
Preface

This volume constitutes the pre-conference proceedings for LOPSTR 2007: those
papers selected for presentation at the Seventeenth International Symposium on
Logic-Based Program Synthesis and Transformation, that will be held in Kon-
gens Lyngby, Denmark, August, 23-24, 2007. Previous LOPSTR symposia were
held in Venice (2007 and 1999), London (2005 and 2000), Verona (2004), Upp-
sala (2003), Madrid (2002), Paphos (2001), Manchester (1998, 1992 and 1991),
Leuven (1997), Stockholm (1996), Arhhem (1995), Pisa (1994) and Louvain-la-
Neuve (1993).

The aim of the LOPSTR series is to stimulate and promote international
research and collaboration on logic-based program development. LOPSTR thus
traditionally solicits papers in the areas of: specification, synthesis, verification,
transformation, analysis, optimisation, composition, security, reuse, applica-
tions and tools, component-based software development, software architectures,
agent-based software development and program refinement. LOPSTR has a
reputation for being a lively, friendly forum for presenting and discussing work
in progress. Formal proceedings are produced only after the symposium, so that
authors can incorporate this feedback in the published papers.

We would like to thank all those who submitted contributions to LOPSTR.
Overall, we received 30 submissions, each of which received at least three re-
views. The committee decided to accept seven full papers for presentation and
for inclusion in the final post-conference proceedings. Nine extended abstracts
were also selected for presentation, which describe work that was judged to
be mature enough for possible publication in the post-conference volume. We
would also like to thank Michael Codish for agreeing to give an invited talk and
contributing a paper to the proceedings.

I am very grateful to program committee and the reviewers for their invalu-
able help and expertise. I would like to thank Andrei Voronkov for his excellent
EasyChair paper submission and reviewing system; Michael Hanus for his guid-
ance in using EasyChair; and Andreas Matthias for his pdfpages LATEX pack-
age which simplified the production of the pre-conference proceedings. These
pre-proceedings were themselves printed in Denmark, and are available from
the LOPSTR 2007 homepage, which is http://www.cs.kent.ac.uk/events/
conf/2007/lopstr/.

LOPSTR 2007 was co-located with SAS 2007 and my warmest thanks go
to Christian W. Probst (Local Chair) who was always willing to help in every
aspect of the organisation of LOPSTR 2007. Special thanks also go Hanne Riis
Nielson, Flemming Nielson (Treasurer), Sebastian Nanz, Terkel K. Tolstrup,
Eva Bing, Elsebeth Strøm who, together with Christian, took care of the overall
planning and local organisation of LOPSTR 2007.

August 2007 Andy King

1

Program Committee

Elvira Albert Universidad Complutense Madrid, Spain
John Gallagher University of Roskilde, Denmark
Michael Hanus Christian-Albrechts-Universität zu Kiel, Germany
Jacob Howe City University, UK
Andy King (Program Chair) University of Kent, UK
Michael Leuschel Heinrich-Heine-Universität Düsseldorf, Germany
Mario Ornaghi Università degli Studi di Milano, Italy
Étienne Payet Université de La Réunion, France
Alberto Pettorossi Università di Roma Tor Vergata, Italy
Carla Piazza Università degli Studi di Udine, Italy
C. R. Ramakrishnan SUNY Stony Brook, USA
Abhik Roychoudhury National University of Singapore, Singapore
Peter Schneider-Kamp RWTH Aachen, Germany
Alexander Serebrenik (Publicity Chair) Technische Universiteit Eindhoven
Josep Silva Technical University of Valencia, Spain
Wim Vanhoof University of Namur, Belgium

Local Organisation

Christian W. Probst (Local Chair) Technical University of Denmark
Sebastian Nanz Technical University of Denmark
Terkel K. Tolstrup Technical University of Denmark
Eva Bing Technical University of Denmark
Elsebeth Strøm Technical University of Denmark
Hanne Riis Nielson Technical University of Denmark
Flemming Nielson (Treasurer) Technical University of Denmark

Additional Referees

Slim Abdennadher Armin Biere Davide Bresolin
Maurice Bruynooghe Manuel Carro Alberto Casagrande
Agostino Dovier Camillo Fiorentini Andrea Formisano
Ankit Goel Gopal Gupta Frank Huch
Lunjin Lu Salvador Lucas Fred Mesnard
Eric Monfroy José Morales Rafael Navarro
Alessandro Dal Palu’ David Pearce Maurizio Proietti
Arend Rensink Jaime Sanchez Beata Sarna-Starosta
Valerio Senni Andrew Sentosa Jaroslav Sevcik
Axel Simon Jan-Georg Smaus Fausto Spoto
German Vidal Marc Voorhoeve Tao Wang
Jan Martijn van der Werf

2

Thursday 23 August

09:00 Proving Termination with (Boolean) Satisfaction (LOPSTR invited
talk), Michael Codish, Ben-Gurion University of the Negev, page 5

10:00 Termination Analysis of Logic Programs based on Dependency Graph,
Manh Thang Nguyen, K. U. Leuven, Belgium, Jürgen Giesl, RWTH
Aachen, Germany, Peter Schneider-Kamp, RWTH Aachen, Germany
and Daniel De Schreye, K. U. Leuven, Belgium, page 12

10:30 Coffee break

11:00 Typed-based Homeomorphic Embedding for Online Termination
(Extended Abstract), Elvira Albert, Complutense University of Madrid,
Spain, John Gallagher, Roskilde University, Denmark, Miguel Gómez-
Zamalloa, Complutense University of Madrid, Spain and Germán
Puebla, Technical University of Madrid, Spain, page 27

11:30 Improving Efficiency of Prolog Programs by Fully Automated
Transformation (Extended Abstract), Jiř́ı Vyskočil and Petr Štěpánek,
Charles University, Czech Republic, page 38

12:00 Towards a normal form for Mercury programs (Extended Abstract),
Wim Vanhoof and François Degrave, University of Namur, Belgium,
page 48

12:30 Lunch

14:00 Aggregates for CHR through Program Transformation, Peter Van
Weert, Jon Sneyers and Bart Demoen, K. U. Leuven, Belgium, page 57

14:30 Generation of Rule-based Constraint Solvers: Combined Approach,
Slim Abdennadher and Ingi Sobhi, German University in Cairo, Egypt,
page 72

15:00 A Scalable Inclusion Constraint Solver Using Unification (Extended
Abstract), Ye Zhang and Flemming Nielson, Technical University of
Denmark, page 87

15:30 Excursion and Conference dinner

3

Friday 24 August

09:00 Hardware-Oriented Program Properties (SAS invited talk)
Alan Mycroft, University of Cambridge, UK

10:00 Annotation Algorithms for Unrestricted Independent AND-Parallelism
in Logic Programs, Amadeo Casas, University of New Mexico,
Manuel Carro, Technical University of Madrid, and Manuel
Hermenegildo, Technical University of Madrid and the University of
New Mexico, page 97

10:30 Coffee break

11:00 A Flexible, CLP-based Approach to the Analysis of Object-Oriented
Program, Mario Mendezi, Jorge Navas, University of New Mexico, and
Manuel Hermenegildo, Technical University of Madrid and the Univer-
sity of New Mexico, page 112

11:30 Preserving Sharing in the Partial Evaluation of Lazy Functional Pro-
grams, Sebastian Fischer, University of Kiel, Germany, Josep Silva,
Salvador Tamarit and German Vidal, Technical University of Valencia,
Spain, page 127

12:00 Denotation by Transformation - Towards Obtaining a Denotational Se-
mantics by Transformation to Point-free Style (Extended Abstract),
Bernd Braßel and Jan Christiansen, University of Kiel, Germany,
page 136

12:30 Lunch

14:00 Snapshot Generation in a Constructive Object-oriented Modeling Lan-
guage, Mauro Ferrari, Università degli Studi dell’Insubria, Italy,
Camillo Fiorentini, Alberto Momigliano and Mario Ornaghi, Univer-
sità degli Studi di Milano, Italy, page 145

14:30 Symbolic Generation of Optimal Control Policies for Discrete-Time
Systems (Extended Abstract), Michel Sintzoff, University of Louvain,
Belgium, page 160

15:00 Synthesis of Data Views for Communicating Processes (Extended
Abstract), Iman Poernomo, King’s College, London, page 169

15:30 Coffee break

16:00 A Clausal View for Access Control and XPath Query Evaluation
(Extended Abstract), Barbara Fila and Siva Anantharaman, Univer-
sité d’Orléans, France, page 178

16:30 Action Refinement in Process Algebra and Security Issues (Extended
Abstract), Annalisa Bossi, Università Ca’ Foscari di Venezia, Italy,
Carla Piazza, Università di Udine, Italy and Sabina Rossi, Università
Ca’ Foscari di Venezia, Italy, page 187

4

Proving Termination with
(Boolean) Satisfaction

Michael Codish?

Department of Computer Science
Ben-Gurion University of the Negev

Beer-Sheva, Israel mcodish@cs.bgu.ac.il

1 Introduction

At some point there was the Davis-Putnam-Logemann-Loveland (DPLL) algo-
rithm [6]. Forty five years later, research on Boolean satisfiability (SAT) is still
ceaselessly generating even better SAT solvers capable of handling even larger
SAT instances. Remarkably, the majority of these tools still bear the hallmark
of the DPLL algorithm. In sync with the availability of progressively stronger
SAT solvers is an accumulating number of applications which demonstrate that
real world problems can often be solved by encoding them into SAT. When suc-
cessful, this circumvents the need to redevelop complex search algorithms from
scratch.

This presentation is about the application of Boolean SAT solvers to the
problem of determining program termination. Proving termination is all about
the search for suitable ranking functions. The key idea in this work is to encode
the search for particular forms of ranking functions to Boolean statements which
are satisfiable if and only if such ranking functions exist. In this way, proving
termination can be performed using a state-of-the-art Boolean satisfaction solver.

2 Encoding Lexicographic Path Orders

In [3] we describe a propositional encoding for lexicographic path orders (LPOs)
[15, 8] and the corresponding LPO-termination property of term rewrite sys-
tems. In brief, a term rewrite system (TRS) is a set of rules of the form ` → r
where ` and r are terms constructed from given sets of symbols and variables.
A lexicographic path order is an order �lpo on terms, induced from a partial
order > on the symbols occurring in the terms (a so-called precedence). A term
rewrite system is LPO-terminating if and only if there exists a partial order on
the symbols such that the induced LPO orients all of the rules in the system.
Namely such that ` �lpo r for each rule ` → r.

There are two variants of LPO-termination: “strict” and “quasi” depending
on if we restrict the precedence to be strict or not. Both imply termination of
the corresponding term rewrite system. Quasi-LPO-termination is typically the
? Supported by the Frankel Center for Computer Sciences at Ben-Gurion University

5

harder problem as the search for a non-strict precedence is more extensive than
that for a strict precedence. Both of the corresponding decision problems, strict-
and quasi- LPO-termination, are decidable and NP complete [16].

We encode an LPO-termination problem to SAT in two steps: first, a partial
order constraint on the symbols in the system is derived; then this constraint is
solved through an encoding to SAT obtained by viewing each symbol as an inte-
ger value corresponding to its index in the partial order. Partial order constraints
are propositional formula in which the atoms are statements about a partial or-
der on a finite set of symbols and can be seen as an instance of the more general
formulae of separation logic (sometimes called difference logic) described in [23].

Consider an example. To orient a rule not(or(A,B)) → and(not(A), not(B)),
is reduced to solving the following partial order constraint on the symbols
{or, and, not}:

((or > and) ∧ (or > not)) ∨ (not > and).

We encode each of the three symbols as an integer in two bits, and each atom
in the partial order constraint as a comparison on a pair of integers in bit repre-
sentation. For instance, numbering the bits with subscripts on the symbols, the
encoding of the atom (or > and) works out to:

(((or[2] ∧ ¬and[2]︸ ︷︷ ︸
or[2]>and[2]

) ∨ (or[2] ↔ and[2]︸ ︷︷ ︸
or[2]=and[2]

∧ or[1] ∧ ¬and[1]︸ ︷︷ ︸
or[1]>and[1]

))

The experimental results presented in [3] are unequivocal. Our SAT based
implementation of LPO-termination surpasses in orders of magnitude the per-
formance of previous implementations such as those provided at the time by the
termination proving tools TTT [13] and AProVE [12].

3 Encoding Argument Filterings

Lexicographic path orders on their own are too weak for many interesting ter-
mination problems and hence are typically combined with more sophisticated
termination proving techniques. One of the most popular and powerful such
techniques is the dependency pair (DP) method [1]. A main advantage is that
this allows the application of argument filterings which specify parts of terms
that should be ignored when comparing terms. It can be viewed like this: given
a set of pairs of terms to orient with an LPO, first decide which parts of the
terms to filter away and then orient the filtered pairs in an LPO. The argument
filtering specifies for each function symbol f if subterms of the form f(s1, . . . , sn)
should be collapsed to their ith argument; or if some of the argument positions
should be filtered away. Filtering terms can simplify considerably the partial or-
der constraints that need be solved to find an LPO. However, argument filterings
represent also a severe bottleneck for the automation of dependency pairs, as the
search space for argument filterings is enormous (exponential in the sum of the
arities of the symbols).

6

In [5] we introduce a propositional encoding which combines the search for
an LPO with the search for an argument filtering. The key idea is to introduce
a small number of additional Boolean variables: one for each symbol to indicate
if it is collapsed, and one for each argument position of a symbol to indicate
if it is filtered. Then the encoding of LPO is enhanced to consider these new
variables. So, there exist an argument filtering and an LPO which orient a set of
inequalities if and only if the encoding of the inequalities is satisfiable. Moreover,
each model of the encoding corresponds to a suitable argument filtering and a
suitable LPO which orient the inequalities. Once again experimental results [5]
indicate speedups in orders of magnitude.

4 Encoding Recursive Path Orders

In [22] we introduce two additional extensions which together lead to an encoding
of the so-called recursive path order with status (RPO). In the first extension,
the lexicographic path order is extended to consider the lexicographic extension,
not just from left-to-right, but rather with respect to any fixed order. It can be
viewed like this: given a permutation for each symbol in a term rewrite system,
first reorder the arguments of every subterm as prescribed by the permutation
for its root symbol. Then check if the resulting system is LPO-terminating. So,
now to orient a set of rules we seek a partial order on the symbols as well as
permutations for each symbol. For the encoding, we introduce a small number
of additional Boolean variables to represent for each symbol the order its argu-
ments are permuted to. Then the encoding of LPO is enhanced to consider this
order (in terms of these new variables). In the second extension, we consider an
encoding of the the multiset path order (MPO) [7] where term arguments are
compared with the multiset ordering. Also, in this case, with a small number
of additional Boolean variables we can model the multiset order in the encod-
ing. For RPO, each symbol in the system is associated with a status (one more
Boolean variable per symbol in the encoding) indicating if its arguments are to
be compared with a multiset extension or with a lexicographic extension modulo
some permutation. By now the reader will not be surprised that we simply en-
code all of the components for RPO to SAT to obtain an implementation using
a SAT solver. The results presented in [22] again leave no doubt that encoding
to SAT is the way to go.

5 Experimental Results

Throughout this work we have found Prolog a convenient language for express-
ing the various encodings to SAT. Prototype analyzers were written in SWI Pro-
log [25] applying the MiniSAT solver [20] through its Prolog interface described
in [4]. Subsequently the approach has been integrated within the termination
analyzer AProVE [11], using the SAT4J solver [21].

In [22] we report the following results for the various analyses described in
this paper. We tested the implementation on all 865 TRSs from the TPDB

7

[24]. The TPDB is the collection of examples used in the annual International
Termination Competition [19]. The experiments were run under AProVE on a
2.2 GHz AMD Athlon 64 with a time-out of 60 seconds (as in the International
Termination Competition [19]).

In the table below, the first two rows compare our SAT-based approach for
application of the various path orders to the previous dedicated solvers for path
orders in AProVE 1.2 which did not use SAT solving. The last two rows give a
similar comparison for the path orders in combination with the dependency pairs
method and argument filterings. The columns contain the data for LPO with
strict and non-strict precedence (denoted lpo/qlpo), for LPO with permutations
(lpos/qlpos), for MPO (mpo/qmpo), and for RPO with status (rpo/qrpo). For
each encoding we give the number of TRSs which could be proved terminating
(with the number of time-outs in brackets) and the analysis time (in seconds)
for the full collection (including time-outs). For the SAT based implementation,
checking the full collection of 865 TRSs for strict-RPO termination with ar-
gument filterings requires about 100 seconds. Allowing non-strict orders takes
about 3 times longer.

Solver lpo qlpo lpos qlpos mpo qmpo rpo qrpo

1 SAT-based 123 (0) 127 (0) 141 (0) 155 (0) 92 (0) 98 (0) 146 (0) 162 (0)
(direct) 31.0 44.7 26.1 40.6 49.4 74.2 50.0 85.3

2 dedicated 123 (5) 127(16) 141 (6) 154(45) 92 (7) 98(31) 145(10) 158 (65)
(direct) 334.4 1426.3 460.4 3291.7 653.2 2669.1 908.6 4708.2

3 SAT-based 357 (0) 389 (0) 362 (0) 395 (2) 369 (0) 408 (1) 375 (0) 416 (2)
(arg. filt.) 79.3 199.6 69.0 261.1 110.9 267.8 108.8 331.4

4 dedicated 350(55) 374(79) 355(57) 380(92) 359(69) 391(82) 364(74) 394(102)
(arg. filt.) 4039.6 5469.4 4522.8 6476.5 5169.7 5839.5 5536.6 7186.1

The table shows that with our SAT encodings, performance improves by orders
of magnitude over existing solvers both for direct analysis with path orders and
for the combination of path orders and argument filterings in the DP framework.
Note that without a time-out, this effect would be intensified. By using SAT,
the number of time-outs reduces dramatically from up to 102 to at most 2.
The two remaining SAT examples with time-out have function symbols of high
arity and can only be shown terminating by further sophisticated termination
techniques in addition to RPO. Apart from these two, for SAT, there are only
15 examples that take longer than two seconds and only 3 of these take longer
than 10 seconds. The table also shows that the use of RPO instead of LPO
increases the proving power substantially, while in the SAT-based setting, run-
times increase only mildly.

6 Other SAT Based Termination Analyses

The first encoding of a termination problem into propositional logic is presented
in [17]. The encoding is different than the one we consider and adopts a BDD-
based representation. It does not provide competitive results. However, it makes

8

an important step. Another BDD-based encoding, this one for size-change ter-
mination [18], is described in [2]. Here, sets of size change graphs are viewed
as partial order constraints, similar to those considered in this paper for term
rewrite systems.

In the past year, several additional papers [9, 10, 14, 26] have illustrated the
huge potential in applying SAT solvers for other types of termination proving
techniques for term rewrite systems. A common theme in all of these works is to
represent (finite domain) integer variables as binary numbers in bit representa-
tion and to encode arithmetic constraints as Boolean functions on these repre-
sentations. Results indicate uniformly that the SAT based approach to proving
termination is very attractive.

7 Summary

Lexicographic- and multiset- path orders are about lifting a base order on terms
to consider the arguments of terms as sequences or as multisets with corre-
sponding lexicographic or multiset orders. We have introduced a new kind of
propositional encoding for reasoning about termination of term rewrite systems
based on variants of these path orders. Our results have had a direct impact on
the design of several major termination analyzers for term rewrite systems.

Of particular and general interest are the encoding techniques which enable
to refine a search algorithm to consider a property of interest for all subsets of
objects, instead of for the full set of objects; or to check if a property holds
when considering a sequence of objects in any order, instead of in the fixed
left-to-right order. The common theme is to represent with a small number of
additional Boolean variables the large number of cases which need be considered.
For the extensions of LPO-termination considered in this work, the additional
cost in analysis time is minor in comparison to the increase in the size of the
search space.

Acknowledgment. The author has been lucky to work on this research with
friends, old and new. Thankyou coauthors of [3], [5], and [22]: Elena Annov,
Jürgen Giesl, Vitaly Lagoon, Peter Schneider–Kamp, Peter J. Stuckey, and René
Thiemann.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236(1-2):133–178, 2000.

2. M. Codish, V. Lagoon, P. Schachte, and P. J. Stuckey. Size-change termination
analysis in k-bits. In P. Sestoft, editor, Proceedings of the European Symposium on
Programming, volume 3924 of Lecture Notes in Computer Science, pages 230–245.
Springer, 2006.

3. M. Codish, V. Lagoon, and P. J. Stuckey. Solving partial order constraints for
LPO termination. In Proc. RTA ’06, volume 4098 of LNCS, pages 4–18, 2006.

9

4. M. Codish, V. Lagoon, and P. J. Stuckey. Logic programming with satisfiability.
Theory and Practice of Logic Programming, 2007. (To appear) http://arxiv.org/
pdf/cs.PL/0702072.

5. M. Codish, P. Schneider-Kamp, V. Lagoon, R. Thiemann, and J. Giesl. SAT
solving for argument filterings. In Logic for Programming, Artificial Intelligence
and Reasoning (LPAR), volume 4246 of Lecture Notes in Artificial Intelligence,
pages 30–44. Springer, November 2006.

6. M. Davis, G. Logemann, and D. W. Loveland. A machine program for theorem-
proving. Commun. ACM, 5(7):394–397, 1962.

7. N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Sci-
ence, 17:279–301, 1982.

8. N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation,
3(1/2):69–116, 1987.

9. J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving
termination of term rewriting. In U. Furbach and N. Shankar, editors, Proceedings
of the Third International Joint Conference on Automated Reasoning (IJCAR),
volume 4130 of Lecture Notes in Computer Science, pages 574–588. Springer, 2006.

10. C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl.
SAT solving for termination analysis with polynomial interpretations. In Proceed-
ings of the 10th International Conference on Theory and Applications of Satisfia-
bility Testing (SAT ’07), volume 4501 of Lecture Notes in Computer Science, pages
340–354, 2007.

11. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the dependency pair framework. In Proc. IJCAR ’06, volume 4130
of LNAI, pages 281–286, 2006.

12. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated termination
proofs with AProVE. In v. Oostrom, editor, Proc. RTA ’04, volume 3091 of LNCS,
pages 210–220, Aachen, Germany, 2004.

13. N. Hirokawa and A. Middeldorp. Tyrolean termination tool. In Proceedings of the
16th International Conference on Rewriting Techniques and Applications (RTA),
volume 3467 of Lecture Notes in Computer Science, pages 175–184, Nara, Japan,
2005. Springer.

14. D. Hofbauer and J. Waldmann. Termination of string rewriting with matrix in-
terpretations. In Proceedings of the 17th International Conference on Rewriting
Techniques and Applications (RTA), volume 4098 of Lecture Notes in Computer
Science, pages 328–342, 2006.

15. S. Kamin and J.-J. Levy. Two generalizations of the recursive path ordering.
Department of Computer Science, University of Illinois, Urbana, IL. Available
at http://www.ens-lyon.fr/LIP/REWRITING/OLD PUBLICATIONS ON TERMINATION

(viewed December 2005), 1980.
16. M. Krishnamoorthy and P. Narendran. On recursive path ordering. Theoretical

Computer Science, 40:323–328, 1985.
17. M. Kurihara and H. Kondo. Efficient BDD encodings for partial order constraints

with application to expert systems in software verification. In Innovations in Ap-
plied Artificial Intelligence, 17th International Conference on Industrial and Engi-
neering Applications of Artificial Intelligence and Expert Systems, Proceedings, vol-
ume 3029 of Lecture Notes in Computer Science, pages 827–837, Ottawa, Canada,
2004. Springer.

18. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for
program termination. ACM SIGPLAN Notices, 36(3):81–92, 2001. Proceedings of
POPL’01.

10

19. C. Marché and H. Zantema. The termination competition. In Proc. RTA ’07,
LNCS, 2007. To appear.

20. MiniSAT solver. http://www.cs.chalmers.se/Cs/Research/FormalMethods/

MiniSat. Viewed December 2005.
21. SAT4J satisfiability library for Java. http://www.sat4j.org.
22. P. Schneider-Kamp, R. Thiemann, E. Annov, M. Codish, and J. Giesl. Proving

termination using recursive path orders and SAT solving. In F. Wolter, editor,
Proceedings of 6th International Symposium on Frontiers of Combining Systems
(FroCoS ’07), volume 4720 of Lecture Notes on Artificial Intelligence, page (to
appear). Springer-Verlag, September 2007.

23. M. Talupur, N. Sinha, O. Strichman, and A. Pnueli. Range allocation for separation
logic. In CAV, pages 148–161, 2004.

24. The termination problem data base. http://www.lri.fr/∼marche/tpdb/.
25. J. Wielemaker. An overview of the SWI-Prolog programming environment. In

F. Mesnard and A. Serebenik, editors, Proceedings of the 13th International Work-
shop on Logic Programming Environments, pages 1–16, Heverlee, Belgium, Dec.
2003. Katholieke Universiteit Leuven. CW 371.

26. H. Zankl and A. Middeldorp. Satisfying KBO constraints. In F. Baader, editor,
Proceedings of the 18th International Conference on Term Rewriting and Applica-
tions, volume 4533 of Lecture Notes in Computer Science, pages 389–403, 2007.

11

Termination Analysis of Logic Programs based

on Dependency Graphs

Manh Thang Nguyen1, Jürgen Giesl2, Peter Schneider-Kamp2, and
Danny De Schreye1

1 Department of Computer Science, K. U. Leuven, Belgium
{ManhThang.Nguyen, Danny.DeSchreye}@cs.kuleuven.be

2 LuFG Informatik 2, RWTH Aachen, Germany
{giesl, psk}@informatik.rwth-aachen.de

Abstract. This paper introduces a modular framework for termination
analysis of logic programming. To this end, we adapt the notions of de-
pendency pairs and dependency graphs (which were developed for term
rewriting) to the logic programming domain. The main idea of the ap-
proach is that termination conditions for a program are established based
on the decomposition of its dependency graph into its strongly connected
components. These conditions can then be analysed separately by pos-
sibly different well-founded orders. We propose a constraint-based ap-
proach for automating the framework. Then, for example, termination
techniques based on polynomial interpretations can be plugged in as a
component to generate well-founded orders.

1 Introduction

Termination analysis in logic programming (LP) traditionally aims at proving
that a given logic program terminates w.r.t. a specific set of queries. Termination
proofs are usually done by finding ranking functions that map the states of
the program to a sequence of elements of a well-founded domain such that the
sequence is decreasing w.r.t. the well-founded order of the domain. Practically, it
is sufficient to consider only the states that are involved in loops of the program.

Techniques in termination analysis of LPs can be divided into two groups: the
global versus the local approach [4, 6, 5, 8, 10, 12, 26]. In the global approach, one
wants to find only one ranking function for all loops [8, 10, 26]. In contrast,
techniques in the local approach apply different ranking functions for differ-
ent loops [4, 5, 12]. Some automated techniques in the global approach are based
on a constraint-based framework to search for a suitable ranking function. This
is done by first generating a set of symbolic constraints from all termination con-
ditions. Then, a constraint solver is used to solve the set of constraints, yielding
a suitable ranking function for the proof. In the local approach, most techniques
use a given small set of norms, and try to prove that (a combination of) these
norms can be applied for the termination proof of the program. It is unclear at
this stage whether a search for arbitrary norms in the local approach could also
be automated using a constraint-based technique like [10].

12

While the constraint-based global approach is very suitable for automation, it
has some drawbacks. Since it generates the constraints for all termination condi-
tions and solves them at once, it may be very time-consuming, especially for non-
terminating programs. This is because the time for solving a set of constraints
often increases exponentially with its size. Moreover, if a complex well-founded
order is needed for the termination proof (e.g., a lexicographical order), it is
often difficult to find such an order using the constraint-based global approach.

Example 1 (ack). Consider a logic program P computing the Ackermann func-
tion. We used a variant with a predecessor predicate p/2 in order to illustrate
how our technique handles local variables. We want to prove termination of this
program w.r.t. the set of queries S = {ack(t1, t2, t3) | t1 and t2 are ground terms,
t3 is an arbitrary term}.

p(s(X),X).

ack(0, X, s(X)).

ack(X, 0, Z) :− p(X, Y), ack(Y, s(0), Z).

ack(s(X), s(Y), Z) :− ack(s(X), Y, Z
′), ack(X, Z

′

, Z).

Proving termination of this example based on the local approach involves two
ranking functions: the first one measures the size of the first argument and
the other measures the size of the second argument of the predicate ack/3.
However, with the constraint-based global approach, it is impossible to find a
single ranking function for the termination proof (if one is restricted to ranking
functions based on polynomial interpretations). As a matter of fact, both tools
cTI [25] and Polytool [26, 27] fail to prove termination of this example.

In addition to the local and global approaches which work directly on logic
programs, there are also several transformational approaches which transform
logic programs to term rewrite systems (TRSs). One of the most recent tech-
niques in this line of work is [31]. However, as demonstrated in [31], it turned out
that there remain many LPs whose termination can currently only be proved
by tools working with direct approaches. (An example is the “der”-program
from [9, 26].) On the other hand, there are also many LPs where currently only
transformational tools succeed (e.g., the example “LP/SGST06-shuffle” from
the Termination Problem Data Base (TPDB) [32] that is used in the annual
International Competition of Termination Tools [24]). The present paper tries
to solve this problem by porting TRS-techniques so that they can be applied
to LPs directly. In this way, we intend to combine the advantages of direct and
transformational approaches. Indeed, a first prototypical implementation shows
that the new approach of the present paper can handle both the examples “der”
and “shuffle” above as well as other examples that could not be handled by any
tool up to now (e.g., “LP/SGST06-snake” from the TPDB).

More precisely, in this paper we introduce a modular framework for termi-
nation analysis of LPs. To this end, the dependency pair technique for termi-
nation analysis of TRSs introduced in [1] is adapted to the LP context. With
this new technique, termination analysis of programs like Ex. 1 can be done by

13

decomposing it into several simple sub-problems. Each of them can be solved
independently by using any suitable well-founded order.

We also propose a constraint-based approach for automating the approach
in which termination techniques based on polynomial interpretations can be
plugged in as a component to search for well-founded orders.

The paper is organised as follows. In Sect. 2, we provide some preliminaries.
In Sect. 3, we introduce a modular framework for proving termination of LPs
based on dependency graphs. In Sect. 4, we present a constraint-based approach
to automate the framework. Finally, we end with a conclusion in Sect. 5.

2 Preliminaries

A quasi-order on a set S is a reflexive and transitive binary relation % defined
on elements of S. In this paper, we use quasi-orders comparing atoms with each
other and comparing terms with each other. We define the associated equivalence
relation ≈ as s ≈ t iff s % t and t % s. A well-founded order on S is a transitive
relation ≻ where there is no infinite sequence s0 ≻ s1 ≻ . . . with si ∈ S. A
reduction pair (%,≻) consists of a quasi-order % and a well-founded order ≻
that are compatible (i.e., t1 % t2 ≻ t3 implies t1 ≻ t3).

