Impact-Sensitive Framework for Dynamic Change Management

Tudor Dumitraş, Priya Narasimhan (Carnegie Mellon University) Daniela Roşu, Asit Dan (IBM Research)

Research Problem

Change management in a live system:

- Minimize service disruption & meet change request objectives
- Optimize the overall business value of the live system over the change time horizon

Outline

Case study

Hardware crash

Solution architecture and implementation

- Components
 - Orchestrator
 - Goal advisors
- Interaction protocol
- Scheduling

Conclusions and future work

Related Work

- V. Kharchenko et al., "On dependability of composite Web services with components upgraded online," WADS 2004
 - Estimates the "confidence in correctness" of composite Web services undergoing online upgrades

IBM Tivoli Intelligent Orchestrator. http://www-306.ibm.com/software/tivoli/products/intell-orch.

- Performs resource arbitration
- Accounts only for immediate impact of resource changes
- A. Keller et al., "The CHAMPS system: change management with planning and scheduling", NOMS 2004
 - Scheduling of operations to satisfy external RFC time objectives
 - Focused on application deployment
 - Doesn't trade-off performance of live systems

Solution Approach

Generic architecture that takes into account:

- Enterprise SLOs & change request deadlines
 - Assessment of the overall impact of change schedules through interaction with multiple goal advisors
- Variation of key performance indicators (KPIs) over a long time horizon, optimizing long-term business value
 - **▼** Transient impact, during change execution
 - ▼ Permanent impact, after change
 - Monitoring both performance and dependability metrics
- Heterogeneous types/sources of change operations:
 - ▼ System management events (e.g., faults, workload surges)
 - Requests for Change (RFCs)

Sample Configuration: 2-Tier System

Case Study: Hardware Crash

Scheduled Change Operations

	WAS ₁		-		Checkpoint operation is delayed until Service 1 has new primary
	WAS ₂				
	WAS ₃		Remove node from XD	Add node to DB Group	H-off
	DB1	Crash Crash			
	DB2				
	DB3				H-off Checkpoint
	Workload				
	(Service1)				
	Workload		Delay changes ur	ntil Service 2 workload	
	(Service2)		(Appenter b		
Business Value	D T				t
	(Service1)				_
					i
	Resp. Time				t t
	(Service2)				
	Recov. Time	Availability of Service 1		Expected Recovery Ti	
		a backup node		due to lack of che	ckpoints
	Recov. Time				,
	(Service2)			L.	
	Availability-				→t
	(Service1)				
	Availability		Af	ter backup node transfer	→ t
	(Service2)		avail	ability goes back to normal	J 8
© 2006 Tudor Dumitraș					

Carnegie Mellon

Solution Architecture & Interaction Protocol

© 2006 Tudor Dumitraș

Computing Long-Term Business Value

Compute BV(schedule)

- Analyze the schedule's impact on the KPIs:
 - ▼ Goal advisors return the KPI time variation

- ▼ Get the business value associated with each KPI value from the SLAs
- Compute the business value of each KPI for the time interval as a weighted average:
 n-1

$$BV_{KPI}(t_0, t_n) = \frac{\sum_{i=0}^{n-1} BV[KPI(t_i)] \cdot (t_{i+1} - t_i)}{t_n - t_0}$$

■ Sum the business values of all the KPIs

A Simple, Greedy Scheduler

- Find <e_k,t_k> that give the best business value
- Outputs: t₁,t₂,...t_n; BV(schedule)
- Worst-case complexity: O(n²m)

Scheduling Algorithms: Comparison

Conclusions

Contributions

- Generic architecture for change planning in a live system
 - Orchestrator, Goal Advisors
 - Interaction protocol for impact assessment
- Assess impact over long time horizon for all enterprise SLOs
 - Maximize overall business value
 - Change operation deadline & SLO objectives
 - Include proactive actions proposed by Goal Advisors to improve service KPIs
- Integrate decision for heterogeneous types/sources of change

Open questions

- Size of realistic change operation groups
- ▼ The best way to express the KPI variation in time
- Impact of inaccurate predictions on scheduling

© 2006 Tudor Dumitraș

Thank You!

For more information: www.ece.cmu.edu/~tdumitra