point streamer and processes this infor-
mation. F extracts useful features out of all of the facial informa-
tion published by the point streamer. Then, a translator, T, trans-
lates extracted features to control points of a physical/simulated
face. Finally, a control interface C : C1 . . . Cn moves the physi-
cal/simulated face to a position which matches pr’s face.

2.1 ROS implementation

Figure 2 depicts the required parts for our proposed method. The
software in our module is responsible for three tasks: (1) Ob-
taining input, (2) Processing input, (3) Actuating motors/control
points accordingly

These responsibilities are distributed over a range of hardware
components; in this case, a webcam, an Arduino board, a servo
shield, and servo motors.

A local computer performs all processing tasks and collects
user input. The data is then passed to the control interface, C :
C1 . . . Cn which can either move actuators on an physical robot
or control points on a virtual face. While Figure 2 shows the most
basic version of our system architecture, other functionality or
services can be added as nodes. Below, we describe each of these
nodes in detail as well as the ROS flow of our method.

S, the sensor node, is responsible for collecting and publishing
the sensor’s information. This node organizes the incoming in-
formation from the sensor and publishes its message to the topic
/input over time. The datatype of the message that this node
publishes depends on the sensor. For example, if the sensor is a
camera, this node publishes all incoming camera images. Exam-
ples of possible sensors include a camera, a Kinect, or a motion
capture system. This node can also publish information from pre-
recorded data, such as all frames of a pre-recorded video.

P, the point streamer node, subscribes to the topic /input
and extracts some facial points from the messages it receives.
This node extracts some facial points and publishes them to the
topic /points.

F, the feature processor node, subscribes to the topic
/points. Node F processes all the facial points published
by P. F extracts useful features from these points that can be
used to map the facial expressions of a person to the physi-



Figure 2. Overview of our proposed method.

cal/simulated face. This node publishes feature vectors to the
topic /features.

T, the translator node, subscribes to the topic /features.
and translates the features to DOFs available on the robot’s face.
Basically, this node processes the message received from the
topic /features and produces corresponding movements for
each of the control points on a robotic or virtual character face.
This node publishes its output to the topic /servo commands.

C : C1 . . . Cn: The control interface node subscribes to the
topic /servo commands and actuates the motors of a phys-
ical robot or control points of a simulated face. We show C :
C1 . . . Cn because a control interface might consist of differ-
ent parts. For example, in case of a physical robotic head, the
control interface might include a microcontroller, a servo shield,
etc. We show the combination of all of these pieces as a sin-
gle node because they cooperate together to actuate the mo-
tors. C : C1 . . . Cn subscribes to the topic /servo commands
which contains information about the exact movement for each
of the control points of the robotic/simulated face. This node then
makes a readable file for the robot containing the movement in-
formation and sends it to the robot.

2.2 An example of our method

There are various ways to implement our ROS module. In our im-
plementation in ROS, we used a webcam as S. We chose the CLM
face tracker as P. In F, we measured the movement of each of the
facial points coming from the point streamer over the time. In
T, we converted the features to servo commands for the physical
robot and slider movements of the simulated head. In C, we used
an Arduino Uno and a Renbotic Servo Shield Rev2 for sending
commands to the physical head. For the simulated faces, C gener-
ates source files that the Source SDK was capable of processing.

We intended to use this implementation in two different sce-
narios: a physical robotic face as well as a simulated face. For a
physical robot, we used our bespoke robotic head with 16 servo
motors. For a simulated face, we used ”Alyx”, an avatar from
video game Half-Life 2 from the Steam Source SDK. We de-
scribe each subsystem in detail in the following subsections.

2.2.1 Point streamer P

We employed a Constrained Local Model (CLM)-based face
tracker as the point streamer in our example implementation.
CLMs are person-independent techniques for facial feature track-
ing similar to Active Appearance Models (AAMs), with the ex-
ception that CLMs do not require manual labeling [12]. In our
work, we used an open source implementation of CLM devel-
oped by Saragih et al. [1, 33, 11].

We ported the code to run within ROS. In our implementation,
ros clm (the point streamer) is an ROS implementation of the
CLM algorithm for face detection. The point streamer ros clm
publishes one custom message to the topic /points. This mes-
sage to the topic includes 2D coordinates of 68 facial points. This
message is used to stream the CLM output data to anyone who
subscribes to it.

As shown in the Figure 2, when the S node (webcam) receives
a new image, it publishes a message containing the image data to
the /input topic. The master node then takes the message and
distributes it to the P node (ros clm) because it is the only node
that subscribes to the /input topic.

This initiates a callback in the P ros clm node, causing it
to begin processing the data which is basically tracking a mesh
with 68 facial points over time. The ros clm node sends its own
message on the /points topic with the 2D coordinates of the
68 facial feature points.

