
1

Specification-Driven Prototyping for
Architecting Dependability

 Dennis B. Mulcare, ACM member
Consultant

cefsm@ellijay.com

Abstract - This paper describes a major part of an architecting
methodology developed for safety-critical fault-tolerant software
systems. The methodology coverage centers on specification-
driven prototyping. This approach to prototyping is seen to be
superior to the customary approaches of throwaway and
evolutionary prototyping. A still developmental form of
representation, higher-level statecharts, provides a suitably
expressive prototype specification language.

Dependability is held to rely crucially on the rigor and
specificity of the architecting process, as well as on the
propagatability of its products. The subject four-step prototyping
approach can subserve such needs, especially with regard to
conceptualization insights, complexity management, dynamic
analysis, and dependability assurances. Such efforts primarily
address the underlying architecture or infrastructure of a nascent
software system. In particular, the advocated prototyping approach
focuses on absolute time-based concurrency, with accommodation
of arbitrary scalability, non-ideal timing, and stochastic effects.

1 INTRODUCTION

Dependability refers to an encompassing qualitative
judgment regarding the degree to which a software system merits
or elicits the confidence of customers and users. Mainly,
dependability resides in the extra-functional properties exhibited
by a deployed system, and ultimately, in the system's underlying
architecture or infrastructure. The underlying architecture includes
most of the redundancy elements for fault tolerance, along with
system-wide management logic. The definition and organization
of such features during architecting present major leverage for
ensuring high dependability from the outset of development.

Driven primarily by the demands of safety-critical systems,
the development of associated methods has proceeded, with
moderate success, for some three decades now. The routine use of
these methods, however, has largely been restricted to embedded
applications that prompt their use because of the severity of
inherent hazards. Nonetheless, the adequacy of dependability
methods and practices remains a continuing challenge because of
the ever-increasing degree of sophistication and integration sought
in embedded software systems.

1.1 Critical System Background

A dependable development process with reliable methods is
essential to the assured development of dependable software
systems. Safety-critical embedded systems, such as fly-by-wire
flight control systems, motivated extensive research in associated
development methods from the 1970s well into the 1980s. More or
less independently, software-based prototyping methods evolved
during the same period.

As evident by deployed aerospace systems, critical system
development practice has been rather successful from about 1980
forward. Such success has in general been achieved because the
associated software systems were:

• Dedicated to the critical function(s);
• Kept as simple as possible;
• Constrained in by limited computing resources;
• Supported by specialized hardware;
• Developed by staff with a priori understanding of the

intended system needs and capabilities;
• Driven by considerations of safety and reliability.
In short, dependability was explicitly a major driver in

architecting, implementing, and deploying such systems. While
safety criticality was the paramount concern, other properties
engendering dependability were necessarily and consciously
incorporated into such systems. For example, various self-test and
fault diagnosis features essential to safety also enhanced reliability
and maintainability. Also, the criticality of real-time constraints
levied stringent demands on infrastructure performance.

1.2 Current Dependability Challenges

Then, as processing power and functional integration became
compelling realities, new issues regarding dependability arose
because typically the physical segregation of critical functions was
no longer programmatically viable. In turn, the requirements
placed on the infrastructure became increasingly more diverse,
demanding, and complex.
 Regarding both research and practice, probably the greatest
opportunity for dependability technology improvement exists at
the architecting stage. Apart from the more customary concerns
over functionality or applications, assured dependability mainly
necessitates a rigorous approach to the formulation, analytical
assessment, and verification of a nascent software system's
underlying architecture. Typically, safety-critical systems involve
redundancy management and hard real-time constraints that
compel a focus on the dynamic analysis of concurrency logic and
absolute timing in order to ensure requisite levels of dependability.

Such architecting activities can be facilitated through
specification-driven prototyping, as depicted in Figure 1. Here, all
prototype definition and development is first performed at the
specification level. Then, the prototype is implemented or
modified accordingly. Its execution is used in problem
exploration, architecture development, dynamic analysis, and
concept validation. Ultimately, the verified and optimized results,
especially quantitative parameters as for timing, are propagated
from the prototype specification to that of development product.

For the identified class of problems, however, two major
problems persist regarding readily usable prototyping methods.
First, there is the problem of a specification language that can
express absolute time-based concurrency in an arbitrarily scalable
manner. Such scalability should apply to both process types and
data types needed in prototype specification. Second,
specifications rendered in such a language should be directly and
precisely translatable into an executable form. Such capacity is
vital to methods automation. These issues, together with the
inclusion of stochastic effects, appear to be neglected areas of
research. These issues, moreover, would seem to be relevant to
many classes of systems with significant dependability demands.

