
Exploring Novice
Compilation Behavior

Matt Jadud
20060910
ICER 2006

Map
• Background

• Data

• Explorations
 (and things found along the way)

• Discussion

In the beginning...
• Vincent, Indiana University Bloomington

Students used this web-based course
management system to hand in code.

• Behavior

• Some submit 5 times...

• Some submit 50 times...

The big lie
• Lie: Students are just letting the compiler

do their thinking for them.

• Problem: Dismisses the power of
modern computers (“cycles to burn”)

• Truth: Professionals let the compiler do
their thinking for them (eg. Eclipse, test-
first, etc.)

Back in my day...
• Lie: Programmers made fewer mistakes

in the days of the punch.

• Truth: If you remember writing perfect
code, either you’re wrong, or you’re
special.

 And, you probably walked uphill both
ways to school, too.

We make mistakes
• CoRC: PL/C, 4000 runs, req’d 2 runs/

prog to “achieve acceptable operation”

• Ditran: 36% of all submissions contained
syntax errors (~ 4/prog)

• Pilot: 51% of all student compilations
ended in error

• Study: same

Map
• Background

• Questions

• Explorations
 (and things found along the way)

• Discussion

(Deceivingly Hard)
Question

• What are they doing when they
recompile/resubmit so often?

Compile

EditRun

What are they
doing when they
recompile/resubmit
so often?

Computer

Student Instructor

Compile

EditRun

(Obviously Hard)
Question

• Whatever it is they
are doing, does it
relate at all to our
assessments of their
abilities?

Student Instructor

Computer

Compile

EditRun

Exams

Home
work

Over-arching
Question

• Is their programming behavior getting in
the way of good/effective learning?

• Can it be shaped, or otherwise
improved?

Map
• Background

• Questions

• Explorations
 (and things found along the way)

• Discussion

Data
• Captured a copy of student programs

every time they pressed the “compile”
button.

• 2 years,120 students, 2000 programming
sessions, 42,000 snapshots

Data Archeology
• Search: Spend months figuring out

where to do the digging.

• Tools: If you have complex data, don’t go
looking for simple answers.

• Suggestion: Dig long and deep through
your data; all good quantitative inquiries
start with an extensive qualitative search.

Browsing code
• First things first: if you’re studying

compilation deltas, start reading.

• When you see the “big picture,” and can
characterize general behaviors in your
population, stop.

• Haven’t really reached step two...

Click me! Click me!

Work smart, not hard
• When you’re faced with thousands of

sessions, and tens of thousands of
compilations, get help.

• If you can’t get the help you need,
automate or abrogate.

Focus
• What seems important?

• Error type and location

• Repetition of error

• These things, in combination, highlight
problem spots in a session.

Click me! Click me!

What are they doing?
• With a high-level view of a session, we

can now scan through hundreds of
compilation events and dozens of
sessions in an hour.

• We still don’t know exactly what they’re
doing, but we believe there are critical
differences.

From the “bad”...

... to the “good”

Oooh... numbers
• All of the things we’re looking at now

(error type, error location, repetition of
errors) are quantifiable.

• What happens if we assign a “penalty” to
each of the behaviors we’ve just seen?

11

Turn the crank

8
0

0 + 0 + 11

11 * 2
=

11

22
= .5

3

Naming
• Naming is hard

• Naming shapes thought

• Eg. Is it

• ... a rate?

• ... a measure?

• ... a count?

Working with Sally
• Working with Sally is hard

• Working with Sally shapes thought

Or...

We might call this the error quotient.

The EQ
• Sessions where a student wrestles with

one error (or several errors in the same
place) score high.

• Sessions with many syntactically correct
compilations score low.

Residual standard error: 13.91 on 53 degrees of freedom
Multiple R-Squared: 0.213, Adjusted R-squared: 0.1982
F-statistic: 14.35 on 1 and 53 DF, p-value: 0.0003901

EQ: Mostly useless?
• We probably cannot make meaninful

claims (statistically) from the data we have
to hand.

• But that’s OK.

Map
• Questions

• Background

• Explorations

• Discussion

What now?
• Continue observation

• More data may improve statistical

• Explore use of the tools in context

• Can they help the instructor?

• Can they help the learner?

Dive in
• If we think it’s reasonable, start using it as

a guide.

• The EQ can provide a formative, or
ongoing, view of student programming
that summative assessments
(homeworks and exams) might not

Real-time
• The EQ can be

calculated with
as few as three
events.

Your current error quotient is

Or just-in-time
• As well as real-time feedback and

enhanced help, we might provide tutorials
that students can access at their leisure

• Tutorial content would be driven by real-
world problems.

Click me! Click me!

Or not so real-time
• Perhaps at the end of the day the

instructor could download the sessions
for some or all of the students.

• Targeted help can be
 offered/suggested for
 students who are
clearly struggling with
 their programming.

Improving visuals
• Tabular form developed for exploring data

• Interesting work to be done improving the
tools

semicolon expected

incompatible types

declare abstract

4m3m2m1m

Future work
• Bringing the EQ into play opens the door

for many interesting studies regarding
student interaction with code and their
IDE (BlueJ).

• The EQ is, largely, language-agnostic;
what about other languages and
environments?

Thanks.