2.2.2 Feature processor F

The F node subscribes to the topic /points. The F node re-
ceives these facial points. Using the position of two eye corners,
F removes the effects of rotation, translation, and scaling. Next,
in each frame, F measures the distance of each facial point to
the tip of the nose as a reference point and saves 68 distances in
a vector. The tip of the nose stays static in transition from one
facial expression to the other. If the face has any in-plane transla-
tion or rotation, the distances of facial points from the tip of the
nose will not be affected.

Therefore, any change in the distance of a facial point relative
to the tip of the nose point over time would mean a facial expres-
sion is occurring. F publishes its calculated features to the topic
/features.



Figure 3. Left: the 68 facial feature points of CLM face tracker, Right:
an example robotic eyebrow with one degree of freedom and an example

robotic eyeball with two degrees of freedom

2.2.3 Translator T

The T node subscribes to the topic /features and produces
appropriate commands for servos of a physical robot or control
points of a simulated face. F keeps track of any changes in the
distances of each facial point to the tip of the nose and publishes
them to the /features topic. The T node has the responsibil-
ity of mapping these features to corresponding servo motors and
servo ranges of a physical face, or to the control points of a sim-
ulated head. T performs this task in three steps. The general idea
of these steps is similar to the steps Moussa et al. [28] used to
map the MPEG-4 Facial Action Parameters of a virtual avatar to
a physical robot.

In the first step, for each of the servo motors, we found a group
of one or multiple CLM facial points whose movement signifi-
cantly affected the motor in question. For example, as Figure 3
shows, the CLM tracker tracks five feature points on left eye-
brow (22,23,24,25,26). However, the robot face shown in Figure
3 has only one motor for its left eyebrow. Therefore, the cor-
responding feature group for the robots left eyebrow, would be
22,23,24,25,26.

T converts the movement of each group of the CLM feature
points to a command for the corresponding servo motor of a phys-
ical robot or control point of a simulated face. We used two ex-
amples in this paper, one with a simulated face and one with our
bespoke robot. As an example, Table 1 shows the correspond-
ing group of CLM points for each of the 16 servo motors of our
bespoke robot

We averaged the movements of all of the points within a given
group to compute only one number as the command for each
motor/control point. To demonstrate this principle, our bespoke
robot has a single motor for the right eyebrow. However, as Fig-
ure 3 shows, the CLM face tracker tracks five feature points on
right eyebrow. If a performer raises their right eyebrow, the dis-
tance of these five points to the tip of the nose increases. We av-
erage the movements of these five points and use that value to
determine the servo command for the the robot’s right eyebrow.

Servo motors have a different range of values than that of fea-
ture points. Therefore, in the second step, we created a conver-
sion between these values. The servos in our robot accept values
between 1000 and 2000.

To find the minimum and maximum movement of each group

of points associated with each servo, we asked a performer to
make a wide range of extreme facial movements while seated in
front of a webcam connected to a computer running CLM. For
example, we asked the performer to raise their eyebrows to their
extremities, or open their mouth to its maximum. Then, we man-
ually modified the robot’s face to match the extreme expressions
on the subject’s face and recorded the value of each motor. This
way, we found the minimum and maximum movement for each
group of facial feature points as well as for each servo motor.

In the last step, we mapped the minimum, maximum, and de-
fault values of the CLM facial points and the servo motors. Some
servo motors had a reversed orientation with the facial points. For
those servos, we flipped the minimum and maximum. In order to
find values for a neutral face, we measured the distance of feature
points to the tip of the nose while the subject had a neutral face.
We also manually adjusted the robot’s face to look neutral and
recorded servo values.

Using the recorded maximum and minimum values, we ap-
plied linear mapping and interpolation (c.f., Moussa et al.) to
find the criteria of mapping facial distances to servo values [28].
These criteria are used to translate facial points in each unseen in-
coming frame to the robot’s servo values. The T node publishes
a set of servo values to the topic /servo commands.

2.2.4 Control interface C : C1 . . . Cn

The C node subscribes to the topic /servo commands and
sends the commands to the robot. The servo motors of our robot
are controlled by an interface consisting of an Arduino UNO con-
nected to a Renbotic Servo Shield Rev2. ROS has an interface
that communicates with Arduino through the rosserial stack [2].
By using rosserial arduino, a subpackage of rosserial, one can
add libraries to the Arduino source code to integrate Arduino-
based hardware in ROS. This allows communication and data ex-
change between the Arduino and ROS.

Our system architecture uses rosserial to publish messages
containing servo motor commands to the Arduino in order to
move the robot’s motors. The control interface receives the de-
sired positions for the servo motors at 24 frames-per-second (fps).
For sending commands to the simulated face, C generates source
files that the simulated face is capable of processing.