2

Product
Requirements

Product
Specification

Prototype
Specification

Prototype
Deficiencies/
Opportunities

Operational
Scenarios

Prototype
Execution

Prototype
Implementation

Perfective
Iteration

All Proto type Definition &
Modifications are Prescribed
at the Sp ecification Level

Note

+

Figure 1. Specification-Driven Prototyping Concept

2 ARCHITECTING METHODOLOGY

A dependable architecting process, supported by reliable and
effective methods, is necessary to ensure a dependable
development product. To stabilize subsequent development and
manage complexity throughout system development, the
architecting process should capture all the essential problem
complexity at the outset. Where demands on the architecture are
stringent, the methodology should also be suitably rigorous and
tailored to the particular system characteristics. For safety-critical
embedded software systems then, the architecting methodology
should preferably concentrate on system-wide control logic and
address the underlying architecture largely separate from that of
the applications architecture. This separation is generally quite
tractable, and is beneficial for both static and dynamic analysis.

Table 1 summarizes salient attributes of the applications
versus the infrastructure architectures, which together compose the
software system architecture. Dependability associates mainly
with the extra-functional requirements, which for safety-critical
systems tend to have Go/No-Go acceptability criteria. Thus, the
proper operation of the infrastructure must be sustained under both
faulted and fault-free conditions, generally under very stringent
absolute timing constraints. Moreover, the operation of the
applications architecture is totally dependent on that of the
infrastructure. Further, the acceptability criteria for the operation
of the applications architecture are usually relatively tolerant, with
some latitude for limited functional performance degradation.

From an architecting standpoint, the distinction in Table 1
between System STATE and Operational MODE is pivotal.
System state denotes the state of the overall system, and hence the
support available for functionality. On the other hand, operational
mode effects the activation of particular functionality, conditional
upon its availability per system state. System state is based on
absolute time based concurrency logic that manages the system
and its hardware elements. As such, the real-time determination of
system is state is both critical and intricate, especially where
diverse hardware operability and fault tolerance are involved.

As a consequence, the overall methodology that is context for
this paper is called control state decomposition1. Practitioners in
safety-critical systems have employed this kind of methodology, at
least implicitly, to some degree. Otherwise, the linkage from
dependability-related analyses to the development product is
tenuous or obscure, and hence potentially misleading. Control
state decomposition is relevant here for several reasons:

• Infrastructure-applications partitioning;
• Dependability-related product specification content;
• Focus of dynamic modeling and analysis.

APPLICATIONS
ARCHITECTURE

INFRASTRUCTURE
ARCHITECTURE

Functional Requirements

System Services

What Kind(s) of Service

Operational MODE

Functional Performance

Shades of Grey Criteria

Extra-functional Requirements

System Properties ("Ilities")

How Well Service is Supported

System STATE

Infrastructure Performance

GO/NO-GO Criteria

Table 1. Applications versus Infrastructure Architecture

2.1 Applications-Infrastructure Dichotomy

As seen in Figure 2, the architecting accomplished under the
control state decomposition methodology begins with a
delineation of software system requirements into functional and
extra-functional ones. On separate but interdependent trajectories,
the functional requirements drive the architecting of the
applications architecture, while the extra-functional requirements
drive the development of the underlying architecture. It serves as
the system-wide platform used by the applications architecture.

The extra-functional requirements are typically rather high-
level statements, usually quantitative ones. Hence, these
requirements are subject to considerable interpretation and
elaboration. Their interpretation largely dictates the degree of rigor
and kinds assurance methods that need to be used in development.
Their elaboration derives from the analysis and architecting
associated with the functional requirements. As seen in Figure 2,
the applications architecture furnishes its quantitative processing
needs for infrastructure development. These needs are identified
for all operational modes, with emphasis on worst-case demands.

The structure per se of the underlying architecture, such as
redundancy management schemes and self-test mechanisms,
derive largely from the extra-functional requirements. The
suitability of that structure, however, is subject to the requirements
derived through applications architecting. Further, the
parameterization of that structure, such as capacity or timing
quantities, is determined by the needs of the applications
architecture. As suggested earlier, the interplay between the
underlying and the applications architectures is mediated by the
system state and operational mode logic. Associated information
flow involves sensor, controller, display, and effector signals as
essential to the intended system functionalities.

