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Abstract. We introduce a graphical syntax to model distributed sys-
tems with asynchronous communications. We extend the general notion
of labelled transition systems and hierarchical networks of communicat-
ing systems (synchronisation networks) to add parameters to the com-
munication events. Our agents can also be parameterized to encode sets
of equivalent agents running in parallel. Our model is suitable for com-
positional description of distributed system behaviours as for models
resulting from static analysis of source code.
We have developed a tool which, given a finite domain for the parame-
ters, can generate finite labelled transition systems and synchronisation
networks from the parameterized models. The verification tools we use
are based on Process Algebra theories (Fc2 tools and CADP). Once in-
stantiated, we check properties by reachability analysis (when possible)
or by on-the-fly model checking.
We have validated our approach by modeling the recently started Chilean
system for electronic invoices and by checking formal properties (require-
ments) on it.

1 Introduction

There exist nowadays a number of software environments, or middlewares, for
facilitating the development of applications distributed over networks. These
tools can be used in a variety of contexts, ranging from multiprocessors or clusters
of machines, to local or wide area networks, to pervasive and mobile computing.

Each one of those applications have specific requirements. Methods and tools
to specify their behaviour (requirements) and to check the correctness of their
implementations, become necessary. These methods should have a sound formal
basis to be used by tools, but also should be simple enough to be used by non-
specialists. They also should be as automatic as possible, hiding the complexity
in their logics and algorithms.

There exists a number of semi-formal or formal frameworks for the descrip-
tion of software systems. In the first family we cannot avoid the most recent
versions of UML, in which statecharts diagrams have received some sort of
formal semantics; however these formalisms are not well adapted for use in con-
nection with automatic verification tools, and it is unclear whether they will ever
be suitable for the modelisation of distributed objects. More formal, and closer



to our concerns are various trends of process algebras, including Value-passing
CCS [Mil89], µCRL [GP94] and Lotos. But what we seek is a formalism that
will naturally guaranty that we can automatically derive finite representations;
all these algebras are much too expressive for this goal, and would require some
elaborate restrictions, or compilation phase. A number of Intermediate Formats
can also be compared to our formalism, including NTIF [GL02] (but this one
has no parallel composition), or Promela [spi03] (but it would be difficult to
use in our action-based framework).

We propose a pragmatic approach based on graphical specifications for com-
municating and synchronised distributed objects, in which both events (mes-
sages) and agents (distributed objects) can be parameterized.

Our specification framework is based on process algebra theories [BPS01],
and makes use of software tools [Mad92,RdSBR94,GLM02] to perform auto-
matic proof of behavioural properties. We extend the general notion of labelled
transition systems and hierarchical networks of communicating systems (syn-
chronisation networks [Arn94]) to add parameters to the communication events.
Our agents can also be parameterized to encode sets of equivalent agents running
in parallel.

We want both, to represent infinite systems (encoding realistic applications)
in a finite manner by using parameters, but also to get finite models (instanti-
ations) from a parameterized one. Thereby, the parameters in our systems are
typed variables of simple enumerable types: booleans, integers, intervals, finite
enumerations or structured objects. Our model is suitable to compositional de-
scription of distributed system behaviours as to extraction of models from static
analysis of source code. Our team is already working in model generation from
static analysis of the source code for ProActive [CKV98] applications [BM03].
ProActive is a Java implementation of distributed active components with
asynchronous communications and replies by means of future references, devel-
oped by our team.

We have developed a tool which, given a finite domain for the parameters,
can generate finite labelled transition systems and synchronisation networks from
the parameterized models. Once instantiated, we use the tools to compose the
system hierarchically and to verify properties by reachability analysis or on-the-
fly model checking.

In the next section we introduce our parameterized models. Section 3 explains
how we instantiate and verify properties in our system. In the last section we
conclude about our work and we introduce the perspectives.