Table 1. The facial parts on the robot, and corresponding servo motors
and CLM tracker points.

Facial Part Servo Motor # CLM Points
Right eyebrow 1 17,18,19,20
Left eyebrow 2 23,24,25,26

Middle eyebrow 3 21,22
Right eye 4 (x direction), 5 (y

direction)
37,38,40,41

Left eye (x and y direction) 6 (x direction), 7 (y
direction)

43,44,46,47

Right inner cheek 8 49,50
Left inner cheek 9 51,52

Right outer cheek 10 49,50,51
Left outer cheek 11 51,52,53

Jaw 12 56,57,58
Right lip corner 13 48
Left lip corner 14 54
Right lower lip 15 57,58
Left lower lip 16 55,56



3 Validation

To ensure our system is robust, we performed two evaluations.
First, we validated our method using a simulated face (we used
“Alyx”, an avatar in the Steam Source SDK [3]). Then, we tested
our system on a bespoke robot with 16 DOFs in its face.

3.1 Simulation-based evaluation

We conducted a perceptual experiment in simulation to validate
our synthesis module This is a common method for evaluating
synthesized facial expressions [9, 25]. Typically, participants ob-
serve synthesized expressions and then either answer questions
about their quality or generate labels for them. By analyzing col-
lected answers, researchers evaluate different aspects of the ex-
pressions of their robot or virtual avatar.

3.1.1 Method

In our perceptual study, we extracted three source videos of
pain, anger, and disgust (total of nine videos) from the UNBC-
McMaster Pain Archive [24] and MMI database [31], and
mapped them to a virtual face. The UNBC-McMaster Pain
Archive is a naturalistic database of 200 videos from 25 partici-
pants suffering from shoulder pain. The MMI database [31] is a
database of images/videos of posed expressions from 19 partici-
pants who were instructed by a facial animation expert to express
six basic emotions (surprise, fear, happiness, sadness, anger, and
disgust). We selected pain, anger, and disgust as these three ex-
pressions are commonly conflated, and were replicating the ap-
proach taken by Riva et al. [32].

Using our synthesis module, we mapped these nine facial ex-
pressions to three virtual characters from the video game Half-
Life 2 from Steam Source SDK. We used three different virtual
avatars, and overall we created 27 stimuli videos 3 (Expression:
pain, anger, or disgust) × 3 (Gender: androgynous, male, and
female). Figure 4 shows example frames of the created stimuli
videos.

In order to validate people’s ability to identify expressions syn-
thesized using our performance-driven synthesis module, we con-
ducted an online study with 50 participants on Amazon MTurk.
Participant’s ages ranged from 20-57 (mean age = 38.6 years).
They were of mixed heritage, and had all lived in the United
States for at least 17 years. Participants watched the stimuli
videos in randomized order and were asked to label the avatar’s
expression in each of the 27 videos.

3.1.2 Results and discussion

We found that people were able to identify expressions when ex-
pressed by a simulated face using our performance-driven syn-
thesis module (overall accuracy: 67.33%, 64.89%, and 29.56%2

for pain, anger and disgust respectively) [19, 26]. Riva et al.
[32] manually synthesized painful facial expressions on a vir-
tual avatar with the help of facial animation experts, and found
60.4% as the overall pain labeling accuracy rate [32]. Although
we did not set out to conduct a specific test to compare our find-
ings to those of manual animation of the same expressions (c.f.

2 Low disgust accuracies are not surprising; it is known to be a poorly
distinguishable in the literature [8].

Figure 4. Sample frames from the stimuli videos and their
corresponding source videos, with CLM meshes.

Riva et al. [32]), we found our synthesis method achieved arith-
metically higher labeling accuracies for pain. These results are
encouraging, and suggest that our synthesis module is effective
in conveying naturalistic expressions. The next evaluation is to
see how well it does on a robot.

3.2 Physical robot evaluation

To test our synthesis method with a physical robot, we used a
16-facial-DOF bespoke robot. Evaluating facial expressions on a
physical robot is more challenging than on a simulated face be-
cause their physicality changes the physical generation of synthe-
sis. Moving motors in real-time on a robot is far more complex a
task due to the number of a robot’s motors, their speed, and their
range of motion.

We needed to understand if our robot’s motors were moving in
real time to their intended positions. Since the skin of our robot
is still under development, we did not run a complete perceptual
study similar to the one we ran in simulation. However, as we
were testing how the control points on the robot’s head moved in
a side-by-side comparison to a person’s face, we do not believe
this was especially problematic for this evaluation.

3.2.1 Method

We ran a basic perceptual study with 12 participants to test both
the real-time nature of the system, and the similarity between ex-
pressions of a performer and the robot. We recorded videos of
a human performer and a robot mimicking the performer’s face.
The human performer could not see the robot. However, facial
expressions made by the performer were transferred to the robot
in real time.