3

We assume familiarity with standard notions of logic programs. In the paper,
P denotes a pure logic program and TermP , AtomP denote the sets of terms
and atoms constructed from P respectively. Given an atom A, rel(A) is the
predicate occurring in A. Given two atoms A and B, we denote by mgu(A, B)
their most general unifier. A query Q is a finite sequence of atoms. We consider
termination of P w.r.t. Q using the left-to-right selection rule that is commonly
used in implementations of logic programming.4

Let S be a set of atomic queries. The call set, Call(P, S), is the set of all
atoms A, such that a variant of A is the selected atom in some derivation for
(P, Q), for some Q ∈ S. In this paper, we use ranking functions and reduction
pairs built from norms and level mappings [3]. A norm is a mapping ‖ · ‖ :
TermP → N. A level mapping is a mapping | · | : AtomP → N. An interargument
relation for a predicate p/n is a relation Rp/n = {p(t1, . . . , tn) | ti ∈ TermP ∧
ϕp(t1, . . . , tn)}, where (1) ϕp(t1, . . . , tn) is a formula of an arbitrary boolean
combination of inequalities, and (2) each inequality in ϕp is either si % sj or
si ≻ sj , where si, sj are constructed from t1, . . . , tn by applying function symbols
of P . Rp/n is valid iff for every p(t1, . . . , tn) ∈ AtomP : P |= p(t1, . . . , tn) implies
p(t1, . . . , tn) ∈ Rp/n. A reduction pair (%,≻) is rigid on a term or an atom A if

3 In contrast to the definition of “reduction pairs” in term rewriting [21], for the theo-
retical results in Sect. 3 we do not require % and ≻ to be closed under substitutions.
But to automate our method, in Sect. 4 we choose relations % and ≻ that result
from polynomial interpretations and that are closed under substitutions.

4 By fixing the selection rule, methods for termination analysis can exploit this and
become much stronger. This is similar to termination analysis of term rewriting (in
particular, when using dependency pairs). Here, termination of innermost rewriting
is easier to show than termination of full rewriting.

14

for all substitutions σ, we have A ≈ Aσ. A reduction pair (%,≻) is rigid on a
set of terms or atoms if it is rigid on all its elements.

Example 2 (call set, norm, and level mapping for ack). We again regard the
program P and the set of queries S in Ex. 1. Then we have Call(P, S) =
S ∪ { p(t1, t2) | t1 is a ground term, t2 is a variable }. Consider the reduction
pair (%,≻) which is induced5 by a norm ‖0‖ = 0, ‖s(t)‖ = 1 + ‖t‖, ‖X‖ = 0
for all variables X , and by an associated level mapping |p(t1, t2)| = 0 and
|ack(t1, t2, t3)| = ‖t1‖. Thus, we have s(0) ≻ 0, ack(s(0), X, Y) ≻ ack(0, X, Y),
and ack(0, X, Y) ≈ ack(0, 0, 0). Note that (%,≻) is rigid on Call(P, S). An exam-
ple for a valid interargument relation w.r.t. (%,≻) is Rp/2 = {p(t1, t2) | t1 ≻ t2}.

3 Dependency Graphs in Logic Programming

Def. 3 adapts the notion of dependency pairs [1] from TRSs to the LP setting.

Definition 3 (dependency triple). A dependency triple is a tuple of three
elements 〈H, I, B〉 in which H and B are atoms and I is a list of atoms. For a
logic program P, we define the set DT (P) of all dependency triples as DT (P) =
{〈H, I, B〉 | H :− I, B, . . . ∈ P}.

Given a program, the number of its dependency triples is finite.

Example 4 (dependency triples of ack). Reconsider the program from Ex. 1. The
dependency triples DT (P) of the program are:

〈ack(X, 0, Z), [], p(X, Y)〉 (1)

〈ack(X, 0, Z), [p(X, Y)], ack(Y, s(0), Z)〉 (2)

〈ack(s(X), s(Y), Z), [], ack(s(X), Y, Z
′)〉 (3)

〈ack(s(X), s(Y), Z), [ack(s(X), Y, Z
′)], ack(X, Z

′

, Z)〉 (4)

Now we adapt the notion of the (estimated) dependency graph [1] from TRSs
to LPs.6 While “dependency triples” are related to the “binary clauses” of [5],
our notion of dependency graphs for LPs is similar to the “atom dependency
graph” of [12]. But in contrast to [12], we use dependency graphs to modularize
termination proofs such that several different reduction pairs can be used in the
termination proof of one program.

The nodes of the dependency graph are the dependency triples and there
must be an arc from a dependency triple N to a dependency triple M whenever
an attempt to solve the “proof goal” N could load to the “proof goal” M . To
estimate this, we use the notion of connectivity.

5 So for terms t1, t2 we define t1 (
%

)
t2 iff ‖t1‖ (

≥
)
‖t2‖ and for atoms A1, A2 we define

A1 (
%

)
A2 iff |A1| (≥)

|A2|.
6 Our notion should not be confused with the notion of the “(predicate) dependency

graph” from [2, 12, 28] that simply represents the dependencies between different
predicate symbols.

15

Definition 5 (connectivity). Let 〈H1, I1, B1〉 and 〈H2, I2, B2〉 be two depen-
dency triples. 〈H1, I1, B1〉 is connectable to 〈H2, I2, B2〉 iff B1 unifies with a
renamed apart variant of H2.

Example 6 (connectivity for ack ’s dependency triples). In Ex. 1, dependency
triple (2) is connectable to (3) and (4), and both dependency triples (3) and (4)
are connectable to all dependency triples (1), (2), (3), and (4).

Definition 7 (dependency graph). Let DT be a set of dependency triples.
The dependency graph associated with DT is a directed graph whose vertices
are the dependency triples DT and there is an arc from a vertex N to a vertex
M iff N is connectable to M . Let P be a logic program. The dependency graph
associated with DT (P) is called the dependency graph of P , denoted as DG(P).

Example 8 (dependency graph for ack). Fig. 1 shows the dependency graph for
the ack -program in Ex. 1.

Fig. 1. The dependency graph
for the ack -program.

Now every infinite execution of the pro-
gram corresponds to a cycle in the depen-
dency graph. In our setting, a set C 6= ∅ of
dependency triples is called a cycle if for all
N, M ∈ C there is a non-empty path from N
to M in the graph which only traverses depen-
dency triples of C. A cycle C is a strongly con-
nected component (SCC) if C is not a proper
subset of another cycle.

Note that in standard graph terminology,
a path N0 → N1 → . . . → Nk in a directed
graph forms a cycle if N0 = Nk and k ≥ 1.
In our context we identify cycles with the set
of elements that occur in it, i.e., we call {N0, N1, . . . , Nk−1} a cycle, cf. [15].
Since a set never contains multiple occurrences of an element, this results in
several cycling paths being identified with the same set. Similarly, an SCC is a
graph in standard graph terminology, whereas we identify an SCC with the set
of elements occurring in it. Then indeed, SCCs are the same as maximal cycles.

Example 9 (cycles and SCCs for ack). The dependency graph in Fig. 1 has six
cycles C1 = {(3)}, C2 = {(4)}, C3 = {(2), (3)}, C4 = {(2), (4)}, C5 = {(3), (4)},
C6 = {(2), (3), (4)}, and one strongly connected component C6 = {(2), (3), (4)}.

Note that each vertex in the dependency graph corresponds to a possible
transition from one state to another state in the computational execution of
the program. Each loop of the execution corresponds to a cycle in the graph.
Intuitively, a program is terminating if there is no cycle in the graph which is
traversed infinitely many times.

To use dependency graphs for termination proofs, we proceed as in [1, 16, 19].
The idea is to inspect each SCC of the dependency graph separately and to
find a reduction pair (%,≻) such that some dependency triples of the SCC

16

are strictly decreasing (w.r.t. ≻) and all others are weakly decreasing (w.r.t.
%). The following definition formalizes when a dependency triple is considered
to be “decreasing”. It relies on interargument relations for the predicates of
the program. Sect. 4 explains how to synthesize such interargument relations
and how to find reduction pairs automatically that make dependency triples
“decreasing”.

Definition 10 (decreasing dependency triples). Let P be a program. Let
(%,≻) be a reduction pair and R = {Rp1 , . . . , Rpk

} be a set of interargument
relations based on (%,≻) for the predicates p1, . . . , pk defined in P . Let N =
〈H, [I1, . . . , In], B〉 be a dependency triple in DT (P). N is weakly decreasing
(denoted (%, R) |= N) if Hσ % Bσ holds for any substitution σ where (%,≻)
is rigid on Hσ and where I1σ ∈ Rrel(I1), . . . , Inσ ∈ Rrel(In). Analogously, N is
strictly decreasing (denoted (≻, R) |= N) if Hσ ≻ Bσ holds for any such σ.

Example 11 (decreasing dependency triples for ack). Consider the reduction pair
(%,≻) from Ex. 2. Let R be the set of valid interargument relations where
Rack/3 = {ack(t1, t2, t3) | t1, t2, t3 ∈ TermP} and where Rp/2 is defined as in
Ex. 2. Then we have (≻, R) |= (2). The reason is that for any substitution
σ where (%,≻) is rigid on ack(X, 0, Z)σ (i.e., where Xσ is a ground term)
and where p(X, Y)σ ∈ Rp/2 (i.e., where Xσ ≻ Y σ), we have ack(X, 0, Z)σ ≻
ack(Y, s(0), Z)σ. Similarly, we also have (%, R) |= (3) and (≻, R) |= (4).

Note that we can restrict ourselves to those SCCs of the dependency graph
that can be invoked by calls from Call(P, S). The reason is that only those SCCs
can be involved in loops of the execution of the program P , when starting with
a query from S. Therefore, we define which SCCs are reachable from Call(P, S).

Definition 12 (reachable SCCs). Let P be a program, S be a set of atomic
queries, and N = 〈H, [I1, . . . , In], B〉 be a dependency triple. N is reachable from
Call(P, S) if there is an A ∈ Call(P, S) such that A unifies with a renamed apart
variant of H. An SCC C in DG(P) is reachable from Call(P, S) if there is an
N ∈ C which is reachable from Call(P, S).

In the ack -example, the only SCC in the dependency graph is reachable from
the set Call(P, S) of Ex. 2. But if the ack -program contained another clause
“q :− q”, then the SCC with the resulting dependency triple 〈q, [], q〉 would not
be reachable from the call set of Ex. 2. Since it suffices to prove absence of infinite
loops only for the reachable SCCs, one could then still prove termination of all
queries from S. But if one had to regard all SCCs, then the termination proof
would fail, since the SCC with the dependency triple 〈q, [], q〉 gives rise to an
infinite loop. The set of reachable SCCs can easily be (over-)approximated auto-
matically as soon as one has an (over-)approximation of Call(P, S), cf. Sect. 4.

To prove termination, we select an arbitrary reachable SCC C of the depen-
dency graph. Then, we try to find a reduction pair (%,≻) such that some de-
pendency triples C≻ ⊆ C are strictly decreasing and all other dependency triples
(from C \ C≻) are weakly decreasing. This means that the strictly decreasing

17

dependency triples from C≻ can never “occur” infinitely often in any execution
of the program. Thus, we remove the vertices C≻ (and all edges originating or
ending in these vertices) from the dependency graph. Afterwards the procedure
is repeated (with a possibly different reduction pair). If one finally ends up with
a graph without reachable SCCs, then termination of the program is proved.

In this way, our method can use different reduction pairs for different SCCs
of the dependency graph. Moreover, one can also use several different reduction
pairs in the termination analysis of one single SCC, since SCCs are handled in
an incremental way by removing one dependency triple after the other.

However, in our approach we may only use reduction pairs (%,≻) that are
rigid on Call(P, S). This prevents an increase of atoms and terms due to further
instantiations in subsequent derivation steps. For details, we refer to [26].

Definition 13 (acceptability). Let P be a program and S be a set of atomic
queries. A subgraph G of the dependency graph DG(P) is called acceptable w.r.t.
S iff either G has no SCC reachable from Call(P, S) or else, G has such an SCC
C and there is a reduction pair (%,≻) and a set of valid interargument relations
R = {Rp1 , . . . , Rpk

} based on (%,≻) for the predicates p1, . . . , pk in P , such that

• (%,≻) is rigid on Call(P, S),
• there is a non-empty subset C≻ ⊆ C such that (≻, R) |= N for all N ∈ C≻

and (%, R) |= N for all N ∈ C \ C≻, and
• the graph resulting from G by removing all vertices in C≻ is also acceptable.

Example 14 (termination of ack). The dependency graph of the ack -program in
Fig. 1 has only one SCC. First, we select a reduction pair (%,≻). We re-use the
reduction pair from Ex. 2 and the valid interargument relations R from Ex. 11.
As shown in Ex. 11, then (2) and (4) are strictly decreasing, whereas (3) is only
weakly decreasing. Thus, we remove (2) and (4) from the dependency graph.

The remaining graph has only one vertex (3) and an edge from (3) to itself.
Thus, now the only SCC is {(3)}. We select another reduction pair (%′,≻′) which
is defined by the same norm || · || as in Ex. 2 and by a new level mapping with
|ack(t1, t2, t3)| = ‖t2‖. Now we have (≻′, R) |= (3), i.e., (3) can be removed.

The remaining graph is empty and thus, it has no SCC. Hence, termination
of the ack -program is proved.

The following theorem states the soundness of our approach.7

Theorem 15 (soundness). A program P is terminating w.r.t. a set of atomic
queries S if its dependency graph DG(P) is acceptable w.r.t. S.

Proof. If P is not terminating w.r.t. S, then there is an A ∈ Call(P, S), an
infinite sequence of (variable renamed) dependency triples N0, N1, . . . with Ni =
〈Hi, [Ii1, . . . , Iini

], Bi〉, and substitutions θ0, θ1, . . . and σ0, σ1, . . . such that

7 Note that the proof of Thm. 15 is similar to the one for the dependency pair method
in [1]. So in contrast to the “local approaches” [4, 5, 12] for logic programs and the
size-change-based methods [23, 29, 33] for other programming paradigms, Thm. 15
does not rely on Ramsey’s theorem [6, 30].

18

• θ0 = mgu(A, H0)

• σi is a computed answer substitution for the query (Ii1, . . . , Iini
)θi

• θi+1 = mgu(Biθiσi, Hi+1)

Since there is an edge from Ni to Ni+1 for all i in the dependency graph, the
sequence N0, N1, . . . contains an infinite tail which traverses a cycle of the de-
pendency graph infinitely often.

For any subgraph G of the dependency graph, we show that if this infinite tail
is contained in G, then G cannot be acceptable. We use induction on the number
of vertices in G. The claim is obviously true if G does not contain any SCC
reachable from Call(P, S). Thus, let G contain a reachable SCC C as in Def. 13.
If the infinite tail is still contained in the acceptable subgraph resulting from
removing all vertices from C≻, the claim follows from the induction hypothesis.

It remains to regard the case where the infinite tail Ni, Ni+1, . . . only traverses
dependency triples from C and where a dependency triple from C≻ is traversed
infinitely often. Thus, we obtain an infinite sequence

Hiθi ≈ (by rigidity, since Hiθi = Bi−1θi−1σi−1θi

and Bi−1θi−1σi−1 ∈ Call(P, S))
Hiθiσiθi+1 %

Biθiσiθi+1 =
Hi+1θi+1 ≈ (by rigidity, since Hi+1θi+1 = Biθiσiθi+1

and Biθiσi ∈ Call(P, S))
Hi+1θi+1σi+1θi+2 %

Bi+1θi+1σi+1θi+2 =
. . .

where infinitely many %-steps are “strict” (i.e., we can replace infinitely many
%-steps by “≻”). This is a contradiction to the well-foundedness of ≻. ⊓⊔

Thm. 15 can be considered an extension of Thm. 1 in [9], where a strict
decrease is required for every (mutually) recursive clause of the program, instead
of a decrease on the SCCs as in our theorem above. In particular, Ex. 1 cannot
be solved using Thm. 1 of [9].

The converse direction of Thm. 15 does not hold since “acceptability” requires
the reduction pair to be rigid on Call(P, S). Hence, the program with the two
clauses “p(X) :− q(X, Y), p(Y)” and “q(a, b)” and the set of queries S = {p(X)}
from [9] is a counterexample to the completeness direction of Thm. 15.

4 Toward automation

Now we discuss how to automate our approach. In Sect. 4.1, we present a general
algorithm to mechanize the technique of Def. 13 and Thm. 15. Then, in Sect.
4.2 we show how to plug in existing approaches for the generation of polynomial
interpretations in order to synthesize suitable reduction pairs automatically.

19

4.1 A general framework

Def. 13 and Thm. 15 provide a method to detect termination of a program P
w.r.t. a set of queries S. The method can be automated as follows:

1. Compute the dependency graph DG(P) and remove all vertices which are not
reachable from Call(P, S). Decompose the remaining graph into its SCCs.

2. If the set of SCCs is empty, stop with “success” (the program is terminating).
Otherwise, select one SCC from the set.

3. If the selected SCC cannot be proved to be acceptable, we stop with “fail”
(the program may be non-terminating). If the SCC is acceptable, we delete
the strictly decreasing vertices from it and decompose the remaining graph
into its SCCs. We add this set of SCCs to the remaining set of SCCs and
continue with Step 2.

Step 1 guarantees that all remaining vertices and hence, also all remain-
ing SCCs are reachable from Call(P, S). Therefore, it is obvious that all SCCs
decomposed later in Step 3 are also reachable from Call (P, S).

Fig. 2. Our algorithm to verify
termination of programs.

Fig. 2 shows an algorithm based on Step
1-3. In the figure, reach(G) removes all de-
pendency triples from the dependency graph
G which are not reachable from Call(P, S),
gcc(G) computes the set of SCCs of a graph
G, select(S) returns an element selected
from the set S, minus(S1, S2) returns a set
containing all elements that are in the set
S1 but not in S2, “:=” is the assignment
and “=” is the comparison operator. The
function exist(G, O) checks if there exists a
reduction pair and a set of interargument
relations such that G is acceptable. If yes,
then the reduction pair is assigned to O. The
function induce(G, O) returns a graph which
results from G by removing all vertices N
where (≻, R) |= N and their related arcs.
Finally, union(S1, S2) returns a set that is
the union of the sets S1 and S2.

Since Call(P, S) can be infinite in gen-
eral, it is undecidable whether a dependency
triple is reachable from Call (P, S). Heuris-
tically, it can be done by first abstracting
Call(P, S) to a finite set of call patterns and
then checking if there exists a call pattern
which unifies with the vertex [26, 27].

The function exist(G, O) is the core of
the algorithm. Interestingly, it does not force
us to use a fixed type of orders. Therefore,

20

the algorithm can be considered a framework where different termination tech-
niques for finding well-founded orders can be plugged in to support the function
exist(G, O). In Sect. 4.2, we discuss how the termination analysis technique based
on polynomial interpretations from [26, 27] can be applied to the framework.

4.2 Generating well-founded orders

Since arbitrary techniques can be applied to search for reduction pairs required
in the function exist(G, O), an obvious option is to use polynomial interpre-
tations, one of the most powerful techniques in termination analysis of logic
programming and term rewriting systems [7, 14, 20, 22, 26, 27].8 The main idea
of the technique is to map each function and predicate symbol to a polynomial,
under a polynomial interpretation | · |I . The polynomials are considered as func-
tions of type N × . . . × N → N, and the coefficients of the polynomials are also
in N. In this way, terms and atoms are mapped to polynomials as well.

Example 16 (polynomial interpretation for ack). The norm and level mapping
of Ex. 2 correspond to the polynomial interpretation |0|I = 0, |s(X)|I = 1 +
X, |p(X, Y)|I = 0, |ack(X, Y, Z)|I = X . So we have |ack (s(X), s(Y), Z)|I =
|s(X)|I = 1 + X and |ack (X, Z ′, Z)|I = |X |I = X .

For any polynomial interpretation I, we define a quasi-order %I on terms
and atoms: t1 %I t2 iff |t1|I ≥ |t2|I holds for all instantiations of the variables
in the polynomials |t1|I and |t2|I by natural numbers. (It suffices to regard only
natural numbers n where n ≥ |c|I for all (constant) function symbols c/0 of P .)
Similarly, the well-founded order ≻I is defined as t1 ≻I t2 iff |t1|I > |t2|I holds
for all instantiations of the variables in the polynomials |t1|I and |t2|I by such
natural numbers. Obviously, (%I ,≻I) is always a reduction pair. Moreover, a
term or atom t is rigid w.r.t. (%I ,≻I) iff |t|I contains no variables.

Now, all conditions in Def. 13 can be stated as constraints on polynomials.
A reduction pair (%I ,≻I) satisfies the conditions in Def. 13 iff the polynomial
interpretation | · |I satisfies the resulting constraints on the polynomials.

Of course, we do not choose a particular polynomial interpretation. Instead,
we want to search for a suitable one automatically. In the philosophy of the
constraint-based approach in [10, 27], we introduce a general symbolic form for
the polynomial associated with each predicate and function symbol, and for
interargument relations. Since there is no finite symbolic representation for all
possible polynomials, we restrict ourselves to fixed types of polynomials. For
example, each function and predicate symbol can be associated with a linear
polynomial and each interargument relation for a predicate can be expressed in
linear form as follows.9 Here, fi, pL

i , and pR
i are “abstract” symbolic coefficients.

8 Other possible options would be recursive path orders [11], matrix orders [13], etc.
9 As already observed for term rewriting, in the vast majority of examples, linear

polynomial interpretations are already sufficient if they are used in connection with
the dependency pair method. But of course, our approach also permits the use of
polynomials with higher degree.

21

In order to complete the termination proof, one has to find suitable instantiations
of these coefficients with natural numbers.

• |f(X1, . . . , Xn)|I = f0 +
∑n

i=1 fiXi,
• Rp/n = { p(t1, . . . , tn) | pL

0 +
∑n

i=1 pL
i |ti|I ≥ pR

0 +
∑n

i=1 pR
i |ti|I }.

Based on the symbolic forms for polynomial interpretations and interargu-
ment relations, all termination conditions expressed in Def. 13 can also be re-
formulated symbolically. Specifically, the conditions for the function exist(G, O)
(which checks whether G is acceptable) are expressed as a set of polynomial
constraints with symbolic coefficients (e.g. fi, p

L
i , pR

i , . . .). The central question
is how to search for an instantiation of these symbolic coefficients such that the
set of constraints is satisfied. In [27], we introduced a transformational approach
to transform all constraints into a sufficient set of Diophantine constraints on
natural numbers where all unknown symbolic coefficients become variables (cf.
also [20]). A solution for the Diophantine constraints gives a suitable reduction
pair (%I ,≻I) and a set of valid interargument relations based on the reduction
pair. Finding such a solution can be done by using any available Diophantine
constraint solver, e.g. [7, 14]. Finally, the rigidity condition can be symbolised
based on the rigid type graph. For more details, we refer to [26, 27].

Example 17 (symbolic termination conditions for ack). Reconsider Ex. 1. We
define an “abstract” symbolic polynomial interpretation as |0|I = c, |s(X)|I =
s0 +s1X , |p(X, Y)|I = p0 +p1X +p2Y , |ack(X, Y, Z)|I = a0 +a1X +a2Y +a3Z,
and a set of interargument relations R = {Rp/2, Rack/3} with

Rp/2 = {p(t1, t2) | pL
0 + pL

1 |t1|I + pL
2 |t2|I ≥

pR
0 + pR

1 |t1|I + pR
2 |t2|I }

Rack/3 = {ack (t1, t2, t3) | aL
0 + aL

1 |t1|I + aL
2 |t2|I + aL

3 |t3|I ≥
aR
0 + aR

1 |t1|I + aR
2 |t2|I + aR

3 |t3|I }.

The conditions for acceptability of the dependency graph can be reformulated
as follows:

1. For any dependency triple N ∈ {(2), (3), (4)}, we require (%I , R) |= N :

∀X, Y, Z [pL

0 + pL

1 X + pL

2 Y ≥ pR

0 + pR

1 X + pR

2 Y

⇒ a0 + a1X + a2c + a3Z ≥ a0 + a1Y + a2(s0 + s1c) + a3Z] ∧

∀X, Y, Z, Z′ [a0 + a1(s0 + s1X) + a2(s0 + s1Y) + a3Z ≥
a0 + a1(s0 + s1X) + a2Y + a3Z

′] ∧

∀X, Y, Z, Z′ [aL

0 + aL

1 (s0 + s1X) + aL

2 Y + aL

3 Z′ ≥

aR

0 + aR

1 (s0 + s1X) + aR

2 Y + aR

3 Z′

⇒ a0 + a1(s0 + s1X) + a2(s0 + s1Y) + a3Z ≥
a0 + a1X + a2Z

′ + a3Z]

2. There exists some dependency triple N ∈ {(2), (3), (4)} with (≻I , R) |= N :

22

∀X, Y, Z [pL

0 + pL

1 X + pL

2 Y ≥ pR

0 + pR

1 X + pR

2 Y

⇒ a0 + a1X + a2c + a3Z > a0 + a1Y + a2(s0 + s1c) + a3Z] ∨

∀X, Y, Z, Z′ [a0 + a1(s0 + s1X) + a2(s0 + s1Y) + a3Z >

a0 + a1(s0 + s1X) + a2Y + a3Z
′] ∨

∀X, Y, Z, Z′ [aL

0 + aL

1 (s0 + s1X) + aL

2 Y + aL

3 Z′ ≥

aR

0 + aR

1 (s0 + s1X) + aR

2 Y + aR

3 Z′

⇒ a0 + a1(s0 + s1X) + a2(s0 + s1Y) + a3Z >

a0 + a1X + a2Z
′ + a3Z]

3. The valid interargument condition for p/2:

∀X [pL

0 + pL

1 (s0 + s1X) + pL

2 X ≥ pR

0 + pR

1 (s0 + s1X) + pR

2 X]

4. The valid interargument condition for ack/3:

∀X [aL

0 + aL

1 c + aL

2 X + aL

3 (s0 + s1X) ≥ aR

0 + aR

1 c + aR

2 X + aR

3 (s0 + s1X)] ∧

∀X, Y, Z [pL

0 + pL

1 X + pL

2 Y ≥ pR

0 + pR

1 X + pR

2 Y

∧ aL

0 + aL

1 Y + aL

2 (s0 + s1c) + aL

3 Z ≥
aR

0 + aR

1 Y + aR

2 (s0 + s1c) + aR

3 Z

⇒ aL

0 + aL

1 X + aL

2 c + aL

3 Z ≥ aR

0 + aR

1 X + aR

2 c + aR

3 Z] ∧

∀X, Y, Z, Z′ [aL

0 + aL

1 (s0 + s1X) + aL

2 Y + aL

3 Z′ ≥
aR

0 + aR

1 (s0 + s1X) + aR

2 Y + aR

3 Z′

∧ aL

0 + aL

1 X + aL

2 Z′ + aL

3 Z ≥
aR

0 + aR

1 X + aR

2 Z′ + aR

3 Z

⇒ aL

0 + aL

1 (s0 + s1X) + aL

2 (s0 + s1Y) + aL

3 Z ≥

aR

0 + aR

1 (s0 + s1X) + aR

2 (s0 + s1Y) + aR

3 Z]

5. The rigidity property for Call(P, S) = {ack(t1, t2, t3) | t1 and t2 are ground
terms, t3 is an arbitrary term }∪{p(t1, t2) | t1 is a ground term, t2 is a variable }:

p2 = 0 ∧ a3 = 0

All the constraints above are satisfied by the following instantiation of the sym-
bolic variables: c = 0, s0 = s1 = 1, p0 = p1 = p2 = 0, a0 = 0, a1 = 1,
a2 = a3 = 0, pL

0 = 0, pL
1 = 1, pL

2 = 0, pR
0 = pR

1 = 1, pR
2 = 0 and aL

i = aR
i = 0

for all i ∈ {0, 1, 2, 3}. This instantiation turns the abstract polynomial inter-
pretation of Ex. 17 into the concrete polynomial interpretation of Ex. 16 (i.e.,
now it corresponds to the norm and level mapping of Ex. 2). Similarly, the
“abstract” interargument relations of of Ex. 17 are turned into the concrete in-
terargument relations of Ex. 2 and Ex. 11 (i.e., Rp/2 = {p(t1, t2) | t1 ≻I t2} and
Rack/3 = {ack(t1, t2, t3) | t1, t2, t3 ∈ TermP}).

So instead of fixing a polynomial interpretation and interargument relations
before performing the termination proof, now we only fix the degree of the poly-
nomials used in the polynomial interpretation (e.g., linear or quadratic ones).
Then we can automatically generate symbolic constraints and try to solve them
afterwards. In this way, suitable polynomial interpretations and interargument
relations can be synthesized fully automatically.

23

5 Conclusion

We have introduced a new framework for termination analysis of LPs based
on dependency triples and dependency graphs. Although the notion of depen-
dency pairs and dependency graphs is very popular in the domain of termination
analysis of TRS [1, 15, 16, 18, 19], this is the first time that it is applied for LP
termination analysis directly. Our contribution is twofold: (1) it results in a
weaker condition for verifying termination of LPs, where the decrease condition
is established for the strongly connected components of the dependency graph,
instead of at the clause level as it has been done before; (2) it introduces a mod-
ular approach in which termination conditions can be separated into different
groups, each of which can be treated independently by automatically searching
for different suitable well-founded orderings.

A difference between the dependency pair approach for TRSs and our ap-
proach is that instead of separating between defined symbols and constructors
as for TRSs, we separate between predicate and function symbols of the LP.
Another main difference is that in the dependency pair method for TRSs, one
requires a weak decrease for the rules of the TRS in order to take the effect of
“nested” functions in recursive arguments into account. In the LP-context, these
nested functions correspond to body atoms preceding recursive calls. We store
these atoms in an additional component of the dependency pair (yielding depen-
dency triples) and take their effect into account by considering interargument
relations.

The authors of this paper were involved in the implementation of two of the
most powerful automated termination analysers for LPs (Polytool which follows
the approach of [26, 27] and AProVE [17] which transforms LPs to TRSs and
then tries to prove termination of the resulting TRS [31].) AProVE was the most
successful termination prover for logic programs, functional programs, and term
rewrite systems in all annual International Competitions of Termination Tools
2004 - 2007 [24], where Polytool obtained a close second place for logic programs
in the 2007 competition. As mentioned in [31], there exist many LPs where
termination can currently only be proved by transformational tools like AProVE

and there are also many examples where the termination proof only succeeds
with direct tools like Polytool, cf. Sect. 1. Our current work intends to combine
the advantages of both approaches by adapting TRS-techniques like dependency
pairs to direct termination approaches for LPs. While the present paper only
adapted basic concepts of the dependency pair method to the LP setting, in the
future we will also try to adapt further more sophisticated “dependency pair
processors” [16, 18] as well.

Currently, we are working on an implementation of the results of this pa-
per within Polytool. Here, we try to re-use algorithms from the dependency pair
implementation of AProVE. As mentioned in Sect. 1, a first prototypical im-
plementation already shows that in this way one can handle (a) examples that
could up to now only be solved with direct tools such as [26, “der”], (b) ex-
amples that could up to now only be solved with transformational tools based
on dependency pairs such as [32, “LP/SGST06-shuffle”], as well as (c) exam-

24

ples like [32, “LP/SGST06-snake”] that could not be solved by any tool up to
now. Note that the Diophantine constraints resulting from our new approach
according to Sect. 4 are usually smaller and simpler than the ones generated by
the previous version of Polytool [26, 27]. But already in the previous version of
Polytool, solving these constraints automatically was no problem in practice. (To
this end, the SAT-based constraint solver of AProVE was used [14].) Thus, this
solver will also be used for the automatic generation of the required polynomial
interpretations and interargument relations in our new approach.

