
UVA Dependability Research Group

Assured Reconfiguration:
An Architectural Core

For System Dependability

ICSE 2005
Workshop on Architecting Dependable Systems

John Knight
University of Virginia

Joint work with Elisabeth Strunk



Assured Reconfiguration 2May 2005

UVA Dependability Research Group

The Challenge

H
ardw

are
C

osts

Desired Functionality

System
Hardware
Volume

System
Software
Volume

C
om

pl
ex

ity

Safety-Critical
Applications



Assured Reconfiguration 3May 2005

UVA Dependability Research Group

Implications Of The Challenge
System:

Distributed processing/Integrated Modular Avionics
High data communications demand

Hardware:
Replication to meet MTBF demands

Software:
Increased volume, complexity, functionality

And it is bound to continue for the foreseeable 
future…



Assured Reconfiguration 4May 2005

UVA Dependability Research Group

Meeting The Challenge?
All defects can have serious consequences in 
typical systems but…
Hardware replication:

Expensive, bulky
Increased weight, power, space, shielding

Software complexity:
Mostly outside the realm of assurance techniques

Trying to deal with this by restricting amount of 
function in systems is naïve
Can we continue with “business as usual”?



Assured Reconfiguration 5May 2005

UVA Dependability Research Group

Business As Usual For Hardware?

D
egradation

Faults

D
es

ig
n

Fa
ul

ts

M
TB

F

Hardware Is Much
More Reliable Than It 

Used To Be

R E P L I C A T I O N
Time

Business as usual unnecessary



Assured Reconfiguration 6May 2005

UVA Dependability Research Group

Business As Usual For Software?
Why is software so difficult?

Fluid mechanics:
Continuous mathematics
Navier-Stokes equation

Structural analysis:
Continuous mathematics
Finite element method

Software:
Discrete mathematics
?

Business as usual unlikely to succeed

Development
Based On
Analysis



Assured Reconfiguration 7May 2005

UVA Dependability Research Group

Claim
Maintaining 
Complete 

Functionality With 
Ultra High 

Assurance Is 
Unnecessary

Occasional
Operation With 

Reduced But Safe 
Functionality Is 

Satisfactory

Basing System Design On These Assumptions
Reduces Complexity And Cost

ASSURED RECONFIGURATION

Hardware 
Degradation Faults 

Are Much Less 
Frequent Than In 

The Past



Assured Reconfiguration 8May 2005

UVA Dependability Research Group

What Is Assured Reconfiguration?

Explicit decision at specification level to 
define a tradeoff between system dependability 
and function
Explicit decision by system stakeholders to 
accept alternative functionality if errors do occur
Because:

Complete hardware masking is too expensive
Adequate software fault avoidance/removal is 
infeasible

Common
Cases



Assured Reconfiguration 9May 2005

UVA Dependability Research Group

What Is Assured Reconfiguration?

Faults Faults

Reliability, Availability Assured Reconfiguration

x

$
f()

f() f()
f()

g()
h()

j()

Target Configuration Depends On Conditions



Assured Reconfiguration 10May 2005

UVA Dependability Research Group

Aircraft flight control software
FAA software development standard:

Minor:
Anticipated to occur one or more times during the entire 
operational life of each airplane

Major:
Not anticipated to occur during the entire operational life of a
single random airplane

Catastrophic:
Not anticipated to occur during the entire operational life of all 
airplanes of one type
Failure rate of 10-9 per hour of operation

Example: Modern Avionics Systems



Assured Reconfiguration 11May 2005

UVA Dependability Research Group

Example: Modern Avionics Systems

These requirements:
Cannot be assured with current approaches
Are essentially impossible to demonstrate

But, some (most?) functionality:
Does not need to be reliable
Needs to be fail-stop with ultra high 
dependability

Assured reconfiguration is an option to 
achieve system goals



Assured Reconfiguration 12May 2005

UVA Dependability Research Group

Prior Work on Reconfiguration
Survivability in critical information systems

Different requirements for embedded systems
Alternative functionalities (Shelton and 
Koopman)

Provides a model of system utility
Graceful degradation

Maximum utility with working components



Assured Reconfiguration 13May 2005

UVA Dependability Research Group

Prior Work on Reconfiguration
Quality of service

Specific aspects of a system
Simplex architecture (Sha)

Assumes analytic redundancy
Current systems, e.g., Boeing 777

Ad-hoc
Are built using facilities already provided by the 
system



Assured Reconfiguration 14May 2005

UVA Dependability Research Group

Assured System Reconfiguration

Vision
Reconfiguration As Architectural Foundation

Fail-Stop
Computer

Fail-Stop
Software

Component

Fail-Stop
Computer

Fail-Stop
Computer

Fail-Stop
Software

Component

Fail-Stop
Software

Component

Fail-Stop
Software

Component

Fail-Stop
Computer

Assurance By Proof



Assured Reconfiguration 15May 2005

UVA Dependability Research Group

Proposed Approach
System architecture:

Fully distributed, arbitrary layout and number of parts
Ultra-dependable data bus, e.g., TTP

Computing and storage hardware:
Allow computers to fail, but
Use ultra-dependable fail-stop machines

