Exploring Novice Compilation Behavior

Matt Jadud 20060910 ICER 2006

Map

- Background
- Data
- Explorations

 (and things found along the way)
- Discussion

In the beginning...

• Vincent, Indiana University Bloomington

Students used this web-based course management system to hand in code.

Behavior

- Some submit 5 times...
- Some submit 50 times...

The big lie

- Lie: Students are just letting the compiler do their thinking for them.
- Problem: Dismisses the power of modern computers ("cycles to burn")
- **Truth**: *Professionals* let the compiler do their thinking for them (eg. Eclipse, test-first, etc.)

Back in my day...

- Lie: Programmers made fewer mistakes in the days of the punch.
- **Truth**: If you remember writing perfect code, either you're *wrong*, or you're *special*.

And, you probably walked uphill both ways to school, too.

We make mistakes

- CoRC: PL/C, 4000 runs, req'd 2 runs/ prog to "achieve acceptable operation"
- Ditran: 36% of all submissions contained syntax errors (~ 4/prog)
- Pilot: 51% of all student compilations ended in error
- Study: same

Map

- Background
- Questions
- Explorations (and things found along the way)
- Discussion

(Deceivingly Hard) Question

What are they *doing* when they recompile/resubmit so often?

What are they doing when they recompile/resubmit so often?

(Obviously Hard) Question

 Whatever it is they are doing, does it relate at all to our assessments of their abilities?

Over-arching Question

- Is their programming behavior getting in the way of good/effective learning?
- Can it be shaped, or otherwise improved?

Map

- Background
- Questions

Explorations

(and things found along the way)

Discussion

Data

- Captured a copy of student programs every time they pressed the "compile" button.
- 2 years, 120 students, 2000 programming sessions, 42,000 snapshots

Data Archeology

- **Search**: Spend months figuring out where to do the digging.
- Tools: If you have complex data, don't go looking for simple answers.
- **Suggestion**: Dig long and deep through your data; all good quantitative inquiries start with an extensive qualitative search.

Browsing code

- First things first: if you're studying compilation deltas, start reading.
- When you see the "big picture," and can characterize general behaviors in your population, stop.
- Haven't really reached step two...

Work smart, not hard

 When you're faced with thousands of sessions, and tens of thousands of compilations, get help.

 If you can't get the help you need, automate or abrogate.

Focus

- What seems important?
 - Error type and location
 - Repetition of error
- These things, in combination, highlight problem spots in a session.

Click me! Click me!

What are they doing?

- With a high-level view of a session, we can now scan through hundreds of compilation events and dozens of sessions in an hour.
- We still don't know exactly what they're doing, but we believe there are critical differences.

From the "bad"...

... to the "good"

	Err Type	ΔT	ΔCh	Location		Err Type	ΔT	ΔCh	Location
1	12	-	0	•	1	2		173	•
2	8		17	•	2	*	—	-1	•
з	13	—	-1	•	з	*		112	•
4	*	-	-8	•	4	*	—	1	•
5	4	—	26	•	5	*	—	-1	•
6	*	—	2		6	11		225	• •
2	*		28	•	7	6	—	-5	•
8	12	-	-8	• •	8	*	-	-2	•
9	*		11	•	9	2		225	•
10	*	-	-56	•	10	2	-	4	•
11	12		38	• •	11	*	-	4	•
12	*	—	0	•	12	*		42	•
13	*		-1	•	13	18		17	• •

Oooh... numbers

- All of the things we're looking at now (error type, error location, repetition of errors) are quantifiable.
- What happens if we assign a "penalty" to each of the behaviors we've just seen?

Turn the crank

Naming

- Naming is hard
- Naming shapes thought
- Eg. Is it
 - ... a *rate*?
 - ... a measure?
 - ... a count?

Working with Sally

- Working with Sally is hard
- Working with Sally shapes thought

Or...

We might call this the error quotient.

The EQ

- Sessions where a student wrestles with one error (or several errors in the same place) score high.
- Sessions with many syntactically correct compilations score low.

EQ vs. Final Exam Grade

Residual standard error: 13.91 on 53 degrees of freedom Multiple R-Squared: 0.213, Adjusted R-squared: 0.1982 F-statistic: 14.35 on 1 and 53 DF, p-value: 0.0003901

EQ: Mostly useless?

- We probably cannot make meaninful claims (statistically) from the data we have to hand.
- But that's OK.

Map

- Questions
- Background
- Explorations
- Discussion

What now?

- Continue observation
 - More data may improve statistical
- Explore use of the tools in context
 - Can they help the instructor?
 - Can they help the learner?

Dive in

- If we think it's reasonable, start using it as a guide.
- The EQ can provide a formative, or ongoing, view of student programming that summative assessments (homeworks and exams) might not

Real-time

 $\Theta \Theta \Theta$

/**

*/

The EQ can be calculated with as few as three events.

Compile Undo Cut Copy Paste Find... Find Next Close

* Write a description of class Foo here.

* @version (a version number or a date)

* @author (your name)

private int x;

public class Foo

Foo

// instance variables - replace the example below with your own

+

Implementation

Or just-in-time

- As well as real-time feedback and enhanced help, we might provide tutorials that students can access at their leisure
- Tutorial content would be driven by realworld problems.

Click me! Click me!

Or not so real-time

- Perhaps at the end of the day the instructor could download the sessions for some or all of the students.
- Targeted help can be offered/suggested for students who are clearly struggling with their programming.

	Err Type	ΔT	ΔCh	Location
				_
1	14	—	1	•
2	6	—	2	•
3	6	—	-9	•
4	6	—	0	
5	99	—	13	•
6	99		-15	•
7	6	-	1	•
8	6		0	
9	6	-	0	
10	6		6	•
11	6	—	10	•
12	6	—	-10	•
13	*		-164	• •

Improving visuals

- Tabular form developed for exploring data
- Interesting work to be done improving the tools

Future work

- Bringing the EQ into play opens the door for many interesting studies regarding student interaction with code and their IDE (BlueJ).
- The EQ is, largely, language-agnostic; what about other languages and environments?

Thanks.