6 Acknowledgement

We are grateful to the referees for many helpful suggestions. Manh Thang Nguyen
is supported by FWO/2006/09: Termination analysis: Crossing paradigm bor-
ders. Peter Schneider-Kamp and Jürgen Giesl are supported by the Deutsche
Forschungsgemeinschaft (DFG), grant GI 274/5-1.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-

oretical Computer Science, 236(1-2):133–178, 2000.
2. R. N. Bol, K. R. Apt, and J. W. Klop. An analysis of loop checking mechanisms

for logic programs. Theoretical Computer Science, 86(1):35–79, 1991.
3. A. Bossi, N. Cocco, and M. Fabris. Norms on terms and their use in proving univer-

sal termination of a logic program. Theoretical Computer Science, 124(2):297–328,
1994.

4. M. Bruynooghe, M. Codish, J. P. Gallagher, S. Genaim, and W. Vanhoof. Termi-
nation analysis of logic programs through combination of type-based norms. ACM

Transactions on Programming Languages and Systems, 29(2), 2007.
5. M. Codish and C. Taboch. A semantic basis for the termination analysis of logic

programs. Journal of Logic Programming, 41(1):103–123, 1999.
6. M. Codish and S. Genaim. Proving termination one loop at a time. In Proc.

WLPE ’03, 2003.
7. E. Contejean, C. Marché, A. P. Tomás, and X. Urbain. Mechanically proving

termination using polynomial interpretations. Journal of Automated Reasoning,
34(4):325–363, 2005.

8. D. De Schreye, K. Verschaetse, and M. Bruynooghe. A framework for analyzing
the termination of definite logic programs with respect to call patterns. In Proc.

FGCS ’92, pages 481–488, 1992.
9. D. De Schreye and A. Serebrenik. Acceptability with general orderings. In Compu-

tational Logic: Logic Programming and Beyond, LNCS 2407, pages 187–210. 2002.
10. S. Decorte, D. De Schreye, and H. Vandecasteele. Constraint-based automatic

termination analysis of logic programs. ACM Transactions on Programming Lan-

guages and Systems, 21(6):1137–1195, 1999.
11. N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3(1-

2):69–116, 1987.
12. N. Dershowitz, N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. A general frame-

work for automatic termination analysis of logic programs. Applicable Algebra in

Engineering, Communication and Computing, 12(1,2):117–156, 2001.

25

13. J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving
termination of term rewriting. In Proc. IJCAR ’06, LNAI 4130, pages 574–588,
2006.

14. C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl.
SAT solving for termination analysis with polynomial interpretations. In Proc.

SAT ’07, LNCS 4501, pages 340–354, 2007.
15. J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting

using dependency pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.
16. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:

Combining techniques for automated termination proofs. In Proc. LPAR ’04, LNAI
3452, pages 301–331, 2005.

17. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the dependency pair framework. In Proc. IJCAR ’06, LNAI 4130,
pages 281–286, 2006.

18. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and im-
proving dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

19. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In-

formation and Computation, 199(1-2):172–199, 2005.
20. H. Hong and D. Jakuš. Testing positiveness of polynomials. Journal of Automated

Reasoning, 21(1):23–38, 1998.
21. K. Kusakari, M. Nakamura, and Y. Toyama. Argument filtering transformation.

In Proc. PPDP ’99, pages 48–62, 1999. LNCS 1702.
22. D. S. Lankford. On proving term rewriting systems are Noetherian. Technical

Report MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.
23. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for

program termination. In Proc. POPL ’01, pages 81–92, 2001.
24. C. Marché and H. Zantema. The termination competition. In Proc. RTA ’07, LNCS

4533, pages 303–313, 2007. See also the website http://www.lri.fr/∼marche/

termination-competition.
25. F. Mesnard and R. Bagnara. cTI: A constraint-based termination inference tool

for ISO-Prolog. Theory and Practice of Logic Programming, 5(1, 2):243–257, 2005.
26. M. T. Nguyen and D. De Schreye. Polynomial interpretations as a basis for termi-

nation analysis of logic programs. In Proc. ICLP ’05, LNCS 3668, pages 311–325,
2005.

27. M. T. Nguyen and D. De Schreye. Polytool: Proving termination automatically
based on polynomial interpretations. In Proc. LOPSTR ’06, LNCS 4407, pages
210–218, 2007. Extended version appeared as Technical report, Department of
Computer Science, K. U. Leuven, Belgium.

28. L. Plümer. Termination Proofs for Logic Programs. Springer-Verlag, 1990.
29. A. Podelski and A. Rybalchenko. Transition invariants. In Proc. LICS ’04, pages

32–41, 2004.
30. F. P. Ramsey. On a problem of formal logic. Proc. London Math. Society, 30:264–

286, 1930.
31. P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. Automated termi-

nation analysis for logic programs by term rewriting. In Proc. LOPSTR ’06, LNCS
4407, pages 177–193, 2007.

32. The termination problem data base. http://www.lri.fr/∼marche/tpdb.
33. R. Thiemann and J. Giesl. The size-change principle and dependency pairs for

termination of term rewriting. Applicable Algebra in Engineering, Communication

and Computing, 16(4):229–270, 2005.

26

Typed-based Homeomorphic Embedding
for Online Termination

Elvira Albert1, John Gallagher2, Miguel Gómez-Zamalloa1, and Germán Puebla3

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 Computer Science, Roskilde University, DK-4000 Roskilde, Denmark

3 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

Abstract. We introduce the type-based homeomorphic embedding relation
as an extension of the standard, untyped homeomorphic embedding which
allows us to obtain more precise results in the presence of infinite signatures
(e.g., the integers). In particular, we show how our type-based relation can be
used to improve the accuracy of online partial evaluation. For this purpose,
we outline an approach to constructing suitable types for partial evaluation
automatically, given an untyped program and a goal or set of goals. Our
approach is based on existing analysis tools for constraint logic programs: (i)
inference of a well-typing of a program and goal, and (ii) bounds analysis for
numerical values. We argue that our work improves the state of the practice
of online termination and it is very relevant for instance in the context of the
specialization of interpreters.

1 Introduction

The homeomorphic embedding (HEm) relation [10–12] has become very popular to
ensure online termination of symbolic transformation and specialization methods
and it is essential to obtain powerful optimizations, for instance, in the context of
online Partial Evaluation (PE) [9]. Intuitively, HEm is a structural ordering under
which an expression t1 embeds expression t2, written as t2E t1, if t2 can be obtained
from t1 by deleting some operators, e.g., s(s(U+W)×(U+s(V))) embeds s(U×(U+V)).

The HEm relation can be used to guarantee termination because, assuming that
the set of constants and functors is finite, every infinite sequence of expressions
t1, t2, . . . , contains at least a pair of elements ti and tj with i < j s.t. tiE tj . There-
fore, when iteratively computing a sequence t1, t2, . . . , tn, finiteness of the sequence
can be guaranteed by using HEm as a “whistle”. Whenever a new expression tn+1 is
to be added to the sequence, we first check whether ti 6E tn+1 for all i s.t. 1 ≤ i ≤ n.
If that is the case, finiteness is guaranteed and computation can proceed. Other-
wise, HEm is not capable of guaranteeing finiteness and the computation has to be
stopped. The intuition is that computation can proceed as long as the new expres-
sion is not larger than any of the previously computed ones since that is a sign of
potential non-termination. The success of HEm is due to the fact that sequences can
usually grow considerably large before the whistle blows, when compared to other
online approaches to guaranteeing termination.

While HEm has been proved very powerful for symbolic computations, some
difficulties remain in the presence of infinite signatures such as the numbers. In the
case of logic programs, infinite signatures appear as soon as certain Prolog built-ins

27

such is/2, functor/3 and name/2 are used. HEm relations over infinite signatures
have been defined (e.g. [11, 2]), but they tend to be too conservative in practice
(“whistling” too early).

A starting point of our work is the observation that, even if an expression is
defined over an infinite signature, it might then only take a finite set of values over
such domain for each computation. In this paper, we introduce the type-based home-
omorphic embedding (TbHEm) relation on typed atoms and typed terms, which by
taking context information into account provides more precise results in the presence
of infinite signatures. For this, our typed relation is defined on types structured into
a (possibly empty) finite part and a (possibly empty) infinite partition. Intuitively,
TbHEm allows expanding sequences as long as, whenever we compare sub-terms from
an infinite type, the concrete values which appear in the expression remain within
the finite part of the type.

The benefits of TbHEm are illustrated in the context of online Partial Evaluation
(PE) [9]. In particular, we use a simplified bytecode interpreter in Prolog whose
specialization (if successful) allows decompiling simple bytecode programs to Pro-
log. For the interpreter, we show how to automatically construct typings which are
appropriate to be combined with TbHEm. They are inferred by relying on exist-
ing analysis techniques, namely on the inference of well-typings [5]. Moreover, we
outline how analysis of numeric bounds can also be used to infer useful informa-
tion for TbHEm. Such analysis makes over-approximations of the set of values that
the program arguments can have. Intuitively, when we can prove that such set of
values is bounded, then we know that the infinite partition of the type is empty
and, hence, we can safely apply traditional HEm (and improve the effectiveness of
PE). Although further experimentation is required, we believe that the examples
we present already show the benefits of our approach for the specialization of logic
programs with infinite signatures.

2 Embedding in Partial Evaluation with Infinite Signatures

This section intends to illustrate the challenges that infinite signatures pose to online
termination based on HEm. For the sake of concreteness, we present our ideas in the
context of online PE, but they can be also applied to other online transformation
and specialization methods (see [11]). We start by recalling the definition of HEm,
which can be found for instance in Leuschel’s work [13].

Definition 1 (E). Given two atoms A = p(t1, . . . , tn) and B = p(s1, . . . , sn), we
say that A is embedded by B, written A E B, if ti E si for all i s.t. 1 ≤ i ≤ n. The
embedding relation over terms, also written E is defined by the following rules:

1. Y E X for all variables X, Y .
2. sE f(t1, . . . , tn) if s E ti for some i.
3. f(s1, . . . , sn)E f(t1, . . . , tn) if si E ti for all i, 1 ≤ i ≤ n.

Online PE [9] is a semantics-based program transformation technique which special-
izes a program w.r.t. a given input data, hence, it is often called program special-
ization. Essentially, partial evaluators are non-standard interpreters which evaluate
expressions while termination is guaranteed and specialization is considered prof-
itable. In PE of logic programs, such evaluation basically consists in building a

28

main(InArgs,Top) :-

build_init_state(InArgs,S0),

execute(S0,st(_,[Top|_],_)).

execute(S,S):-

S = st(PC,_,_),

bytecode(PC,return,_).

execute(S1,Sf) :-

S1 = st(PC,_,_),

bytecode(PC,Inst,_),

step(Inst,S1,S2),

execute(S2,Sf).

step(const(_T,Z),st(PC,S,L),S2) :-

next(PC,PCp),

S2 = st(PCp,[Z|S],L).

step(istore(X),st(PC,[I|S],L),S2) :-

next(PC,PCp),

localVar_update(L,X,I,Lb),

S2 = st(PCp,S,Lb).

step(goto(O),st(PC,S,L),S2) :-

PCp is PC+O,

S2 = st(PCp,S,L).

....

....

next(PC,PCp) :-

bytecode(PC,_,N),

PCp is PC + N.

Fig. 1. Fragment of simplified bytecode interpreter

partial SLD tree for a given atom. How to construct the evaluations and when to
stop them is determined by the local control (also referred to as unfolding rule). In
state-of-the-art partial evaluators, HEm is used to guarantee termination by ensuring
that the sequence of covering ancestors of the atom selected for further unfolding
remains finite (see, e.g., [15]). When the embedding whistle blows, evaluation is ter-
minated and the selected atom is passed to the global control, whose role is to ensure
that we do not try to specialize an infinite number of atoms. Here again, HEm can
be applied to guarantee finiteness of the set of atoms which are specialized. Now, if
the whistle blows, the atom is generalized so that it no longer embeds any of the
previous atoms.

As an example, in Fig. 1 we show a fragment of a simplified imperative byte-
code interpreter implemented in Prolog. If the partial evaluator is powerful enough,
given a bytecode program we can obtain a decompiled version of it in Prolog (see
e.g. [1]). For brevity, we omit the code of some predicates like build init state/2
(whose purpose is explained below) and localVar update/4 which simply updates
the value of a local variable. We only show the definition of step/3 for a reduced set
of instructions. Furthermore, we have removed the frame stack and therefore only
intra-procedural executions are considered. The bytecode to be decompiled is repre-
sented as a set of facts bytecode(PC,Inst,NumBytes) where PC contains the pro-
gram counter position, Inst the particular bytecode instruction, and NumBytes the
number of bytes the instruction takes up. A state is of the form st(PC,Stack,Local)
where Stack represents the operand stack and Local the list of local variables.
The predicate main/2, given the input method arguments InArgs, first builds the
initial state by means of predicate build init state/2 and then calls predicate
execute/2. In turn, execute/2 first calls predicate step/3, which produces S2, the
state after executing the corresponding bytecode, and then calls predicate execute/3
recursively with S2 until we reach a return instruction.

Now, we want to decompile a method which receives an integer and executes
a loop where a counter (initialized to “0”) is incremented by one at each iteration
until the counter reaches the value of the input parameter. For this, we partially

29

evaluate the interpreter w.r.t. the bytecode of this method by specializing the atom:
main([N],I), where N is the input parameter and I represents the returned value
(i.e. the top of the stack at the end of the computation).

Let us first consider an online partial evaluator4 which uses HEm to control
termination both at the local and global control levels. We do not show the SLD
trees built by the partial evaluator nor the decompilation due to space limitations.
However, it suffices to know that in the bytecode program, the PC value “2” cor-
responds to the loop entry. By applying HEm, the evaluation contains a subse-
quence of atoms of the form: execute(st(2, [], [N, 0]), Sf), execute(st(2, [], [N, 1]), Sf),
execute(st(2, [], [N, 2]), Sf) . . . , which correspond to consecutive iterations of the
loop in which the control returns to the loop head with a value for the loop counter
(local variable at the second position in the resulting state) increased by one. This
sequence can grow infinitely, as the HEm does not flag it as potentially dangerous.
In order to get a quality decompilation we need to filter the value of the counter
(local variable) but not that of the PC. This would result in stopping the deriva-
tion when we hit the atom execute(st(2, [], [N, 1]), Sf) and its generalization into
execute(st(2, [], [N, X]), Sf).

A possible relatively straightforward solution in this case is to use the relation
Enum which is a slight adaptation of HEm which filters numeric values, i.e., any num-
ber embeds any other number. Under this relation, the atom execute(st(2, [], [N, 1]),
Sf) embeds execute(st(2, [], [N, 0]), Sf) and therefore we avoid non-termination. Un-
fortunately, this modification to HEm, though is too conservative and leads to ex-
cessive precision loss. For instance, at the beginning of the specialization process we
have the atom execute(st(0, [], [N, 0]), Sf) and, after one unfolding step, we obtain
the atom execute(st(1, [0], [N, 0]), Sf). By using Enum, the whistle blows at this
point and unfolding has to stop. Furthermore, the latter atom is generalized into
execute(st(X, Y, [N, 0]), Sf) before proceeding with the specialization. This turns out
not to be acceptable for specialization of our interpreter, since we lose track of what
is the next instruction to execute, which avoids eliminating the interpretation layer
and in many cases the residual program ends up containing the original interpreter.

Another solution is to use an extension of the embedding relation, as explained
in [11], which is based on a distinction between the finite number of symbols actually
occurring in the program and goal. Under this relation, the atom execute(st(1, [0],
[N, 0]), Sf) does not embed execute(st(0, [], [N, 0]), Sf), as the numbers 0 and 1 are
different static symbols which occur in the program. Hence, we are not forced to gen-
eralize them and lose the PC value. However, this extended embedding turns out not
to be optimal either since we have that execute(st(2, [], [N, 1]), Sf) does not embed
execute(st(2, [], [N, 0]), Sf). This means that we will not stop the unfolding process
after evaluating one iteration of the loop, i.e., we proceed with a second iteration of
the loop and so on. Although the process terminates once we have unfolded as many
iterations of the loop as distinct numbers appear in the program, we are not able
to achieve a quality decompilation. For obtaining a good decompilation, we need to
generalize the loop counter, i.e., the atom execute(st(2, [], [N, 1]), Sf) has to embed
execute(st(2, [], [N, 0]), Sf).

4 We assume that we have a partial evaluator which is able to accurately handle built-in
predicates and to safely perform non-leftmost unfolding [3].

30

This suggests that embeddings that take context into account are needed: an
appropriate embedding handling PC values has to be different from one handling
numeric values in program variables such as the loop counter.

3 Type-based Homeomorphic Embedding

In the presence of infinite signatures, a general method of defining homeomorphic
embedding relations exists; an extended homeomorphic embedding relation is defined
in [11] based on previous results by Kruskal [10] and by Dershowitz [6]. This solution
defines a family of embedding relations, where a subsidiary ordering on function
symbols plays an essential role. However, we argue that this does not really solve
the practical problem of finding an effective embedding relation, since there is no
automated mechanism for finding the “right” ordering relation on the functions in
the signature.

In this section, we propose typed-based homeomorphic embedding (TbHEm for
short), a relation which improves HEm by making use of additional information
provided in the form of types. We outline how this approach can be seen as a way of
generating program-specific instances of extended HEm as defined by Leuschel. Such
additional information is program-dependent and might also be goal-dependent; it
could be provided manually or be automatically inferred by program analysis, as we
will see in Section 4.

3.1 Types: preliminaries and notation

In the following, let P be a program and ΣP be a (possibly infinite) signature
including the functions and constants appearing in P and goals for P as well as
in computations of P . We adopt the syntax of Mercury [16] for type definitions.
Type expressions (types), elements of T , are constructed from an infinite set of type
variables (parameters) VT and an alphabet of ranked type symbols ΣT ; these are
disjoint from the set of variables V and the alphabet of functors ΣN

P of a given
program P respectively.

Definition 2 (type definition). A type rule for a type symbol h/n ∈ ΣT is of the
form h(T̄) −→ f1(τ̄1); . . . ; fk(τ̄k); . . . (k ≥ 1) where T̄ is a n-tuple of distinct type
variables, f1, . . . , fk, . . . are distinct function symbols from ΣP , τ̄i (i ≥ 1) are tuples
of corresponding arity from T , and type variables in the right hand side, if any, are
from T̄ .5 A type definition is a finite set of type rules where no two rules contain
the same type symbol on the left hand side, and there is a rule for each type symbol
occurring in the type rules.

As in Mercury [16], a function symbol can occur in several type rules. In the
definition above we allow type rules containing an infinite number of cases. Thus,
standard infinite types such as integer are permitted, defined by a rule with an
infinite number of cases containing the numeric constants. In order to define TbHEm
we introduce some extra annotation into type rules. We consider the right hand side

5 The last condition is known as transparency and is necessary to ensure that well-typed
programs cannot go wrong [14, 8].

31

of each type rule to consist of two disjoint partitions, each possibly empty. More
precisely, we will structure a type rule as h(T̄) −→ F ; I, where the union F ∪ I are
the cases in the type rule, F ∪ I is non-empty, F is either empty or finite and I is
either empty or infinite. A type τ ∈ T is labelled (when necessary) with∞ denoting
infinite if I is non-empty in the rule defining τ . If a type τ is written with no label
then it could be either finite or infinite. Note that there could be different partitions
of the same type in different type definitions; for example nat −→ F ; I where F = ∅
and I = N, or F = {0, 1, 2} and I = N \ {0, 1, 2}, etc.

A predicate signature for an n-ary predicate p is of the form p(τ̄) and declares a
type τi ∈ T for each argument of the predicate p/n. The standard concept of a well-
typed program is assumed, restricted to be monomorphic in the sense that the atoms
in a clause, and their sub-terms, can be assigned types such that the type assigned
to each head and body atom is a variant of the signature for its predicate, and
multiple occurrences of the same variable in the clause are assigned the same type.
A more general well-typing allows the types of the body atoms to be instances of the
signatures rather than variants. It suffices for our purpose to state that, given a well-
typed program and a well-typed atomic goal, then each atom arising in computations
of the goal (that is, in an SLD tree for the program and goal) has a type that is a
variant of its respective signature. In short, a well-typed program and goal generate
only well-typed atoms in computations. Furthermore, the monomorphic assumption
implies that only a finite number of types arises during computation.

3.2 Type-based Homeomorphic Embedding

We now define TbHEm (ET). We first define a subsidiary relation on function symbols
paired with their associated types.

Definition 3. Let �F be the following relation on the set of pairs ΣP × T ; we
assume that T is finite and there is a set of type rules defining the types. ΣP is
possibly infinite, but we assume that the arity of the function symbols is bounded.
(f1, τ1) �F (f2, τ2) iff either f1 = f2 ∧ τ1 = τ2 or f1 and f2 have the same arity, the
rule defining τ2 is of form h(V̄) −→ F ; I, and f2 is in the infinite partition I.

Definition 4 (ET). We write t :τ to mean that term t is of type τ . Given two typed
atoms A = p(t1, . . . , tn) and B = p(s1, . . . , sn), with predicate signature p(τ1, . . . , τn),
we say that A is embedded by B, written A ET B, if ti : τi ET si : τi for all i s.t.
1 ≤ i ≤ n. The embedding relation over typed terms, also written ET , is defined by
the following rules:

1. Y :τY ET X:τX for all variables X, Y .
2. s : τ ′ ET f(t1, . . . , tn) : τ if s : τ ′ ET ti : τi for some i, where τ1, . . . , τn are the

respective types of t1, . . . , tn.
3. f(s1, . . . , sn) : τ1 ET g(t1, . . . , tm) : τ2 if (f, τ1) �F (g, τ2), and si : τi ET ti :

τ ′i for all i, 1 ≤ i ≤ n, where τ1, . . . , τn, τ ′1, . . . , τ
′
n are the respective types of

s1, . . . sn, t1, . . . , tn.

Referring to Definition 3, rule 3 specifies that embedding can occur between
terms with different function symbols, where the function symbol of the “larger”
term is from the I partition of its type. However, as long as we compare distinct

32

terms from an infinite type and remain within the finite part F of the type, no
embedding (using rule 3) occurs since the condition (f, τ1) �F (g, τ2) does not hold.
For instance, consider the following predicate signature and type definition, p(τ) and
τ −→ F ; I. We have that p(1) ET p(2) if F = ∅ and I = N. However, p(1) 6ET p(2)
if F = {0, 1, 2} and I = N \ {0, 1, 2}.

Proposition 1. Given a type definition and set of signatures, there is no infinite
sequence of well-typed atoms A1, A2, . . . such that for all i, j where i < j, Ai 6ET Aj.

Proof. (Outline). The ordering defined above can be seen as a special case of the
“extended homeomorphic embedding” E∗ [11], which is defined for terms over infinite
signatures. The detailed proof shows that the relation �F is a well binary relation
on the set ΣP × T .

We remark that this could be seen as a refinement of the idea sketched in [11] to
build an extended homeomorphic embedding based on a distinction between the
finite number of symbols actually occurring in the program and goal (the static
symbols), and the rest (the dynamic symbols). However, the types allow a more
fine-grained control over the embedding than is possible with that approach. Also,
in Definition 3 functions have to have the same arity in order for the �F to hold.
This restriction could be relaxed, using an ordering on sequences as in the definition
of extended homeomorphic embedding [11].

Note that, if we assume an embedding relation based on a given set of types and
signatures that is a well-typing for a program, we are assured that the embedding
relation is well-defined for all pairs of atoms arising in computations of that program.

4 Automatic Inference of Well-Typings

In this section we outline an approach to constructing in an automatic way suitable
types to be used in online partial evaluation in combination with TbHEm, given
an untyped program and a goal or set of goals. The approach is based on existing
analysis tools for constraint logic programs.

We note first that the problem does not allow a precise, computable solution.
Determining the exact set of symbols that can appear at run-time at a specific
program point, and in particular determining whether the set is finite, is closely
related to termination detection and is thus undecidable. However, the better the
derived types are, the more aggressive partial evaluation can be without risking
non-termination. If the derived types have finite components that are too small, the
over-generalization is likely to result; if they are too large, then specialization might
be over-aggressive, producing unnecessary versions.

A procedure for constructing a monomorphic well-typing of an arbitrary logic
program was described by Bruynooghe et al. [5]6. The procedure scales well (roughly
linear in program size) and is robust, in that every program has a well-typing, and
the procedure works with partial programs (modules).

In the original type inference procedure, an externally defined predicate such
as is/2 is treated as if defined by a clause X is Y :- true and is thus implicitly
assumed not to generate any symbols not occurring elsewhere in the program. In
6 available on-line at http://wagner.ruc.dk/Tattoo/

33

deriving types for partial evaluation, we provide a type for such built-ins in the form
of a dummy additional “fact” for is/2, namely num is num :- true. The constant
num (assumed not to occur elsewhere in the program) will thus propagate during type
inference into those types that unify with the types of the is predicate arguments.
In the resulting inferred types, we interpret occurrences of the constant num as being
an abbreviation for an infinite set of cases.

Example 1. A type is inferred for the bytecode interpreter sketched in Figure 1,
together with a particular bytecode program. Note that the program counter is
sometimes computed in the interpreter using the predicate is/2 as an offset from
the current program counter value and hence its type is in principle any number.

When the extra fact num is num :- true is added to the program, the inferred
type for the program counter argument PC is as follows.

t51 --> -8; 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; num

This type can be naturally interpreted as consisting of a finite part (the named
constants) and an infinite part (the numbers other than the named constants). In
other words, the partition F of the rule is {−8, 0, 1, 2, . . . , 14} and I = num \ F .
Using the rule structured in this way, the typed-homeomorphic embedding ensures
that the program counter is never abstracted away during partial evaluation, so
long as its value remains in the expected range (the named constants). In particu-
lar, the atom execute(st(1, [0], [N, 0])) does not embed execute(st(0, [], [N, 0])) by
using the type definition above, thus, the derivation can proceed. This avoids the
need for generalizing the PC what would prevent us from having a quality special-
ization (decompilation) as explained in Sect. 2. The derivation will either even-
tually end or the PC value will be repeated due to a backwards jump in the code
(loops). In this case, ET will flag the relevant atom as dangerous, e.g., execute(st(2,
[], [N, 0])) ET execute(st(2, [], [N, 1])). If however, a different value arose, perhaps due
to an addressing error, the infinite part of the type rule num is encountered and em-
bedding (followed by generalization of the program counter argument) would take
place.

5 Analysis of Numeric Bounds

It is important to note that TbHEm allows us to distinguish a finite set of functors
(the F component of the type rules) even in the case of infinite signatures. A non-
empty I component in type rules often arises during inference of well-typings. We
now consider performing additional dataflow analysis in order to infer that the I
component in type rules is empty. Indeed, we would like to infer whether a type τ
is a bounded interval, i.e., if the type rule for τ is of the form τ −→ F ; ∅ and F is a
finite set of values.

Given a logic program processing numeric values, analyses exist that make over-
approximations of the set of values that the program arguments can have. Polyhedral
analyses are perhaps the most widely known of these and they have successfully been
applied to constraint logic programs [4]. When we can prove that the set of values
that all program arguments can have is bounded, then we know that its infinite
partition is empty and, hence, we can safely apply traditional HEm (and improve
the effectiveness of PE).

34

Let us assume for the sake of this discussion that a polyhedral analysis can
return, for a given program and goal, an approximation to the set of calls to each
n-ary predicate p, in the form:

p(X1, . . . , Xn)← c(X1, . . . , Xn).

where the expression c(X1, . . . , Xn) is a set of linear constraints (describing a closed
polyhedron). From this information it can be determined whether each argument Xi

is bounded or not by projecting c(X1, . . . , Xn) onto Xi. If it is bounded (from above
and below), and it is known that the ith argument takes on integral values, then it
can take only a finite set of values.

Example 2. Consider the following clauses defining a procedure for computing an
exponential.

exp(Base,Exp,Res) :- exp (Base,Exp,1,Res).
exp (,0,Ac,Ac).
exp (Base,Exp,Ac,Res) :- Exp > 0, Exp′ is Exp-1, Ac′ is Ac*Base,

exp (Base,Exp′,Ac′,Res)

Type inference yields the following signature for the predicate exp /4.
exp (t24,t24,t24,t24)

with the type t24 --> 0; 1; num. A polyhedral analysis of the same program with
respect to the goal exp(Base,10,Res) yields the following approximation to the
queries to exp /4.

exp (Base,Exp,Ac,Res) :- Exp > -1, Exp =< 10.

The second argument is thus bounded. Combining this with the inferred type, we
obtain the signature exp (t24,s,t24,t24) with the types t24 --> 0; 1; num and s

--> 0..10 (we use the interval notation 0..10 as a shortcut to 0; 1; .. ; 10). Here
we assume that the second argument can take on only integer values. The finite type
0..10 implies that the typed-homeomorphic embedding will not abstract away the
value of the second argument of exp /4 and this allow maximum specialization to
be achieved.

6 Discussion and Related Work

Guaranteeing termination is essential in a number of tasks which have to deal
with possibly infinite computations. These tasks include partial evaluation, abstract
model checking, rewriting, etc. Broadly speaking, guaranteeing termination can be
tackled in an offline or an online fashion. The main difference between these two
perspectives is that in offline termination we aim at statically determining termi-
nation. This means that we do not have the concrete values of arguments at each
point of the computation but rather just abstractions of such values. Traditionally,
these abstractions refer to the size of values under some measure such as list length,
term size, numeric value for natural numbers, etc. In contrast, in online termination,
we aim at dynamically guaranteeing termination by supervising the computation in
such a way that it is not allowed to proceed as soon as we can no longer guarantee
termination. The main advantage of the offline approach is that if we can prove
termination statically, there is no longer any need to supervise the computation for

35

termination, which results in important performance gains. On the other hand, the
online approach is potentially more precise, since we have the concrete values at
hand, but also more expensive, because of the overhead introduced by the termina-
tion supervision.

In the context of partial evaluation, our problem in the online setting is simi-
lar to offline termination in that we have to find conditions for ensuring local and
global termination. In offline PE, the problem of termination of local unfolding has
been tackled by annotating arguments as “bounded static”. The work of Glenstrup
and Jones [7] is the main reference, though the idea of bounded static variation
goes back a long way. To detect bounded static arguments it is necessary to prove
some decrease in well-founded ordering (e.g. using size-change techniques). Quasi-
termination is a bit weaker than standard termination but still quite hard to prove.
There is Vidal’s recent work on this [17] as well as Glenstrup-Jones [7]. On the other
hand, ensuring termination in online PE is easier because we can use “dynamic”
termination detection based on supervisors of the computations such as for exam-
ple embeddings. This means that we do not need any well-founded orderings but
only well-quasi-orderings. In effect, in our technique it is only necessary to show
boundedness of an argument’s values instead of decrease.

References

1. E. Albert, M. Gómez-Zamalloa, L. Hubert, and G. Puebla. Verification of Java Byte-
code using Analysis and Transformation of Logic Programs. In Proc. PADL, number
4354 in LNCS, pages 124–139. Springer-Verlag, 2007.