Software:
Allow application software to fail, but
Use ultra-dependable, fail-stop applications

Ultra-dependable reconfiguration mechanism



Assured Reconfiguration 16May 2005

UVA Dependability Research Group

Operating
System
General
Purpose

Computer

Avionics
Application

Proposed Approach

Operating
System
General
Purpose

Computer

Operating
System
General
Purpose

Computer

Avionics
Application

Avionics
Application

High Speed Data Bus

Operating
System
General
Purpose

Computer

Avionics
Application

High Speed Data Bus

Common Components

Components
Added As 
Needed



Assured Reconfiguration 17May 2005

UVA Dependability Research Group

Operating
System
General
Purpose

Computer

Avionics
Application

Proposed Approach

Operating
System
General
Purpose

Computer

Operating
System
General
Purpose

Computer

Avionics
Application

Avionics
Application

High Speed Data Bus

Fail Stop
General Purpose

Computer
Operating
System
General
Purpose

Computer

Avionics
Application

High Speed Data Bus



Assured Reconfiguration 18May 2005

UVA Dependability Research Group

Operating
System
General
Purpose

Computer

Avionics
Application

Proposed Approach

Operating
System
General
Purpose

Computer

Operating
System
General
Purpose

Computer

Avionics
Application

Avionics
Application

High Speed Data Bus

Operating
System
General
Purpose

Computer

Avionics
Application

Ultra Dependable, Reconfigurable
High Speed Data Bus



Assured Reconfiguration 19May 2005

UVA Dependability Research Group

Operating
System
General
Purpose

Computer

Avionics
Application

Proposed Approach

Operating
System
General
Purpose

Computer

Operating
System
General
Purpose

Computer

Avionics
Application

Avionics
Application

High Speed Data Bus

Operating
System
General
Purpose

Computer

Avionics
Application

Reconfigurable
Fail-Stop
Avionics

Application

High Speed Data Bus



Assured Reconfiguration 20May 2005

UVA Dependability Research Group

Fault
Detection

And
Signaling
System

Distributed Reconfigurable System 
Architecture

BIU

Operating
System
General
Purpose

Computer
BIU

Operating
System
General
Purpose

Computer
BIU

Operating
System
General
Purpose

Computer
BIU

Special
Purpose
Device

Avionics
Application

Avionics
Application

Avionics
Application

High Speed Data Bus

Subsystem Control Reconfiguration
Analysis & Management (SCRAM) Software

Crucial 
Software



Assured Reconfiguration 21May 2005

UVA Dependability Research Group

Crucial Software Development

SCRAM Software (Common)

State Machine Specification (System Specific)

Analysis & Synthesis

Reconfiguration Specification

Reconfiguration Definition

Equivalence ProofO
ne

M
an

y



Assured Reconfiguration 22May 2005

UVA Dependability Research Group

Application Programming



Assured Reconfiguration 23May 2005

UVA Dependability Research Group

Fail-Stop Processors

Introduced by Schlichting and Schneider
Building block for critical systems
Fail-stop processor:

Processing units
Volatile storage
Stable storage

Stable storage preserved on failure



Assured Reconfiguration 24May 2005

UVA Dependability Research Group

Reconfigurable FTAs
Fault-tolerant actions (FTAs)

In S&S work, recovery must complete 
original action 
In our work, recovery could be 
reconfiguration

Complete some different function

Action Action Recovery

Action Action Recovery:
Reconfiguration



Assured Reconfiguration 25May 2005

UVA Dependability Research Group

Reconfigurable Fail-Stop Systems
Software building block is a reconfigurable 
application
Reconfigurable application has:

A predetermined set of specifications
A predetermined set of FTAs for each specification

Application function exists in system context:
Recovery must be appropriate to system
Failure in one application could cause failure in 
another

Not a problem in S&S work since failures were 
masked, sufficient resources assumed



Assured Reconfiguration 26May 2005

UVA Dependability Research Group

Application and System FTAs

Application FTAs
Execution of a single application

System FTAs
Composed of a set of AFTAs

Affected applications’ actions and recovery protocols
Standard AFTAs for the other applications

Coordinates stages of AFTAs
Stages have time bounds
S & S can guarantee liveness
Safe configuration enables real-time guarantees



Assured Reconfiguration 27May 2005

UVA Dependability Research Group

Reconfiguration Software 
Architecture

Specifications
Si,1: desired 

functionality
Si,2: intermediate 

functionality
…
Si,m: crucial 

functionality

System 
calls

Subsystem Control Reconfiguration Analysis & Management Software

System 
calls

Reconfiguration 
Signals

Reconfiguration 
Signals

Hardware fault 
signals

Software 
fault 

signals

Operating System

Computing Platform – Processing Units, Communications 
Facilities, Network Support, Sensors, Etc.