2 Parameterized Models

Our models are communicating automata which are composed hierarchically
through synchronisation networks [Arn94]. We shall use Parameterized Labelled
Transition Systems (pLTS) and Parameterized Networks (pNet) for compact and
more natural representation; and for better understanding and usability by non
specialist.



We extend the general notion of labelled transition systems [Mil89] to add
parameters in the states and in the transition labels. The parameters are typed
variables of simple countable types: booleans, integers, intervals, finite enumer-
ations or structured objects.

The variables are inside expression vectors. Each expression may include
prefixes, unitary and infixes operators; as well as constants of type string and
integer.

In our pLTS the states are labelled by an expression. The transitions are
labelled by a guarded action with an explicit resulting expression vector ([guard]
action → result), such that the arity of the resulting vector is the same than
the arity of the arrival state.

Every pLTS is inside a box with ports. The ports represents the observable
actions of the process which can be synchronised with other process actions.
They are represented by bullets in the edge of the box, and they are labelled
with actions in transition labels of the pLTS.

A pNet is a finite set of boxes with ports for synchronisation. Each box is
related to a pLTS or another pNet (hierarchy), which defines its behaviour. In
between two or more boxes, the ports can be interconnected through links (edges)
for synchronisation. The links are labelled with τ or an optional parameterized
action. Inside a network, we will refer to each box as a process.

We use a graphical approach based in the graphical syntax of Autograph
[RdSBR94]. Autograph is a graphical display system for both labelled transition
graphs and networks of communicating systems.

Figure 1 shows an example of such a parameterized system. It is composed of
a single buffer and a bounded quantity of consumers (maxCons) and producers
(maxProd). Each producer feeds the buffer with a quantity (x) of elements at a
time. Each consumer requests a single element from the buffer (!B.Q get()) and
waits for the response (?B.R get()).

We have introduced in Figure 1 the notation to encode sets of processes. In
the figure, Consumerc encodes a set, whose elements are Consumer processes
(running in parallel) for each element in the domain of c. Therefore, each element
in the domain of c is related (identifies) to an individual process of the set. Each
process knows its own identifier (∈ domain(c)).

When the initial state is parameterized with an expression, it can be indicated
which evaluation of the expression (for which value of the variables) is to be
considered as the initial state. In Figure 1 when the variable N is evaluated to 0
in the Buffer automaton, then the state is to be considered as the initial state.

When new variables are introduced, their type is defined. The type of a
variable is propagated in communication events from the sending process to the
receiving one. A typed variable in a reception action, restricts the reception to
this type of variable. In the figure, the action ?P.Q put(x) may receive only
integers since x is typed as int in the communication port.
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Fig. 1. Parameterized consumer-producer system

3 Finite Models and Verification

We distinguish three kinds of variables in our systems: constructor parameters,
such as Max in Figure 1; bounded variables (finite domain) and unbounded
variables (infinite domain). In Figure 1, the variable N in the Buffer component
is bounded. In the same component, the variable x seems to be unbounded, but
since its domain is restricted at the guard of the transition edge, its domain
become finite and the variable x is bounded. For the Producer component, the
variable x is unbounded.

By fixing the value of the constructor parameters and fixing the unbounded
variables to a finite domain, a finite Labelled Transition System (LTS) can be
generated from our parameterized systems. In Figure 1, if we fix the value of
Max to 3, maxCons and maxProd to 2; and the domain of variable x in the
Producer component to [1, 3], we obtain the LTS shown in Figure 2.

We have developed a tool that automatically generates a finite automaton
(LTS) and/or synchronisation network from a pLTS or from a pNet given the
variables domain values. In both, parameterized and instantiated systems, the
automatas and networks are described in FC2 format [RdSBR94] files. The FC2
format encodes in a compositional way finite transition systems: basic systems



are described by explicit enumeration of states and edges, decorated by labels
representing structures (names) and behaviours (actions); the composition of
systems is made by synchronisation networks [Arn94], expressing how behaviours
of components are combined at the next level of the structure.
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Fig. 2. Instantiated consumer-producer system

Once instantiated, we compose the system hierarchically using the FC2Tools
[RdSBR94], applying as much minimisation as possible at each level. One tech-
nique to avoid the state explosion problem, which profits from the parameterized
structure of our models, consists in grouping the basic components whose occur-
rence is shared in a set of variables, then applying hiding and minimisation on
these groups before instantiating to the domain of the variable set. This tech-
nique, as well as hiding and minimisation in our models is illustrated in [BM04].



