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Implications Of The Challenge
System:

Distributed processing/Integrated Modular Avionics
High data communications demand

Hardware:
Replication to meet MTBF demands

Software:
Increased volume, complexity, functionality

And it is bound to continue for the foreseeable 
future…
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Meeting The Challenge?
All defects can have serious consequences in 
typical systems but…
Hardware replication:

Expensive, bulky
Increased weight, power, space, shielding

Software complexity:
Mostly outside the realm of assurance techniques

Trying to deal with this by restricting amount of 
function in systems is naïve
Can we continue with “business as usual”?
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Business As Usual For Hardware?
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Business As Usual For Software?
Why is software so difficult?

Fluid mechanics:
Continuous mathematics
Navier-Stokes equation

Structural analysis:
Continuous mathematics
Finite element method

Software:
Discrete mathematics
?

Business as usual unlikely to succeed

Development
Based On
Analysis
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What Is Assured Reconfiguration?

Explicit decision at specification level to 
define a tradeoff between system dependability 
and function
Explicit decision by system stakeholders to 
accept alternative functionality if errors do occur
Because:

Complete hardware masking is too expensive
Adequate software fault avoidance/removal is 
infeasible

Common
Cases
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What Is Assured Reconfiguration?
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Aircraft flight control software
FAA software development standard:

Minor:
Anticipated to occur one or more times during the entire 
operational life of each airplane

Major:
Not anticipated to occur during the entire operational life of a
single random airplane

Catastrophic:
Not anticipated to occur during the entire operational life of all 
airplanes of one type
Failure rate of 10-9 per hour of operation

Example: Modern Avionics Systems
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Example: Modern Avionics Systems

These requirements:
Cannot be assured with current approaches
Are essentially impossible to demonstrate

But, some (most?) functionality:
Does not need to be reliable
Needs to be fail-stop with ultra high 
dependability

Assured reconfiguration is an option to 
achieve system goals
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Prior Work on Reconfiguration
Survivability in critical information systems

Different requirements for embedded systems
Alternative functionalities (Shelton and 
Koopman)

Provides a model of system utility
Graceful degradation

Maximum utility with working components
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Prior Work on Reconfiguration
Quality of service

Specific aspects of a system
Simplex architecture (Sha)

Assumes analytic redundancy
Current systems, e.g., Boeing 777

Ad-hoc
Are built using facilities already provided by the 
system
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Assured System Reconfiguration
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Proposed Approach
System architecture:

Fully distributed, arbitrary layout and number of parts
Ultra-dependable data bus, e.g., TTP

Computing and storage hardware:
Allow computers to fail, but
Use ultra-dependable fail-stop machines

Software:
Allow application software to fail, but
Use ultra-dependable, fail-stop applications

Ultra-dependable reconfiguration mechanism
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Crucial Software Development

SCRAM Software (Common)

State Machine Specification (System Specific)

Analysis & Synthesis

Reconfiguration Specification

Reconfiguration Definition

Equivalence ProofO
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Application Programming
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Fail-Stop Processors

Introduced by Schlichting and Schneider
Building block for critical systems
Fail-stop processor:

Processing units
Volatile storage
Stable storage

Stable storage preserved on failure
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Reconfigurable FTAs
Fault-tolerant actions (FTAs)

In S&S work, recovery must complete 
original action 
In our work, recovery could be 
reconfiguration

Complete some different function

Action Action Recovery

Action Action Recovery:
Reconfiguration
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Reconfigurable Fail-Stop Systems
Software building block is a reconfigurable 
application
Reconfigurable application has:

A predetermined set of specifications
A predetermined set of FTAs for each specification

Application function exists in system context:
Recovery must be appropriate to system
Failure in one application could cause failure in 
another

Not a problem in S&S work since failures were 
masked, sufficient resources assumed
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Application and System FTAs

Application FTAs
Execution of a single application

System FTAs
Composed of a set of AFTAs

Affected applications’ actions and recovery protocols
Standard AFTAs for the other applications

Coordinates stages of AFTAs
Stages have time bounds
S & S can guarantee liveness
Safe configuration enables real-time guarantees



Assured Reconfiguration 27May 2005

UVA Dependability Research Group

Reconfiguration Software 
Architecture
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Reconfiguration Assurance
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Reconfiguration Properties
Reconfiguration:

