
A Methodology for Analyzing the
Temporal Evolution of Novice
Programs Based on Semantic

Components*

Chris Hundhausen, Jon Brown, Sean Farley, & Daniel Skarpas
Visualization and End User Programming Lab

School of Electrical Engineering and Computer Science
Washington State University

{hundhaus, sfarley, jbrown}@eecs.wsu.edu

*This work is funded by the National Science Foundation under grant nos. 0406485 & 0530708

2 of 23

How Can We Build Better Novice
Programming Environments?

 Plausible Answer: Understand (better) the
programming processes promoted by those
environments

 Key Research Questions That Relate to
Programming Processes:
– How do programmers spend their time within a given

environment?
– How does a novice program evolve over time within a

given environment?
– How can a given programming environment assist a

programmer in identifying, fixing, and avoiding
syntactic and semantic programming errors?

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

3 of 23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Code validation

Invalid components

11. Print total

10. Handle dif f . array len.

9. Sum each cell value

8. Terminate loop

7. V is it each cell

6. Init. iterator

5. Create iterator

4. Init. total var.

3. Create total var.

2. Populate array

1. Create array

F
o

c
u

s
 o

f
P

ro
g

ra
m

m
in

g

A
c
ti

v
it

y

Time (min) !

Focus on valid component

Illustration of the Kind of Analysis That
Might Shed Light on Those Questions

Focus on invalid component Focus on code validation

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

4 of 23

We Present a Methodology for Gathering
and Analyzing Video of Novice

Programmers
 Why useful?

– Basis for quantitative comparison of programming
activities promoted by alternative novice
programming environments

– Basis for timeline visualizations, which provide
qualitative feel for patterns of novice
programming activities

 Remainder of Talk
– Related Work
– Overview of Methodology
– Case Study
– Summary and Future Work

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

5 of 23

Some Past Work Has Been Specifically
Concerned with Methodological Issues

 Brooks, 1980
 Shneiderman, 1986
 Gilmore, 1990

But:

This work does not specifically address the
issue of studying programming processes
for purposes of improving a programming
environment

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

6 of 23

Several Lines of Work Have Studied
Programming Processes

 Goldenson & Wang, 1991 (Pascal Genie)
 Guzdial, 1993 (Emile)
 Jadud, ICER 2006 (BlueJ)

Our work differs from this work in two key
respects:
– Human video analysis, as opposed to log files
– Characterization of programming processes

based on breakdown of a code solution’s
semantic components

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

7 of 23

Our Methodology Builds on Three
Established Methodologies

 Protocol Analysis (Ericcson & Simon, 1980)
– Single participants verbalize their thought

processes as they complete (programming) tasks
– Participants’ verbalizations are then analyzed in

detail

 Sequential Analysis (Bakeman & Gottman, 1996)
– Human behaviors or interactions are coded
– Researcher looks for patterns in behavior

 Code Grading Based on a “Model Solution”
Broken Into Semantic Components

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

8 of 23

Our Methodology Has Five Key Steps

Constructing model solutions
Making video recordings
Coding the recordings
Quantitatively analyzing the coding data in

order to perform comparisons and to test
hypotheses

Qualitatively analyzing the coding data by
constructing and inspecting timeline
visualizations

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

9 of 23

Step 1: Experts Construct Model Solution
and Break into Semantic Components

Five Guiding Questions:
What variable roles must variables play in a

correct solution?
To what values do variables need to be

initialized?
Must the solution work for general input?
How must iteration proceed?
What are the lines of code in a model

solution? (catch-all)

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

10 of 23

Step 3: Independent Analysts Code
Video into Mutually-Exclusive Categories

We code activities directed toward…
 valid components of model

solution
(CS, CE, CI, and IVS codes)

 invalid components
(IS, IE, ID codes)

 validating code correctness
through explicit execution
(VS and VE codes)

 creation of valid component
(FG code)

 removal of invalid component
(FD code)

 creation of invalid component
(FI code)

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

We are also interested in
identifying points at which
feedback aided…

Sample Coding Spreadsheet

11 of 23

Step 4: These Codes Generate Statistics
That Help Answer Key Research Questions

• % invalid components deleted or
fixed via feedback

• % valid and invalid components
generated with the help of
feedback

To what extent does semantic
feedback help or hinder coding
progress?

• % validation time
• Avg. # components validated per

validation session
• Average validation lag time

To what extent do participants
explicitly validate their code’s
semantic correctness?

• % invalid components deleted or
fixed

Are participants able to find and
correct semantic errors in their
code?

• % dead time
• % valid component editing
• % invalid component editing time

Do participants spend their time
focused on productive
programming activities?

Supporting StatisticsResearch Question

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

12 of 23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Code validation

Invalid components

11. Print total

10. Handle dif f . array len.

9. Sum each cell value

8. Terminate loop

7. V is it each cell

6. Init. iterator

5. Create iterator

4. Init. total var.

3. Create total var.

2. Populate array

1. Create array

F
o

c
u

s
 o

f
P

ro
g

ra
m

m
in

g

A
c
ti

v
it

y

Time (min) !

Focus on valid component

Step 5: Coding Can Be Automatically
Transformed into Timeline Visualizations

Focus on invalid component Focus on code validation

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

13 of 23

Case Study Illustrates Application of
Methodology in Practice

 General Research Questions
– Can semantic feedback benefit novice programmers?
– If so, what form is best?