After we instantiate the components and compose the system, we want to
prove several properties of it. Those properties can be provided at early stage
of the design as informal requirements, or as scenarios. From the informal re-
quirements, it should be extracted and formally expressed the set of properties
to check in the system.

For reachability properties, we use a graphical approach, in which the de-
signer will use an abstraction automaton (similar to a transition labelled au-
tomaton but with logical operators in the labels and ending or acceptance states)
defining a family of desired or non-desired abstract actions, each of them being
a set of traces (a regular language) of the actions of the original LTS. From the
original (concrete) system and the abstraction automaton (expressing the prop-
erty), the tool FC2tools [RdSBR94] builds an abstract LTS, whose actions are
the abstract actions. If an abstract action is present in the abstract system, then
one of the corresponding concrete sequence is possible in the concrete system.
Note that this method cannot deal with ”inevitability” properties, as it relies
only on the existence of a path. The same method applies to reachability of
non-desired abstract actions, so we can prove that some sequence cannot occur
in the concrete system by showing that a sequence is not possible.

For inevitability-like properties the abstract action method is not sufficient.
In those cases, we rely on the tool Evaluator [MS00], which uses a form of regu-
lar µ-calculus logics. Evaluator performs on-the-fly verification of the temporal
property on a given Labelled Transition System (LTS). The temporal logic used
to express properties in Evaluator is called regular alternation-free µ-calculus.
It allows direct encodings of ”pure” branching-time logics like CTL and ACTL.
We express our desired properties in ACTL, and we use the macros provided
with Evaluator to transform them to regular µ-calculus. Then we use Eval-
uator to verify the formula. The result of this verification is true or false for
the given formula and LTS.

For instance, we would like to prove the following two properties in the system
of Figure 1:

1. No consumer can get any element from the buffer before it is fed.
2. Once a consumer has requested by an element to the buffer, it will eventually

obtain it

For the property 1, we use reachability analysis. The abstraction automaton
for this property is shown in Figure 3. In addition, Figure 3 express the property
that once the buffer fed, a consumer will be able to get an element (OK state).

Since we work with parameterized system, we want to express the properties
parameterized too. This is the case in Figure 3, where

∨
domains(action) means

the or-exclusive composition of the action for each of the elements in domains.
The otherwise action means any other action different from the actions in the
outgoing edges of the same state.

However, the tools that we use support neither parameterized system nor
parameterized properties. We need to get instantiations from the abstraction
automaton for the same variable domains than to the instantiated system where
we will check the property.



Wrong

∨
c∈[1,maxCons] R get(c)

otherwise

∨
c∈[1,maxCons] R get(c)

OK

otherwise

∨
x∈�,p∈[1,maxProd] Q put(p, x)

Fig. 3. Property: can not get elements from the
buffer before feeding it

OK OK

OK

OK

OK

OK

Wrong

Wrong

Fig. 4. Property verifica-
tion result

In Figure 4 is shown the abstract automaton (minimised by weak bisimu-
lation) resulting from verifying the property to the instantiated (finite) system
shown in Figure 2. In the automaton the action OK is possible from the initial
state, which means that the state labelled as OK in the abstraction automaton
(Figure 3) is reachable from the initial state, and so, we proved that is it possible
to get an element from the buffer once the buffer has been fed. Likewise, since
there are not Wrong actions from the initial state in the result, we conclude
that the state labelled as Wrong in the abstraction automaton is not reachable
from the initial state, and so, we have proved that is not possible to get an ele-
ment from the buffer if it has not been fed before. Because we are interested in to
verify the property in the initial state of the system, we centre our attention only
in the outgoing edges from the initial state in the resulting abstract automaton.

