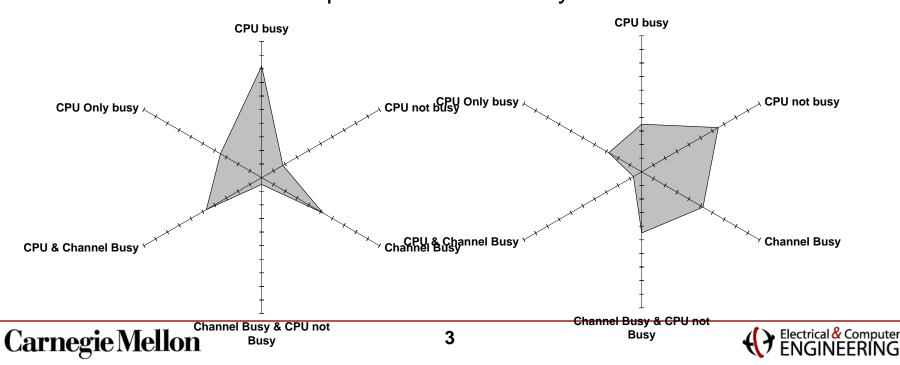
Representing Design Tradeoffs in Safety-Critical Systems

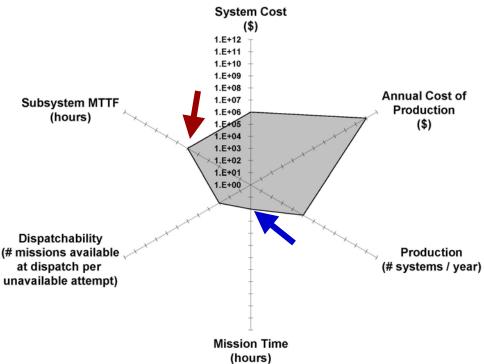
Jennifer Morris, Philip Kooman [jenmorris, koopman]@cmu.edu ECE Department, Carnegie Mellon University ICSE WADS 2005 May 17, 2005



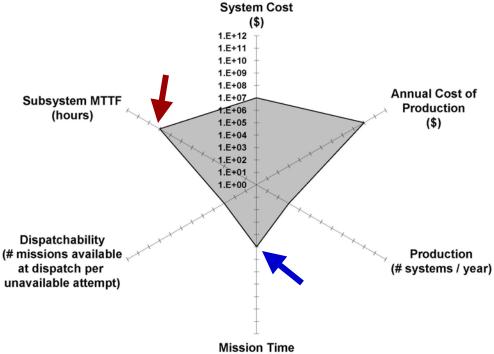
Motivation

- Increased reliance on software in safety-critical systems
- Effective strategies in place for some application domains
 - Aviation:
 - Fail-operational with triple modular redundancy
 - Rail:
 - Fail-stop with two-of-two systems
 - Fail-operational with dual two-of-two systems
- Can we apply these techniques to new application domains and achieve the same results?
- Which techniques should we choose?
 - For example, should we build x-by-wire cars like fly-by-wire planes?

Graphical Tools for Comparing Application Domains


- Kiviat graphs [Kolence & Kiviat '73, Esponda and R. Rojas '92]
 - "Spider Plot"
 - Used to compare software performance
 - Various system metrics plotted on multiple axes
 - Profile Puse the recomparison with other by the medianical Performance

Rail Systems

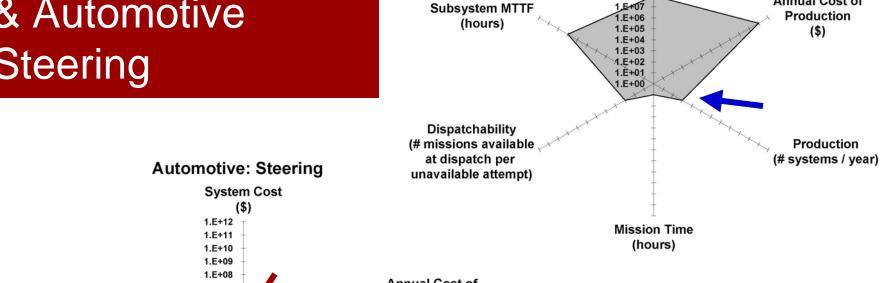

	Switching & Signalling	Vehicle
System Cost	10 ⁷	10 ⁶
(\$)	(BART upgrade \$45 million)	(BART car \$2 million)
Production	10 ³	10 ⁵
~Market Size	10 ¹⁰	10 ¹¹
(\$)	(Tens of \$ billions)	(Hundreds of \$ billions)
Mission Time	10 ⁵	10 ²
(hours)	(Tens of years)	(Several days)
Dispatchability	10 ³	10 ³
	(~ .12% failed at dispatch)	(~ .12% failed at dispatch)
MTTF	10 ⁹	10 ⁶
(hours)	(~100,000 years)	(~100 years)
Fault-Tolerance Strategy	Dual fail-stop 2-of-2 systems	Fail-stop 2-of-2 system

