
Commonsense computing:
What do students know before we

teach?
Episode 1. Sorting

Beth Simon
Univ. of California

San Diego

Tzu-Yi Chen
Pomona College

Kate Sanders
Rhode Island College

Robert McCartney
Univ. of Connecticut

Gary Lewandowski
Xavier University

Student performance studies

Student performance studies

• McCracken et al., 2001:
Can students write code?

Student performance studies

• McCracken et al., 2001:
Can students write code? (No)

Student performance studies

• McCracken et al., 2001:
Can students write code? (No)

• Lister et al., 2004:
Can students read and trace code?

Student performance studies

• McCracken et al., 2001:
Can students write code? (No)

• Lister et al., 2004:
Can students read and trace code? (No)

Student performance studies

• McCracken et al., 2001:
Can students write code? (No)

• Lister et al., 2004:
Can students read and trace code? (No)

• Eckerdal et al., 2005:
Can students design code?

Student performance studies

• McCracken et al., 2001:
Can students write code? (No)

• Lister et al., 2004:
Can students read and trace code? (No)

• Eckerdal et al., 2005:
Can students design code? (No)

Student performance studies

• Simon et al., 2006:
Can students do anything?

Student performance studies

• Simon et al., 2006:
Can students do anything?

YES!

Overview
• Why commonsense knowledge?
• Related work
• Methods (who, what, how)
• Analysis: what can they do?
• Effects of instruction
• Conclusions and future work

Why commonsense knowledge?

Why sorting?

Specific questions

• Can students provide an algorithm?
• How do students approach the task?
• Do students use control structures?

• Can we use these results in teaching?

Key observations: entering students
• Most students described a correct algorithm

to sort numbers
• Most students used length and individual-

digit comparisons to compare numbers
• In iteration, preference given to post-loop

tests.

Related work

• Onoroto & Shvaneveldt (differences
between naive/beginner/experts)

• Miller (natural language descriptions of
programming task)

• Bonar and Soloway (natural language pre-
programming knowledge vs. Pascal)

Related work
• Ben-David Kolikant (student

preconceptions about concurrency from
real-life experiences => synch mechanisms)

• Gibson & O’Kelly (algorithmic
understanding in precollege and beginners)

• BRACE (Simon et al) (various tasks with
beginners: paper folding, giving directions,
telephone-directory searching)

Methods (who)
409 subjects:

– 118 students in CS 1 (2 institutions)
– 274 students in a non-CS course with no CS

experience
– 17 students in CS 1.5, with either CS 1 or other

background
– (49 students in CS 1.5 who had been part of

118 above)

Methods (what)
 Write a paragraph in complete English sentences

describing how you would arrange a set of 10
numbers in “ascending sorted order” – that is, from
smallest to largest. You might consider the
following list of numbers, but make sure that your
paragraph describes how to do it with any 10
numbers.

33 14 275 326 213 190 205 4 428 254

Methods (how)
Develop categorization along various

dimensions from a subset of 20 CS1’s:
– Is it correct? In general, or only for this case?
– What approach? Strings or numbers? What

did they focus on?
– Did they use control structures, specifically

iteration and conditionals?
– Other content: length, use of example, use of

CS “terminology”

Categorization

Correctness: Does it make sense and “work”?
In general, or only for this case?

Approach: Strings or numbers? What did they
focus on (main task)?

Control structures: Did they use iteration? Did
they use conditionals?

Other content: How long? Included example?
How much use of CS “terminology”?

Correctness

25%31%Naïve non-CS

57%69%Beginner CS

Correct
(general)

Correct
(specific)

Approach: string vs. number

12%53%36%naive
3%63%35%beginner

OtherStringNumerical

Approach: focus

10%9%Other
14%8%Put number in correct place
0%0%Programming statements
5%7%Define
3%8%Find smallest
20%19%Choose
47%50%Digit/length based

Naïve non-CSBeginner

Control structure

25%56%Naïve non-CS

43%65%Beginner CS

Expresses
conditional

Expresses
Iteration

Effect of instruction:
CS 1 considered harmful?

4.391.61CS terms used
74.0169.4Length
92%35%Numeric sorts
45%57%Correct (general)
53%71%Correct (specific)

CS 1.5 (paired)CS 1

CS 1.5 paired vs.
different CS 1.5?

6.64.39CS terms used
184.874.0Length
72%92%Numeric sorts
76%45%Correct (general)
88%53%Correct (specific)

CS 1.5 (other)CS 1.5 (paired)

Conclusions
Students can express sorting algorithms,

although may be different than instructor

CS students do this better than non-CS, given
same experience

CS 1 has some negative effects on performance

Future work
There are other potential skills to examine that

are based in commonsense understandings:
troubleshooting; evaluating interfaces;
concurrency; discrete probabilities;…

Currently:
– Collecting new data, more varied schools
– Piloting other questions

Thank you!

My collaborators:

Tzu-Yi Chen, Pomona College
Gary Lewandowski, Xavier University
Kate Sanders, Rhode Island College
Beth Simon, Univ. of California, San Diego

Thank you!

Other collaborators who are currently
collecting preconception data.

Thank you!

