
1

Improving System Dependability
by Enforcing Architectural Intent

Marwan Abi-Antoun Jonathan Aldrich
David Garlan Bradley Schmerl

Nagi Nahas Tony Tseng

2

Designing Dependability
• Dependability analyses

– Performance, reliability, fault-tolerance…

• Many architectural description languages,
reasoning techniques
– Examples: Rapide, Wright, Meta-H

3

Delivering Dependability

• Designed dependability achieved only if
implementation conforms to design

• Implementation violations of architectural intent
– Architectural structure
– Architectural types and styles

• Ideally:
– Architects work at appropriate level of abstraction
– Design is faithful abstraction of implementation

4

Our Approach: Synchronize
Abstract and Concrete C&C Views

• Abstract C&C view
– Architect’s design view
– Problem-specific
– May elide information
– Example: Acme

• Concrete C&C view
– Actual communication

between implementation
components

– Example: ArchJava

Abstract C&C view

Concrete C&C view

Module View

ArchJava

Synchronization
(this paper)

5

Relating Conceptual Views to
Implementation-Level Views

• Match Architectural structure
– Inserted, deleted, renamed, moved elements
– Do not rely on unique identifiers
– Do not require names to match

• Match Architectural types and styles
• Lightweight, scalable, semi-automated,

incremental

6

Bridging the Gap

• Matching Types (and Styles)
• Matching Structure

7

Matching Type Structures between
Abstract and Concrete C&C Views

Acme Types
• Predicate-based type

system
• Types = abstract

logical predicates
• Architectural Style

– Constraints (invariants
or heuristics)

• Interfaces optional
– Properties on ports

ArchJava Types
• Conventional type

system
• Types = concrete

interfaces
– provided and required

functionality
• Some types not first-

class
– Port types, role types..

8

Matching Type Structures
Abstract C&C View Concrete C&C View

system: PipeAndFilterStyle

ouput: p_outputT

charPipe : PipeT

source: r_sourceT

s : SplitFilter
out: ?

conn_1: ?
r1: ?

split : FilterT

1. First-class types missing in ArchJava for connectors, ports, roles
2. Acme types at higher level of abstraction

9

Matching Styles and Types

• Match explicit types if
available

• Assign types to instances
when no explicit type

• Special wildcards
• Infer types when possible

– Using style information

10

Structural Differences
• Incidental renames
• Independent evolution

– May forget to update other
representation

• Design & Implementation
– Different structures may

be appropriate
• E.g. hide representation

inside a new component

• Types of differences
– Renames
– Inserts
– Deletes
– Moves

• Detection important
for maintaining
design properties

Strategy: Automated detection of differences

11

Insert/Delete Differences

Abstract C&C View Concrete C&C View

12

Naming Differences

Abstract C&C View Concrete C&C View
upper

ouput

pipe

source

u

portOut

conn_split_portOut2_upper_portIn
r_upper_portIn

13

Abstract C&C View

Concrete C&C View

Move Differences

14

Matching Architectural Structure

• Detect
– Match
– Insert
– Delete
– Rename
– Move

• Automated Tree-to-Tree Correction
– Unordered attributed labeled trees

15

Extended Example

• ArchJava architecture
consisting of
– Over 20 components,

80 ports, several
subsystems

• Re-engineered from
Java application
– Over 8 KSLOC
– See [ACN02] for details

16

Aphyds System

17

circuitModel details

18

First Divergence: Extra Connectors!

Before After

The “data flow” connectors in the original
Architect’s model do exist!

19

Many Other Divergences

Before After

20

Reliability Block Diagrams

Source: Abd-Allah, Ahmed, “Extending Reliability Block Diagrams to
Software Architectures”, USC Technical Report USC-CSE-97-501.

R1 R2 Rn...

Serial Composition

∏=
=

n

i
isys RR

1

Parallel Composition

...

R1

R2

Rn

()∏ −−=
=

n

i
isys RR

1
11

• Determine aggregate reliability from the
parts, for certain styles

21

Conclusions

• Our approach encourages continuous use
of architectural views and analyses
throughout the software life cycle

• Work at appropriate level of abstraction
– Architectural styles, properties, analyses, …

• Ensure that design is proper abstraction of
implementation

22

Questions?

23

References

• Acme
– http://www.cs.cmu.edu/~acme

• ArchJava
– http://archjava.fluid.cs.cmu.edu/