Rail Systems

Rail: Vehicle

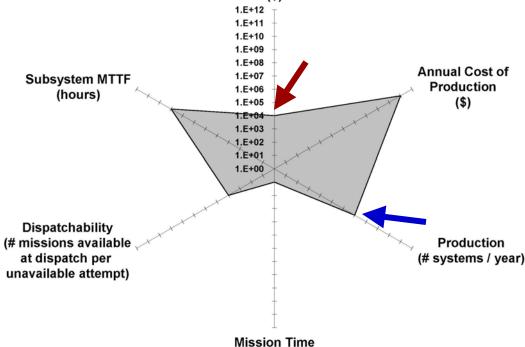
Rail: Switching & Signaling

(hours)



Aviation Flight Control & Automotive Steering

	Aviation Flight Control	Automotive Steering
System Cost	10 ⁸	10 ⁴
(\$)	(Hundreds of \$ millions)	(Tens of \$ thousands)
Production	10 ³	10 ⁷
~Market Size	10 ¹¹	10 ¹¹
(\$)	(Hundreds of \$ billions)	(Hundreds of \$ billions)
Mission Time	10 ¹	10 ¹
(hours)	(Several hours)	(Several hours)
Dispatchability	10 ³	10 ⁴
	(~.12% failed at dispatch)	(~.0102% failed at dispatch)
MTTF	10 ⁹	10 ⁹
(hours)	(~100,000 years)	(~100,000 years)
Fault-Tolerance	Triple modular redundancy	Duplex modular redundancy
Strategy		(?)


Control & Automotive Steering

Aviation Flight System Cost (\$) 1.E+12 1.E+11 1.E+10 1.E+09

Commercial Aviation: Flight Control System

1.E+08

(hours)

Annual Cost of

What do We Observe?

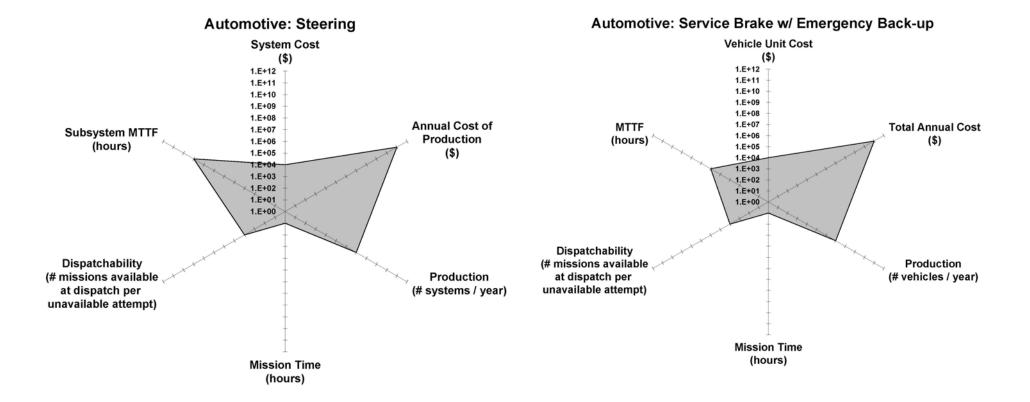
- Rail signaling & switching vs. vehicle
 - S & S have higher unit cost, but vehicles have higher annual cost
 - S & S have much higher MTTF & mission time
 - Might use similar software dependability strategies, different hardware strategies
- Aviation vs. automotive
 - Similar MTTF & mission time, annual cost
 - Automotive has higher dispatchability
 - Aviation has much higher unit cost
 - Aviation software dependability strategies might be more likely to work for automotive than hardware strategies

Summary and Future Work

- A particular dependability strategy that is successful in one application domain might not be appropriate for another
 - Many different requirements to consider
 - For example, cars have lower per-unit cost, but high volume might permit software, rather than hardware, techniques to be affordable
- A graphical representation of the various design tradeoffs might help system architects choose a strategy
 - Visualization aids help architects deal with complex tradeoffs
- Yet unanswered research questions:
 - Which system characteristics/requirements should be included?
 - Can we graph and compare specific, real-world applications?
 - How do we verify the usefulness of the graphs?

References

- **BART System Facts**. San Francisco Bay Area Rapid Transit District Website, http://www.bart.gov/about/history/systemFacts.asp, accessed February 28, 2005.
- M. Esponda and R. Rojas. A graphical comparison of RISC processors. ACM SIGARCH Computer Architecture News, 20(4):2–8, September 1992.
- K. W. Kolence and P. J. Kiviat. **Software unit profiles & Kiviat figures**. *ACM SIGMETRICS Performance Evaluation Review*, 2(3):2–12, September 1973.
- N. Leveson. Safeware: System Safety and Computers. Addison-Wesley Publishing Company, Reading, Massachusetts, 1995.
- Air Travel Consumer Reports. U.S. Department of Transportation Website, http://airconsumer.ost.dot.gov/reports/index.htm, accessed February 28, 2005.


Representing Design Tradeoffs in Safety-Critical Systems

Jennifer Morris, Philip Kooman [jenmorris, koopman]@cmu.edu ECE Department, Carnegie Mellon University ICSE WADS 2005 May 17, 2005

Automotive Steering & Throttle/Braking