 We experimentally compared three alternatives
– Automatic feedback
– On-demand feedback
– No feedback (control treatment)

 35 novice programmers recruited out of CS 1 course
at WSU

 Participants wrote SALSA solution to “Compute
Sum” task in one of three experimental versions of
ALVIS novice programming environment

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

14 of 23

“Compute Sum” Model Solution
Included 11 Semantic Components

Create array
Populate array
Create (role of) total
Initialize (role of) total
Create (role of) iterator
Initialize (role of)

iterator

 Looping visits each cell
 Looping terminates

correctly
 Add cell value to total
Iteration handles

variable-length arrays
Print total

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

15 of 23

We Collected and Coded 19.6 Hours of
Video

 Three analysts independently coded a
random 20% sample (1,602 observations)
– Achieved 94.4% agreement, 0.936 kappa

 Once reliability was established, we divided
the remaining video evenly across the three
analysts

 Entire process required…
…two weeks of training per analyst
…2 – 4 hours to code each hour of video

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

16 of 23

Feedback Conditions Achieved Higher
Accuracy on Some Semantic Components…

0.490.33No Feedback
0.460.72On Request 0.032
0.390.83AutomaticSC #9

(Add Each Cell to
Total)

0.450.25No Feedback
0.520.55On Request 0.053

0.450.75AutomaticSC #7, 8
(Visit Each Cell,
Terminate Loop

Correctly)

0.510.42No Feedback
0.400.82On Request 0.019
0.290.92AutomaticSC #5, 6

(Create/Initialize
Role of Iterator)

4.05.5No Feedback
3.47.9On Request 0.102
2.39.3Automatic

Total
(out of 11 points)

KW p-valueStd. Dev.MeanTreatmentMeasure

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

17 of 23

…But Higher Accuracy Appears More
Related to Persistence than Feedback

—0No Feedback

9.011.2On Request 0.312

19.49.7Automatic% Invalid Comp.
Deleted/Fixed via

Feedback

42.361.5No Feedback

30.578.5On Request 0.312

12.390.7Automatic
% Invalid Components

Deleted/Fixed

21.128.0No Feedback

18.821.7On Request 0.250

13.734.4Automatic
% Invalid Component

Editing Time

9.516.5No Feedback

11.311.8On Request 0.277

7.411.4Automatic
% Valid Component

Editing Time

9.816.1No Feedback

39.839.5On Request 0.057

40.145.6Automatic

Time On Task (min.)

KW p-valueSt. Dev.MeanTreatmentMeasure

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

18 of 23

“No Feedback” Participant Succeeds
with Few Missteps

0 1 2 3 4 5 6 7 8 9

Code validation

Invalid components

11. Print total

10. Handle diff. array len.

9. Sum each cell value

8. Terminate loop

7. Visit each cell

6. Init. iterator

5. Create iterator

4. Init. total var.

3. Create total var.

2. Populate array

1. Create array

P
ro

g
ra

m
m

in
g

 A
ct

iv
it

y

Time (min)!

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

Focus on valid component Focus on invalid component Focus on code validation

19 of 23

“Automatic” Participant Succeeds
through Persistence

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Code validation

Invalid components

11. Print total

10. Handle diff. array len.

9. Sum each cell value

8. Terminate loop

7. Visit each cell

6. Init. iterator

5. Create iterator

4. Init. total var.

3. Create total var.

2. Populate array

1. Create array

P
ro

g
ra

m
m

in
g

 A
c
ti

v
it

y

Time (min) !

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

Focus on valid component Focus on invalid component Focus on code validation

20 of 23

“On Request” Participant Cannot Get
On Track Despite Honest Effort

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Code validation

Invalid components

11. Print total

10. Handle dif f . array len.

9. Sum each cell value

8. Terminate loop

7. V is it each cell

6. Init. iterator

5. Create iterator

4. Init. total var.

3. Create total var.

2. Populate array

1. Create array

P
ro

g
ra

m
m

in
g

 A
c
ti

v
it

y

Time (min) !

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

Focus on valid component Focus on invalid component Focus on code validation

21 of 23

“No Feedback” Participant Gives Up
Quickly

0 1 2 3 4 5 6

Code validation

Invalid components

11. Print total

10. Handle diff. array len.

9. Sum each cell value

8. Terminate loop

7. Visit each cell

6. Init. iterator

5. Create iterator

4. Init. total var.

3. Create total var.

2. Populate array

1. Create array

P
ro

g
ra

m
m

in
g

 A
c
ti

v
it

y

Time (min) !

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

Focus on valid component Focus on invalid component Focus on code validation

22 of 23

We Have Presented a New Methodology for
Analyzing Novice Programming Processes

 Novelty
– Frames programming activity in terms of time-ordered

sequence of editing episodes focused (or not) on semantic
components of model solution

 Strengths
– Shows contribution of each editing episode to final solution
– Provides empirical basis for comparing novice programming

environments
 Limitations

– Development of model solution may be difficult for more
complicated algorithms

– Requires substantial investment of time and labor (but
could be partially automated)

– Says nothing about nature of invalid components (but could
extend coding scheme to classify semantic errors based,
e.g., on Spohrer and Soloway, 1986)

Introduction ● Related Work ● The Methodology ● Case Study ● Summary and Future Work

23 of 23

Questions?

For further information, and to download the
ALVIS software, visit the Visualization and
End User Programming Lab (VEUPL) website:

http://eecs.wsu.edu/~veupl