 The system architecture integration shown in Figure 2 is a
logical one that centers on dynamic analysis of various
applications mode demands. The focus is on overall quantitative
adequacy under worst-case demands. Cases of particular concern
are the transient workload for handling faults and potential
computational delays due to dependencies in the interleaving of
distributed processes. At this stage, the associated software exists
only in logical or specification forms, so the associated dynamic
analysis is truly at an architectural level.

Such analysis involves prototype execution, or absolute
time-based simulation, using representative and worst-case
scenarios. Simulation provides tangible insights and quantitative
calibrations of architectural acceptability, including information
on behaviors pertaining to dependability. Such information can be
vital to associated static analysis in terms of data or assumptions.

3

INFRASTRUCTURE
DEVELOPMENT

FUNCTIONALITY
DEVELOPMENT

SYSTEM
ARCHITECTURE
INTEGRATION

SYSTEM
RQTS.

EXTRA-FUNCTIONAL
REQ UIREMENTS

FUNCTIONAL
REQUIREMENTS

UNDERLYING
ARCHITECTURE

APPLICATIO NS
ARCHITECTURE

VALIDATED
SYSTEM

ARCHITECTURE

How to Configure &
Reconfigure Resources

How to Segment &
Interrelate Activities

How to Map & Schedule
Activities per Available

Resources

Quantified
Processing

Needs

Mutual
Reconciliation

Figure 2. Architecting Methodology Dichotomy

2.2 The Architecting of Dependability

During software system architecting, dependability is
pursued indirectly through ensuring the aforementioned extra-
functional requirements. For example, the fulfillment of safety,
and reliability may be explicitly sought in composing a software
system architecture. Pending architecture commitments then have
to be analyzed to predict or confirm compliance with the
respective requirements. All such assessments are not quantitative,
as safety assurance also depends crucially on qualitative analysis.

In confirming extra-functional properties, it is vital to
employ complementary simulation and analysis techniques. Here,
simulation entails dynamic analysis, as contrasted with the static
nature of analysis per se. Their mutually reinforcing attributes are
outlined in Table 2. Necessarily, all assessments must use precise
and consistent architectural representations. Then, the
corroboration results obtained from static analysis and simulation
must be established. Finally, the analytical models must be
consistent with the finalized architecture definition.

SCOPE

ORIENTATION

DOMAIN

KEY

MECHANISM

MODE

CLOSURE

General Conclusions

Equivalence Classes
(Breadth)

Encompassing Properties

Tractable yet Admissable
Model Simplifications

Reasoning/Consequences

Static/Detached

Deductive

Particular Conclusions

Problematic Scenarios
(Depth)

Selective Subset of
Behaviors

Representative
Scenario Selections

Stimulation/Observations

Dynamic/Tangible

Inductive

ANALYSIS SIMULATION

Table 2 - Attributes of Analysis and Simulation

2.3 Specification-Driven Prototyping

The importance of the dynamic analysis of a developmental
infrastructure architecture has been noted. This refers especially to
the capacity to examine complex behaviors and models with
selective high fidelity. Aside from detailed models, higher fidelity
may involve an absolute timebase, the modeling of concurrency,
or realistic scenarios. As noted in Table 2, problematic scenarios
like the transient behavior exhibited during fault handling can be
investigated through simulation, or prototype execution.
Comparable static analysis is in general intractable. Since
capabilities like timely and assured fault handling are essential to
safety-critical systems, prototype execution is a vital architecting
tool for ensuring reliability and safety from the outset.

The customary forms of software-implemented prototypes
are the throwaway and the evolutionary approaches. Both
approaches suffer from a lack of inherent discipline and focus.
This renders their use for architecting critical systems problematic.
The throwaway prototype has to be reversed engineered to recover
the implicit semantics from code to propagate into actual product;
this is a nebulous and error-prone task. Evolutionary prototypes
tend to diverge from strictly relevant features and to embody
dubious structure on which to base a development product.

Specification-driven prototyping was developed expressly to
aid in the architecting of safety-critical systems. It overcomes
problems associated with both throwaway and evolutionary
prototyping, and provides a stable and rigorous basis for overall
software system development. In specification-driven prototyping,
neither the prototype nor its specification is thrown away. They
are useful throughout system development, provided they are kept
consistent with related aspects of the developmental software
system. Further, the prototype is not itself evolved; only its
specification is. As depicted in Figure 1, all prototype definition
and development occurs at the specification level. The prototype is
merely kept consistent with its specification. Hence, the prototype
is not apt to diverge from the system requirements, and its
complete semantics are always available in a version that has been
partially verified through prototype execution.

