DSN 2006

Workshop on Architecting Dependable Systems (WADS)

Fault-tolerant Smart Sensor Architecture for Integrated Modular Avionics

Stefan Schneele, Klaus Echtle, Josef Schalk

June 27th, 2006

LIEBHERR THALES

DECOS – Application Aerospace

SP6-Approach: Electronically Synchronized Flaps

AIRBUS

 A (time-triggered) bus system will be used between the flap panels instead of the mechanical shaft

Institut

für Informatik

TUHH

ΤΓΓech

- A System Control Unit (SCU) has to control and monitor the time-triggered communication, instead of the Central Motor Unit
- For redundancy reason each flap panel will be powered by 2 Motors
- Cross Shaft Brake to hold system
- Development and usage of new, smart sensors, interfaces and gateways supporting TTA

The Challenge

• Build a smart sensor that meets:

Functional Requirements

- Reliable
- Higher Resolution (90° \rightarrow ±0,1° (6 '))
- New Single-Turn coverage
- Built-In Test capability
- Project Requirements
 - Use DECOS Tools & Methods
 - Integrate DECOS design approach
 - Use DECOS Hardware
- Industrial Requirements
 - Efficient (costs, weight, size, Integration, complexity)

EADS

Airworthy

Proof of Airworthiness I

- HW, SW and communication components
- Fault tolerant structures: redundancies for fault diagnosis and reconfiguration purposes
- Signal diversity for highly fault tolerant flap control system
- Reliability analysis and evaluation of flap control system models based on different top events
- Probabilities: top events satisfied / not satisfied
- Degraded system states:
 - 'fail ^n -operational' capabilities
 - probabilities of degraded system states

Proof of Airworthiness II

- Redundancy Management of fault tolerant Flap Control System based on the to-bedeveloped DECOS technology
 - Redundancy Management: Assessment of different reconfiguration processes based on a hybrid system model (reliability block diagram and finite state machine).

Identify benefits & risks of system evolution by using DECOS technology

Safety Requirements

- The US Federal Aviation Regulations and the European Joint Aviation Requirements provide detailed system safety regulations:
- degraded positioning rate of a specific control surface as consequence of one failed channel.

EADS

$$\lambda_{FC1} < 10^{-3} \text{ per hour of flight (FH)}$$
 (1)

• The second failure case of our interest is loss of operation of a specific control surface as consequence of failures in both channels.

$$\lambda_{FC2} < 10^{-6} \text{ per hour of flight (FH)}$$
 (2)

• fault regions SFRx:

 $SFR_x = \{sensor_x, connector_x, analogline_X, connector_x\}$ (3)

Evolution of System – Federated Architecture

Function Specific Computer I

Function Specific Computer II

The Tool - Syrelan

- Developed by Dominick Rehage, University Hamburg-Harbug
- Supports:
 - Reliability Block Diagram (RBD)
 - Concurrent Finite State Machine (CFSM)
- For:
 - Reliability Analysis
 - Degradation Analysis

Failure Modes of Conventional Sensor

• Failure Rates of components:

$$\lambda_{Sensor} = 10^{-6}; \lambda_{Analog} = 3.94 * 10^{-8}; \lambda_{plug} = 4.99 * 10^{-8}$$
(4)

Design Rules for Smart Sensors – Common Cause Failures

- Although the structural reliability numbers of smart sensors can meet the ones conventional systems
- → additional failure modes are introduced to the system (COMPLEXITY).
- → Risk of common modes.
- \rightarrow For worst-case consideration, the β -Factor representing the chance of common cause failures in different channels - is set to 0.4.

 \rightarrow Do not receive any data,

Stefan Schneele June 2006

- \rightarrow very few numbers of operational modes
- \rightarrow suitable simple composition of components
- \rightarrow Everything should be made as simple as possible, but not simpler. Page 12

Smart Sensor - Components

Position Pick-Off Unit – Software Design

- To achieve fail-safe behavior, usually failure masking with n-out-of-m failure masking is used → efficiency constraints
- The presented architecture can only provide two different values. Therefore an approach is selected, which is based on an online selftest for failure detection.

DECOS - Integrated Distributed Execution Platform

- Specification of Requirements and Design of:
- Encapsulated Execution Environment
- Virtual Communication Links and Gateways
- Platform Interface Layer
- DECOS = Dependable Embedded Systems and Components

DECOS - Methods and Tools

- Modeling Distributed Application Subsystems
- Specification of the Platform Independent Model (PIM)
 - PIM Metamodel,
 - Design methodology
- Specification of the Resource Layer
 - Hardware specification model
- Software-Hardware Integration
 - Specification of PSM development tool

EADS

PSM: Platform Independent Mo PSM: Platform Specific Model PI(L): Platform Interface

µ-Controller – single point of failure

 Modern µ-Controllers provide suitable operation life-time of up EADS

- to 20 years in controlled temperature racks.
- Concerning the use in extremely harsh environment with high amplitude

of temperature and pressure chances, we expect:

$$\lambda_{Controller} [1/Fh] = 1,46 * 10^{-6} [7]$$

- Self-checks on power-on can be interpreted as frequent maintenance intervals, making this failure rate plausible.
- This maintenance interval should be equal to the mission time.
- → Redundancy cause of efficiency constraints not a suitable approach for smart sensing devices

Failure Modes of Smart Sensor - Hardware

• Failure Rates of components:

Benefit of DECOS Technology

- For Reliability Analysis, Smart Sensor must fulfill:
 - Fail-safe behavior
 - appearance as an atomic unit
 - No failure propagation
 - → Guaranteed by DECOS node design (to be proofed)
 - Minimization of Design faults and handling of complexity
 - Addressed by Model based and Hardware Independent system design approach
 - Partitioning in time and space domain
 - → Addressed by Encapsulated Execution Environment and Time-Triggered Protocol

Conclusion

- the novel DECOS architecture is applied to a smart sensor design.
- The justification of the sensor concept was given on a structural level.
 - sensor design meets the reliability constraints
- a remarkably small subset of components can fulfill both efficiency and reliability constraints
- This concept is implemented in real hardware, and evaluated on a realistic testbench.

Thank you !