The property 2 is an inevitability-like property, which we can not express
by an abstraction automaton. We express the property by the ACTL formula:
AG(Q get(c) ⇒ AF R get(c)). Using the macros from Evaluator for any
integer value of c, the formula is translated to the regular µ-calculus formula
shown in equation 1.

[true ∗ .Q get(c)]µX.(< true > true ∧ [¬R get(c)]X) (1)

As it was the case for the abstraction automaton, the formula should be
instantiated for the variables domains of the instantiated system where we will
verify the property. The property was successfully verified for the instantiated
system shown in Figure 2.

4 Realistic Study Case

We have validated our approach in a system borrowed from the current effort
made by the Chilean administration to provide electronic procedures for their



sales and tax system: “DTE: Documentos Tributarios Electrónicos” [DTE]. This
gave us a realistic case study, from which we have done a formal abstract spec-
ification and we have proved some correctness properties at the level of the
specification. Our results are shown in [BM04].

In DTE the global behaviour is composed by three parameterized agents: an
unique tax agency, a bounded quantity of vendors and a bounded quantity of
buyers; each of them is described by an hierarchical composition of communi-
cating automata. In total, the system includes fifteen parameterized automata
that are composed up to four levels of hierarchy.

The instantiations are done by fixing the domain of seven variables. We
made several instantiations and composition without minimisation for different
variable domains to debug and to see the impact of the variable domains in the
system size. We did not scale up much in that way.

Using the grouping, hiding and minimisation techniques describe in [BM04],
we gained from 0% up to 99.9% in the size of intermediary compositions for
different variable domains. Therefore, those techniques enables us to work with
larger variable domains.

By verifying the properties, we found some mistakes and misunderstanding
in the formal specification. After correcting the specification, seven properties
(extracted from the informal requirements [DTE]) where successfully verified.

5 Conclusion and Perspectives

We have introduced a graphical syntax based on Labelled Transition System
(LTS) and Synchronisation Networks which include variables. We named them
pLTS and pNet respectively.

We developed a tool to generate a finite system from a parameterized one
by fixing the variables domains. This capacity to instantiate finite LTS from
a pLTS enables us, in between others: make debugging analysis (for a small
instantiation), compare different instantiations, instantiate based on per-formula
criteria, search for better minimisations, etc.

Once the specification is validated we want to use it to check the correctness
of implementations. This check will need a refinement pre-order, that allows
the implementation to make some choices amongst the possibilities left by the
specification. It should be compatible with the composition by synchronisation
networks. Amongst the many refinement relations that have been defined in the
literature, to our knowledge, few have been implemented in LTS-based tools.
This is a work we plan to do in a tool that will benefit from the compositional
structure of our models. It includes the generation of a parameterized model from
the source code. Our team is already working in this subject for ProActive
[CKV98]. ProActive is a Java implementation of distributed active objects
with asynchronous communications and replies by means of future references.
The model generation is done by a behavioural semantics for Java/ProActive
applications, given in the form of SOS rules working on the method call graph.



Those rules give a procedure to build finite LTS and synchronisation networks
representing the application [BM03]

A work should be done to formalise our lose of information because of the
abstractions we do. We should find the right approximations in the Abstract
Interpretation [Cou01] theories that enables us to reason about properties in our
models from the properties in their instantiations. We also need to extend the
language to express the properties as parameterized abstraction automatas and
regular µ-calculus formulas.

The graphical syntax we have introduced was intuitively developed. We are
working to formalise the syntax and to give a semantics which allow us to ex-
plore new capabilities of our representation such us parameterized composition
of components. We have also started to analyse the pLTS to integrate it with
OPEN/CAESAR [Gar98] tools to make “on-the-fly” model-checking.
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