2. E. Albert, M. Hanus, and G. Vidal. A practical partial evaluation scheme for
multi-paradigm declarative languages. Journal of Functional and Logic Programming,
2002(1), 2002.

3. E. Albert, G. Puebla, and J. Gallagher. Non-Leftmost Unfolding in Partial Evaluation
of Logic Programs with Impure Predicates. In Proc. of LOPSTR’05. Springer LNCS
3901, pages 115–132, April 2006.

4. F. Benoy and A. King. Inferring argument size relationships with CLP(R). In John P.
Gallagher, editor, Logic-Based Program Synthesis and Transformation (LOPSTR’96),
volume 1207 of Springer-Verlag LNCS, pages 204–223, August 1996.

5. Maurice Bruynooghe, John Gallagher, and Wouter Van Humbeeck. Inference of well-
typings for logic programs with application to termination analysis. LNCS 3672, pages
35–51, 2005.

6. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B, pages 243–320. Elsevier, 1990.

7. A. J. Glenstrup and N. D. Jones. Termination analysis and specialization-point inser-
tion in offline partial evaluation. ACM Trans. Program. Lang. Syst., 27(6):1147–1215,
2005.

8. Patricia M. Hill and Rodney W. Topor. A semantics for typed logic programs. In
Frank Pfenning, editor, Types in Logic Programming, pages 1–62. MIT Press, 1992.

9. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice Hall, New York, 1993.

10. J.B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Trans-
actions of the American Mathematical Society, 95:210–225, 1960.

11. M. Leuschel. Homeomorphic embedding for online termination of symbolic methods.
In The Essence of Computation, volume 2566 of LNCS, pages 379–403. Springer, 2002.

36

12. M. Leuschel and M. Bruynooghe. Logic program specialisation through partial deduc-
tion: Control issues. Theory and Practice of Logic Programming, 2(4 & 5):461–515,
July & September 2002.

13. Michael Leuschel. On the power of homeomorphic embedding for online termination.
In Giorgio Levi, editor, Static Analysis. Proceedings of SAS’98, LNCS 1503, pages
230–245, Pisa, Italy, September 1998. Springer-Verlag.

14. Alan Mycroft and Richard A. O’Keefe. A polymorphic type system for Prolog. Artif.
Intell., 23(3):295–307, 1984.

15. G. Puebla, E. Albert, and M. Hermenegildo. Efficient Local Unfolding with Ancestor
Stacks for Full Prolog. In Proc. of LOPSTR’04, pages 149–165. Springer LNCS 3573,
2005.

16. Z. Somogyi, F. Henderson, and T. Conway. The Execution Algorithm of Mercury:
an Efficient Purely Declarative Logic Programming Language. JLP, 29(1–3), October
1996.

17. G. Vidal. Quasi-Terminating Logic Programs for Ensuring the Termination of Partial
Evaluation. In ACM PEPM’07, pages 51–60, 2007.

37

Improving Efficiency of Prolog Programs by

Fully Automated Transformation

Jǐŕı Vyskočil and Petr Štěpánek

Charles University, Malostranské náměst́ı 25, Czech Republic

1 Introduction

Two important methods for transformation of logic programs are Unfold/Fold
transformations [12] and Partial Deduction (partial evaluation). In [11] an algo-
rithm based on the Unfold/Fold transformation was designed to get speedup by
eliminating so called unnecessary variables in logic programs. The authors call
it Elimination Procedure and identify two classes of definite programs on which
the Elimination Procedure terminates and eliminates all unnecessary variables.
A variant of this strategy is proposed in the present paper which terminates for
all definite programs, but in general, does not eliminates all unnecessary vari-
ables. The Unfold/Fold transformations can be used for program specialization,
and there are several fully automated specialization methods using Unfold/Fold
transformations (e.g. the Paddy and Mixtus systems). On the other hand, Con-
junctive Partial Deduction (CPD) [4] can be used to eliminate intermediate
structures (e.g. [4,9]). The comparison of Unfold/Fold and CPD methods is
rather complicated (see [4]). It is due to the fact that not all corresponding al-
gorithms are fully automated and that there are restrictions of input programs
which almost each such method needs.

In the present paper, we describe a transformation motivated by Unfold-
Definition-Fold method (UDF) [11] and by Partial Deduction. It terminates for
all definite logic programs and is fully automated1. The proof of its termination
proof is obtained by homeomorphic embedding used first by Dershowitz [3]2

and some techniques similar to those used in the termination proof of the Con-
junctive Partial Deduction [4]. In most cases, the transformed programs have
better computational behaviour than the original ones. Experimental results:
measuring time and a number of inferences are included. The obtained results
are compared with the results of Conjunctive Partial Deduction implemented in
the ECCE system. Although the present method is not optimized and has no
pre-processing and only weak post-processing, the results are encouraging.

We suppose, that the reader is well equinted with the standard of concept of
unfolding and folding. In the paper, we shall adopt the notation used in Apt [1].

1 It means that the transformation algorithm presented in this paper terminates and
it is applicable to all definite logic programs (which are given as input). It does not
mean that the algorithm converts non-terminating programs into terminating ones.

2 But the use is of a different nature than the one for CPD and this paper.

38

2 Eliminating Unnecessary Variables - Motivation

Existential variables are often used in logic programs for storing intermediate
results. Multiple variables are used for multiple structure traversals. Thus in
many cases, eliminating them improves the efficiency of the program.

Definition 1. (Unnecessary variables)

Let c be a clause, and P be a program.

– We say that variables occurring only in the body of c are existential variables.
– Variables that occur in the body of c more than once are called multiple

variables.
– Both existential and multiple variables in the clauses of P are called unnec-

essary variables of P .

As shown in [11] there are two classes of definite programs for which all unneces-
sary variables can be eliminated by repeating UDF (unfolding-definition-folding)
transformation steps in this order. The authors of [11] showed that in general it
is undecidable whether, for any input, this elimination procedure terminates3.

We present a new transformation that is motivated by the above UDF method
which terminates for all definite Prolog programs. However, it may not elimi-
nate all unnecessary variables. The algorithm has been implemented as fully
automated and in most cases the resulting programs are computationally more
efficient than the original ones.

First we illustrate the transformation process on an example.

Example 1.

Consider a naive but intuitive version of DOUBLEAPPEND used in [4] which con-
catenates three lists.

(1) doubleapp(X,Y,Z,XYZ) :- append(X,Y,XY), append(XY,Z,XYZ).

(2) append([],L,L).

(3) append([H|X],Y,[H|Z]) :- append(X,Y,Z).

In the first clause, there are two occurrences of the unnecessary variable XY.
Using the strategy Unfold-Definition-Fold, we remove this variable and obtain a
less intuitive but more efficient version of DOUBLEAPPEND. After several unfolding,
definition and folding steps we get a following program (for more detail see the
algorithm in Section 4), which is a more efficient version of the original program
without double traversing of the intermediate list.

3 The authors of [11] also defined so called extended elimination procedure which ter-
minates for all definite programs but may not eliminate all unnecessary variables. As
it is obvious, that our algorithm uses a different control and termination mechanism
than it is proposed in [11] which is one of the contributions of the present paper.

39

(1a) doubleapp([],Y,Z,XYZ) :- append(Y,Z,XYZ).

(1b) doubleapp([H|X],Y,Z,[H|XYZ]) :- doubleapp(X,Y,Z,XYZ)

(2) append([],L,L).

(3) append([H|X],Y,[H|Z]) :- append(X,Y,Z).

The above example shows that we need an instrument for the choice of atoms
for unfolding (it is the first and the second unfolding step if you follow the
algorithm in Section 4) and another instrument for proving the termination of
the algorithm. To solve the latter requirement, we use a version of homeomorphic
embedding [3,4,8], which was used for a termination proof of Conjunctive partial
deduction. To solve the former one we use a syntactic method.

3 Homeomorphic Embedding, Linking Variables and Safe

Selection

The idea of homeomorphic embedding on sets of terms goes back to Kruskal [7]
and Nash-Williams [10].

Definition 2. (The homeomorphic embedding)

Assume that we have a language with finite special symbols and the potentially
infinite set of variables. Note that every successful computation uses only finitely
many variables.
The homeomorphic embedding � on the set of all atomic formulas and terms
is defined inductively as follows:

– X � Y for all variables,
– (diving rule) s � f(t1, . . . , tn) if s � ti for some i ∈ {1...n},
– (coupling rule) f(s1, . . . , sn) � f(t1, . . . , tn) if si � ti for every i ∈ {1...n},

where s, si, ti are terms, and in diving and coupling rule n = 0 is allowed.
Intuitively, an expression A is homeomorphically embedded into an expres-

sion B iff B is more complex than A in the following sense: A can be obtained
from B by “simplifying” some subexpressions of B. Note that all variables are
treated in the same way. It was shown by Kruskal [7] and Nash-Williams [10]
that the relation � of homeomorphic embedding is a well quasi-ordering on the
set of all terms and atomic formulas. De Schreye et al. [4] used this result to
prove termination of their algorithm of conjunctive partial deduction. We use a
similar approach (but not the same) in proving termination of our Unfold/Fold
algorithm.

Definition 3. (Partition of the body of a clause) Given a set of atoms, we define
a binary relation ∼ as follows. For two atoms A, B, we put

A ∼ B iff V ars(A) ∩ V ars(B) 6= ∅
It means that A ∼ B iff A and B have at least one variable in common.

Obviously, ∼ is symmetric and reflexive, thus the transitive closure ≈ of ∼

40

is an equivalence relation. Given a clause c

H ← A1, . . . , An

We denote by PartB(c) 4 the partition of the set {A1, . . . , An} of the atoms of
the body of c to disjoint subsets induced by the equivalence relation ≈ . The
elements of the partition are called the blocks of the clause c.

Definition 4. (Linking variables of a block) Let c be a clause H ← A1, . . . , An

and let B ∈ PartB(c) be a block in the body of c. The set of the linking variables
of B is defined as follows

LinkV arsc(B) = V ars(H) ∩ V ars(B)
Note that linking variables are not existential variables of the clause c.

Definition 5. (Faithful variant of a block) A Block B1 of a clause c1 is called
a faithful variant of a block B2 of a clause c2 iff there exists a renaming
substitution θ such that the following conditions hold
(i) B1 = B2θ (B1 is a variant of B2)
(ii) (∀X ∈ V ars(B2)) (X ∈ LinkV arsc2

(B2)↔ Xθ ∈ LinkV arsc1
(B1))

Definition 6. (Safe selected atom) Let � be the homeomorphic embedding on
the set of atoms and terms defined in Definition 2. Let c be a clause

H ← A1, . . . , Ak, . . . , An

which arises from an original clause by sequential unfolding via selected atoms
B1, . . . , Bm. We say that the atom Ak is safe selected for unfolding iff
Ak 5 Bi for each atom Bi .

4 The Algorithm

The algorithm is motivated by the Unfold-Definition-Fold strategy presented in
[11]. The key idea in this new algorithm is the selection of a clause and of one
of its atoms for Unfolding. The selection rule used in the presented algorithm
makes the transformation applicable to all definite logic programs. In most cases,
the transformed programs are more effective than original ones (see Section 5).
The transformation is fully automated.

Our algorithm improves the original elimination procedure [11] which limits
the class of programs for which the algorithm is applicable and has no fully
automated implementation. The complete elimination of unnecessary variables
in the algorithm is not guaranteed for all definite logic program (more about
necessary conditions for elimination can be found in [11]).

4 The PartB(c) is implemented in our algorithm as follows. An input is a list of
atoms with an ordering from the original clause c. An output is a list of lists, where
each element from the output list corresponds to each block from PartB(c) with a
preserved ordering of atoms from the original clause c inside each block.

41

Algorithm 1 Procedure for elimination of unnecessary variables

Input: A definite logic program P .
Output: A set TransfP of clauses such that for each goal G consisting of predicates

of P , the answer set of P via G is equal to answer set of TransfP via G

(as shown in Example 1, the set of clauses TransfP can be interpreted as
the resulting transformed program).

1. let Q be an empty queue of pairs ¡Clause, History¿ where History is a set of atoms
and Clause is a definite clause;

2. TransfCs,D,Cs := ∅;
3. for each clause C ∈ P :

(i) if C contains at least one unnecessary variable, then
Cs := Cs ∪ {C};
(ii) if the head in C occurs only once as the head in P, then
D := D ∪ {C};

4. for each clause C ∈ Cs push pair ¡C , ∅¿ into Q ;
5. while Q 6= ∅ do

Unfolding steps:

– ¡C ,H ¿ := pop Q ;
– select the first safe selected atom A from the body of C, that is:

for each h ∈ H A5h ;
– if no such A exists then

TransfCs := TransfCs ∪ {C}; goto 5;
else unfold atom A in the body of C using clauses in P and store resulting
unfolded clauses in the set Us;

Definition steps:

– for each clause E ∈ Us

for each block B ∈ PartB(E) such that:
(i) B contains at least one unnecessary variable, and
(ii) B is not a faithful variant of the body of any clause

which is in D then
let F := newp(X 1, ... , X n) :- B ,
where newp is a fresh predicate symbol and X 1, ... , X n

are linking variables of B with respect to the head of
E ,

push the pair ¡F , H ∪ {A}¿ into Q ,
D := D ∪ {F};

Folding steps:

– for each clause E ∈ Us

begin

for each block B ∈ PartB(E) such that:
B is a faithful variant of body of a clause N from D ,
then fold B in E using N to obtain E ;

TransfCs := TransfCs ∪ {E}
end;

end while

6. for each clause E ∈ TransfCs such that:

E contains atoms As in its body which are defined by at most one clause
from (P \ Cs) ∪ TransfCs (it means that there is at most one clause
in (P \ Cs) ∪ TransfCs with the head which is unifiable with an
atom in the body of E),

then replace E in TransfCs by E with all atoms in As unfolded;

7. TransfP := (P \ Cs) ∪ TransfCs;
8. end.

42

The termination proof uses the concepts of safe selection and homeomorphic
embedding. Numbers 1 - 5 are the main part of the algorithm. Number 6 is
a post-processing part. Proofs of termination and correctness of the presented
algorithm are beyond the scope of this paper and can be found in [16].

5 Benchmarks

The following table compares several comparative benchmarks for original Pro-
log sources5, sources transformed by ECCE 1.1 [9], sources transformed by Algo-
rithm 1 16 and sources transformed by a simple combination of both algorithms.
The comparison was made on one representative predefined goal for each tested
program. The original Prolog program is denoted by P in the input for Algo-
rithm 1 (UDF).

To make a comparison of the above algorithm we put to ECCE the original
Prolog source P and a specialisation goal for partial evaluation. This goal is a
predicate from the predefined test goal with free variables for all its arguments.
The following flags were enabled in ECCE: RAF Filtering, FAR Filtering,
Dead Code Elimination, Remove Redundant Calls, Determinate Post Unfolding,
Reduce Polyvariants. The combination of both algorithms works in the follow-
ing way. First, the original source was transformed by Algorithm 1 (UDF) and
then the output was put as an input for ECCE.

Because the ECCE system is nowadays probably the best fully automated
partial evaluation system based on Conjunctive Partial Deduction (CPD) it is
very interesting to compare it with our system which is to the best of our knowl-
edge the first fully automated algorithm based on Unfold/Fold transformations.

Measurements of the number of inferences7, of the inference speedup and
of the number of clauses have been performed on SWI-Prolog 5.2.13. These
measured parameters (with the exception of time) do not depend on any specific
operating system or hardware architecture. Measurements of CPU runtime and
CPU runtime speedup have been performed on SWI-Prolog 5.12.3 with default
settings (without any options). The testing machine had following parameters:
Processor: Intel Pentium 4 - 3.4GHz, RAM: 2 GB, Operating system: Debian
GNU/Linux system with kernel 2.6.14.3. The results are shown in the table.

5 In the table this program is marked as none transformation.
6 In the table this program is marked as UDF (Unfold-Definition-Fold) transformation.
7 The exact definition of number of inferences can be found

in the manual of SWI-Prolog. It roughly corresponds to the number of resolution
steps.

43

44

As it can be seen from the table, the speed (inference speedup and CPU
runtime speedup) of UDF on the tested program increased after transformation
in most cases. In many cases the speed was almost the same and in only one
case the speed of UDF was considerably lower than that of the original Prolog
program. The average inference speedup on tested programs was approximately
69% (ECCE had 67%). Average CPU runtime speedup was approximately 31%
(ECCE had 72%).

On one hand the measurement of CPU runtime is not ideal because the
measured speedup can differ on various machines with the same Prolog system
and the same operating system up to ±10%7. When a different Prolog system
is used, the situation is even worse. But on the other hand, such measurements
represent the real run of the tested program while the number of inferences is a
more theoretical measure.

As it can be seen from the table, there are many cases where both methods
ECCE and UDF were comparable (small negative differences of UDF are caused
by a much better post-processing of ECCE). But there are some cases where
UDF method was better and vice versa. The UDF was significantly better than
ECCE in seven cases, significantly worse than ECCE in seven cases and almost
equivalent with ECCE in five cases. These experimental results may indicate
that both methods are orthogonal.

The logical conclusion of the previous results was to combine both methods
together. The result is very interesting and it shows that the combination of both
methods produces almost always significantly better results (in comparison with
previous two methods). The average inference speedup of the combined method
on tested programs was approximately 136% and average CPU runtime speedup
was approximately 111% (both numbers are compared with the original Prolog
programs).

The size of programs transformed by UDF did not increase more than 6
times, the average code size coefficient of all tested programs was approximately
2.4 times in comparison with the original Prolog programs. The ECCE had in
most cases less number of clauses because of its better post-processing such as
Dead Code Elimination. The combination did not increased the code size more
than 11 times.

We have to say that it was very surprising for us that the first attempt of fully
automated Unfold/Fold transformation method is quite comparable to the most
advanced CPD ECCE system. Moreover, more than one half of test programs
belonged to the DPPD library which was originally designed for testing ECCE,
and even for these examples UDF had quite comparable results. The combina-
tion of both methods gave significantly better results than each method applied
individually. Moreover, this combination represents, to our best knowledge, the
most effective transformation program for definite logic programs.

45

6 Conclusions and Future Work

In the paper we have described a fully automated algorithm for eliminating un-
necessary variables in definite programs. We have implemented this algorithm
and applied it to several benchmarks of programs. The results showed that the
transformed programs have approximately 31% speedup (measured in CPU run-
time) compared to non-transformed originals.

But there still exist programs for which UDF has worse results after trans-
formation than their originals. In the future work we would like to identify the
class of programs that have worse results and improve the behaviour of the
algorithm on these programs. We believe that this method has a comparable
asymptotic time complexity as Conjunctive Partial Deduction presented in [4,8]
since we used a similar Homeomorphic Embedding termination control mecha-
nism. The tranformation times of UDF did never exceed the times of ECCE on
the benchmarks. To describe the exact time complexity is out of the scope of
this paper.

We also presented a new algorithm that simply combines UDF and CPD
methods and produces significantly better results than any of them. The average
CPU runtime speedup of the combined method is 111% and this algorithm seems
to be the most effective transformation algorithm for definite logic programs.

As the described algorithm is fully automated, it would be valuable to extend
it to all general logic programs (and possibly to full Prolog).

References

1. Apt, K.R.: From Logic Programming to Prolog. Prentice Hall, 1996
2. Demoen, B.: On the transformation of a Prolog program to a more efficient binary

program. in: K.-K.Lau and Clement, T. (Eds) Proceedings of LOPSTR 92, Inter-
national Workshop on Logic Program Synthesis and Transformation, University of
Manchester, Workshops in Computing series, 1992, pp. 242 - 252. Springer-Verlag

3. Dershowitz, N.: Termination in rewriting, Journal of Symbolic Computation, 3,
1987, pp. 69 - 116

4. De Schreye, D., Glück, R., Jørgensen J., Leuschel M., Martens B., Sørensen M., H.:
Conjunctive partial deduction: foundations, control, algorithms and experiments.
The Journal of Logic Programming 41 (1999), pp. 231 - 277

5. Glück, R., Jørgensen J., Martens B., Sørensen H.,M. : Controlling Conjunctive
Partial Deduction, in: Programming Languages, Implementation, Logic and Pro-
grams, (Kuchen, E. and Swiestra, D., editors), LNCS Springer-Verlag 1996, pp.
137 - 151

6. Komorowski, H. J.: A Specification of an Abstract Prolog Machine and its Appli-
cation to Partial Evaluation. Technical Report LSST 69, Linköpping University,
1981

7. Kruskal, J. B.: Well-quasi-ordering, the Tree Theorem, and Varsonyi’s conjecture,
Trans.Amer. Math. Society 95 (1960), pp. 210 - 225

8. Leuschel, M.: Improving Homeomorphic Embeddings for On line Termination, in:
Logic Program Synthesis and Transformation, Proc. of LOPSTR’98, LNCS 1559,
P. Flener (editor) Springer-Verlag, 1998, pp. 199 - 218

46

9. Leuschel, M.: Ecce partial deduction system,
www.ecs.soton.ac.uk/˜mal/systems/ecce.html

10. Nash-Williams, C.: On well quasi ordering finite trees, Proc. Camb. Phil. Society,
59 (1963), pp. 833 - 835

11. Proietti, M. and Pettorossi, A.: Unfolding-definition-folding, in this order, for
avoiding unnecessary variables in logic programs, Theoretical Computer Science
142 (1995), pp. 89 - 124

12. Pettorossi, A. and Proietti M.: Program specialization via algorithmic unfold/fold
transformations, ACM Computing Surveys, 30(3es), (September 1998).

13. Prestwich, S. D.: The PADDY partial deduction system, Technical Report ECRC92
-6, ECRC, Munich, Germany (1992)

14. Sahlin, D.: Mixtus: an automatic partial evaluator for full Prolog, New Generation
Computing, 12(1):7-51, (1993)

15. Tamaki, H., and Sato, T.: Unfold/Fold Transformation of Logic Programs, in: Proc.
of ICLP 84, Uppsala University, Sweeden, 1984, pp. 127 - 138

16. Vyskočil, J., Štěpánek, P., M. Halama: Speedup by Fully Automated Unfold/Fold
Transformation. Technical Report TR No 2006/1 Department of KTIML MFF,
Charles University in Prague.

47

Towards a normal form for Mercury programs

Wim Vanhoof and François Degrave

University of Namur,
Faculty of Computer Science,

Rue Grangagnage 21, B-5000 Namur, Belgium
email:{fde,wva}@info.fundp.ac.be

Abstract. In this work in progress we de�ne a program transformation
that normalises a Mercury program by reordering clauses, body goals,
and possibly predicate arguments. The transformation, which preserves
the well-modedness and determinism characteristics of the program, aims
at reducing the complexity of performing a search for duplicated or simi-
lar code fragments between programs. In previous work, we have de�ned
an analysis that searches for such duplicated functionality basically by
pairwise comparing atoms and goals. While feasible in theory, the num-
ber of permutations to perform during the search renders it hard if not
impossible to use in practice. We conjecture that the transformation to
normal form, de�ned in this work, allows to substantially reduce the
number of permutations, and hence the complexity of the search.

1 Introduction and motivation

The problem of deciding whether two code fragments are equivalent, in the
sense that they implement the same functionality, is well-known to be undecid-
able. Nevertheless, there seems to be an interest in developing analyses that are
capable to detect such equivalence under particular circumstances and within
a certain error margin [3, 1, 11]. Applications can be found in plagiarism de-
tection and tools for program refactoring. Work in this area can be based on
parametrised string matching, an example being the MOSS system [7], or per-
form a more involved analysis on a graph representation of a program [2, 12].
Most of these latter works, including the more recent [10], concentrate on �nding
behavioral di�erences between strongly related programs and are often limited
to (subsets of) imperative programs.

In a recent work [9], we have studied the conditions under which two (frag-
ments of) logic programs can be considered equivalent. The main motivation
of that work was to develop an analysis capable of detecting program frag-
ments that are susceptible for refactoring, aiming in particular to the removal
of duplicated code or to the generalisation of two related predicates into a new
(higher-order) one. The basic idea is as follows: two code fragments (be they
goals, clauses or complete predicate de�nitions) are equivalent if they are iso-

morphic in the sense that one can be considered to be a renaming of the other

48

modulo a permutation of the body goals and the arguments of the predicate.
Take for example the de�nitions of app1 and conc1 below:

app1([],Y,Y).

app1([Xe|Xs],Y,[XN|Zs]):- XN is Xe + 1, app1(Xs,Y,Zs).

conc1(A,[],A).

conc1([NB|As],[Be|Bs],C):- conc1(As,Bs,C), NB is Be + 1.

Both de�nitions basically implement the same ternary relation in which one argument
is the result of concatenating both other arguments and incrementing each element by
one. This can easily be deduced from the source code, since the de�nition of conc1
can be obtained from that of app1 by variable renaming, goal reordering and a per-
mutation of the argument positions. Note that our notion of equivalence is limited
to the syntactical equivalence of predicates. Other characteristics like computational
complexity etc. are not taken into account. In [9] we have de�ned an analysis that basi-
cally searches for such isomorphisms between each possible pair of subgoals in a given
program. While the analysis can be used to search for duplication within two predicate
de�nitions, its complexity � mainly due to the fact that one needs to consider every
possible permutation of the predicate's body atoms � renders it hard if not impossible
to use in practice.

This abstract reports on work in progress motivated by the desire to port the con-
cepts and the analysis of [9] to the functional/logic programming language Mercury
while, at the same time, rendering the analysis more practical. The basic idea is de�ne
a program transformation that reorders clauses, body atoms and possibly predicate
arguments in a unique and prede�ned way such that 1) the operational characteristics
(well-modedness and determinism) of the program remain unchanged, but 2) the num-
ber of permutations to peform during predicate comparison is substantially reduced.

2 Mercury programs in normal form

Mercury [8] is a strongly typed and moded functional/logic programming language.
Although it is an expressive and syntactically rich language, its core syntax can be
de�ned as follows:

De�nition 1.

Goal ::= Y = X | Y = f(X) | Y = p(X) | Z = Y (X) | p(X) | Y (X) |
(G1, . . . , Gn) | (G1; . . . ; Gn) | not(G) | if(G1, G2, G3) |
∃XG | ∀XG | true | fail

Pred ::= p(X):- G.

where G, Gi(∀i) ∈ Goal, and X, Y , Z represent variables, X a sequence of distinct
variables, and f and p respectively a functor and predicate symbol.

The syntax de�ned in De�nition 1 corresponds to the so-called superhomogeneous
form, which is an intermediate form used by the Mercury compiler. It de�nes a program
as a set of predicate de�nitions. Each such predicate de�nition consists of a single clause
(usually a disjunction) in which the arguments in the head of the clause and in predicate
calls in the body are all distinct variables. Explicit uni�cations are generated for these
variables in the body, and complex uni�cations are broken down into several simpler
ones. Among these uni�cations we di�er between term construction and matching

49

(X = Y and X = f(Y)) on the one hand and closure construction (Y = p(X) and
Z = Y (X)) on the other. Other goals include �rst-order and higher-order predicate
calls (p(X) and Y (X) respectively), conjunction, disjunction, negation, if-then-else,
existential and universal quanti�cation and the special goals true and fail.

The full Mercury language contains a number of aditionnal constructs, such as
function de�nitions, record syntax, state variables, DCG notation, etc. [5]. However,
each of these constructions can be translated into the above syntax by introducing new
predicates, adding arguments to existing predicates and introducing new uni�cations
[5]. Note that these transformations are in principle reversible.

Example 1. Let us reconsider the example from above, this time in superhomogeneous
Mercury syntax:
app1(X,Y,Z):- (X=[], Z=Y ;

X=[Xe|Xs], Z=[XN|Zs], E=1, XN=(Xe + E), app1(Xs,Y,Zs)).

conc1(A,B,C):- (B=[], A=C ;

A=[NB|As], B=[Be|Bs], conc1(As,Bs,C), E=1, NB=(Be + E)).

From a programmer's point of view, the order in which the individual goals in a
conjunction are written is of no importance. While this is one of the main characteristics
that makes the language more declarative than other (logic) programming languages, it
clearly renders the search for code isomorphisms in the sense outlined above even more
dependent on the need to consider all permutations of the goals within a conjunction.

The fact that Mercury is a strongly moded language provides us with a starting
point for our transformation into normal form. In Mercury, each predicate has an
associated mode declaration1 that classi�es each argument as either input to the call,
denoted by in (the argument is a ground term before and after the call) or output by the
call which is denoted by out (the argument is a free variable that will be instantiated
to a ground term at the end of the call). Given a predicate's mode declaration it is
possible to derive how the instantiation of each variable changes over the execution
of each individual goal in the predicate's body. In what follows we will use in(G) and
out(G) to denote, for a goal G, the set of its input, respectively output variables. As
such in(G) refers to the variables whose values are consumed by the goal G, whereas
out(G) refers to the variables whose values are produced by G.

Example 2. If we consider the app1 predicate (Example 1) for the mode app1(in,in,out)
� re�ecting the fact that the two �rst arguments are considered input whereas the third
is considered output � we have:

G in(G) out(G)

X = [] {X} ∅
Z = Y {Y } {Z}
X = [Xe|Xs] {X} {Xe, Xs}
E = 1 ∅ {E}

G in(G) out(G)

XN = Xe + E {Xe, E} {XN}
app1(Xs,Y,Zs) {Xs, Y } {Zs}
Z = [XN|Zs] {XN, Zs} {Z}

In order to be accepted by the compiler, Mercury programs must be well-moded.
Intuitively, this means that the goals in a predicate's body can be rearranged in such

1 In general, a predicate may have more than one mode declaration, but these can
easily be converted into separate predicate (or, in Mercury terminology, procedure
de�nitions.

50

a way that values are produced before they are consumed when the predicate is exe-
cuted by a left-to-right selection rule [6]. In case of a conjunction, the well-modedness
constraint could be formalised as follows:

De�nition 2. A conjunction (G1, ..., Gn) veri�es the well-modedness constraint if

∀1 ≤ i ≤ n, ∀k > i : in(Gi) ∩ out(Gk) = ∅.

Example 3. The second disjunct of the app1 de�nition in Example 1 does not verify
the well-modedness constraint since the goal Z=[Xn|Zs] consumes variables Xn and Zs,
which are both produced by goals further to the right in the conjunction. However, the
following reordering does:

app1(X,Y,Z):- (X=[], Z=Y ;

X=[Xe|Xs], E=1, XN=(Xe + E), app1(Xs,Y,Zs), Z=[XN|Zs]).

It is the task of the compiler to rearrange conjunctions in a program such that
they verify the well-modedness constraint, thanks to the information provided by the
mode analyser. Note however that well-modedness in itself does not su�ce to obtain
a unique reordering. In the example above one could, e.g. switch the atoms XN=(Xe +

E) and app1(Xs,Y,Zs) while the conjunction would remain well-moded. Consequently,
well-modedness can be used as a starting point for our normalisation, but it needs
to be further constrained in order to obtain a unique reordering. As a �rst step, the
following de�nition rephrases and reinforces the well-modedness constraint.

De�nition 3. We de�ne a proper rearrangement of a conjunction G1, . . . , Gn to be a
sequence of multisets 〈S1, . . . , Sk〉 such that[

i∈{1,...,k}

Si = {G1, . . . , Gn}

and such that ∀Si we have

1. ∀G, G′ ∈ Si : in(G) ∩ out(G′) = ∅.
2. ∀G ∈ Si, ∀G′ ∈ Sk for k > i : in(G) ∩ out(G′) = ∅.
3. ∀G ∈ Si, i > 0 : ∃G′ ∈ Si−1 : in(G) ∩ out(G′) 6= ∅.

