University of Paderborn

!t‘ Software Engineering Group

Prof. Dr. Wilhelm Schéafer

Computing Optimal Self-
Repair Actions: Damage
Minimization versus Repair

Time

Matthias Tichy, Holger Giese, Daniela Schilling,
Wiladimir Pauls

University of Paderborn
Software Engineering Group

Prof. Dr. Wilhelm Schéafer M Otivati O n

www.railcab.de

Daniela Schilling - May 2005- 2

University of Paderborn
Software Engineering Group

‘L!‘ Prof. Dr. Wilhelm Schafer M Otlvatl on

" Redundant implementations of important software
components

vot:Voter
¢ pcl:Position
Taliesin % Calculation

cc:Convoy

t 4

Uther Gareth pc2:Position
Calculation

pc3:Position
Calculation

mul:Multiplier Gorlois
aps:GPS- 7

Controller

" Required: reconfiguration

= Given: automatism to detect failed components

" Self-Repair Actions: automatic calculation of redeployment
for falled components

v

Arthur

d

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schéafer

Initial Deployment

Nodel: < pcl:Position

- Calculation

Node2: < DCZ:POS!'[IOH
Calculation

pcl.mem=2.0Mb

Map deployment constraints given as extended
UML Deployment Diagrams to inequalities over
boolean and integer variables

Use constraint solver to calculate initial

deployment

WOSS/FSE 2004:

Matthias Tichy, Daniela Schilling, Holger Giese:
Design of Self-Managing Dependable Systems
with UML and Fault Tolerance Patterns

University of Paderborn

‘g\ e Online Redeployment

" Node crash failure = all components running on this
node fail too

= Compute Self-Repair Action
= > Find suitable nodes to redeploy failed components

= How to find suitable nodes?

= Whatto do if there is no suitable node?
= Redeploy further (still running) components

= Damage: negative effects of unavailable components
" Costs damage

= Goal: minimize costs ggrrnnﬁ’orgfgés tf{
O Keep damage as |OW o nnooigh\
" Reduce séiaird time
components COStS
- ’L — time

calculate redeployment perform redeployment

University of Paderborn

Lll\ o e v s Online Redeployment
- 1.Solution -
" Remove crashed nodes from constraint

system
= Solve complete constraint system again

damage

time

University of Paderborn

&(‘ Software Engineering Group On | I ne Redeployment

Prof. Dr. Wilhelm Schéafer
- 2.5o0lution -
" Remove crashed nodes from constraint system

= Add objective function (minimize damage
caused by migration of running componets) to
the constraint system

" Solve complete system again

damage

time

University of Paderborn]
‘g\ et e S Online Redeployment
- Our Approach -
" Remove crashed nodes from constraint system

= Add objective function (minimize damage) to the
constraint system

" Try to solve constraint systems for failed
components only

= Until a solution is found: extend set of
components that have to be
redeployed/migrated

" Use Constraint solver
= Heuristic approach

University of Paderborn]
& i e Online Redeployment
| - Our Approach -

damage

time

Daniela Schilling - May 2005- 9

University of Paderborn

‘_lg Fatmmensaae” Choosing Components for
Redeployment

= Example: 3 redundant copies
of Important components

= Algorithm:

" Try to redeploy failed
component

= Until redeployment is possible:

1. Choose components which are no
redundant copies of failed
components

2. Choose components where only g A
one of three redundant copies
already failed

3. Choose arbitrary components

University of Paderborn

‘_lg Fatmmensaae” Choosing Components for
Redeployment

= Example: 3 redundant copies
of Important components

= Algorithm:

" Try to redeploy failed
component

= Until redeployment is possible:

1. Choose components which are no
redundant copies of failed
components

2. Choose components where only
one of three redundant copies
already failed

3. Choose arbitrary components

University of Paderborn

Software Engineering Group I
&(‘ Prof. Dr. Wilhelm Schéafer Experl ment

" Scenario:
= 36 nodes with 114 links
= 72 components with 99 connectors

= 5 node-specific (CPU, OS, Memory, Utilization,
HDD) and 2 link-specific (Bandwidth, Loss)
deployment restrictions

= set of deployment constraints on components and
connectors

" Experiment:

= Randomly selected a —
node and let it fail

d

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schéafer

Experimental Results

Test | 1. Solution 2. Solution Our Algorithm

N Time (ms) | Damage Time (ms) | Damage Time (ms) | Damage
1 13630 773 > 1h N/A 50 7

2 14890 97 56060 29 30 30

3 13790 4 14920 1 10 5

4 13660 34 16430 31 50 34
damage

time

University Qf P_aderborn]
‘IL\ e e Conclusion & Future Work

Algorithm to calculate optimal self-repair
actions

Deployment constraints solved by standard
constraint solver

Experiment showed that algorithm is nearly
optimal in damage minimization and time
consumption

Not presented: pre-solving step

Communication and monitoring framework

Describe repair rules by graph transformation
systems

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schéafer

Appendix

Danlela nilling - Ma 0]0)

Software Engineering Group
Prof. Dr. Wilhelm Schéafer

University of Paderborn

Simple

Redeployment

vot:Voter
pcl:Position
> TalIeSIn Calculation
cc:Convoy
pc3:Position N Uther Gareth pc2:Position
Calculation Calculation
I Ut Gorlois Arthur
aps:GPS- 7
Controller

|«

University of Paderborn

Software Engineering Group
Prof. Dr. Wilhelm Schéafer

Example

vot:Voter o
Mem:0.5Mb f pcl:Pﬂ
Taliesin | Saoueten
cc:Convoy Mem=1.5Mb M —
Mem=0.7Mb v v
pc3:Position N Uther Gareth p—cc::;ligﬁzggonn
Calculation Mem=1Mb Mem=2Mb Mem=2Mb b
_ o . c2:Position
e lgles Gorlois Arthur e
Mem=0.25M Mem=2Mb Mem=1.5Mb Mem=1.5Mb
Controller
Mem=0.5Mb

4|

University of Paderborn

& “ror o winem senare LD aIM age Calculation

nl
----- > C1

damage=13 damage=13

1

. damage:

: . all=13

e ' 20f3=4
lof3=1

University of Paderborn

&t‘ e e Submodel Expansi()n

Failed components Running components
Initial situation allbllc djel||fllg
Submodel: Consider: Consider later:
1
) allbjc dile|[f]l g
Submodel not solvable
2) allbllc diellf|lg
Redundant copies
3) allblc ellfllg d
i
Not related
4) allbjcie filg d

Submodel not solvable

University c_)f P_aderborn]
Lli\ e SUDMoOdel Expansion(2)

Failed components Running components

4) allbjc|e fllg d

Submodel not solvable

5) aljlbjic|e fillg d

Redundant copies

6) allbjcie dm\:ﬂ
7) abcem fllg

Submodel solvable

University of Paderborn

Software Engineering Group .
Prof. Dr. Wilhelm Schéafer re- O VI n g

Daniela Schilling - May 2005- 21

University of Paderborn

Lll\ B o v Foundations (TMR)

= Use fault tolerance technigues to ensure
dependability

= Triple Modular Redundancy (TMR)

:Componentl[

‘Provider ﬁ}{b :Multiplier :Component?2 ‘Voter ﬂ]_,[b :

:Component3

University of Paderborn

Lll\ B o v Foundations (TMR)

" Deployment constraints for TMR

Avoid single-point-

Nodel: Node2: of-failure of voter /
multiplier
—7 — -> Deploy voter and

user to same node
(if the user fails, the

:Provider :Multiplier ‘Voter ‘User failure of the voter is
no problem)

Avoid crash failures
:Componentll :Component? :Component3 | -> Deploy redundant
components to distinct
! ! ! nodes
V. V. V. |
Node3: Node4: Nodeb5: Heterogeneous

hardware platform
-> require different CPU

|{ Node3.CPU ® Node4.CPU < Node4.CPU ® Node5.CPU < Node3.CPU ® Node 5.CEHA}

m

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schéafer

FUS ABA.de

Tool Suite

Daniela Schilling - May 2005- 24

University of Paderborn]
‘g\ i e Online Redeployment
- Our Solution -
= Compute Self-Repair Action

" -> Find suitable nodes to redeploy failed
components

= How to find suitable nodes? 4l

= What to do if there Is no suitable node?
= 2) Redeploy further (still running) components

= Goal: reduce costs

" Redeployment should not decrease dependability
(reduce damage)

= Reduce solving time

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schéafer

Daniela Schilling - May 2005- 26