Begins with a signal generated by some application
Ends either with a second signal, or when all 
applications have finished initialization

The new configuration is appropriate for the 
circumstances
All reconfigurations complete within their 
required time bound
The system invariant holds during 
reconfiguration
Additional restriction on sequences of 
reconfiguration signals
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Assurance Technology
Based on PVS specification notation and PVS 
theorem-proving system
PVS:

Language is a higher-order logic based on type theory
Subtypes are defined by adding a predicate to a 
supertype
Predicate must hold over any instance of subtype
Type properties can be used in proofs
In some cases, type properties are undecidable
Produces type-correctness conditions (TCCs), a kind of 
proof obligation
PVS system mechanically checks proofs
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Proof Structure
Reconfiguration Properties

Interaction Specification
(State Sequences)

Application
Abstract Specification

Reusable PVS Proof Using Type Constraints

System-specific Proof
by Type System

Application
Specification Instances

Abstract Reconfiguration Specification

Reconfiguration
Specification InstanceSystem-

Specific
Configuration,
Environment,

Transition
Information

Used
In
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Reconfiguration Specification

System applications

Operating environment

System configurations

System transitions

Valid system implementation generates a 
valid sequence of system states
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Proof Sample
Proofs are scripts that can be mechanically 
checked using the PVS system
assured_reconfig.CP5: proved - complete [shostak](13048.43 s)

(""
(skosimp)
(split)
(("1"
(lemma "reconf_length")
(inst -1 "s!1" "r!1")
(typepred "r!1")
(typepred "s!1`tr")
(expand "get_reconfigs")
(hide -2 -3 -4)
(flatten)
(case "r!1`end_c - r!1`start_c = 1")
(("1"
(lemma "reconf_halt")
(expand "reconfig_end?")
(split -6)
(("1"
(expand "reconfig_start?")
(skosimp)
(inst -1 "app!1")
(inst -2 "s!1" "r!1" "app!1")
(hide -4 -5 -6 -7 -8)
(grind))
("2" (propax))))

("2"
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Reconfiguration Example
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Example
UAV system
Four applications:

Sensors, flight control system
Autopilot, pilot interface

Complete reconfiguration interface, 
multiple functionalities
Three reconfiguration triggers:

Electrical power
Rudder
Autopilot
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Example Configurations

adjusting for 
rudder

disabledhard-over 
left/right

batteryRudder Hard-Over L/R, 
Flight Control Only

adjusting for 
rudder

nonfunctionalhard-over 
left/right

alternatorRudder Hard-Over L/R, 
Flight Control Only

adjusting for 
rudder

altitude hold 
only

hard-over 
left/right

alternatorRudder Hard-Over L/R, 
Altitude Hold Only

adjusting for 
rudder

normalhard-over 
left/right

alternatorRudder Hard-Over L/R

normaldisabledworkingbatteryFlight Control Only

normalnonfunctionalworkingalternatorFlight Control Only

normalaltitude hold 
only

workingalternatorAltitude Hold Only

normalnormalworkingalternatorFull Service

FCSAutopilotRudderPowerConfiguration
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Example SFTA
In Full Service configuration when the rudder 

becomes stuck hard-over to the left

All apps:
invariant

All apps:
normal execution

4 (end)

FCS:
transition condition

All other apps:
invariant

FCS:
prepare to adjust for rudder

All other apps:
normal execution

3

App postconditionsApps anticipate possible reconfiguration2

Sensors: invariant
All other apps:

invariant

Sensors: signal generated
All other apps:

normal execution

1 (start)
PredicateActionFrame
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Example Status

Specified in PVS
Type-checked against the abstract specification
75 TCCs generated

Most resulted from specific PVS approach
Most others trivial to prove
Nontrivial proofs could be generated using state-
space search
Proofs could be more difficult for larger systems

Proof obligations discharged
Reconfiguration properties hold
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Conclusion
Exploit potential of fully distributed target
Hardware MTBFs:

Much higher
Less replication needed, accept rare failures

Software Volume:
Increasing and assurance remains difficult
Fail-stop software less difficult to develop

Base architecture on assured reconfiguration
Assurance via comprehensive formal proof
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