Intuitively, a conjunction is properly arranged if its components can be partitioned
into a sequence of sets of goals such that: (1) there are no data�ow dependencies
between the goals in a single set; (2) a goal belonging to a set Si does not consume
values that are produced by a goal belonging to a set Sk that is placed after Si in
the sequence; and (3) each goal in a set Si consumes at least one value that was
produced by a goal placed in the previous set Si−1. There are two main points of
di�erence between our notion of a proper arrangement and that of well-modedness.
First, we impose an order between sets of independent goals and, secondly and more
importantly, consumers are pushed forward in the sequence as much as possible.

Example 4. Consider the de�nition of app1 of Example 1. We have that

〈{X = [], Z = Y}〉

is a proper rearrangement of the �rst disjunct, whereas

〈{X = [Xe|Xs], E = 1}, {XN = (Xe + E), app1(Xs, Y, Zs)}, {Z = [XN|Zs]}〉

is a proper rearrangement of the second disjunct.

51

Note that there always exists a proper rearrangement of a well-moded conjunction.
Also note that the required partitioning into sets is unique. Intuitively, this means that
conjunctions that would classify as being isomorphic have similar proper rearrange-
ments and, consequently, that a search for isomorphisms can be limited to a pairwise
comparison of the corresponding sets of goals.

Example 5.

As such our notion of proper rearrangement seems a good starting point for a trans-
formation that aims at rearranging predicate de�nitions in a unique way. All that
remains, is to impose an order on the goals within the individual sets of a proper re-
arrangement. Since these goals share no data�ow dependencies, we can use any order
without in�uencing well-modedness. We choose lexicographic ordering on goals in tree
representation. Formally:

De�nition 4. Given a goal G, we de�ne its tree representation, denoted tr(G) as a
tree over strings de�ned as follows:

tr((G1, . . . , Gn)) = (conj, tr(G1), . . . , tr(Gn)) tr(∃XG) = (∃, X, tr(G))

tr((G1; . . . ; Gn)) = (disj, tr(G1), . . . , tr(Gn)) tr(∀XG) = (∀, X, tr(G))
tr(if(G1, G2, G3)) = (if, tr(G1), tr(G2), tr(G3)) tr(true) = (true)
tr(not(G)) = (not, tr(G)) tr(fail) = (fail)

tr(Y = X) = (unifv, Y, X) tr(Z = Y (X)) = (closv, Y, Z, X)

tr(Y = f(X)) = (unifc, f, Y, X) tr(Y = p(X)) = (closc, p, Y, X)

tr(p(X) = (call, p, X) tr(Y (X) = (hocall, Y, X)

Given two goals G and G′, we will write G < G′ if and only if tr(G) <l tr(G′) where
<l represents the lexicographic ordering over trees of strings.

Example 6. Since tr(X = []) = (unifc, [], X) and tr(Z = Y) = (unifv, Z, Y) We have
X = [] < Z = Y. Likewise, one can easily verify that we have X = [Xe|Xs] < E = 1 and
app1(Xs, Y, Zs) < XN = (Xe + E).

Proper rearrangement and lexicographic ordering are the main ingredients of our
transformation to normal form, which we can now easily de�ne as follows:

De�nition 5. The transformation of a goal G into normal form, denoted by nf(G),
is de�ned as follows:

nf (∃XG) = ∃Xnf (G) nf (∀XG) = ∀Xnf (G)
nf (not(G)) = not(nf (G))
nf (if(G1, G2, G3)) = if(nf (G1),nf (G2),nf (G3))
nf ((G1, . . . , Gn)) = C where

C = (nf (G1
1), . . . ,nf (G

1
l1),nf (G

2
1), . . . ,nf (G

2
l2), . . . ,nf (G

k
1), . . . ,nf (Gk

lk
))

if 〈S1, . . . , Sk〉 is a proper arrangement of (G1, . . . , Gn).
and ∀1 ≤ i ≤ k : Si = {Gi

1, . . . , G
i
li
} and ∀1 ≤ j < li : Gi

j ≤ Gi
j+1

nf ((G1; . . . ; Gn)) = (nf (G′
1); . . . ;nf (G

′
n))

where (G′
1; . . . ; G

′
n) is a reordering of (G1; . . . ; Gn)

such that ∀i : 1 ≤ i < n : Gi ≤ Gi+1.
nf (A) = A for A ∈ Atom

52

As can be seen from the de�nition above, the transformation to normal form imposes
an ordering on the goals within a conjunction and on those within a disjunction. Since
these orderings are unique, the transformation is well-de�ned.

Example 7. The app1 and conc1 predicates of Example 1 in normal form would look
like

app1(X,Y,Z):- (X=[], Z=Y ;

X=[Xe|Xs], E=1, app1(Xs,Y,Zs), XN=(Xe + E), Z=[XN|Zs]).

conc1(A,B,C):- (B=[], A=C ;

B=[Be|Bs], E=1, conc1(As,Bs,C), NB=(Be + E), A=[NB|As]).

The advantage of combining the notion of proper arrangement with the lexico-
graphic ordering de�ned as above is that if there exists an isomorphism between two
conjunctions (modulo a permutation of the body atoms), than there exists an iso-
morphism between between the corresponding goals in the respective normal forms.
In other words, it seems that detecting duplication between predicates in normal form
does not require to consider permutations of the conjunctions, thereby removing a layer
of complexity.

3 Ongoing and further work

3.1 Normalising types and type de�nitions

Mercury is a strongly typed programming language, which o�ers the opportunity to
search for equivalences between types based on isomorphisms between the type de�-
nitions, much in the same way as the analysis of [9] searches for equivalent predicates
based on isomorphisms between the predicate de�nitions. Let us consider the following
example:

:- type tag �-> tagged ; untagged.

:- type data �-> simple(int,tag) ; complex(int,float,tag).

:- type bool �-> true ; false.

:- type val �-> two(bool,float,int) ; one(bool,int).

Intuitively, it is clear that the types tag and bool serve the same purpose: being
able to represent and di�erentiate between two values. Taking this equivalence between
tag and bool into account, it becomes clear that also data and val are equivalent in
the same sense: both are meant to represent either a �tagged� integer value, or a tagged
combination of a �oat and an integer. It is clear that such equivalences between types
could be detected by an analysis that performs a pairwise comparison of type de�nitions
and, for each pair of de�nitions, a pairwise comparison between the di�erent elemens of
each de�nition � as such e�ectively computing whether one de�ntion can be considered
a renaming of the other. As it is the case when comparing code fragments, such an
analysis would pro�t from the fact that type de�nitions were somehow normalized such
that less comparisons need to be performed.

Formally, types are constructed, like terms, from (type) variables and (type) sym-
bols. A type containing variables is said to be polymorphic, otherwise it ismonomorphic.
We denote by T the set of types constructed from type variables Vt and type symbols
Σt. The sets of type variables, type symbols, variables and function symbols are as-
sumed to be disjoint. For each type symbol, a unique type rule associates that symbol
with a �nite set of function symbols, the set of which we denote by Σ.

53

De�nition 6. A type rule for a type symbol h/k ∈ Σt is of the form

h(V) −→ f1(τ1) ; . . . ; fn(τn)

where V is an k-tuple of distinct type variables from Vt, f1, . . . , fn are distinct function
symbols from Σ associated with the type symbol h, τ i (1 ≤ i ≤ n) are tuples from T
of the appropriate arity. Moreover, a type variable occuring on the right-hand side of a
type rule must also occur on the left-hand side. Given the type rule above, we say that
the type symbol h/k is de�ned by n clauses and we refer to fi(τ i) as the i'th clause in
the type rule. For a type symbol h, we denote by c(h) the number of clauses in its type
rule.

Example 8. The type rules given above de�ne four monomorphic types: tag, data,
bool and val. The type rule for bool, for example, associates the function symbols
true and false with the type symbol bool.

In order to normalise type de�nitions, we need to de�ne an order relation that
allows to order the sequence of clauses comprising a type rule which, in turn, requires
an order relation on the types themselfs. Let us start by de�ning an order relation on
the set of types:

De�nition 7. Let <s denote the normal lexicographic ordering on strings; let h/n and
h′/m be two type symbols from Σt and let τ1, . . . , τn and τ ′1, . . . , τ

′
m types from T . Then

we de�ne the order relation <t on the set of types, T , as follows:

X <t h(τ1, . . . , τn) for X ∈ VT

X <t Y if X <s Y

h(τ1, . . . , τn) <t h′(τ ′1, . . . , τ
′
m) if either

c(h) < c(h′)
c(h) = c(h′) and h <s h′

h(τ1, . . . , τn) <t h(τ ′1, . . . , τ
′
n) if ∃i : τi <t τ ′i and ∀j < i : τj = τ ′j

Note that in this ordering, a type variable is considered smaller than any type con-
structed from a type symbol and type variables are ordered themselfs lexicographically.
Two types t1 and t2 having di�erent outermost type symbols are ordered t1 < t2 if
the outermost type symbol of t1 is de�ned by less clauses than the outermost type
symbol of t2 or, in case they are de�ned by the same number of clauses, the former is
lexicographically smaller than the latter. Two types having the same outermost type
symbol are ordered by the lexicographic ordering on their arguments.

Example 9. Let bool/0 and val/0 be de�ned as above, we have bool <t val. Let
list/1 be a type symbol de�ned by the following rule:

list(T) �-> [] ; [T|list(T)].

We have that list(bool) <t list(val). With respect to the (prede�ned) types int
and float, it seems reasonable to assume that we have int <t float and t < int for
any de�ned type t.

Note that <t allows to reorder the argument types in each clause of a type rule. To
reorder the clauses themselfs, we need yet another order, which we basically de�ne as
the lexicographic order on tuples of types, without taking the function symbols into
account.

54

De�nition 8. Let f and g be function symbols in Σ and let τ1, . . . , τn and τ ′1, . . . , τ
′
m

types from T . Then we de�ne the order relation <c as follows:

f(τ1, . . . , τn) <c g(τ ′1, . . . , τ
′
m) if m > n

f(τ1, . . . , τn) <c g(τ ′1, . . . , τ
′
n) if ∃i : τi <t τ ′i and ∀j < i : τj = τ ′j

The combination of <t and <c allows to normalise a type rule, using <t to order the
argument types in each clause, and <c to order the clauses themselfs.

Example 10. Reconsider the type symbols tag/0, data/0, bool/0 and val/0. Normal-
ising their type rules would give us

:- type tag �-> tagged ; untagged.

:- type data �-> simple(tag,int) ; complex(tag,int,float).

:- type bool �-> false ; true.

:- type val �-> one(bool,int) ; two(bool,int,float).

As the above example suggests, a pairwise compairison of type rules need no longer
consider a permutation of the clauses in the de�nitions, nor a permutation of of the
argument types in each clause. This should allow for a substantial speedup when search-
ing for type equivalence. We are currently investigating if and how these results cfan
be formally stated.

Also note that the order <t between types could be used to normalise the sequence
of arguments in a predicate de�nition. While this might be bene�cial when surching for
equivalence between predicate de�nitions, the in�uence of such argument reordering
on closure construction must be investigated.

3.2 Other issues

Ongoing research include reformulating the analysis of [9] in the context of normalised
Mercury programs. It must also be investigated if and how the proposed transformation
to normal form can be reversed, such that the results of the analysis (indications of
what code fragments are equivalent) can be displayed on the original source code rather
than the normalised code.

Acknowledgments

We thank anonymous referees for their constructive comments and feedback.

References

1. X. Chen, B. Francia, M. Li, B. McKinnon, and A. Seker. Shared information
and program plagiarism detection. IEEE Transactions on Information Theory,
50(7):1545�1551, 2004.

2. Susan Horwitz. Identifying the semantic and textual di�erences between two ver-
sions of a program. ACM SIGPLAN Notices, 25(6):234�245, 1990.

3. K. A. Kontogiannis, R. Demori, E. Merlo, M. Galler, and M. Bernstein. Pattern
matching for clone and concept detection. Reverse engineering, pages 77�108, 1996.

55

4. A. Mycroft and R.A. O'Keefe. A polymorphic type system for Prolog. Arti�cial
Intelligence, 23:295�307, 1984.

5. Univ. of Melbourne. Mercury language reference manual. 2006.
6. D. Overton, Z. Somogyi, and P. Stuckey. Constraint-based mode analysis of Mer-

cury. In Proceedings of the 4th ACM SIGPLAN international conference on Princi-
ples and practice of declarative programming, pages 109�120, New York, NY, USA,
2002. ACM Press.

7. S. Schleimer, D.S. Wilkerson, and A. Aiken. Winnowing: local algorithms for
document �ngerprinting. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of Data, San Diego, CA, 2003.

8. Z. Somogyi, H. Henderson, and T. Conway. The execution algorithm of Mercury,
an e�cient purely declarative logic programming language. Journal of Logic Pro-
gramming, 29(1), 1996.

9. W. Vanhoof. Searching semantically equivalent code fragments in logic programs.
In S. Etalle, editor, Proceedings of LOPSTR 2004, volume 3573 of Lecture Notes
in Computer Science, pages 1�18. Springer-Verlag, 2005.

10. J. Winstead and D. Evans. Towards di�erential program analysis. In Proceedings
of the 2003 Workshop on Dynamic Analysis, 2003.

11. Wise. YAP3: Improved detection of similarities in computer program and other
texts. SIGCSEB: SIGCSE Bulletin (ACM Special Interest Group on Computer
Science Education), 28, 1996.

12. Wuu Yang. Identifying syntactic di�erences between two programs. Software Prac-
tice and Experience, 21(7):739�755, 1991.

13. Wuu Yang, Susan Horwitz, and Thomas Reps. Detecting program components with
equivalent behaviors. Technical Report CS-TR-1989-840, University of Wisconsin,
Madison, 1989.

56

Aggregates for CHR through

Program Transformation

Peter Van Weert⋆, Jon Sneyers⋆⋆, and Bart Demoen

Department of Computer Science, K.U.Leuven, Belgium
FirstName.LastName @cs.kuleuven.be

Abstract. We propose an extension of Constraint Handling Rules (CHR)
with aggregates such as sum, count, findall, and min. This new feature
significantly improves the conciseness and expressiveness of the language.
In this paper, we describe an implementation based on source-to-source
transformations to CHR (extended with some low-level compiler direc-
tives). We allow user-defined aggregates and nested aggregate expressions
over arbitrary guarded conjunctions of constraints. Both an on-demand
and an incremental aggregate computation strategy are supported.

1 Introduction

Constraint Handling Rules (CHR) [1, 4] is a powerful, elegant committed-choice
CLP language, based on multi-headed, guarded multiset rewrite rules. Originally
designed for the implementation of constraint solvers, CHR has matured towards
a general purpose language, used in a wide range of application domains, includ-
ing natural language processing, multi-agent systems, and type system design.

In [8, 9] we proposed an extension of CHR with aggregates. This declarative
language feature allows the aggregation of information from an unbounded num-
ber of constraints to be captured concisely in a single expression in the head of
a CHR rule. Example aggregates are sum, count, findall, and min. Without
language support for aggregates, these common programming idioms require
cumbersome, low-level auxiliary constructs, cross-cutting the entire program.
Case studies show aggregates reduce program size by up to 50%. The resulting
programs are also significantly more understandable, maintainable, and robust.

This paper presents how existing CHR systems can be extended with a gen-
eral, extensible aggregate framework using source-to-source transformations to
lower-level CHR. Only a small number of easily implemented low-level compiler
directives have to be added to the CHR system itself. The transformation takes
care of introducing auxiliary and cross-cutting code, not unlike an aspect weaver
in Aspect-Oriented Programming [5].

The source-to-source transformation schemes presented in this paper support
user-defined, application-tailored aggregates, nested aggregate expressions, and

⋆ Research Assistant of the Research Foundation – Flanders (FWO-Vlaanderen).
⋆⋆ Research funded by a Ph.D. grant of the Institute for the Promotion of Innovation

through Science and Technology in Flanders (IWT-Vlaanderen).

57

efficient aggregate computation using either on-demand or incremental aggregate
computation. The design of these non-trivial transformation schemes is discussed
in detail, the different issues identified and addressed one by one.

Overview. Section 2 briefly recalls the syntax and operational semantics of
CHR. More information can be found in [3, 4]. Section 3 motivates and intro-
duces the extension of CHR with aggregates. Next, two different source-to-source
schemes are presented in Section 4. The implementation approach is evaluated in
Section 5. Finally, Section 6 provides conclusions and directions of future work.

2 Preliminaries: Constraint Handling Rules

2.1 Syntax of CHR

A constraint c(x1, . . . , xn) is an atom of predicate c/n, with all xi values of a host
language data type. Two types of constraints exist: built-in constraints, solved
by an underlying solver, and CHR constraints, solved by the CHR program.

A CHR program consists of a sequence of CHR rules of the form:

name @ Hk \ Hr ⇐⇒ G | B

The name is optional and unique; rules without a name get one implicitly.
The head consists of two conjunctions of CHR constraints, Hk and Hr. Their
conjuncts are called occurrences (kept and removed occurrences resp.). The guard
G is a conjunction of built-in constraints. If “G | ” is omitted, it is considered
to be “true | ”. The body B is a conjunction of CHR and built-in constraints.

There are three types of rules. If Hk is empty, the rule is a simplification
rule. If Hr is empty, the rule is a propagation rule and the symbol “ =⇒ ” is
used instead of “ ⇐⇒ ”. If both parts are non-empty, the rule is a simpagation
rule. At least one of Hr and Hk must be non-empty.

Logically, a simplification rule corresponds to an equivalence: G → (Hr ↔
B), while a propagation rule corresponds to an implication: G → (Hk → B).

2.2 Operaional Semantics of CHR

Informally, the operational semantics of a CHR rule is as follows: if for each
occurrence in the head a matching constraint is found in the constraint store,
and the guard is satisfied, then the rule fires : the constraints that matched the
removed occurrences (Hr) are deleted from the store and the body is executed.

Formally, the execution of a CHR program follows the theoretical or high-level
operational semantics, denoted as ωt. For brevity, we do not present the formal
transition rules of ωt here; we refer to [3, 4] instead. A version of ωt extended
with aggregates is presented in Section 3.3.

The theoretical operational semantics is highly nondeterministic. Only pro-
grams that do not depend on the order of rule application have guaranteed

58

behavior under ωt. Such programs are called confluent (cf. [4]). However, writ-
ing confluent programs is often overly difficult. Many programs are non-confluent
under ωt as CHR programmers exploit the execution strategy implemented by
most CHR systems to obtain the desired behavior. The refined operational se-
mantics, denoted with ωr, instantiates ωt to capture the behavior of most current
systems. A complete exposition, including a formal description, is found in [3].

A central concept in the refined semantics is the active constraint. Each time
a constraint becomes active, all CHR rules are tried in a top-down textual order,
until all applicable rules that match the active constraint have been executed,
or the active constraint is removed. If a rule fires, the constraints in its body are
processed one at a time, in a left-to-right textual order. If a CHR constraint is
processed, it is added to the constraint store and immediately becomes the new
active constraint. Processing a built-in constraint entails solving it, and reacti-
vating all CHR constraints whose arguments are affected, one at a time. The
order in which CHR constraints are reactivated is undetermined. The activation
and reactivation of a CHR constraint is treated as a procedure call : only when
its execution is finished, the execution returns to the previous active constraint.

3 Extending CHR with Aggregates

As CHR is already Turing complete [7], aggregates do not add to the computa-
tional power of CHR. Section 3.1 shows they are nevertheless invaluable when it
comes to expressiveness, maintainability and conciseness. The extension of CHR
with aggregates is introduced in Section 3.2, and given a formal operational se-
mantics in Section 3.3. A more thorough introduction to the proposed extension,
more examples and case studies can be found in [8, 9].

3.1 Motivation and Running Example

As the head of each CHR rule only considers a fixed number of constraints, any
form of aggregation over unbounded parts of the constraint store necessarily
requires explicit encoding, using auxiliary constraints and rules. The following
example clearly shows the inadequacy of such ad hoc approaches. It is also used
as a running example throughout the paper.

Example 1. Suppose the constraints account(AccountId,ClientId,Balance)

and client(ClientId) constitute a simplified representation of the accounts
and clients of a bank. At some point, the bank decides to add the business rule:

“A client whose accumulated sum of account balances is $25,000 or more
is a platinum client”

As a client can have any number of accounts, this seemingly simple rule cannot
be expressed straightforwardly in CHR. CHR practitioners therefore commonly
introduce a constraint such as accumulated balance/2. This allows the logic of
platinum clients to be captured concisely in a single rule as follows:

59

client(C), accumulated_balance(C,Sum) ==> Sum ≥ 25000 | platinum(C).

This approach, however, also necessitates the explicit maintenance of the accu-
mulated balance. This inherently cross-cutting concern requires invasive modi-
fications to all rules that alter the balance of an account. The bank e.g. has to
add at least the following underlined code:

deposit(A,X), account(A,C,B), accumulated_balance(C,Acc) <=>

account(A,C,B+X), accumulated_balance(C,Acc+X).

...

withdraw(A,X), account(A,C,B), accumulated_balance(C,Acc) <=>

B > X, account(A,C,B-X), accumulated_balance(C,Acc-X).

Many variations to the above maintenance scheme can be concocted, but they
all require similar modifications scattered throughout the entire program. Sim-
ilar auxiliary code has to be written for every aggregate; a very tedious and
repetitive task. Clearly, this approach displays poor compliance with common
software quality criteria: it is highly error-prone, and it impairs the readability
and maintainability of the program, as the logic of many rules becomes tangled
with obfuscating auxiliary code. In other words, many practical advantages of
declarative programming – understandability, maintainability, robustness, and
shortened development time – are severely handicapped.

3.2 An Extensible Framework for Aggregates in CHR

This section introduces an extension of CHR with aggregates, designed to over-
come the expressivity problems outlined in the previous section. It allows rule
heads to contain aggregates. These expressions accumulate information over pos-
sibly unbounded parts of the constraint store. Aggregates can be written in both
the kept and the removed part of the head; there is no semantical difference.

This section provides a short summary on the proposed, extensible aggregate
framework. More information can be found in [8, 9].

Predefined aggregates. Our framework provides a wide range of predefined
aggregates, including all aggregates commonly found in related paradigms such
as database query languages [10] (i.e. min, max, sum, count and avg) and produc-
tion rule systems (i.e. not, exists and forall). A complete list of predefined
aggregates, together with a number of example uses, can be found in [8, 9].

Example 2. Using the sum aggregate (in italics), the platinum client business
rule of Example 1 is again declaratively expressed in a single rule:

client(C), sum(B,account(_,C,B),Sum) ==> Sum ≥ 25000 | platinum(C).

However, no further changes to the program are required, as the aggregate’s
semantics already guarantees the correct behavior implicitly: it accumulates the
sum of the balances B of all matching account/3 constraints, and ensures that
the rule fires as soon as this sum, Sum, reaches 25,000.

60

Contrasting the above example with the approach outlined in Example 1
in the previous section clearly shows that aggregates render CHR programs
more declarative, readable and maintainable. Relieved from the cumbersome and
repetitive task of implementing aggregates, the programmer can focus exclusively
on the application domain. So, productivity is improved considerably as well.

User-defined aggregates. Often information has to be aggregated in application-
specific ways. Therefore, we designed a general high-level mechanism that enables
CHR end-users to create user-defined aggregates :

aggregate(Start, Inc, Dec, Final, Template, Goal, Result)

The aggregate/7 construct is expressive enough to effectively specify any ag-
gregate. In fact, all predefined aggregates are also implemented by it.

Example 3. The predefined sum(T,G,R) aggregate for instance is specified as
aggregate(=(0),plus,minus,=,T,G,R),where ‘=(0)’ indicates unification with
zero, and plus/3 and minus/3 are two straightforward Prolog predicates com-
puting the sum, respectively the difference of the first two arguments.

The first four arguments of aggregate/7 specify the host language proce-
dures or CHR constraints that determine how the aggregate is computed. First,
an intermediate working value is initialized using Start. Then, for each match-
ing found for Goal, a corresponding instance of Template is passed to Inc to
increment the current working value. After all increments required are made, the
working value is finalized using Final, to obtain the aggregate’s result Result.
The function of Dec is explained in Section 4.3.

These seven arguments thus completely determine an aggregate’s semantics,
as also reflected in the formal operational semantics presented in the next section.

Complex aggregate goals. Example 2 showed an aggregate over a simple
Goal, i.e., consisting of a single CHR constraint. The aggregate goal Goal how-
ever can be an arbitrary conjunction of CHR constraints and guards: for ex-
ample count((platinum(C),account(_,C,_)), N) counts the number of ac-
counts owned by platinum clients. We further allow nested aggregates, that
is, aggregate expressions inside the goal of another aggregate: for instance,
max(S, (client(C), sum(B,account(_,C,B),S)), M) returns the largest to-
tal balance M of any individual client.

3.3 Formal Operational Semantics

We extend the theoretical operational semantics ωt [3, 4] to deal with the general
aggregate/7 expressions introduced in the previous section (recall that this also
covers all predefined aggregates). The extended semantics is denoted ωa. We
extend ωt because of brevity, and because it allows more implementation freedom
then extending a more deterministic instance such as e.g. ωr (cf. Section 2.2).

The ωa semantics is formulated as a state transition system. Transition rules
define the relation between an execution state and its subsequent execution state.

61

Definition 1 (Identified constraints). To differentiate amongst otherwise
identical copies of constraints, CHR constraints are assigned unique identifiers.
An identified CHR constraint with constraint identifier i is denoted c#i. We
further introduce the functions chr(c#i) = c and id(c#i) = i, and extend them
to sequences and sets of identified CHR constraints in the obvious manner.

Definition 2 (Execution state). An execution state σ is a tuple 〈G, S, B, T〉n.
The goal G is a multiset of constraints. The CHR constraint store S is a set of
identified CHR constraints (while S is a set, chr (S) is a multiset). The built-
in constraint store B is the conjunction of all built-in constraints passed to the
underlying solver. The propagation history T, necessary to prevent trivial non-
termination, is a set of tuples, each recording the name of a rule and a sequence
of identities of the CHR constraints that fired that rule. Finally, the counter
n ∈ N represents the next unique constraint identifier.

The semantics of the built-in constraints is determined by a constraint the-
ory DB. Let vars(A) be the variables occurring freely in A, then ∃̄AF denotes
∃x1, . . . ,∃xnF , with {x1, . . . , xn} = vars(F)\vars(A).

Because aggregates can be nested, we use two mutually recursive definitions:

Definition 3 (Matching substitutions). Let matchings(A ∧H ∧G, Sh, S, B)

=
{

θ
∣

∣ H = θ(Sh) ∧DB |= B → ∃̄B(θ ∧G ∧ agg cond(A, Sh ∪ S, B))
}

where H and Sh are conjunctions of CHR constraints, G and B conjunctions of
built-in constraints, A is a conjunction of aggregates, and S is a set of identified
CHR constraints (a CHR store).

Definition 4 (Aggregate Condition). For an aggregate A of the form
aggregate(s, i, d, f, T, G, R), a CHR store S and a built-in store B:

agg cond(A, S, B) = s(V0) ∧
n
∧

k=1

i(Vk−1, θk(T), Vk) ∧ f(Vn, R)

where V0, . . . , Vn are new variables and {θ1, . . . , θn} =
⋃

H⊆S
matchings′(G, H, S, B).

The condition is extended to conjunctions of aggregates in the obvious manner.

In its generic syntactic form (cf. Section 2.1), the head of a rule is prepended
with a conjunction of aggregates A (recall that an aggregate’s location in the
head has no semantic meaning):

Definition 5 (Transition rules). Given a CHR program P, execution proceeds
by exhaustively applying the following transition rules, starting from an initial
state of the form 〈G, ∅, true, ∅〉1:

1. Solve. 〈{c} ⊎G, S, B, T〉n P 〈G, S, c ∧ B, T〉n
where c is a built-in constraint and DB |= ∃̄∅B.

2. Introduce. 〈{c} ⊎ G, S, B,T〉n P 〈G, {c#n} ∪ S,B, T〉n+1

where c is a CHR constraint and DB |= ∃̄∅B.

62

3. Apply. 〈G, H1 ∪H2 ∪ S,B, T〉n P 〈B ⊎ G, H1 ∪ S, θ ∧ B, T ∪ {h}〉n
where DB |= ∃̄∅B and P contains a rule r @ A, H ′

1\H
′
2 ⇐⇒ G | B and

θ ∈ matchings((A,H ′
1, H

′
2, G), H1∪H2, S, B) and h = (r, id(H1, H2)) 6∈ T

The propagation history does not record an aggregate in any way, so a rule is
never fired more then once with the same combination of constraints, even if the
aggregate’s value changes. We call this fire-once semantics. More information
regarding this choice can be found in [9].

4 Implementation through Program Transformation

The transformation schemes presented here improve earlier schemes described
in [9]. Two different aggregate computation strategies are supported: on-demand
(Section 4.2), and incremental (Section 4.3). The source-to-source transforma-
tions are implemented in the K.U.Leuven CHR system [6] in SWI-Prolog [12],
but the approach is equally applicable to other systems implementing the re-
fined operational semantics. The implementation is based on high-level meta
CHR rules. Their basic syntax and semantics is outlined first in Section 4.1.

4.1 Meta CHR Rules

Meta CHR rules allow concise specification of CHR source-to-source transfor-
mations. They somewhat resemble ordinary CHR rules, both syntactically and
semantically. Only, instead of rewriting constraint multisets, they rewrite the
CHR rules of another CHR program, called the object program.

A meta rule is applicable if its head can be matched with occurrences in
a single object rule. When a meta rule fires, the occurrences that matched its
removed meta occurrences, are removed from the object rule. In a meta rule’s
body, the ‘+’ prefix operator adds kept occurrences to the object rule, ‘-’ adds
removed occurrences, and ‘?’ adds extra conjuncts to the object rule’s guard.
Writing a CHR rule in the body of a meta rule adds this rule to the object pro-
gram. The remaining head/1 operation returns those occurrences of the object
rule not matched by the meta rule, and guard/1 returns the object rule’s guard.

4.2 On-demand Aggregate Computation

This section gradually introduces and explains a transformation scheme for on-
demand aggregate computation. The scheme, depicted in Figure 1, outputs code
in which aggregates are computed from scratch each time they are required.

Lines 1 to 4. The simplification rule removes each occurrence of aggregate/7,
and replaces it with a guard (line 4). This guard calls an auxiliary CHR con-
straint1, aggi/2, that computes the aggregate’s result A. The shared vars/3

1 Even though not actually allowed by the CHR language (cf. Section 2), several CHR
implementations do support CHR constraints in guards this way, a feature often
exploited by expert users. To properly support such guards though, a number of
changes were required to the K.U.Leuven CHR compiler ([9] provides an overview).

63

1 aggregate(Start,Inc,_,Final,T,G,A) <=>

2 new_unique_identifier(i),

3 remaining_head(Head), shared_vars(Head, (T-G), V),

4 ?aggi(V,A),

5 +G#on_active, +G#on_removal,

6 (aggi(V,A) <=> Start(I), resulti(I), matchi(V), geti(R), Final(R,A)),

7 (matchi(V), G ==> incri(T)),

8 (incri(T), resulti(R1) <=> Inc(R1, T, R2), resulti(R2)),

9 (resulti(R), matchi(_), geti(Q) <=> Q = R).