4

Property Realization Role

Communicating External events Message passing

Notification

Request

Timeout

Tokens Local state data

Message parameters

Timing Process duration

Scheduling times

Transmission delays

Extended

Stochastics Timing variation

Demand variability

Stochastic decisions

Finite-State
Machine

Statechart
subgraph

Active objects

Table 3. Higher-Level Statechart Expressiveness

2.3.1 Payoff from Specification-Driven Prototyping -
Ultimately, appropriate information from the prototype
specification is propagated to product specifications. Such
information includes global concurrency logic, exact timing
parameters with tolerances, and quantitative parameters such as
sizing values. Unfortunately, this kind of information is often
conservatively estimated in early-on product specifications, or
acknowledged only by "TBDs." If such information is not
cogently stipulated, the basis for subsequent development is
questionable. Ill-informed or defaulted specification entries tend to
yield component/sizing mismatches, performance deficiencies,
trial-and-error development, and undue system complexity.

In summary, the motivation for specification-driven
prototyping is to establish global concurrency logic and
quantitative parameter values for the infrastructure architecture.
The intent is not only to eliminate uncertainty, but also to ensure a
more balanced, robust, and economical design. These attributes
translate into a system implementation that has: assured real-time
performance under worst-case conditions; minimal spurious fault
alarms and service outages; freedom from disparate bottlenecks
and surplus capacity; and in general stable parameter values.

2.3.2 Higher-Level Statecharts (HLSs) - HLSs were developed
expressly to support specification-driven prototyping2. They were
needed because of the lack of any other language with suitable
expressiveness at that time. Previously, a kind of higher-level Petri
net, a predicate-transition network, had been used, but it did not
provide desired modeling construct modularity. Since a subgraph
in a basic statechart constitutes a finite-state machine (FSM),
statecharts possess the relevant modularity property. They model
communication among FSMs through events issued across
subgraph boundaries. These circumstances prompted innovations
to extend the expressiveness of basic statecharts to that equivalent
to predicate-transition networks, or the development of HLSs. So
features like circulating tokens and complex transition rule syntax
were added to basic statecharts to define HLSs.

 HLSs may be thought of as scalable communicating
extended finite-state machines (CEFSMs), with correspondences
as seen in Table 2. The inherent scalability applies to tokens as
well as to subgraphs. Tokens are based on (passive) data types,
and subgraphs are defined as (active) process types. Prefix-dot
notation is used to denote scalability in both cases. The result is
arbitrary scalability with no changes at all to transition rules.

While of the same form as used for basic statecharts, the
syntax for HLS transition rules is appreciably more complex.
Augmented first-order logic is used to express HLS transition
rules, with additional constructs to represent absolute timing and
stochastic effects. Some other aspects of HLS transition rule
notation are:

• Distinction between Logical- and Operational-ANDs;
• Distinction between Logical Exclusive-OR and

Operational Exclusive-OR;
• Notation for Token Migration between subgraph Nodes;
• Compound Action-Parts;
• In-line Comments in Action-Parts.
Overall, HLSs enable a coherent form of nested abstractions,

where the HLS itself represents an encompassing concurrency
model. HLS subgraphs denote interacting process abstractions,
which in turn operate on instances of various token types, or data
abstractions. Consequently, state data is captured at three different
levels: global, process, and data token levels. This multi-level state
characterization coincides well with the aforementioned control
state decomposition methodology, with its emphasis on system
state and operational modes. And the top-level states and modes
correspond explicitly with the models used for static analysis and
product specification provisions.

While HLSs have been applied extensively on a manual
basis, their precise definition has not been completed.
Accordingly, their precise mapping to an executable prototype has
not been pursued. Consequently, such mappings have also been
performed on a manual basis. Nevertheless, in numerous
instances, successful prototypes have been developed, and the
HLSs have been very incisive in informing prototype refinements.

3 PROTOTYPING METHODOLOGY

The prototyping methodology is summarized in Figure 3,
where the same infrastructure architecture model, and hence
prototype specification, are evolved over four stages of elaboration
and assessment. Overall, the intent is to rigorously define and
verify an infrastructure architecture with confirmed dependability
properties like safety. The initial prototyping stage investigates the
correctness of concurrency logic for the global management of the
software system. Here, HLS process types correspond to logical
elements in the nascent architecture. This activity serves to reveal
many HLS specification deficiencies, and ultimately, to establish
precise definition and management of overall system state(s).