Application 1 Application N

S1,2
S1,1 SN,1

S1,k
SN,2 SN,l



Assured Reconfiguration 28May 2005

UVA Dependability Research Group

Reconfiguration Assurance



Assured Reconfiguration 29May 2005

UVA Dependability Research Group

Reconfiguration Properties
Reconfiguration:

Begins with a signal generated by some application
Ends either with a second signal, or when all 
applications have finished initialization

The new configuration is appropriate for the 
circumstances
All reconfigurations complete within their 
required time bound
The system invariant holds during 
reconfiguration
Additional restriction on sequences of 
reconfiguration signals



Assured Reconfiguration 30May 2005

UVA Dependability Research Group

Assurance Technology
Based on PVS specification notation and PVS 
theorem-proving system
PVS:

Language is a higher-order logic based on type theory
Subtypes are defined by adding a predicate to a 
supertype
Predicate must hold over any instance of subtype
Type properties can be used in proofs
In some cases, type properties are undecidable
Produces type-correctness conditions (TCCs), a kind of 
proof obligation
PVS system mechanically checks proofs



Assured Reconfiguration 31May 2005

UVA Dependability Research Group

Proof Structure
Reconfiguration Properties

Interaction Specification
(State Sequences)

Application
Abstract Specification

Reusable PVS Proof Using Type Constraints

System-specific Proof
by Type System

Application
Specification Instances

Abstract Reconfiguration Specification

Reconfiguration
Specification InstanceSystem-

Specific
Configuration,
Environment,

Transition
Information

Used
In



Assured Reconfiguration 32May 2005

UVA Dependability Research Group

Reconfiguration Specification

System applications

Operating environment

System configurations

System transitions

Valid system implementation generates a 
valid sequence of system states



Assured Reconfiguration 33May 2005

UVA Dependability Research Group

Proof Sample
Proofs are scripts that can be mechanically 
checked using the PVS system
assured_reconfig.CP5: proved - complete [shostak](13048.43 s)

(""
(skosimp)
(split)
(("1"
(lemma "reconf_length")
(inst -1 "s!1" "r!1")
(typepred "r!1")
(typepred "s!1`tr")
(expand "get_reconfigs")
(hide -2 -3 -4)
(flatten)
(case "r!1`end_c - r!1`start_c = 1")
(("1"
(lemma "reconf_halt")
(expand "reconfig_end?")
(split -6)
(("1"
(expand "reconfig_start?")
(skosimp)
(inst -1 "app!1")
(inst -2 "s!1" "r!1" "app!1")
(hide -4 -5 -6 -7 -8)
(grind))
("2" (propax))))

("2"



Assured Reconfiguration 34May 2005

UVA Dependability Research Group

Reconfiguration Example



Assured Reconfiguration 35May 2005

UVA Dependability Research Group

Example
UAV system
Four applications:

Sensors, flight control system
Autopilot, pilot interface

Complete reconfiguration interface, 
multiple functionalities
Three reconfiguration triggers:

Electrical power
Rudder
Autopilot



Assured Reconfiguration 36May 2005

UVA Dependability Research Group

Example Configurations

adjusting for 
rudder

disabledhard-over 
left/right

batteryRudder Hard-Over L/R, 
Flight Control Only

adjusting for 
rudder

nonfunctionalhard-over 
left/right

alternatorRudder Hard-Over L/R, 
Flight Control Only

adjusting for 
rudder

altitude hold 
only

hard-over 
left/right

alternatorRudder Hard-Over L/R, 
Altitude Hold Only

adjusting for 
rudder

normalhard-over 
left/right

alternatorRudder Hard-Over L/R

normaldisabledworkingbatteryFlight Control Only

normalnonfunctionalworkingalternatorFlight Control Only

normalaltitude hold 
only

workingalternatorAltitude Hold Only

normalnormalworkingalternatorFull Service

FCSAutopilotRudderPowerConfiguration



Assured Reconfiguration 37May 2005

UVA Dependability Research Group

Example SFTA
In Full Service configuration when the rudder 

becomes stuck hard-over to the left

All apps:
invariant

All apps:
normal execution

4 (end)

FCS:
transition condition

All other apps:
invariant

FCS:
prepare to adjust for rudder

All other apps:
normal execution

3

App postconditionsApps anticipate possible reconfiguration2

Sensors: invariant
All other apps:

invariant

Sensors: signal generated
All other apps:

normal execution

1 (start)
PredicateActionFrame



Assured Reconfiguration 38May 2005

UVA Dependability Research Group

Example Status

Specified in PVS
Type-checked against the abstract specification
75 TCCs generated

Most resulted from specific PVS approach
Most others trivial to prove
Nontrivial proofs could be generated using state-
space search
Proofs could be more difficult for larger systems

Proof obligations discharged
Reconfiguration properties hold



Assured Reconfiguration 39May 2005

UVA Dependability Research Group

Conclusion
Exploit potential of fully distributed target
Hardware MTBFs:

Much higher
Less replication needed, accept rare failures

Software Volume:
Increasing and assurance remains difficult
Fail-stop software less difficult to develop

Base architecture on assured reconfiguration
Assurance via comprehensive formal proof



Assured Reconfiguration 40May 2005

UVA Dependability Research Group

Contact Information

John Knight – knight@cs.virginia.edu
Elisabeth Strunk – strunk@cs.virginia.edu
Papers available at:

http://www.cs.virginia.edu/~jck/recentpapers.htm