Fig. 1. The core of a transformation scheme using on-demand aggregate computation.
For compactness, pseudo code is used. The function of each line is explained below.

predicate returns the variables shared by its first two arguments. It is used to
compute V, the list of all variables required to compute the aggregate (line 3–4).
The implementation of the aggregate computation (lines 6–9) is discussed below.
The identifier i (line 2) ensures all auxiliary functors, such as aggi/2, are unique.

Line 5 (on active and on removal heads). Under the refined operational
semantics, by default, the guard added on line 4 is called each time a match-
ing is found for the remaining occurrences. In general, this does not suffice:
the aggregate also has to be (re)computed when its outcome changes. To indi-
cate such extra conditions under which a rule, and thus its guard, have to be
(re)considered, we introduced two special types of heads: on active heads and
on removal heads. An on active head indicates an additional trigger to fire the
rule: when constraints matching the on active head are activated (i.e. newly
added or reactivated, cf. Section 2.2), the rule is tried. Similarly, an on removal

head indicates that the rule additionally has to be tried when constraints match-
ing the on removal head are removed from the constraint store. Neither of these
types of heads is considered when an occurrence in the regular head is active.
Both new types of heads are implemented with a straightforward source-to-
source transformation. More information can be found in [9].

Line 5 adds the aggregate’s goal G to the original object rule, both as an
on active and as a on removal head. This ensures the guard computing the
aggregate is called, not only when the remainder of the original head is matched,
but also when constraints matching G are added, reactivated, or removed.

Example 4. The rule from Example 2 (Section 3.2) becomes:

account(_,C,_)#on_active, account(_,C,_)#on_removal,

client(C) ==> agg0(C,Sum), Sum ≥ 25000 | platinum(C).

A client’s accumulated balance is thus also (re)computed when the accumulated
balance changes, i.e. each time an account/3 constraint is added or removed.

Issue 1: Updates. Recall the following rule from Example 1 (Section 3.1):

deposit(A,X), account(A,C,B) <=> account(A,C,B+X).

64

The above rule is an instance of a common CHR programming pattern, called
an update: a constraint is removed and immediately replaced with a similar,
updated version. In the context of aggregates however, the removal of the former
may cause aggregates to be recomputed prior to the insertion of the updated
version2. This behavior is not always desired. For instance, in the intermediate
state right after the above rule removes ‘account(A,C,B)’, the accumulated
balance in Example 4 would clearly be incorrect.

As a solution, we introduce pragma passive removal. If a constraint anno-
tated with passive removal is removed, no on removal heads are activated:

deposit(A,X), account(A,C,B) # passive_removal <=> account(A,C,B+X).

Consequently, the aggregate is only recomputed when the new, updated account
is added. This allows the CHR programmer to easily specify the desired behavior.

Lines 6–9. The rules performing the actual aggregate computation are added
to the object program by lines 6 to 9. Line 6 implements the aggi/2 operation.
First, the intermediate aggregate result is initialized using the aggregate’s Start
operation. This intermediate result is stored as a resulti/1 constraint. Then the
matchi/1 constraint is called, causing the intermediate result to be incremented
for each matching aggregate goal G (lines 7–8). To perform the matching with
the aggregate goal G (line 7), the variables V it shares with the remaining head
of the original object rule are needed (line 3).

Example 5. For the sum/3 aggregate in Example 2 the following code is generated
(recall from Example 3 that sum(T,G,A) ≡ aggregate(=(0),plus,minus,=,T,G,A)):

agg0(C,Sum) <=> 0=I, result0(I), match0(C), get0(R), R=A.

match0(C), account(_,C,B) ==> incr0(B).

incr0(B), result0(R1) <=> plus(R1, B, R2), result0(R2).

result0(R), match0(_), get0(Q) <=> Q = R.

If the sum aggregate (the accumulated balance) has to be computed, the result is
initialized to zero, stored as a constraint, and then incremented with the balance
B of each matching account/3 constraint. To perform this match, the variable
C (the client’s identifier) is indeed required.

The intermediate result resulti/1 is incremented through the auxiliary con-
straint incri/1 (line 8). This way, the propagation history of the rule on line 7
ensures that each matching goal G contributes only once. The argument passed
to incri/1 (line 7), and subsequently to Inc (line 8), is the aggregate’s template
T. The refined operational semantics (cf. Section 2.2) ensures that the call to
matchi/1 only returns to the rule body on line 6 after all matchings and incre-
ments are performed. A last auxiliary constraint, geti/1, is then used to retrieve
and remove the computed result (line 8). Finally, this result is finalized using
Final to obtain the aggregate result A (line 6).

2 Similar issues were outlined in [11] in the context of negation as absence.

65

4.3 Incremental Aggregate Computation

The performance of on-demand aggregate computation, described in the previous
section, is not always adequate. Aggregates ranging over large portions of the
constraint store may be recomputed from scratch many times. In such cases, it
is obviously more efficient to maintain the aggregate value incrementally.

1 aggregate(Start,Inc,Dec,Final,T,G,A) <=>

2 new_unique_identifier(i),

3 guard(Guard), remaining_head(Head), shared_vars(Head, (T-G), V),

4 +matchi(V,I), +resulti(I,R), ?Final(R,A),

5 (Head ==> Guard | initi(V)),

6 (matchi(V,_) \ initi(V) <=> true),

7 (initi(V) <=> Start(R), matchi(V,I), resulti(I,R)),

8 (matchi(V,I), G ==> incri(I,T)),

9 (incri(I,T), resulti(I,R1) <=> Inc(R1, T, R2), resulti(I,R2)),

10 (matchi(V,I)#passive, G#on_removal ==> decri(I,T) pragma no_history),

11 (decri(I,T), resulti(I,R1) <=> Dec(R1, T, R2), resulti(I,R2)).

Fig. 2. Transformation scheme for maintained aggregates (a basic, first attempt).

The meta rule in Figure 2 illustrates a basic transformation scheme for incre-
mentally maintained aggregates. The scheme is not yet fully correct with respect
to the ωa operational semantics (cf. Section 3.3) though. Subsequent subsections
will refine it to deal with certain semantical issues, and more complex aggregates
such as nested and non-ground aggregates.

Basic scheme. Similar to the transformation scheme of Section 4.2, aggregate
results are stored in resulti/2 constraints, and matchi/2 constraints are used
to find matches with the aggregate’s goal G (lines 8 and 10). The need for the
extra argument, an aggregate identifier, is explained below.

Line 4 The aggregate is no longer replaced by a guard that computes the ag-
gregate result, but instead with a matchi/2 and a resulti/2 occurrence in the
object rule’s head. Both new occurrences are kept because the computed aggre-
gate result may be needed more than once. Line 4 also adds a guard to finalizes
the aggregate result.

Incremental maintenance (lines 8–11) The resulti/2 and matchi/2 constraints
remain in the store, and the rules added by lines 8–11 ensure these results remain
consistent. Maintained results are incremented each time a new matching is
found for G (lines 8–9), and decremented each time such a matching is removed
(lines 10–11). For the latter, the Dec argument of aggregate/7 is used. This
argument indicates the inverse operation of Inc.

Line 10 The different pragmas and annotations in the rule on line 10 warrant
extra clarification. The rule must not fire when a matchi/2 is active, only when
constraints matching G are removed. Therefore, the matchi/2 occurrence is made

66

passive (pass is short for passive, a common CHR pragma). Reacting to con-
straint removals is done, as in Section 4.2, using an on removal head. Finally,
pragma no history is added, indicating no propagation history has to be kept
for this rule. Otherwise, the rule would only fire once per matchi/2 constraint,
as the on removal head is not included in propagation history tuples.

Aggregate identifiers More than one result may have to be maintained at the
same time. To ensure the right result is updated after a match is found (lines 8
and 10), we let corresponding matchi/2 and resulti/2 constraints share a unique
identifier, and pass this to the incri/2 or decri/2 constraint. Other than that,
the pattern used to increment and decrement the maintained results is the same
as the pattern used in Section 4.2.

Initialization (lines 5–7) Eagerly maintaining all possible aggregate results would
be overly expensive. Aggregate maintenance is instead only started once a match-
ing is found for the remainder of the head, as realized by the rule added on line 5.
The head and guard of this rule are copied from the original object rule (with-
out copying the aggregate head itself), and its body calls an initi/2 auxiliary
constraint. This constraint is removed by the rule on line 6 if the same aggregate
result is already being maintained; in the other case, the rule on line 7 initializes
a new result, stores it as a resulti/2, and adds a matchingi/2 constraint.

Issue 1: Multiple Removals. The basic scheme does not fully implement the
ωa semantics defined in Section 3.3. This subsection addresses a first issue:

Example 6. Consider the following artificial example:

a, count(c, Cs) <=> Cs \== 2 | writeln(Cs).

b \ c, c <=> true.

where the “count(c, Cs)” aggregate counts the number of c/0 constraints.
Now consider the query “c, c, a, b”. First two c constraints are added, then a is
called. The latter causes the count/2 aggregate to be computed. As the result is
equal to two, the first rule does not fire. After adding b, the second rule fires and
removes both c constraints. Suppose the count is maintained incrementally. The
removal of the first c constraint causes the maintained result to be decremented.
The count becomes equal to one, causing the first rule to fire with Cs equal to
one, even though there are no c constraints left. This is clearly not correct. The
reason is that, whilst both c constraints are removed simultaneously, the updates
to the maintained aggregate are performed, and visible, one by one.

Our solution is based on splitting the activation of on removal heads into
two phases: on removal1 and on removal2. When a rule fires, the removed con-
straints are first matched against on removal1 heads. Only after this is done for
all removed constraints, the same is repeated for the on removal2 heads.

Lines 10–11 of Figure 2 are replaced with those in Figure 3. The rules added
on lines 10⋆–11⋆ ensure that first, in the on removal1 phase, all affected aggre-
gates are made consistent. The updated results are not yet used immediately
as in Example 6. Instead, the resulti/2 constraint is added passively to the

67

...

10
⋆ (matchi(V,I)#passive, G#on_removal1 ==> decri(I,T) pragma no_history),

11
⋆ (decri(I,T), resulti(I,R1) <=> Dec(R1,T,R2), resulti(I,R2)#passive)

12
⋆ (matchi(V,I)#passive, G#on_removal2,

13
⋆ resulti(I,_)#Id ==> chr_reactivatei(Id) pragma no_history).

Fig. 3. Code to replace lines 10–11 of the transformation scheme of Figure 2 to correctly
deal with multiple constraint removals. Several new lower-level CHR constructs are
used. Their semantics is explained in the accompanying text.

constraint store, that is, without searching for matching occurrences. Hence the
‘#passive’ annotation in the body of the rule on line 11⋆. The results only
become active once all results are guaranteed consistent again, that is, in the
on removal2 phase (line 12⋆). Activating a constraint is done using the low-level
chr reactivate/1 primitive (line 13⋆).

Issue 2: Updates. The update pattern causes similar issues in the context of
incrementally computed aggregates as described before in Section 4.2, Issue 1.
The solution is analogous as well, only with a slightly refined semantics of pragma
passive removal: if a constraint annotated with passive removal is removed,
no on removal2 heads are activated, only on removal1 heads (cf. previous issue).
As such, the maintained result is passively decremented, but the aggregate only
becomes active when the new, updated account is added.

Issue 3: Nested Aggregates. A second semantical problem with the basic
transformation scheme occurs when applying it to nested aggregates. The main-
tained value of a nested aggregate is incremented and decremented using the
update pattern. The outer aggregate consequently observes the intermediate
state in which the result/2 constraint holding the old maintained value of the
nested aggregate is removed and the new, updated version is not yet added. The
solution consists of slightly adjusting lines 9 and 11 in Figure 2, and line 11⋆ in
Figure 3, to use pragma passive removal for updates to result/2 constraints.

Issue 4: Propagation Histories. The transformation scheme adds two ex-
tra heads per aggregate. However, according to the ωa semantics these are not
allowed to be part of the propagation history. Pragma history/2, introduced
in [9], can be used to explicitly specify which occurrence identifiers have to be
included in the history tuples. Thus the issue is solved by adding the following
code after line 3 of Figure 2 (histi is a unique identifier):

..., identifiers(Head, Ids), pragma(history(histi, Ids)), ...

Issue 5: Non-ground Aggregates. Two final issues occur when aggregating
over goals containing non-ground variables:

– A single built-in constraint (e.g. unification) may cause multiple goals to
match. The problem is analogous to Issue 1 on multiple removals. It has to
be ensured that first all aggregates are updated, i.e. incremented in this case,
before the aggregate results are activated.

68

0.5

1

2

4

128 256 512 1k 2k 4k 8k 16k 32k

R
u

n
ti

m
e/

in
p

u
t

si
ze

in
m

s
(l

o
g
sc

a
le

)

Input size (logscale)

HOPCROFT-agg

DIJKSTRA-agg
EULER-agg

HOPCROFT-orig

DIJKSTRA-orig
EULER-orig

Fig. 4. Runtimes for three programs, with and without aggregates.

– A unification can cause two or more match/2 constraints to coincide. To
preserve correctness, we would have to add the following rule to Figure 2:

..., (matchi(V,_) \ matchi(V,I), result(I,_) <=> true), ...

Unfortunately, the refined operational semantics (which is used to execute the
result of the transformation), does not determine the order in which constraints
are reactivated (cf. Section 2.2). This implies their is no clear-cut way to ensure
all aggregates are made consistent, or duplicate maintained results are removed,
before other CHR constraints are reactivated and use the incorrect aggregate
values. This lack of control is a general problem of current CHR systems, that
warrants further research outside the scope of this paper (see also [2] and Sec-
tion 5). Fortunately, most aggregates range over ground data. For aggregates
ranging over non-ground data, only the on-demand transformation is correct.

5 Discussion and Evaluation

Performance Evaluation. In [8, 9] we revised a number of existing CHR pro-
grams to use aggregates. Because our transformation schemes have to deal with
all possible use patterns of aggregates, and the original programs are manu-
ally specialized, we expect the programs using aggregates to be slower than the
original programs. Our prototype implementation however shows the runtime
complexity can be maintained, with an acceptable constant overhead. Figure 4
plots benchmark results for the different versions of the DIJKSTRA, EULER,
and HOPCROFT programs (cf. [8, 9]). The DIJKSTRA-agg program is about
three times slower than the manually specialized DIJKSTRA-orig. For EULER

and HOPCROFT, the version with aggregates is only about 1.5 times slower.

69

The DIJKSTRA-agg program uses an incrementally maintained min aggre-
gate. The implementation of this aggregate relies on an efficient priority queue
implementation. This illustrates another advantage of language support for ag-
gregates: the data structures required for efficient aggregate computation only
have to be implemented once; end users no longer have to worry about this.

For the above figures, a transformation scheme presented in [9] is used for
the incrementally maintained aggregates. This scheme is an extended version
of the scheme of Section 4.3, in which aggregates are still replaced by guards.
The incremental scheme of Section 4.3 considerably improves the latter scheme:
it permits efficient indexing on aggregate results, and failing guards no longer
backtrack over result maintenance. For the above benchmarks though, we expect
no significant difference in performance.

Discussion. Section 4 indicated several issues that occur when transforming to
CHR code. A common thread is the lack of control offered by the refined opera-
tional semantics, a problem also perceived outside the context of aggregates (cf.
[2]). Whilst the low-level constructs we introduced in this paper are acceptable
for generated code or expert use, more high-level, declarative control structures
are required for the CHR programmer. A first step are the user-definable rule
priorities introduced by [2].

Related Work. Constructs related to aggregates are found in many languages.
For SQL [10], which unlike CHR [7] is not Turing-complete, aggregates do add
computational power. The original SQL standard only supports five aggregates:
min, max, count, sum, and avg. Many recent database systems also include the
possibility to extend the database query language with user-defined aggregates.

Recently, several production rule systems introduced a general accumulate
construct, similar to our aggregate/7. As far as we know, current versions lack
support for nested aggregates, complex goals, and incremental maintenance.

In logic programming, the best-known practical implementation of aggre-
gates are the all solutions predicates findall/3, bagof/3 and setof/3. Other
aggregates can be implemented in terms of these all solutions predicates.

In [11] we introduced CHR¬, an extension of CHR with negation as absence.

CHR with aggregates is a far more expressive generalization of CHR¬as negation
as absence can easily be expressed using the count/2 aggregate.

6 Conclusion and Future Work

In this paper we presented an implementation approach for aggregates, a new
declarative language feature for CHR that considerably increases its expressive-
ness. The approach is based on source-to-source transformation to regular CHR
(extended with some low-level constructs). As a side-effect of our work, we cre-
ated a practical, high-level source-to-source framework based on meta CHR rules.
We outlined the design of non-trivial transformation schemes for on-demand and

70

incremental aggregate computation, and clearly showed the effectiveness of CHR-
to-CHR transformations. The source-to-source implementation approach allows
for flexible and rapid implementations, easily portable to existing CHR systems.
The current generation of optimizing CHR compilers ensure the desired runtime
complexity is achieved, with an acceptable constant overhead. We clearly iden-
tified the issues that occur when transforming to CHR, and showed how they
can be addressed using newly introduced low-level constructs. Several of these
constructs have already proven useful outside the context of aggregates (e.g. [2]).

In future work, various ways can be investigated to improve the efficiency of
our aggregates implementation. In particular, both specializations on the source
level and dedicated support in the CHR compiler can be considered. Even though
source-to-source transformation remains effective for aggregates in their full gen-
erality, specific cases can e.g. be distinguised where incremental maintenance of
aggregates can be embedded directly in the constraint store insertion and re-
moval operations. Also, static and dynamic analyses can be developed to auto-
matically select the aggregate computation strategy (on-demand, incremental,
or maybe hybrid strategies).

References

1. The CHR Home Page. http://www.cs.kuleuven.be/∼dtai/projects/CHR/.
2. Leslie De Koninck, Tom Schrijvers, and Bart Demoen. User-definable rule priorities

for CHR. In 9th International ACM SIGPLAN Symposium on Principles and
Practice of Declarative Programming, pages 25–36, Wroc law, Poland, July 2007.

3. Gregory J. Duck, Peter J. Stuckey, Maŕıa Garćıa de la Banda, and Christian
Holzbaur. The refined operational semantics of Constraint Handling Rules. In
20th Intl. Conf. Logic Programming, LNCS 3132, Saint-Malo, France, 2004.

4. Thom Frühwirth. Theory and practice of Constraint Handling Rules. Journal of
Logic Programming, 37(1–3):95–138, October 1998.

5. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Meda, Christina Lopes,
Jean-Marc Loingtier, and John Irwing. Aspect oriented programming. In European
Conference on Object-Oriented Programming (ECOOP). LNCS 1241, 1997.

6. Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: Implementation
and application. In Selected Contributions, First Workshop on Constraint Handling
Rules, May 2004. Home page at http://www.cs.kuleuven.be/∼toms/CHR/.

7. Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and
complexity of Constraint Handling Rules. In Second Workshop on Constraint
Handling Rules, pages 3–17, Sitges, Spain, October 2005.

8. Jon Sneyers, Peter Van Weert, Tom Schrijvers, and Bart Demoen. Aggregates in
CHR. In Fourth Workshop on Constraint Handling Rules, 2007. To appear.

9. Jon Sneyers, Peter Van Weert, Tom Schrijvers, and Bart Demoen. Aggregates in
CHR. Technical Report CW481, Dept. Computer Science, K.U.Leuven, 2007.

10. ISO/IEC 9075:2003: Information technology – Database languages – SQL.
11. Peter Van Weert, Jon Sneyers, Tom Schrijvers, and Bart Demoen. Extending CHR

with negation as absence. In Third Workshop on Constraint Handling Rules, pages
125–139, Venice, Italy, 2006.

12. Jan Wielemaker. An overview of the SWI-Prolog programming environment. In
13th Intl. Workshop on Logic Programming Environments, pages 1–16, Heverlee,
Belgium, 2003. Home page at http://www.swi-prolog.org.

71

Generation of Rule-based Constraint Solvers:

Combined Approach

Slim Abdennadher and Ingi Sobhi

Computer Science Department, German University in Cairo
[slim.abdennadher, ingi.sobhi]@guc.edu.eg

http://www.cs.guc.edu.eg

Abstract. Inductive Constraint Solving is a subfield of inductive ma-
chine learning concerned with the automatic generation of rule-based
constraint solvers. In this paper, we propose an approach to generate
constraint solvers given the definition of the constraints that combines
the advantages of generation by construction with generation by testing.
In our proposed approach, semantically valid rules are constructed sym-
bolically, then the constructed rules are used to prune the search tree of
a generate and test method. The combined approach leads in general to
more expressive and efficient constraint solvers. The generated rules are
implemented in the language Constraint Handling Rules.

1 Introduction

In rule-based constraint solving, the execution of constraints consists of a re-
peated application of rules. In general, we distinguish between two types of
rules:

– Simplification rules that rewrite constraints to simpler constraints while pre-
serving logical equivalence (e.g. min(A, A, C)⇔ C=A).

– Propagation rules that add new constraints, which are logically redundant
but may cause further simplification (e.g. min(A, B, C)⇒ C≤A ∧ C≤B).

Writing rule-based constraint solvers is a hard task as the programmer has to
determine the propagation algorithms. Several methods have been proposed in
the field of inductive constraint solving to automate the generation of constraint
solvers for constraints defined extensionally over finite domains by means of a
truth table [5, 9, 2] or intentionally over infinite domains by means of a constraint
logic program (CLP) [3, 4]. In general, the algorithms follow a generate and
test approach. Rule candidates are enumerated and subjected to a validity test
against the definition of the constraint.
In this paper, we present a joined approach that combines the generate and test
method with a symbolic construction method. Each method has its advantages
and drawbacks. The construction method is an orthogonal approach to the gen-
eral direction of the work done in the field. While it is able to generate recursive
rules that cannot be generated by the generate and test method, it is likely to

72

cover a narrower spectrum of rules. The generate and test method on the other
hand generates a more exhaustive set of rules, however this does come at a cost.
Our aim is to combine the advantages of the two approaches, while minimizing
the drawbacks.

In our combined approach, we first construct semantically valid rules symboli-
cally. Then, we use the constructed rules to prune the search tree of the generate
and test method. This will generally lead to more powerful and expressive con-
straint solvers at a reduced cost.

In the following, we will illustrate the combined approach by an example.

Example 1. Given the following CLP program defining min(A, B, C) that holds
if C is the minimum of A and B.

min(A, B, C)← A≤B ∧ C=A.

min(A, B, C)← A>B ∧ C=B.

The combined approach will construct rules symbolically.

Symbolic Construction The basic idea of the symbolic construction method
stems from the observation that in general, the execution of one clause in a
CLP program excludes the execution of all other clauses. Thus, to construct a
simplification rule that replaces the head of a clause by the body of the clause
while preserving the semantics of the CLP program, the construction algorithm
adds to the head of the rule the negation of the bodies of all the other clauses.
The negation of the bodies of clauses may result in a disjunction of constraints,
thus for each clause a set of rules might be generated. Note that constraints
that are added to the head of the rule are also added to its body to ensure that
constraints removed unnecessarily are added again.

The construction algorithm generates the following simplification rules:

min(A, B, C) ∧ A≤B ⇔ A≤B ∧ C=A.

min(A, B, C) ∧ C 6=B ⇔ A≤B ∧ C=A ∧ C 6=B.

min(A, B, C) ∧ A>B ⇔ A>B ∧ C=B.

min(A, B, C) ∧ C 6=A ⇔ A>B ∧ C=B ∧ C 6=A.

To generate a simplification rule that replaces the head of the first clause with
the body of the clause, the construction algorithm negates the bodies of all other
clauses (i.e. second clause) to add to the head of the rule. The negation of the
body of the second clause gives A≤B ∨ C 6=B, a disjunction of constraints.
This results in two separate rules (first and second rule), one for each disjunct.
Similarly, the last two rules are generated from the second clause.

Then the combined approach will eliminate the above constructed rules from the
search tree of the generate and test algorithm. The generate and test algorithm
used is the one proposed in [4].

73

Generate and Test All possible candidate constraints for the left hand side C

of the rule and right hand side D of the rule are generated and tested based on
the observation that a rule of the form C ⇒ D is valid if the execution of the
goal C ∧ ¬(D) finitely fails with respect to the definition.

The generate and test algorithm will add the following rules to the constraint
solver:

min(A, B, C) ⇒ C≤A ∧ C≤B.

min(A, B, C) ∧ B≤A ⇔ B≤A ∧ C=B.

The propagation rule (first rule) is generated by calling the CLP system to
execute the goal min(A, B, C) ∧ C>A ∧ C>B that fails.

The generated solvers are implemented in the language Constraint Handling
Rules (CHR) [8].

The paper is organized as follows. The generate and test algorithm of [4] is
summarized in Section 2. In Section 3, we present the construction algorithm.
Then in Section 4, we present the combined approach. Finally, we conclude in
Section 5 with a summary and future work.

2 Generate and Test Method

In this section, we summarize the generate and test algorithm that we use for the
combined approach and which is given in [4]. The algorithm requires as input a
CLP program defining the user-defined constraint for which the solver is needed.

Definition 1. A CLP program is a finite set of CLP clauses. A CLP clause is

a rule of the form H ← B1 ∧ . . . ∧ Bn ∧ C1 ∧ . . . ∧ Cm where H, B1, . . . , Bn are

atoms and C1, . . . , Cm are built-in constraints. H is called the head of the clause

and B1∧ . . .∧Bn∧C1∧ . . .∧Cm is called the body of the clause. A user-defined

constraint is defined in a CLP program if it occurs in the head of the clause.

The algorithm also requires the following sets which specify the syntactic form
of the generated rules of the solver:

– A set of built-in and user-defined constraints denoted by Baselhs. These
constraints are the common part that must appear in the left hand side
(lhs) of all rules.

– A set of built-in and user-defined constraints denoted by Candlhs. These are
the candidate constraints to be used in conjunction with the Baselhs to form
the lhs of a rule.

– A set containing built-in constraints denoted by Candrhs. These are the
candidate constraints that may appear in the right hand side (rhs) of a rule.
This set can be expanded to contain user-defined constraints.

74

Example 2. To generate a constraint solver for min constraint of Example 1, the
algorithm takes as input the CLP program defining the constraint, as well as,
the following sets:

Baselhs = {min(A, B, C)}

Candlhs = {A=B, A=C, B=C, A6=B, A6=C, B 6=C,

A≤B, A≤C, B≤A, B≤C, C≤A, C≤B}

Candrhs = Candlhs

Example 3. To generate a constraint solver for append(A, B, C) that holds if
list C is the concatenation of lists A and B, the algorithm takes as input the
following CLP program:

append(A, B, C)← A=[] ∧ C=B.

append(A, B, C)← A=[D|E] ∧ C=[F |G] ∧ D=F ∧ append(E, B, G).

As well as, the following sets:

Baselhs = {append(A, B, C)}

Candlhs = {A=[], B=[], C=[], A=B, A=C, B=C, A6=B, A6=C, B 6=C,

A6=[], B 6=[], C 6=[]}

Candrhs = Candlhs

Given the specified input parameters, candidate propagation rules are generated
of the form C ⇒ D, where C the lhs of the rule is a subset of Baselhs∪Candlhs,
and D the rhs of the rule is a subset of Candrhs. The candidate rules are then
subjected to a validity test as follows:

– For primitive propagation rules (i.e. rules with rhs consisting of only built-in
constraints), the validity test is based on the observation that a rule of the
form C ⇒ D is valid if the execution of the goal C ∧¬(D) finitely fails with
respect to the given CLP program and the predefined solver for the built-in
constraints.

– For general propagation rules (i.e. rules with rhs consisting of both built-in
and user-defined constraints) to avoid the problems relating to the negation
of user-defined constraints, a different validity test is proposed where the
negation is performed on the set of answers to a goal (set of constraints)
rather than on the constraints themselves.

For the execution of the goals, a bounded depth tabled resolution [6, 7] for CLP is
used to avoid non-termination. The intuitive basic principle of tabled resolution
is the following: each new subgoal S is compared to the previous intermediate
subgoals (not necessarily in the same branch of the resolution tree). If there is
a previous subgoal I which is equivalent to S or more general than S, then no
more unfolding is performed on S and answers for S are selected among the
answers of I . This process is repeated for all subsequent computed answers that
correspond to the subgoal I .

75

Example 4. Consider the following primitive propagation rule which is generated
by the algorithm for the append constraint:

append(A, B, C) ∧ B=[] ⇒ A=C.

The validity test for the rule is determined from the execution of the goal
append(A, B, C) ∧ B=[] ∧ A6=C. Using a classical CLP resolution scheme, the
goal will lead to an infinite derivation tree, whereas in the case of a tabled reso-
lution, the execution of the goal will fail as shown by the derivation tree below:

append(A,B, C) ∧ B=[] ∧A6=C

zzu
u
u
u
u
u
u
u
u
u

))SSSSSSSSSSSSSSSS

A = [] ∧B=C ∧B=[] ∧A6=C

��

A=[D|E] ∧ C=[D|G] ∧ append(E,B, G) ∧B=[] ∧ A6=C

��

false false

The initial goal G1 = (append(A, B, C) ∧ B=[] ∧ A6=C) is more general than
the subgoal G2 = (A=[D|E] ∧ C=[D|G] ∧ append(E, B, G) ∧ B=[] ∧ A6=C),
in the sense that (append(X, Y, Z) ∧ U=[W |X] ∧ V =[W |Z] ∧ Y =[] ∧ U 6=V)
entails (append(X, Y, Z) ∧ Y =[] ∧ X 6=Z). So no unfolding is made on G2, and
the process waits for answers of G1 to compute answers of G2. Since G1 has no
further possibility of having answers, then G2 fails and thus G1 also fails.

Since a propagation rule does not remove constraints but adds new ones, the
constraint store may contain superfluous information. To improve the time and
space behavior of constraint solving, propagation rules should be transformed
into equivalent simplification rules. For some of the automatically generated
propagation rules a transformation to simplification rules is possible. For a valid
propagation rule of the form C ⇒ D, if a proper subset E of C can be found
such that D ∪E ⇒ C is valid too then the propagation rule can be transformed
to a simplification rule of the form C ⇔ D ∪ E.

Example 5. For the min constraint of Example 1, the generate and test algo-
rithm generates the following valid rules:

min(A, B, C) ⇒ C≤A ∧ C≤B. (1)

min(A, B, C) ∧ C 6=A ⇔ C=B ∧ C 6=A. (2)

min(A, B, C) ∧ C 6=B ⇔ C=A ∧ C 6=B. (3)

min(A, B, C) ∧ A≤B ⇔ C=A ∧ A≤B. (4)

min(A, B, C) ∧ B≤A ⇔ C=B ∧ B≤A. (5)

The set of generated rules is complete, i.e. it propagates all built-in constraints
(equalities and inequalities) that logically follow from the min constraint defini-
tion and some given equalities or inequalities.