The second stage of prototyping dynamically examines the
absolute timing of interleaved processes in a distributed system,
based on applied stimuli and the affected HLS transition rules.
Here, the transition rules are expanded to include timing terms and
possibly stochastic variations in prototype operation. The
emphasis is on confirming real-time response and performance.

 The third stage focuses on physical component partitioning
and interfaces, which tend to associate with process type
boundaries. Distribution of timing requirements and tolerances are
allocated among components as well. Refined estimates for the
applications architecture needs are introduced at this stage, which
corresponds to the System Architecture Integration block in Figure
2. The application demands are merely simulated as dummy loads.

5

 Architecture = Concurrency Logic + Timing + Components + Configuration

(Dependability) (Correctness) (Performance) (Partitioning) (Optimization)

 Coherency, System Timing Logical Resource

 Certitude & State Requirements System Utilization &
 Realizability Definition Distribution Integration Specification

o Same Architecture Model(s) Evolved over the 4 Stages
o Outputs of Logic & Quantitative Parameters for Specifications

Figure 3 - Infrastructure Architecting Progression

The final stage is an optimization effort where the specific
numbers of various component types and their respective
quantitative parameters can be set to best overall advantage. This
involves the use of stochastic simulation and objective functions.
For example, a genetic algorithm has been used with stochastic
simulation to optimize component counts and parameters3.

This evolution of the specification-based prototype imparts
precision and certitude, and hence dependability, to crucial aspects
of the architecting process. Prototype execution also stimulates
conceptual and usage insights. When appropriate, the first stage of
prototyping, concurrency logic correctness, can be skipped. This
does not affect the prototype specification, but it greatly simplifies
its implementation. Even though the process remains a manual
one, the benefits for crucial aspects of critical systems are seen as
well worthwhile for orderly development and economical design.

3.1 Prototyping Experience

Two categories of experience with specification-driven
prototyping have accrued: that derived during architecting
activities, and that obtained in supporting physical system
development. Architecting experience has in part accrued in the
modeling of rate monotonic scheduling, Ada virtual nodes and
remote rendezvous, the Pilot's Associate processing concept, and
the optimization of an on-line transaction processing system3.

Figure 4 depicts some results of prototype execution for the
Ada virtual nodes concept. Here, the failure of one of the physical
nodes has been simulated. Detection of the hardware fault has then
prompted processor reconfiguration and application restart. The
restart is based on given applications priorities and the availability
of standby virtual nodes at operable physical nodes. The diagram
also shows the interplay between the underlying and the
applications architectures in the prioritized restoration of services.
HLS events are shown in bold font on the interconnection arcs.

Two cases of prototyping support for system development are
notable. First, a subtle quad channel synchronization problem in a
physical system was corrected with about three hours of prototype
experimentation. Previously, a week of physical system testing
had failed to even diagnose the problem. Second, an intermittent
synchronization dropout by one particular computational channel
was quickly diagnosed with the use of the prototype. Previously,
two weeks of system testing had failed to disclose the source of
the problem. Derivatives of a prototype have also been used
successfully for real-time system execution monitors.

FAULT

Underlying
Architecture

(Physical Nodes)

Applications
Architecture
(Virtual Nodes)

RECOVER

RESTART

Detect & Identify
of Fault Condition

by Operable Unit(s)

Establish New
Scheduling using

Available Processors

Repair Exception
States in Affected
Active Processes

Establish Applications
Reinitialization States
per New Scheduling

Gracefully Conclude
Pending Applications

Execution

(Spontaneous
External Event)

FLAG

ALLOCATE

Isolate Damaged Unit
& Reconfigure

Operable Resources

(Error-Free Resumption)

RESET

RAISE

REINI-
TIALIZE

Figure 4. Prototype Execution of Fault Handling

REFERENCES

1. MULCARE, D.B. et al. 1984. Analytical design and assurance
of digital flight control system structure. AIAA Journal of
Guidance, Control, and Dynamics, May-June 1984.

2. MULCARE, D.B. 1993. Ada multitasking prototyping using
higher-level statecharts, Tutorial at TRI-Ada '93.

3.MULCARE, D.B. 1996. System-level optimization of
architectural performance under varying service demands. 9th
International IEEE Symposium and Workshop on Engineering
of Computer-Based Systems.

