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" Redundant implementations of important software
components

vot:Voter
¢ pcl:Position
Taliesin % Calculation

cc:Convoy

t 4

Uther Gareth pc2:Position
Calculation

pc3:Position
Calculation

mul:Multiplier Gorlois
aps:GPS- 7

Controller

" Required: reconfiguration

= Given: automatism to detect failed components

" Self-Repair Actions: automatic calculation of redeployment
for falled components
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Initial Deployment

Nodel: < pcl:Position

- Calculation

Node2: < DCZ:POS!'[IOH
Calculation

pcl.mem=2.0Mb

Map deployment constraints given as extended
UML Deployment Diagrams to inequalities over
boolean and integer variables

Use constraint solver to calculate initial

deployment

WOSS/FSE 2004:

Matthias Tichy, Daniela Schilling, Holger Giese:
Design of Self-Managing Dependable Systems
with UML and Fault Tolerance Patterns
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" Node crash failure = all components running on this
node fail too

=  Compute Self-Repair Action
= > Find suitable nodes to redeploy failed components

= How to find suitable nodes?

= Whatto do if there is no suitable node?
=  Redeploy further (still running) components

= Damage: negative effects of unavailable components
"  Costs damage

=  Goal: minimize costs ggrrnnﬁ’orgfgés tf{
O Keep damage as |OW o nnooigh\
"  Reduce séiaird time
components COStS
- ’L — time

calculate redeployment perform redeployment
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Lll\ o e v s Online Redeployment
- 1.Solution -
" Remove crashed nodes from constraint

system
=  Solve complete constraint system again

damage

time
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- 2.5o0lution -
" Remove crashed nodes from constraint system

= Add objective function (minimize damage
caused by migration of running componets) to
the constraint system

"  Solve complete system again

damage

time
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- Our Approach -
" Remove crashed nodes from constraint system

= Add objective function (minimize damage) to the
constraint system

" Try to solve constraint systems for failed
components only

= Until a solution is found: extend set of
components that have to be
redeployed/migrated

" Use Constraint solver
= Heuristic approach
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| - Our Approach -

damage

time
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Redeployment

= Example: 3 redundant copies
of Important components

= Algorithm:

" Try to redeploy failed
component

= Until redeployment is possible:

1. Choose components which are no
redundant copies of failed
components

2. Choose components where only g A
one of three redundant copies
already failed

3. Choose arbitrary components
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" Scenario:
= 36 nodes with 114 links
= 72 components with 99 connectors

= 5 node-specific (CPU, OS, Memory, Utilization,
HDD) and 2 link-specific (Bandwidth, Loss)
deployment restrictions

= set of deployment constraints on components and
connectors

" Experiment:

= Randomly selected a —
node and let it fail
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Experimental Results

Test | 1. Solution 2. Solution Our Algorithm

N Time (ms) | Damage Time (ms) | Damage Time (ms) | Damage
1 13630 773 > 1h N/A 50 7

2 14890 97 56060 29 30 30

3 13790 4 14920 1 10 5

4 13660 34 16430 31 50 34
damage

time
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Algorithm to calculate optimal self-repair
actions

Deployment constraints solved by standard
constraint solver

Experiment showed that algorithm is nearly
optimal in damage minimization and time
consumption

Not presented: pre-solving step

Communication and monitoring framework

Describe repair rules by graph transformation
systems
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Simple

Redeployment

vot:Voter
pcl:Position
> TalIeSIn Calculation
cc:Convoy
pc3:Position N Uther Gareth pc2:Position
Calculation Calculation
I Ut Gorlois Arthur
aps:GPS- 7
Controller
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Example

vot:Voter o
Mem:0.5Mb f pcl:Pﬂ
Taliesin | Saoueten
cc:Convoy Mem=1.5Mb M —
Mem=0.7Mb v v
pc3:Position N Uther Gareth p—cc::;ligﬁzggonn
Calculation Mem=1Mb Mem=2Mb Mem=2Mb b
_ o . c2:Position
e lgles Gorlois Arthur e
Mem=0.25M Mem=2Mb Mem=1.5Mb Mem=1.5Mb
Controller
Mem=0.5Mb
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Failed components Running components
Initial situation allbllc djel||fllg
Submodel: Consider: Consider later:
1
) allbjc dile|[f]l g
Submodel not solvable
2) allbllc diellf|lg
Redundant copies
3) allblc ellfllg d
i
Not related
4) allbjcie filg d

Submodel not solvable
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Lli\ e SUDMoOdel Expansion(2)

Failed components Running components

4) allbjc|e fllg d

Submodel not solvable

5) aljlbjic|e fillg d

Redundant copies

6) allbjcie dm\:ﬂ
7) abcem fllg

Submodel solvable
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= Use fault tolerance technigues to ensure
dependability

= Triple Modular Redundancy (TMR)

:Componentl[

‘Provider ﬁ}{b :Multiplier :Component?2 ‘Voter ﬂ]_,[b :

:Component3
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Lll\ B o v Foundations (TMR)

" Deployment constraints for TMR

Avoid single-point-

Nodel: Node2: of-failure of voter /
multiplier
—7 — -> Deploy voter and

user to same node
(if the user fails, the

:Provider :Multiplier ‘Voter ‘User failure of the voter is
no problem)

Avoid crash failures
:Componentll :Component? :Component3 | -> Deploy redundant
components to distinct
! ! ! nodes
V. V. V. |
Node3: Node4: Nodeb5: Heterogeneous

hardware platform
-> require different CPU

|{ Node3.CPU ® Node4.CPU < Node4.CPU ® Node5.CPU < Node3.CPU ® Node 5.CEHA}

m
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‘g\ i e Online Redeployment
- Our Solution -
= Compute Self-Repair Action

" -> Find suitable nodes to redeploy failed
components

= How to find suitable nodes? 4l

= What to do if there Is no suitable node?
= 2) Redeploy further (still running) components

= Goal: reduce costs

" Redeployment should not decrease dependability
(reduce damage)

= Reduce solving time
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