76

Example 6. For the append constraint of Example 3, the generate and test al-
gorithm generates among others the following valid rules:

append(A, B, C) ∧ A=[] ⇔ A=[] ∧ B=C.

append(A, B, C) ∧ B=[] ⇔ A=C ∧ B=[].

append(A, B, C) ∧ C=[] ⇔ A=[] ∧ B=[] ∧ C=[].

append(A, B, C) ∧ A=C ⇔ B=[] ∧ A=C.

append(A, B, C) ∧ A6=[] ⇒ C 6=[].

append(A, B, C) ∧ B 6=[] ⇒ A6=C ∧ C 6=[].

The rules handle only special cases, where equality or inequality constraints are
checked between the arguments of the constraint and the empty list. The solver
is incomplete due to the absence of recursive rules that are able to handle more
general cases.

3 Symbolic Construction Method

In this section, we present an algorithm that constructs simplification rules sym-
bolically for a constraint H defined by a CLP program, as follows:

H ← C1, H ← C2, . . . , H ← Cn.

where Ci is a conjunction of constraints, n is the total number of clauses and
the clauses are non-overlapping (i.e. in a computation at most one clause can be
chosen for a goal). Note that any overlapping CLP program can be transformed
into an equivalent non-overlapping one.
The algorithm is presented in Figure 1. The basic idea of the algorithm stems
from the observation that in general, the execution of one clause in a CLP
program excludes the execution of all other clauses. Thus, to construct a valid
simplification rule that simplifies the constraint H to Ci (the body of the ith

clause), the negation of the bodies of all other clauses is added to the head of the
rule to ensure that the rule will only be applicable if the bodies of all the other
clauses are not. This is needed to preserve the semantics of the CLP program
defining the constraint.
The algorithm works as follows. For each clause H ← Ci in the CLP program,
it constructs the simplification rule(s) by:

– Setting the head of the rule to H .
– Setting the body of the rule to Ci.
– Adding to the head of the rule G

j
i ; a disjunct from Gi, the expression result-

ing from negating the bodies of all the CLP clauses excluding Ci.
– Adding to the body of the rule G

j
i . This is done to ensure that constraints

removed unnecessarily from the constraint store are added again.

The constructed simplification rules are of the form:

H ∧G
j
i ⇔ Ci ∧G

j
i 1≤j≤mi, 1≤i≤n

where G
j
i is a conjunction of built-in constraints from Gi and mi is the number

of disjuncts G
j
i in Gi.

77

begin

H: the head of the clauses.
B: the set of clause bodies.
R: the set of resultant simplification rules initialized to [].

while B is not empty do

Remove from B its first element denoted Ci.
OtherB : the set of all clause bodies except Ci.
Gi: the set resulting from negating OtherB .
while Gi is not empty do

Remove from Gi its first element denoted G
j
i .

Add rule (H ∧ G
j
i ⇔ Ci ∧G

j
i) to R.

end while

end while

end

Fig. 1. The Symbolic Construction Algorithm

Determination of Gi Given a clause H ← Ci, the expression Gi is formally
determined as follows:

– Negate the bodies of all clauses of the CLP program except the body Ci:

¬ (C1 ∨ . . . ∨ Ci−1 ∨ Ci+1 ∨ . . . ∨ Cn)

– Distribute the negation:

¬C1 ∧ . . . ∧ ¬Ci−1 ∧ ¬Ci+1 ∧ . . . ∧ ¬Cn

Since Ci is a conjunction of constraints, this expands to:

¬
(

c1
1 ∧ . . . ∧ ck1

1

)

∧ . . . ∧ ¬
(

c1
(i−1) ∧ . . . ∧ c

k(i−1)

(i−1)

)

∧

¬
(

c1
(i+1) ∧ . . . ∧ c

k(i+1)

(i+1)

)

∧ . . . ∧ ¬
(

c1
n ∧ . . . ∧ ckn

n

)

where ki denotes the number of constraints in a body Ci.
– Push the negation into the conjunctions. This transforms the conjunctions

of constraints to disjunctions of negated constraints:
(

¬c1
1 ∨ . . . ∨ ¬ck1

1

)

∧ . . . ∧
(

¬c1
(i−1) ∨ . . . ∨ ¬c

k(i−1)

(i−1)

)

∧

(

¬c1
(i+1) ∨ . . . ∨ ¬c

k(i+1)

(i+1)

)

∧ . . . ∧
(

¬c1
n ∨ . . . ∨ ¬ckn

n

)

– Replace each negated constraint ¬cd
q by a corresponding simplified positive

constraint. The algorithm distinguishes between two cases:

78

• If cd
q is a built-in constraint, the algorithm replaces ¬cd

q by its correspond-
ing positive constraint after simplification. The set of built-in constraints
is assumed to be closed under negation. For obtained constraints that
consist of local variables (i.e. variables that do not occur in H), the al-
gorithm adds the built-in constraints (in their positive form) from the
body Cq that define the local variables.

• Otherwise, cd
q is a user-defined constraint and since the negation of user-

defined constraints is still not well-defined, the algorithm discards ¬cd
q

(i.e. no rules will be constructed for this case).
This results in a formula of the form:

(

P 1
1 ∨ . . . ∨ P l1

1

)

∧ . . . ∧
(

P 1
(i−1) ∨ . . . ∨ P

l(i−1)

(i−1)

)

∧

(

P 1
(i+1) ∨ . . . ∨ P

l(i+1)

(i+1)

)

∧ . . . ∧
(

P 1
n ∨ . . . ∨ P ln

n

)

where P e
i is a built-in constraint or a conjunction of built-in constraints and

li denotes the number of built-in constraints in a disjunct Ci.
– Distribute the conjunction over the disjunction:

(

P 1
1 ∧ . . . ∧ P 1

(i−1) ∧ P 1
(i+1) ∧ . . . ∧ P 1

n

)

∨ . . . ∨

(

P l1
1 ∧ . . . ∧ P

l(i−1)

(i−1) ∧ P
l(i+1)

(i+1) ∧ . . . ∧ P ln
n

)

This results in Gi, which is a formula in disjunctive normal form G1
i ∨ . . . ∨

Gmi

i , where G
j
i is a conjunction of built-in constraints.

Example 7. Given the CLP program for the append of Example 3:

append(A, B, C)← A=[] ∧ C=B.

append(A, B, C)← A=[D|E] ∧ C=[F |G] ∧ D=F ∧ append(E, B, G).

The symbolic construction algorithm will construct rules for the first clause by
setting the head of the rules to append(A, B, C) and the body of the rules to
the body of the clause, A=[] ∧ C=B. It then determines G1, the expression
resulting from negating the bodies of all other clauses as follows:

– Negate the body of the second clause:

¬(A=[D|E] ∧ C=[F |G] ∧ D=F ∧ append(E, B, G))

– Distribute the negation:

¬(A=[D|E]) ∨ ¬(C=[F |G]) ∨ ¬(D=F) ∨ ¬(append(E, B, G))

– Given that the equality constraint is a built-in constraint defined by a con-
straint theory and for which a solver is available, the algorithm performs the
following operations:

79

• It replaces ¬(A=[D|E]) and ¬(C=[F |G]) by A6=[D|E] and C 6=[F |G]
which will be simplified by the built-in solver to A=[] and C=[], respec-
tively.

• It replaces ¬(D=F) by D 6=F . Since D and F are local variables, the
built-in constraints A=[D|E] and C=[F |G] that define the local variables
to be the first elements of the lists A and C are added.

– Negated user-defined constraint ¬(append(E, B, G)) is discarded.

This results in

A=[] ∨ C=[] ∨ (D 6=F ∧ A=[D|E] ∧ C=[F |G])

and the following three simplification rules are constructed:

append(A, B, C) ∧ A=[]⇔ A=[] ∧ C=B.

append(A, B, C) ∧ C=[]⇔ A=[] ∧ C=B ∧ C=[].

append(A, B, C) ∧ D 6=F ∧ A=[D|E] ∧ C=[F |G]⇔ A=[] ∧ C=B ∧

D 6=F ∧ A=[D|E] ∧ C=[F |G].

Similarly, the following simplification rules are constructed for the second clause:

append(A, B, C) ∧ A6=[]⇔ A=[D|E] ∧ C=[F |G] ∧ D=F ∧

append(E, B, G) ∧ A6=[].

append(A, B, C) ∧ C 6=B ⇔ A=[D|E] ∧ C=[F |G] ∧ D=F ∧

append(E, B, G) ∧ C 6=B.

The rules are recursive. The power of the symbolic construction algorithm is in
the generation of such recursive rules given a recursive constraint definition.

Simplification In general, the simplification rules constructed are not in the
simplest form. To simplify the constructed rules, the head and body of the rules
are executed against the solvers for the built-in constraints.

Example 8. Consider the following constructed rule for append:

append(A, B, C) ∧ D 6=F ∧ A=[D|E] ∧ C=[F |G]⇔ A=[] ∧ C=B ∧

D 6=F ∧ A=[D|E] ∧ C=[F |G].

Since the existence of the constraints A=[] and A = [D|E] leads to a contradic-
tion, the rule will be simplified to :

append(A, B, C) ∧ D 6=F ∧ A=[D|E] ∧ C=[F |G]⇔ false.

80

Redundancy In general, the generated rules may contain redundant rules. To
remove redundant rules, the same algorithm is used as the one summarized in the
redundancy pruning in Section 4, which basically states that a rule is redundant
and should be removed if its operation is covered by the remaining rules of the
solver.

Example 9. Consider the following two rules of the constructed solver for append:

append(A, B, C) ∧ D 6=F ∧ A=[D|E] ∧ C=[F |G]⇔ false.

append(A, B, C) ∧ A6=[]⇔ A=[D|E] ∧ C=[F |G] ∧ D=F ∧

append(E, B, G).

The first rule is redundant and can be removed since removing it and executing
the goal append(A, B, C) ∧ D 6=F ∧ A=[D|E] ∧ C=[F |G] on the remaining
rules, the second rule will be fired and leads to a contradiction.

Example 10. For the append of Example 3, the simplification rules reduce to the
following set:

append(A, B, C) ∧ A=[]⇔ C=B ∧ A=[].

append(A, B, C) ∧ C=[]⇔ C=B ∧ A=[] ∧ C=[].

append(A, B, C) ∧ A6=[]⇔ A=[D|E] ∧ C=[F |G] ∧ D=F ∧

append(E, B, G).

append(A, B, C) ∧ C 6=B ⇔ A=[D|E] ∧ C=[F |G] ∧ D=F ∧

append(E, B, G) ∧ C 6=B.

The rules cover some of the cases, where list A is empty (first and second rules),
as well as, when it consists of at least one element (third and fourth rules). In the
latter case, the simplification rule is called recursively on each of the elements of
list A. However, it should be noted that the solver is not propagation complete,
i.e. it does not produce all built-in constraints that logically follows from the
constraint definition such as that the list B is empty if it is known that the lists
A and C are equal.

Recursive Rules The power of the symbolic construction approach is its ability
to generate recursive rules which cannot be generated by other approaches.

Example 11. Consider the following CLP program that defines the constraint
replace(A, B, C, D) that holds if list D is the result of replacing all occurrences
of A in list C by B.

replace(A, B, C, D) ← C=[] ∧ D=[].

81

replace(A, B, C, D) ← C=[E|F] ∧ D=[G|H] ∧ E=A ∧ G=B ∧

replace(A, B, F, H).

replace(A, B, C, D) ← C=[E|F] ∧ D=[G|H] ∧ E 6=A ∧ G=E ∧

replace(A, B, F, H).

The symbolic construction algorithm will generate the following simplification
rules:

replace(A, B, C, D) ∧ C=[]⇔ C=[] ∧ D=[].

replace(A, B, C, D) ∧ D=[]⇔ C=[] ∧ D=[].

replace(A, B, C, D) ∧ C=[E|F] ∧ E=A⇔ C=[E|F] ∧ D=[G|H] ∧

E=A ∧ G=B ∧ replace(A, B, F, H).

replace(A, B, C, D) ∧ C=[E|F] ∧ E 6=A⇔ C=[E|F] ∧ D=[G|H] ∧

G=E ∧ E 6=A ∧ replace(A, B, F, H).

replace(A, B, C, D) ∧ D=[G|H] ∧ G6=B ⇔ C=[E|F] ∧ D=[G|H] ∧

G=E ∧ E 6=A ∧ G6=B ∧ replace(A, B, F, H).

replace(A, B, C, D) ∧ C=[E|F] ∧ D=[G|H] ∧ G6=E ⇔ C=[E|F] ∧

D=[G|H] ∧ E=A ∧ G=B ∧ G6=E ∧ replace(A, B, F, H).

The symbolic construction algorithm constructs the rules by direct derivation
from the definition. The first two rules apply when the lists are empty. The
last four rules apply when information is known about either of the leading list
elements E or G or when the relationship between them is sufficiently known.
The rules do not cover all possibilities, however they represent a good basis for
a constraint solver for replace(A, B, C, D).

4 Combined Approach

Both the symbolic construction method and the generate and test method have
advantages and disadvantages. The symbolic construction method is able to gen-
erate recursive rules where all other approaches based on generation and testing
failed. However, the generate and test, in general, generates a more exhaustive
set of rules.
In this section, we will present a combination of the symbolic construction
method and the generate and test method that will lead to more powerful and
expressive constraint solvers at a reduced cost of generation.
We will first construct semantically valid rules using the symbolic construction
method then we will use the generated rules to prune the search tree of the
generate and test method using the closure pruning technique. However, even
with this pruning technique, the combined approach generates redundant rules
that should be removed. This will be done using the second pruning technique.

82

1. Closure Pruning : If a rule of the form C ⇔ D is generated using the symbolic
construction algorithm then in the generate and test method there is no need
to consider rules where the lhs constraint is C. Thus, during the enumeration
of all possible rule lhs, unnecessary lhs candidates are removed from this list.
For efficiency reasons, the concrete implementation is not based on a list but
on a tree containing lhs candidates on its nodes.

2. Redundancy Pruning : To suppress the generation of redundant rules, we
use the algorithm proposed in [1]. The idea of the algorithm is based on
operational equivalence of programs. The operational equivalence test for
redundancy removal is to check if the computation step due to the candidate
rule that is tested for redundancy can be performed by the remainder of the
program. This is done by executing the prefix of the candidate rule in both
programs and comparing the results. If the results are identical, then the
rule is obviously redundant and can be removed.
A redundant rule is defined formally as follows:

Definition 2. A rule R is redundant in a program P if and only if for all

states S: If S 7→∗
P S1 then S 7→∗

P\{R} S2, where S1 and S2 are final states

and are identical upto renaming of variables and logical equivalence of built-

in constraints. 7→∗
P denotes the reflexive and transitive closure of 7→P .

The redundancy pruning technique is non-deterministic since the resulting
solver may vary depending on the order in which rules are tried and removed.

Example 12. For the min constraint of Example 1, the symbolic construction
method generates the following rules:

min(A, B, C) ∧ A≤B ⇔ A≤B ∧ C=A. (6)

min(A, B, C) ∧ C 6=B ⇔ A≤B ∧ C=A ∧ C 6=B. (7)

min(A, B, C) ∧ A>B ⇔ A>B ∧ C=B. (8)

min(A, B, C) ∧ C 6=A ⇔ A>B ∧ C=B ∧ C 6=A. (9)

The generate and test algorithm will first generate the propagation rule (Rule 1).
Using the closure pruning technique, Rules 2, 3, and 4 are not checked. Rule 5
will be generated since there is no rule that checks for B ≤ A. Combining both
sets of rules, Rule 8 will be eliminated using the redundancy pruning technique
since it is covered by Rule 5. The combined approach generates the same rules as
the ones generated using the generate and test method however less candidate
rules are checked.

In general, the set of rules generated using the combined approach is more ex-
pressive and powerful than the ones generated either using the generate and test
method or using the symbolic construction method as illustrated in the following
example.

Example 13. For the append constraint, the combined approach generates the
following rules using the symbolic construction method:

append(A, B, C) ∧ A=[]⇔ C=B ∧ A=[].

83

append(A, B, C) ∧ C=[]⇔ C=B ∧ A=[] ∧ C=[].

append(A, B, C) ∧ A6=[]⇔ A=[D|E] ∧ C=[F |G] ∧ D=F ∧

append(E, B, G).

append(A, B, C) ∧ C 6=B ⇔ A=[D|E] ∧ C=[F |G] ∧ D=F ∧

append(E, B, G) ∧ C 6=B.

Then the following rules (among others) will be added from the generate and
test method:

append(A, B, C) ∧ B=[] ⇔ A=C ∧ B=[]. (10)

append(A, B, C) ∧ A=C ⇔ B=[] ∧ A=C. (11)

append(A, B, C) ∧ B 6=[] ⇒ A6=C. (12)

Adding these rules improves the efficiency of the solver. For example, with
Rule 10 the recursion over the list A is replaced by a simple unification A = C if
list B is empty.

Implementation in CHR The head of the generated rules may contain con-
straints that are built-in constraints for the CHR system. To have a running
CHR solver, these constraints should be removed from the head. This is done in
two steps:

– Equality constraints appearing in the head of a rule are propagated all over
the constraints in the head and body of the rule. Then the resulting con-
straints are simplified. This can be performed as follows. In turn, each equal-
ity constraint appearing in the head is removed and transformed in a sub-
stitution that is applied to the head and body.

– For other built-in constraints, the transformation leads to guarded CHR
rules [8].

Example 14. The following simplification rule for min:

min(A, B, C) ∧ B≤A⇔ B≤A ∧ C=B.

will be transformed to the following guarded CHR simplification rule:

min(A, B, C)⇔ B≤A | C=B.

Equivalent Definitions – Same Solvers The generate and test method is
based on enumerating rule candidates and checking their validity against the
intentional definition. Thus, having two equivalent definitions the generate and
test will generate always the same set of rules.
However, using the symbolic construction method, the set of generated rules for
a constraint may differ for different but equivalent definitions of the constraint.

84

The following example will show that the more compact the set of clauses is,
the more expressive the constructed solver is. This is intuitively clear since the
construction method generates rules for a clause by negating the bodies of all
other clauses which are added to the head and the body of the rule. In general,
negating more than a clause will lead to adding more than one constraint to the
head of the rule making it more restrictive.

Example 15. The constraint min of Example 1 can be defined by an equivalent
CLP program consisting of three clauses instead of two as follows:

min(A, B, C) ← A<B ∧ C=A.

min(A, B, C) ← A>B ∧ C=B.

min(A, B, C) ← A=B ∧ C=A.

The symbolic construction algorithm generates the following set of simplification
rules:

min(A, B, C) ∧ A<B ⇔ C=A ∧ A<B. (13)

min(A, B, C) ∧ A>B ⇔ C=B ∧ A>B. (14)

min(A, B, C) ∧ A=B ⇔ C=A ∧ C=B ∧ A=B. (15)

min(A, B, C) ∧ C 6=A ⇔ C=B ∧ A>B ∧ C 6=A. (16)

min(A, B, C) ∧ C 6=B ∧ A6=B ⇔ C=A ∧ A<B ∧ C 6=B. (17)

min(A, B, C) ∧ C 6=B ∧ A≥B ⇔ false. (18)

Although the number of generated rules has increased compared to the set of
rules presented in Example 1, these rules are less expressive since:

– Rule 6 subsumes the two rules 13 and 15. Whereas Rule 6 will be applied for
the goal min(A, B, C) ∧ A≤B, no rule is applicable using the rules above.

– Rule 7 of the first solver is more general than its counterparts, Rule 17 and
Rule 18.

Using the combined approach, all rules of the generate and test method will be
added except Rule 16 which will not be checked or generated. Using the redun-
dancy pruning technique, all rules of the construction method will be removed
except Rule 16. The resulting solver of the combined approach is identical to the
solver generated for the min constraint defined using two clauses. However, it
should be noted that the solver obtained by construction using only two clauses
pruned the search tree better.

5 Conclusion

In this paper, we have extended the work done in the field of Inductive Constraint

Solving by providing a method that combines the advantages of the generate and
test approach with a new method that is based on symbolic rewriting of CLP
programs. The basic idea of the construction method stems from the observation

85

that in general, the execution of one clause in a CLP program excludes the
execution of all other clauses. As such, our algorithm constructs the rules by
taking the body of each clause given in CLP program as the body of a rule. The
head of the rule is then the head of the clause and the negation of the body of
all clauses that are not in the rule body.
In the combined approach, we first generate rules using the symbolic construc-
tion method then we use them to prune the search tree of the generate and
test method. In general, the combined approach leads to more expressive and
efficient constraint solvers at a reduced cost. Some rules, like recursive rules that
cannot be generated using the generate and test method are generated using the
symbolic construction method.
One interesting direction for future work is to investigate the completeness of the
solvers generated. It is clear that in general this property cannot be guaranteed,
but in some cases it should be possible to check it, or at least to characterize
the kind of consistency the solver can ensure.

References

1. S. Abdennadher and T. Frühwirth. Integration and Optimization of Rule-based
Constraint Solvers. In International Symposium on Logic-based Program Synthesis
and Transformation, LOPSTR03, LNCS. Springer, 2004.

2. S. Abdennadher and C. Rigotti. Automatic Generation of Propagation Rules for
Finite Domains. In 6th International Conference on Principles and Practice of
Constraint Programming, CP00, LNCS 1894. Springer-Verlag, 2000.

3. S. Abdennadher and C. Rigotti. Towards Inductive Constraint Solving. In 7th
International Conference on Principles and Practice of Constraint Programming,
CP01, LNCS 2239, pages 31–45. Springer-Verlag, 2001.

4. S. Abdennadher and C. Rigotti. Automatic Generation of CHR Constraint Solvers.
Journal of Theory and Practice of Logic Programming (TPLP), 5(2), 2005.

5. K. Apt and E. Monfroy. Automatic Generation of Constraint Propagation Algo-
rithms for Small Finite Domains. In 5th International Conference on Principles and
Practice of Constraint Programming, CP99, LNCS 1713. Springer-Verlag, 1999.

6. P. Codognet. A Tabulation Method for Constraint Logic Programs. In 8th Sympo-
suim and Exibition on Industrial Applications of Prolog, 1995.

7. B. Cui and D. S. Warren. A System for Tabled Constraint Logic Programming. In
1st International Conference on Computational Logic, LNCS 1861. Springer-Verlag,
2000.

8. T. Frühwirth. Theory and Practice of Constraint Handling Rules, Special Issue
on Constraint Logic Programming. Journal of Logic Programming, 37(1-3):95–138,
1998.

9. C. Ringeissen and E. Monfroy. Generating Propagation Rules for Finite Domains: A
Mixed Approach. In New Trends in Constraints, LNAI 1865, pages 150–172, 2000.

86

A Scalable Inclusion Constraint Solver Using
Unification

(Extended Abstract)

Ye Zhang and Flemming Nielson

Informatics and Mathematical Modelling, Technical University of Denmark
— {yez,nielson}@imm.dtu.dk

Abstract. We present a framework for data flow analyses that enables
users to achieve best balance between efficiency and precision by using
unification of equality constraints over analysis variables. A systematic
evaluation of performance of reaching definitions analysis is conducted
and is compared with that of a state-of-the-art solver, the Succinct
Solver. The result shows our solver significantly outperforms the Suc-
cinct Solver on performance. Using unification decreases the asymptotic
complexity even down to almost linear from more than quadratic time
in some benchmarks.

1 Introduction

Program analyses are often expressed as a collection of constraints and then
implemented by an existing solver. The strategy separates analysis specification
from implementation and thus enables program analysis designers to share the
insights and efforts in solver technology. But it remains a challenge to develop
an high-performance analysis . For instance, to speed up its computation the
Succinct Solver [18] adopts former insights of state-of-the-art solvers [5, 8, 7],
including the use of recursion, continuations, prefix tree and memorization. On
the other hand, the solver consumes a large amount of memory to maintain its
complex data structures. This becomes a problem for large programs and can
significantly decrease efficiency as observed in [22].

We aim at developing a scalable solver by introducing unification of the
equality constraint over analysis variables. This is based on two insights. First,
the analysis result of unification is always sound with respect to that of set-
inclusion. Second, unification can be solved in almost linear time and reduce
memory consumption as explained later. Actually our experimental results show
that our solver significantly outperforms the Succinct Solver: It is at least 30
times faster and in some cases even 200 times faster than the Succinct Solver
while it consumes much less memory. A substantially lower asymptotic complex-
ity is also observed in some benchmarks by using unification. Although equality
constraints cannot model the direction of data flow and hence may lead to a loss
in precision, our experiments show that a high-level of precision could still be
expected for many programs.

87

2 Inclusion Constraint Language

We consider constraints over (finite) sets of tuples of constants. A constraint
clause P is defined by the following grammar:

ϕ ::= c ⊆ α | β ⊆s α | β ⊆e α | α \ c ⊆ β | α \ [D] ⊆ β | α ∩ β ⊆ γ | ϕ1 ∧ ϕ2

D ::=? | ?, D |m |m,D

where the constant c ∈ Ĉonst is a set of tuples consisting of a list of abstract
elements m ∈ E, and where α, β and γ ∈ AVar are analysis variables. The two
new operators ⊆s and ⊆e are considered as subset-inclusion and equality re-
spectively. The superscript functions as a pointer marking where a set-inclusion
can be changed to equality and vise versa. For set-minus constraint, besides re-
moving normal constants we introduce a new syntax category D to represent a
set of tuples: The value of some positions of all these tuples are fixed and the
rest can be any elements (represented by ‘?’). This syntax category not only
generates a succinct coding but also speeds up constraint solving as further il-
lustrated in Section 4. It is possible to express the constraints α ∪ β ⊆s γ and
α ⊆s β ∩γ in terms of more primitive operations, e.g. α∪β ⊆s γ is equivalent to
α ⊆s γ ∧β ⊆s γ; thus they are not included among the primitive operations. We
dispense with the union on the right hand side α ⊆s β ∪γ since it would destroy
the Moore family property discussed below.

Standard Interpretation. Given an interpretation ψ̂ ∈ Ênv, which maps
analysis variables to constants, for a clause ϕ the satisfaction relation ψ̂ |= ϕ is
specified as in Table 1. We here extend the meaning of set-minus to cover the
new operation S \ [D] by

S \ [m1, · · · ,mi1−1, ?,mi1+1, · · · ,mik−1, ?,mik+1, · · · ,mn] =
S \ {(m1, · · · ,mi1−1, `1,mi1+1, · · · ,mik−1, `k,mik+1, · · · ,mn) | `1, · · · , `k ∈ E}

We are in general interested in a least solution to a clause. Consider, for instance,
a constraint

{(a, b)} ⊆ α ∧ α ⊆s β ∧ {(c, d)} ⊆ β (Ex.1)

It is easy to verify that ψ̂ given by ψ̂(α) = {(a, b)} and ψ̂(β) = {(a, b), (c, d)} is a
solution. Actually it is the least solution. Also any estimate ψ̂′ such that ψ̂ v ψ̂′

satisfies Ex.1 (where we use the standard partial order v on the mappings of
Ênv, formally, for ψ̂, ψ̂′ ∈ Ênv : ψ̂ v ψ̂′ iff ∀x ∈ AVar : ψ̂(α) ⊆ ψ̂′(α)). Luckily
we can show that a unique least solution always exists for constraint clauses.

Theorem 1. For each clause ϕ, the set {ψ̂| ψ̂ |= ϕ} is a Moore family.

Intuitively using equality instead of set-inclusion is safe since equality is more
strict than set-inclusion. However equality constraints do not always lead to a

88

1. ψ̂ |= c ⊆ α iff c ⊆ ψ̂(α)

2. ψ̂ |= β ⊆s α iff ψ̂(β) ⊆ ψ̂(α)

3. ψ̂ |= β ⊆e α iff ψ̂(β) = ψ̂(α)

4.1 ψ̂ |= α \ c ⊆ β iff ψ̂(α) \ c ⊆ ψ̂(β)

4.2 ψ̂ |= α \ [m1, · · · ,mi1−1, ?,mi1+1, · · · ,mik−1, ?,mik+1, · · · ,mn] ⊆ β iff

ψ̂(α) \ [m1, · · · ,mi1−1, ?,mi1+1, · · · ,mik−1, ?,mik+1, · · · ,mn] ⊆ ψ̂(β)

5. ψ̂ |= α ∩ β ⊆ γ iff ψ̂(α) ∩ ψ̂(β) ⊆ ˆψ(γ)

6. ψ̂ |= ϕ1 ∧ ϕ2 iff ψ̂ |= ϕ1 and ψ̂ |= ϕ2

Table 1. Standard Semantics

loss in precision. To be concrete, consider the constraints

{(a, b), (c, d)} ⊆ α ∧ {(c, d)} ⊆ β ∧ α ⊆s β ∧ β \ {(a, b)} ⊆ γ (Ex.2)

Here a least model β has no more data than α apparently whence switching
s to e in the constraint would preserve precision. As we shall show in Section
3, general constraints can be solved in cubic time while unification on equality
is nearly linear. In the framework we presented, a general strategy of tuning
clauses is to try set-inclusion first since normally we would always prefer a pre-
cise solution if performance is acceptable. If the efficiency of the computation
is unsatisfactory, we can tentatively adjust the superscript symbols and repeat
the procedure until we reach a good balance between performance and precision.

Interpretation Using Type Variables. If several analysis variables are equiv-
alent to each other, we would like to deal with them as one and let them asso-
ciate with the same data field. As a result the constraint solving is more efficient
and the space-consumption is decreased. This motivates us to introduce a new
category, type variables i ∈ TV, as a medium between analysis variables and
constants, i.e. an interpretation consists of two components: Type environment
ψ̂1 ∈ EnvT, which maps analysis variables to type variables, and type-binding
environment ψ̂2 ∈ ÊnvTB, which maps type variables to constants. The satis-
faction relation (ψ̂1, ψ̂2) |=T ϕ is then defined in Table 2.

