Short-Term Effects of Animated versus Static Visualisation of Operations on Program Perception

Seppo Nevalainen and Jorma Sajaniemi
(sneval@cs.joensuu.fi)
University of Joensuu, Finland
Outline

- Background
- Visualization and Cognition
- Previous work
- Experiment
- Discussion
- Conclusion
Background

- Numerous visualization and animation tools to assist teaching of computer programming

- Empirical evaluation of visualization tools based mostly on long-term effects, ignoring immediate effects of visualizations

- A series of experiments studying immediate and short-term effects and their relation to long-term effects based on our model of cognitive phenomena that take place during viewing
• Locations of participant's gaze (visual attention)
 • Gathered with eye-tracking equipment
Cognitive Phenomena behind Visualizations

- Locations of participant's gaze (**visual attention**)
 - Gathered with eye-tracking equipment

- Knowledge of variable roles (**programming knowledge**)
 - Measured with post-tests (Stützle and Sajaniemi 2005)

- Summaries of studied programs (**program knowledge**)
 - Analyzed with Good's scheme (Good 1999)
Cognitive Phenomena behind Visualizations

- Locations of participant's gaze (visual attention)
 - Gathered with eye-tracking equipment

- Knowledge of variable roles (programming knowledge)
 - Measured with post-tests (Stützle and Sajaniemi 2005)

- Summaries of studied programs (program knowledge)
 - Analyzed with Good's scheme (Good 1999)
PlanAni Visualization Tool (Sajaniemi and Kuittinen 2005)

• Visualizes variable roles
• Role of a variable = behavior of a variable, e.g.,
 – Stepper = a variable stepping through a systematic, predictable succession of values
 – Gatherer = a variable accumulating the effect of individual values
• Facilitates learning introductory programming
• Eleven roles cover 99% of all variables in novice-level programs
• Role image represents the salient stereotypical features of variable’s behavior
• Role image also used for the animation of operations on a variable
Previous Work on Roles of Variables

• Beneficial long-term effects on programming skills (Byckling and Sajaniemi 2006, Sajaniemi and Kuittinen 2005)

• Use of original role images enhanced learning of roles when compared to neutral control images (Stützle and Sajaniemi 2005)

• PlanAni compared to Turbo Pascal debugger (Nevalainen and Sajaniemi 2005):
 • Use of PlanAni \rightarrow increase in targeting of visual attention on variable visualizations
 • Increase of visual attention to variables \rightarrow
 increase of high-level information,
 and decrease of low-level code-related information in program summaries
Experiment: Design

• Between-subject design

• Independent variable: version of PlanAni (smoothly animated (“animation group”) or immediate update ("static group"))

• Dependent variables:
 • Locations of participant's gaze
 • Participant's post-test score on role knowledge
 • Program summary provided by the participant

• Participants:
 • Eleven male and five female (n=16)
 • Had taken a first-year programming course in last eighteen months and continued their studies thereafter
Experiment: Procedure

- A video presentation introducing roles
- Pre-test on role knowledge
- A practice program with PlanAni
- An actual program with PlanAni
- Post-test on role knowledge
- Tool evaluation form
Results: Role Knowledge and Visual Attention

- Post-test scores on role knowledge (max score 13)
 - Animation group: 12.00
 - Static group: 11.25 Difference N.S.

- Mean proportions of viewing times on different areas of the screen (difference between the groups significant in viewing code and I/O areas):
Results: Program Summaries

- Good’s program summary analysis scheme (Good 1999) was applied to participants' program summaries.

- Information types divided into high-level and low-level types:

<table>
<thead>
<tr>
<th>Code</th>
<th>Information Type</th>
<th>Group</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Animation</td>
<td>Static</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>HIG</td>
<td>FUN+ACT+SHI+DAT</td>
<td>76.09</td>
<td>12.69</td>
<td>77.31</td>
</tr>
<tr>
<td>LOW</td>
<td>OPE+SLO+CON</td>
<td>15.58</td>
<td>8.09</td>
<td>15.20</td>
</tr>
<tr>
<td>OTH</td>
<td>100-HIG-LOW</td>
<td>8.30</td>
<td>9.07</td>
<td>7.49</td>
</tr>
<tr>
<td>HIP</td>
<td>HIG / (HIG+LOW) * 100</td>
<td>82.81</td>
<td>8.97</td>
<td>83.84</td>
</tr>
</tbody>
</table>

Differences N.S.

- Object description categories:

<table>
<thead>
<tr>
<th>Code</th>
<th>Object Description Category</th>
<th>Group</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Animation</td>
<td>Static</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>PON</td>
<td>Program only</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>PRO</td>
<td>Program</td>
<td>3.13</td>
<td>8.84</td>
<td>1.14</td>
</tr>
<tr>
<td>PRR</td>
<td>Program—real-world</td>
<td>5.55</td>
<td>11.87</td>
<td>11.14</td>
</tr>
<tr>
<td>PRD</td>
<td>Program—domain</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>DOM</td>
<td>Domain</td>
<td>88.54</td>
<td>12.63</td>
<td>80.74</td>
</tr>
<tr>
<td>IND</td>
<td>Indirect reference</td>
<td>2.79</td>
<td>5.95</td>
<td>6.99</td>
</tr>
<tr>
<td>UNO</td>
<td>Unclear</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Differences
Discussion: Visual Attention

- Variation in the graphics, location and size of variable visualizations \rightarrow clear influence on the distribution of visual attention (Nevalainen and Sajaniemi 2005)

- Presence or absence of a smooth animation \rightarrow only subtle differences on the distribution of visual attention

- Even participants provided with rich pictorial information resorted heavily to the textual cues
Discussion: Role Knowledge

• Variation in the images of PlanAni → significant differences in development of role knowledge found in (Stützle and Sajaniemi 2005)

• Presence or absence of a smooth animation → differences non-significant

• One explanation: the role images, not the role animation, play central role in the development of role knowledge when PlanAni is used
Discussion: Program Summaries

- PlanAni has been found to have long-term effects on programming knowledge, that results in differences in program summaries (Sajaniemi and Kuittinen 2005)

- The effects do not seem to manifest themselves in program summaries collected after viewing visualization (Nevalainen and Sajaniemi 2005, this experiment)
Conclusions

• Research focus: how a person viewing visualizations targets her visual attention and what kind of a mental model she constructs concerning a computer program

• Research based on a model of cognitive phenomena that take place during viewing

<table>
<thead>
<tr>
<th>Experiments on visualizing variable roles</th>
<th>Dependent Variables:</th>
<th>Visual attention on visualization</th>
<th>Programming knowledge</th>
<th>Program knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varied factors:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content of images used in visualization</td>
<td></td>
<td>Not measured</td>
<td>Significant differences</td>
<td>Not measured</td>
</tr>
<tr>
<td>(Stützle & Sajaniemi 2005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphics, location, and size of visualization (Nevalainen & Sajaniemi 2005)</td>
<td></td>
<td>Significant differences</td>
<td>Not measured</td>
<td>No significant differences</td>
</tr>
<tr>
<td>Animation style used in visualization (Nevalainen & Sajaniemi 2006)</td>
<td></td>
<td>No significant differences</td>
<td>No significant differences</td>
<td>No significant differences</td>
</tr>
</tbody>
</table>

• Future experiments: use of style of engagement as a varied factor.