The performer sat in front of a webcam connected to a com-
puter. During the study, the performer was instructed to perform
10 face-section expressions, two times each (yielding a total of 20
videos). The computer instructed the performer to express each
of the face-section expressions step by step. Face-section expres-
sions were: neutral, raise eyebrows, frown, look right, look left,
look up, look down, raise cheeks, open mouth, smile.

We recorded videos of both the performer and the robot mim-
icking the performer’s face. Each video was between 3-5 seconds
in length. We ran a basic perceptual study by using side-by-side



Table 2. Full results for each of the 10 face-section expressions.

Face-section expression Average similarity score s.d Average synchrony score s.d
Neutral 4.12 1.07 4.16 1

Raise eyebrows 4.33 0.86 4.25 1.13
Frown 4 1.02 4.08 1.24

Look right 4.54 0.5 4.66 0.74
Look left 4.5 0.77 4.37 1.08
Look up 2.83 1.29 3.7 1.31

Look down 3.54 1.41 4.45 0.77
Raise cheeks 3.79 1.4 4.25 0.85
Open mouth 4.12 1.16 4.62 0.56

Smile 2.79 1.14 4.41 0.91
Overall 3.85 1.28 4.3 1.01

comparison or “copy synthesis”, which we have described in our
previous work [27]. In a side-by-side comparison, one shows syn-
thesized expressions on a simulated/physical face side-by-side
with the performer’s face to participants, and asks them to an-
swer some questions [4, 36].

We showed side-by-side face-section videos of the performer
and the robot to participants. Participants viewed the videos in
a randomized order. We asked participants to rate the similar-
ity to and synchrony with the performer’s expressions and the
robot expressions through use of a 5-point Discrete Visual Ana-
logue Scale (DVAS). A five on the scale corresponded to ” simi-
lar/synchronous” and a one to ”not similar/synchronous” .

3.2.2 Results and discussion

Participants were all American and students at our university.
Their ages ranged from 20-28 years old (mean age = 22 years).
Eight female and four male students participated.

The overall average score for similarity between the robot and
the performer expressions was 3.85 (s.d. = 1.28). The overall av-
erage score for synchrony between the robot and performer ex-
pressions was 4.30 (s.d. = 1.01).

Table 2 reports the full results for each of the 10 face-section
expressions. The relatively high overall scores of similarity and
synchrony between the performer and the robot expressions sug-
gest that our method can accurately map facial expressions of
a performer onto a robot in real-time. However, as this figure
shows, we had a low average similarity score for lookup and
smile.

One reason might be that the CLM tracker that we used in
our experiment does not accurately track vertical movements of
the eyes. Therefore, we could not accurately map the performer’s
vertical eye movements to the robot. Also, since our robot still
does not have skin, its lips do not look very realistic. This might
be a reason why participants did not find the robot’s lip move-
ments to be similar to the performer’s lips movements.

4 General discussion
In this paper, we described a generalized solution for facial ex-
pression synthesis on robots, its implementation in ROS using
performance-driven synthesis, and its successful evaluation with
a perceptual study. Our method can be used both to map facial ex-
pressions from live performers to robots and virtual characters, as
well as serve as a basis for more advanced animation techniques.

Our work is robust, not limited by or requiring a specific num-
ber of degrees of freedom. Using ROS as an abstraction of the
code, other researchers may later upgrade the software and in-
crease functionality by adding new nodes to our ROS module.

Our work is also a benefit to the robotics, HRI, and affective
agents communities, as it does not require a FACS-trained expert
or animator to synthesize facial expressions. This will reduce re-
searchers’ costs and save them significant amounts of time. We
plan to release our ROS module to these communities within the
next few months.

One limitation of our work was that we could not conduct a
complete evaluation of our work on a physical robot, since its
skin is still under development. Once the robot’s skin is com-
pleted, we will run a full perceptual test. A second limitation was
that the eye-tracking capabilities in CLM are poor, which may
have caused the low similarity scores between the robot and per-
former. In the future as eye tracking technology advances (such
as with novel, wearable cameras), we look forward to conducting
our evaluation again.

Robots that can convey intentionality through facial expres-
sions are desirable in HRI since these displays can lead to in-
creased trust and more efficient interactions with users. Re-
searchers have explored this domain of research, though in a
somewhat fragmented way due to variations in robot platforms
that require custom synthesis software. In this paper, we intro-
duced a real-time platform-independent framework for synthe-
sizing facial expressions on both virtual and physical faces. The
best of our knowledge, this is the first attempt to develop an open-
source generalized performance-driven facial expression synthe-
sis system. We look forward to continuing work in this area.
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