The only interesting rule is the third one that enforces α and β must be
unified onto the same type variables, i.e. ψ̂1(β) = ψ̂1(α), instead of demand-
ing ψ̂2(ψ̂1(β)) = ψ̂2(ψ̂1(α)). To further illustrate the difference, consider the
estimates of the lifted version of the example Ex.1,

(a) ψ̂1(α) = 1 ψ̂2(1) = {(a, b), (c, d)} (b) ψ̂1(α) = 1 ψ̂2(1) = {(a, b), (c, d)}
ψ̂1(β) = 1 ψ̂1(β) = 2 ψ̂2(2) = {(a, b), (c, d)}
ψ̂1(γ) = 2 ψ̂2(2) = {(a, b)} ψ̂1(γ) = 3 ψ̂2(3) = {(a, b)}

Both of the two estimates are acceptable for the first semantics whereas only (a)
is valid now since ψ̂1(α) 6= ψ̂1(β). Notice also that the unification coalesces the

89

1. (ψ̂1, ψ̂2) |=T c ⊆ α iff c ⊆ ψ̂2(ψ̂1(α))

2. (ψ̂1, ψ̂2) |=T β ⊆s α iff ψ̂2(ψ̂1(β)) ⊆ ψ̂2(ψ̂1(α))

3. (ψ̂1, ψ̂2) |=T β ⊆e α iff ψ̂1(β) = ψ̂1(α)

4.1 (ψ̂1, ψ̂2) |=T α \ c ⊆ β iff ψ̂2(ψ̂1(α)) \ c ⊆ ψ̂2(ψ̂1(β))

4.2 (ψ̂1, ψ̂2) |=T α \ [m1, · · · ,mi1−1, ?,mi1+1, · · · ,mik−1, ?,mik+1, · · · ,mn] ⊆ β iff

ψ̂2(ψ̂1(α)) \ [m1, · · · ,mi1−1, ?,mi1+1, · · · ,mik−1, ?,mik+1, · · · ,mn] ⊆ ψ̂2(ψ̂1(β))

5. (ψ̂1, ψ̂2) |=T α ∩ β ⊆ γ iff ψ̂2(ψ̂1(α)) ∩ ψ̂2(ψ̂1(β)) ⊆ ψ̂2(ψ̂1(γ))

6. (ψ̂1, ψ̂2) |=T ϕ1 ∧ ϕ2 iff (ψ̂1, ψ̂2) |=T ϕ1 and (ψ̂1, ψ̂2) |=T ϕ2

Table 2. Semantics Using Type Variables

analysis variables into one type variable whence avoids storing redundant infor-
mation in the environment ÊnvTB. However since the choice of type variables
is nondeterministic, the set of solutions is not a partial-order but a pre-order,
i.e. reflexive, transitive but not antisymmetric. Formally

Definition 1. For (ψ̂1, ψ̂2), (ψ̂′1, ψ̂
′
2) ∈ EnvT × ÊnvTB, define

(ψ̂1, ψ̂2) � (ψ̂′1, ψ̂
′
2) ⇐⇒ ∃π : TV → TV : ψ̂′1 = π ◦ ψ̂1 ∧ ψ̂2 v ψ̂′2 ◦ π

where π is a total function and ψ̂2 v ψ̂′2 ◦ π ⇔ ∀ i ∈ TV : ψ̂2(α) ⊆ ψ̂′2(π(i)).

Although a unique least solution is not guaranteed, we can generalize the con-
cepts of complete lattice and Moore family for a pre-ordered set. The overall idea
here is to prove the existence of the least solutions for the set {(ψ̂1, ψ̂2)| (ψ̂1, ψ̂2) |=T
ϕ} and these least solutions are actually equivalent to each other (defining equiv-
alence relation by � ∧ �). Therefore it is suffice to find just one of them. Fur-
thermore it can be proved that the function composition ψ̂2) ◦ ψ̂1) of a least
solution gives the least solution for the set {ψ̂| ψ̂ |= ϕ} as well. Due to the space
constraints, the detail of formal development is omitted but it should not be a big
surprise that there exists least solutions for each clause and they are equivalent.

3 Constraint-solving Algorithm

We shall give a high-level introduction to our algorithm and concentrate on ex-
plaining how the algorithm works. The algorithm is structured with two phases:
Unification and iteration. Initially each analysis variable is assigned a unique
type variables and is associated with an empty set. At first unification phase
deals with all the equality constraints. It computes the set of equivalence class
of analysis variables according to the equality constraints. As illustrated in Ex.3,
for each equivalence class A we chose the corresponding type variable of any one
of its analysis variables, say t, and associate all the equivalent analysis variables
with t, i.e. ∀α ∈ A : ψ̂1(α) = t.

90

For the iteration phase, we refer to the approach of [17] for constructing a
graph formulation of constraints. The algorithm iteratively propagates any en-
largement of constant fields along the graph edges until a (least) fix-point reaches.
A constraint graph consists of nodes i ∈ TV and directed edges decorated with
constructs that give rise to them respectively. We describe specifically how the
graph is built up for the convenience of the discussion of algorithm complexityV:
The constructs α ⊆s β, α \ c ⊆ β and α \ [D] ⊆ β give rise to an edge from
ψ̂1(α) to ψ̂1(β); similarly the construct α ∩ β ⊆ γ contributes two edges at the
same time, i.e. from ψ̂1(α) to ψ̂1(γ), and ψ̂1(β) to ψ̂1(γ). Note that an equality
relation never generates any edge. Furthermore equality could simplify graphs.
For example, assume that α ⊆e γ, then the edge from α to γ is not needed for
any of the constraints α ⊆s γ, α \ c ⊆ γ or α \D ⊆ γ and α ∩ β ⊆ γ.

Algorithm Complexity. Observe that for a clause of size n there are O(n)
nodes and O(n) constructs at most. In the unification phase, fast union-find data
structures [21] is used to compute the equivalence classes of analysis variables and
it takes time O(m·α(m,n)) where m is the number of unifying operations that is
bound to O(n) and n the number of analysis variables. At last O(n) operations
are needed to re-associate equivalence analysis variables with a designated type
variable. This completes the complexity analysis of unification phase.

To make a sensible analysis for the iteration phase, fist we need to make
it clear how many steps are required for the operations upon constants (set of
tuples), e.g. set intersection and union, etc. In our implementation, each tuple is
encoded as a bit and the number of tuples is O(n); thus the set operations are
over the bit-vector of the length n and take linear time. Next observe the two
facts: (1) there are O(n) edges generated from a clause of size n by the way of
graph construction and (2) each edge can be traversed at most O(n) times as
there are O(n) nodes. Therefore let ni be the edge number bound to the node
i and the time of iteration is O(Σi∈TV?(n · ni · n)) = O(n3) where the fist n is
the number of traverse on each edges and the second is time of set operations.

4 Experiment with a Data Flow Analysis

In this section we study the effects of applying unification through an intrapro-
cedural Data Flow Analysis for a simple C-like language. We demonstrate how
much improvement on performance can be achieved from using unification. A se-
ries of experiments are conducted on our solver and the Succinct Solver. The fact
that both of the two solvers are implemented in NJ SML makes the comparison
more reliable. A program statement is defined by

S ::= [x := a]` | [skip]` | S1;S2 | if [b]` then S1 else S2 | while [b]` do S

Here x ∈ Var is a program variable, a and b are arithmetic and boolean expres-
sions respectively. Each elementary block is assigned a unique label ` ∈ Lab.
We refer to [17] for the operational semantics of the language. We give analy-
sis specification for reaching definitions analysis (in Table 3) and the approach

91

[ass] (RD◦, RD•) |= [x := e]l iff {(x, l)} ⊆ RD•(l)∧
RD◦(l) \ [x, ?] ⊆ RD•(l)

[skip] (RD◦, RD•) |= [skip]l iff RD◦(l) ⊆s RD•(l) (i)

[exp] (RD◦, RD•) |= [e]l iff RD◦(l) ⊆s RD•(l) (ii)

[comp] (RD◦, RD•) |= S1;S2 iff (RD◦, RD•) |= S1∧
(RD◦, RD•) |= S2∧
∧∀l∈final(S1)RD•(l) ⊆s RD◦(init(S2)) (iii)

[if] (RD◦, RD•) |= if [b]l then S1 else S2

iff (RD◦, RD•) |= S1∧
(RD◦, RD•) |= S2∧
(RD◦, RD•) |= b∧
RD•(l) ⊆s RD◦(init(S1))∧ (iv)
RD•(l) ⊆s RD◦(init(S2)) (v)

[wh] (RD◦, RD•) |= while [b]l do S
iff (RD◦, RD•) |= S∧

(RD◦, RD•) |= b∧
RD•(l) ⊆s RD◦(init(S))∧ (vi)
∧∀l′∈final(S)RD•(l

′) ⊆s RD◦(l) (vii)

Table 3. Reaching Definitions Analysis: Set Inclusion.

applies naturally on other analyses, e.g. available expressions analysis and live
variables analysis, etc. The judgement (RD◦, RD•) |= S is true if and only if the
analysis is satisfiable for S. The caches RD◦, RD• : Lab×P(Var×Lab) record
the estimates of the entry and exit of elementary statements.

The two auxiliary functions initial and final return the initial label and the set
of final labels of a statement respectively; for instance for the while loop, while
[b]l do S, the initial label is l and the set of final labels is {l}. Note that we use
the extended version of set-minus in [ass]. As a result the size of the constraint
generated for each assignment is constant; otherwise it could be linear for just
one assignment.

4.1 Experiments on Scalable Programs

We designed a series of benchmarks to testing the scalability of the two solvers.
The two families of the benchmarks are selected for detailed discussion since their
asymptotic complexities are considered typical for presenting all the interesting
results.
Wh(1,n) : while x0 < 2 do (x1 := x2;

...
xn−1 := xn;
xn := 1)

If(n,1) : if x1 < 0 then skip

else
...

if xn < 0 then skip
else x0 := 1

Here the first number of the subscript denotes the nesting depth of conditions,
and the second the number of all assignments (usually at the deepest level).

92

Fig. 1. Experimental results: Wh(1,n) and If(n,1).

From the analysis specification, the constraints generated for Wh(1,n) and If(n,1)

are both of size O(n). Indeed, given the method used for constructing the graph
in the algorithm, it can be shown that both of the graphs have O(n) edges using
an amortization technique.

As presented in Section 3, adopting unification will simplify the graph and
further reduce the number of iterations. We show, however, that the results
of this simplification differ for the two benchmarks very much: For the first
one, it decreases the number of edges by a constant factor; in contrast, for
the second there is only a constant number of edges left. This is because the
constraints generated for n assignments of Wh(1,n) remain O(n) by the rule
[ass]. But applying unification to If(n,1) means we only keep set-inclusion in
the constraints for one assignment(s) and thus the resulting graph has only a
constant number of edges.

All benchmarks have been run on a PC with 2.0 GHz CPU and 1.5 GB RAM
under Windows XP. Each experiment was repeated 5 times and the average was
used. The experimental results of the two families are presented in Fig. 1.

The first diagram shows that the execution time is improved 25% by using
unification and the computation using set-inclusion is at least 70 times and some-
times even 200 times faster than the Succinct Solver. Our solver also scale much
larger program than the Succinct Solver. Moreover the Succinct Solver can not
analyze the program of n ≥ 1300. Notice that both of the solvers suffer a sharp
performance-decline for large values of n: n ≥ 750 in the case of the Succinct
Solver, and n ≥ 9000 and n ≥ 11000 in the case of our solver. We hypothesize
that this is because the large memory consumption requires much extra effort in
memory management. For our solver especially, the computation time is so small
when n is less than 250 that the initialization time becomes a large constant fac-
tor impacting the asymptotic complexity. To get the asymptotic growth rate of
the solvers, we select the data before performance deterioration happens and
after the constant factor is no longer dominating. By a least square fit technique
on the model t = c1 ·mc + c0, we estimate that the time complexity of the Suc-

93

cinct Solver, and our solver without and with unification are O(n2.21), O(n2.02)
and O(n2.01) respectively.

A significant improvement, as expected, is observed in the program fam-
ily If(1,n) (the second graph of Fig. 1. As shown our solver remains 30 times
faster than the Succinct Solver when using unification. Since no performance-
deterioration is observed, the estimated complexities are printed out directly.
Furthermore unification results in almost linear time complexity while set-inclusion
takes more than quadratic time and the Succinct Solver takes time O(n1.3).

We turn to the precision now. Since we are doing over-approximation and
all results obtained from using unification are sound, the imprecise caused by
unification can be directly observed by enlargement of the size of the solutions
as summarized in the table below, where n = 4000.

Program Sol. Size (⊆s) Sol. Size (⊆e)

Wh(1,n) 30487128 30487128
√

Wh(n,1) 32014891 32014891
√

Wh(n,n) 62551110 62551110
√

If(1,n) 30423193 30423193
√

Program Sol. Size (⊆s) Sol. Size (⊆e)

If(n,1) 64014890 64014890
√

If(n,n) 94423189 94423189
√

WhIf(n,1,1) 32030895 32030895
√

IfWh(n,1,1) 63998893 64014889

As the table shows, for most cases precision is preserved (denoted by
√

).
The only exception is IfWh(n,1,1) because it contains a branch of an if-statement
starting with a while-loop. The imprecision, however, can easily be removed by
turning back to using set-inclusion for the branch containing the while statement,
i.e. only one equality needs to be changed back to set-inclusion in our case.

To summarize, our worked example shows that using unification can speed
up calculation by at least 30% and in some cases decrease the time complexity
to almost linear. At the same time, we can avoid loss of precision. Compared
with the Succinct Solver, our solver is much more efficient: It is at least 30
times faster than the Succinct Solver. The experiments on other benchmarks
show the performance improvement is proportional to the percentage of equality
constraints adopted in a constraint program.

5 Related Works

In this paper we have looked at analysis problems over a finite universe and have
computed complete solutions. The Succinct Solver, which uses the alternation-
free fragment of Least Fixpoint Logic (ALFP) as its specification logic, works on
the same universe as ours. Because of the expressiveness of ALFP, the solver has
been used for the implementation of many analyses [19, 9, 2]. The result of [3]
shows that reordering constraints can improve the performance considerably. In
order to generate efficiently solvable constraints, however, one needs to under-
stand how clauses are solved in the Succinct Solver. We here, however, attempt
to optimize the performance of our solver from the user point of view by sim-
ply adjusting the use of set-inclusion and equality. The users, therefore, do not
have to know any technical details inside a solver but are still able to tune a
system to fit their specific needs. While all of our constraints can be expressed in

94

ALFP, i.e. they are a restricted form of Horn clauses, we gain much efficiency in
having equality constraint explicitly. To construct the same analysis, specifically
data flow analyses, we observed our solver is a large constant factor better than
the Succinct Solver. That is probably because we use much more simpler data
structures and that reduces the expense of operating them in turn.

Unification has been used to yield efficient implementation and concise re-
sults in the analyses, such as type inference system [16, 13, 20] and control flow
analyses [11]. The work of [6] further presented a parameterized framework that
allows expression of constraint-based analyses [1, 14] in varying levels of effi-
ciency and precision with mixed-terms. While our approach is close in spirit to
this framework, we confine ourselves to the flat universe which corresponds to
allowing only term constructors of arity 0. Even with this restricted domain it
is still powerful enough to model most data flow analysis problems.

Heintze and Jaffar [10] have investigated definite set constraints and showed
all satisfiable constraints in the class have a least model. Charatonik and Podelski
[4] further showed solving definite set constraints has DEXPTIME complexity.
Although the set minus operation, which contains negative set expression, i.e.
α\c ≡ α∩¬c, makes our constraints be out of the scope of definite set constraints,
we showed that the Moore family result still holds for the constraints of interest.
Melski and Rep [15] proved a subclass of definite set constraints can be solved
in cubic time in studying a simple data-flow reachability problem. While their
constraints use only projection and terms, we selected to include operations set
minus and intersection on a flat universe and showed it also have the same
complexity.

In essence our solver computes a dynamic transitive closure except for equal-
ity constraints. Heintze and McAllester have showed that this problem is in the
class two way nondeterministic push down automata (2NPDA) and is 2NPDA-
hard [12]. Thus it is considered inherently cubic as no sub-cubic algorithm for
any 2NPDA problem is known so far. This is also confirmed by the result of
Section 3. As demonstrated in the same section, however, unification can re-
move edges and nodes from a graph and thus speed up the calculation. Then the
question is really what is the tradeoff from using unification. Our results showed
that many analysis variables can be considered equivalent even for intraproce-
dural data flow analysis of a simple C-like language. The level of efficiency and
precision achieved are quite encouraging. We are optimistic about finding more
places of using unification for the analysis of real imperative languages, e.g. C.

6 Conclusion

We have presented a framework which allows users to take advantage of unifica-
tion in order to implement efficient and precise analyses. ¿From the experimental
results of our worked example, we conclude that (1) our constraint solver has
a much more efficient implementation for data flow analysis than the Succinct
Solver; (2) using unification can lower the asymptotic complexity even to almost
linear while the loss in precision is still acceptable.

95

References

1. A. Aiken. Introduction to set constraint-based program analysis. Sci. Comput.
Program., 35(2):79–111, 1999.

2. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. R. Nielson. Static validation
of security protocols. Journal of Computer Security, 13(3):347–390, 2005.

3. M. Buchholtz, H. R. Nielson, and F. Nielson. Experiments with succinct solvers.
Technical report, Informatics and Mathematical Modelling, Richard Petersens
Plads, Building 321, DK-2800 Kgs. Lyngby, Denmark, feb 2002.

4. W. Charatonik and A. Podelski. Set constraints with intersection. Inf. Comput.,
179(2):213–229, 2002.

5. B. L. Charlier and P. V. Hentenryck. A universal top-down fixpoint algorithm.
Technical Report CS-92-25, 1992.

6. M. Fähndrich and A. Aiken. Program analysis using mixed term and set con-
straints. In SAS, pages 114–126, 1997.

7. C. Fecht and H. Seidl. Propagating differences: An efficient new fixpoint algorithm
for distributive constraint systems. In ESOP, pages 90–104, 1998.

8. C. Fecht and H. Seidl. A faster solver for general systems of equations. Sci.
Comput. Program., 35(2):137–161, 1999.

9. H. Gao. Using the succinet solver to implement flow logic specifications of classi-
cal data flow analysis. Master’s thesis, Informatics and Mathematical Modelling,
Technical University of Denmark, DTU, 2004.

10. N. Heintze and J. Jaffar. A decision procedure for a class of set constraints (ex-
tended abstract). In LICS, pages 42–51. IEEE Computer Society, 1990.

11. N. Heintze and D. A. McAllester. Linear-time subtransitive control flow analysis.
In SIGPLAN Conference on Programming Language Design and Implementation,
pages 261–272, 1997.

12. N. Heintze and D. A. McAllester. On the cubic bottleneck in subtyping and flow
analysis. In LICS, pages 342–351, 1997.

13. F. Henglein. Global tagging optimization by type inference. In LISP and Functional
Programming, pages 205–215, 1992.

14. J. Kodumal and A. Aiken. Banshee: A scalable constraint-based analysis toolkit.
In SAS, pages 218–234, 2005.

15. D. Melski and T. W. Reps. Interconveritibility of set constraints and context-free
language reachability. In PEPM, pages 74–89, 1997.

16. R. Milner. A theory of type polymorphism in programming. J. Comput. Syst. Sci.,
17(3):348–375, 1978.

17. F. Nielson, H. R. Nielson, and C. L. Hankin. Principles of Program Analysis.
Springer, 1999.

18. F. Nielson, H. Seidl, and H. R. Nielson. A succinct solver for ALFP. Nord. J.
Comput., 9(4):335–372, 2002.

19. H. R. Nielson, F. Nielson, and M. Buchholtz. Security for mobility. In FOSAD,
pages 207–265, 2002.

20. B. Steensgaard. Points-to analysis in almost linear time. In POPL, pages 32–41,
1996.

21. R. E. Tarjan. Data Structures and Network Algorithms, volume CMBS44 of Reginal
Conference Series in Applied Mathematics. SIAM, 1983.

22. Y. Zhang. Static analysis for protocol validation in hierarchical networks. Master’s
thesis, Technical University of Denmark, 2005.

96

Annotation Algorithms for Unrestricted
Independent And-Parallelism in Logic Programs

Amadeo Casas,1 Manuel Carro,2 and Manuel V. Hermenegildo1,2

{amadeo, herme}@cs.unm.edu
{mcarro, herme}@fi.upm.es

1 Depts. of Comp. Science and Electr. and Comp. Eng., Univ. of New Mexico, USA.
2 School of Computer Science, Universidad Politécnica de Madrid, Spain.

Abstract. We present two new algorithms which perform automatic
parallelization via source-to-source transformations. The objective is to
exploit goal-level, unrestricted independent and-parallelism. The pro-
posed algorithms use as targets new parallel execution primitives which
are simpler and more flexible than the well-known &/2 parallel operator.
This makes it possible to generate better parallel expressions by exposing
more potential parallelism among the literals of a clause than is possible
with &/2. The difference between the two algorithms stems from whether
the order of the solutions obtained is preserved or not. We also report on
a preliminary evaluation of an implementation of our approach. We com-
pare the performance obtained to that of previous annotation algorithms
and show that relevant improvements can be obtained.

Keywords: Logic Programming, Automatic Parallelization, And-Parallelism,
Program Transformation.

1 Introduction

Parallelism capabilities are becoming ubiquitous thanks to the widespread use
of multi-core processors. Indeed, most laptops on the market contain two cores
(capable of running up to four threads simultaneously) and single-chip, 8-core
servers are now in widespread use. Furthermore, the trend is that the number
of on-chip cores will double with each processor generation. In this context,
being able to exploit such parallel execution capabilities in programs as easily
as possible becomes more and more a necessity. However, it is well-known [17]
that parallelizing programs is a hard challenge. This has renewed interest in
language-related designs and tools which can simplify the task of producing
parallel programs.

The comparatively higher level of abstraction of declarative languages and,
among them, logic programming languages, allows writing programs which are
closer to the specification of the solution. Besides, there is often more freedom in
the implementation of different operational semantics which respect the declar-
ative semantics. In particular, the notion of control in declarative languages
frequently allows for more flexibility to arrange the evaluation order of some

97

operations, including executing them in parallel if deemed convenient, without
affecting the semantics of the original program. Additionally, the cleaner declara-
tive semantics makes it possible to automatically detect more accurately any lack
of dependencies among operations and hence to exploit opportunities for paral-
lelism more easily than in imperative languages. At the same time, in most other
respects in the case of logic programs the presence of dynamic data structures
with “declarative pointers” (logical variables), irregular computations, or com-
plex control makes the parallelization of logic programs a particularly interesting
case that allows tackling the more complex parallelization-related challenges in
a formally simple and well-understood context [11].

Because of this potential, automatic parallelization has received significant
attention in logic programming [10], where two main forms of parallelism have
been studied. Or-parallelism is exploited when the alternatives created by non-
deterministic goals are explored simultaneously. Some relevant or-parallelism
systems are Aurora [20] and MUSE [1]. And-parallelism aims at executing si-
multaneously (conjunctive) goals in clauses or in the resolvent. Examples of
systems that have exploited and-parallelism are DDAS [25] and &-Prolog [12].
Additionally, some systems such as ACE [9], AKL [16], and Andorra [24] exploit
certain combinations of both and- and or-parallelism. While or-parallelism can
only obtain speedups when there is search involved, and-parallelism can be used
in more algorithmic schemes, with divide-and-conquer and map-style algorithms
being classic representatives. In this paper, we concentrate on and-parallelism.

A correct parallelization has been defined as one that preserves during and-
parallel execution some key properties, typically correctness and no-slowdown [14].
The preservation of these properties is ensured by executing in parallel goals
which meet some notion of independence, meaning that the goals to be executed
in parallel do not interfere with each other in some particular sense. This can
include for example absence of competition for binding variables plus other con-
siderations such as, e.g., absence of side effects. For simplicity, in the rest of the
paper we will assume that we are only dealing with side-effect free program sec-
tions. Note however that this does not affect the generality of our presentation,
as we deal with dependencies in a generic way.

One of the best understood sufficient conditions for ensuring that goals
meet the efficiency and correctness criteria for parallelization is strict indepen-
dence [14], which entails the absence of shared variables at runtime between
any two goals being parallelized. It should be noted that some proposals exploit
and-parallelism between goals which do not meet this condition, but on which
other restrictions are imposed which also ensure no-slowdown and correctness.
Examples of such restrictions are determinism and non-failure [14] (determin-
ism is exploited for example in [24]) and absence of conflicts due to the binding
of shared variables (as in non-strict independent and-parallelism [14]). Another
interesting issue is at what level of granularity the notion of independence is
applied: at the goal level, at the binding level, etc. Our work in this paper will
focus on goal-level (strict and non-strict) independent and-parallelism.

98

One particularly successful approach to automatically parallelizing a logic
program uses three different stages [15, 2, 10]. The first one detects data (and
control) dependencies between pairs of literals in the original program. A depen-
dency graph (see Figure 1 as an example) is built to capture this information.
Nodes in the graph correspond to literals in the body of the clause and edges
represent dependencies between them. Edges are labeled with the associated de-
pendency conditions (which may be trivially true or false —we will not represent
those edges labeled with true). The second stage performs (global) analysis [3]
to gather information regarding, e.g., variable aliasing, groundness, side effects,
etc. in order to remove edges from the dependency graph or to simplify the con-
ditions labeling these edges, if they cannot be evaluated statically to completion.
Labeled edges will result in run-time checks if conditional parallel expressions
are allowed. Alternatively, unresolved dependencies can be assumed to always
hold, and parallel execution will be allowed only between literals which have been
statically determined to be independent. This approach saves run-time checks
at the expense of losing some parallelism. Finally, the third stage transforms the
original program into a parallel version by annotating it with parallel execution
operators using the information gathered by the analyzers [22]. This annotation
should respect the dependencies found in the original program while, at the same
time, exploiting as much parallelism as possible.

This annotation process is the focus of this paper. We will present and eval-
uate new annotation algorithms which target and-parallelism primitives which
can express richer dependency graphs than those which can be encoded with the
nested fork-join approaches which have been previously proposed (e.g., [22]).
Our hope is that since the transformed programs will contain in some cases
more parallelism, we will be able to obtain better speedups for such cases.

2 Background and Motivation

We will introduce, with the help of an example, the well-known &/2 operator
for parallelism and its limitations, and we will show how better annotations for
parallelism are possible when other, simpler primitives, are used.

2.1 Fork-Join-Style Parallelization

We will use as running example the following clause:
p(X,Y,Z) :- a(X,Z), b(X), c(Y), d(Y,Z).

b(X)

c(Y) d(Y,Z)

a(X,Z)

Fig. 1. Dependency graph for p/3.

and will assume that the dependen-
cies detected between the literals in
the predicate are defined by the graph
G = (V,E), shown in Figure 1. The
vertices V correspond to the literals
of the clause and there exists an edge
between two literals Li and Lj in E
if ind(Li, Lj) 6= true (i.e., the literals

99

p(X, Y, Z):-

(a(X, Z), b(X)) & c(Y),

d(Y, Z).

(a) fj1 : Order-preserving

p(X, Y, Z):-

a(X, Z) & c(Y),

b(X) & d(Y, Z).

(b) fj2 : Non-order-preserving

Fig. 2. Fork-Join annotations for p/3 (Section 2).

Li and Lj are dependent and thus the literal Li has to be completed before the
literal Lj), where ind is the notion of independence. As mentioned before, this
information is obtained in our case from global data-flow analysis [3].

We will assume in the rest of the paper that all the dependencies are un-
conditional —i.e., conditional dependencies are assumed to be always false. This
brings simplicity and avoids potentially costly run-time checks in the parallelized
code at the expense of having fewer opportunities for parallelism. However, it
has been experimentally found to be a good compromise [22, 3].

Conjunctive parallel execution has traditionally been denoted using the &/2
operator instead of the sequential comma (‘,’). The former binds more tightly
than the latter. Thus, the expression “a, b & c, d” means that literals b and c
can be safely executed in parallel after the execution of literal a finishes. When
both b and c have successfully finished, execution continues with d.

While this single operator is enough to parallelize many programs, the class of
dependencies it can express directly (i.e., dependency graphs with a nested fork-
join structure) is a subset of that which can possibly appear in a program [22].
This makes parallelism opportunities to be inevitably lost in cases with a complex
enough structure (e.g., that in Figure 1). Likewise, inter-procedural parallelism
(i.e., parallel conjunctions which span literals in different predicates) cannot be
exploited without program transformation.

In general, several annotations are possible for a given clause. As an example,
Figure 2 shows two annotations for our running example.3 Some goals appear
switched w.r.t. their order in the sequential clause. This respects the dependen-
cies in Figure 1, which reflects a valid notion of parallelism (i.e., if solution order
is not important). If additional ordering requirements are needed (due to, e.g.,
side effects or impurity), these should appear as additional edges in the graph.

Note that none of the annotations in Figure 2 fully exploits all parallelism
available in Figure 1: Figure 2(a) misses the parallelism between b(X) and d(Y,
Z), and Figure 2(b) misses the parallelism between b(X) and c(Y).

One relevant question is which of these two parallelizations is better. Ar-
guably, a meaningful measure of their quality is how long each of them takes
to execute. We will term those times Tfj1 and Tfj2 for Figures 2(a) and 2(b),
respectively. This length depends on the execution times of the goals involved
(i.e., Ta, Tb, Tc, Td), which we assume to be non-zero. Tfj1 and Tfj2 are:

Tfj1 = max(Ta + Tb, Tc) + Td (1)

3 The parallelization p :- a(X, Z), b(X) & c(Y), d(Y, Z) has been left out of Fig-
ure 2. It would not add anything to the discussion as it would not change the
comparison we make in Section 2.2.

100

Tfj2 = max(Ta, Tc) + max(Tb, Td) (2)

Comparing the quality of the annotations in Figure 2(a) and Figure 2(b) boils
down to finding out whether it is possible to show that Tfj1 < Tfj2 or the other
way around. It turns out that they are non-comparable. In fact:

– Tfj1 < Tfj2 holds if, for example, Ta + Tb < Tc, Td < Tb, and then Tfj2 =
Tb + Tc, Tfj1 = Td + Tc, and

– Tfj2 < Tfj1 holds if, for example, Tc ≤ Ta, Td ≤ Tb, and then Tfj1 =
Ta + Tb + Td, Tfj2 = Ta + Tb.

Several annotation algorithms have been proposed so far [22, 4] which use
the &/2 operator as the basic construction to express parallelism between goals.
These annotators produce clauses that are parallelized differently, such as those
in Figure 2. It is in principle possible to statically decide (or, at least, approxi-
mate) whether some annotation is better than some other, for example by using
the number of goals annotated for parallelism in a clause or, more interestingly,
by using information regarding the expected runtime of goals (see, e.g., [21, 19]
and its references). However, finding an optimal solution is a computationally
expensive combinatorial problem [22] and, in practice, annotators use heuristics
which may be more or less appropriate in concrete cases.

2.2 Parallelization with Finer Goal-Level Operators

It has been observed [4, 5] that more basic constructions can be used to represent
and-parallelism by using two operators, &>/2 and <&/1, defined as follows:

Definition 1. G &> H schedules goal G for parallel execution and continues ex-
ecuting the code after G &>H. H is a handler which contains (or points to) the
state of goal G.

Definition 2. H <& waits for the goal associated with H to finish. After that
point any bindings made by G are available to the executing thread.

With the previous definitions, the &/2 operator can be written as
A & B :- A &> H, call(B), H <&. This indicates that any parallelization per-
formed using &/2 can be made using &>/2 and <&/1 without loss of parallelism.
We will term these operators dep-operators henceforth.

p(X, Y, Z) :-
c(Y) &> Hc,
a(X, Z),
b(X) &> Hb,
Hc <&,
d(Y, Z),
Hb <&.

Fig. 3. dep-operator-annotated clause

Two motivations justify the use
of these operators instead of &/2.
Firstly, their implementation is (in
our experience) actually easier to de-
vise and maintain than the mono-
lithic &/2 [8], and, secondly, the dep-
operators allow more freedom to the
annotator (and to the programmer, if
parallel code is written by hand) to

101

express data dependencies and, therefore, to extract more potential parallelism.
We will now illustrate this last point (the former is out of our current scope).

Figure 3 shows an annotation of our running example using dep-operators.
Note that this code allows executing in parallel a/2 with c/1, b/2 with c/1, and
b/1 with d/2. The execution time of p/3, based on that of the individual goals,
is:4

Tdep = max(Ta + Tb, Td + max(Ta, Tc)) (3)

If we compare expression (3) with expressions (1) and (2), it turns out that:

– It is possible that Tdep < Tfj1, Tdep < Tfj2, Tdep = Tfj1, and Tdep = Tfj2

(possibly with different lengths for every goal in each case [7]).
– It is not possible that Tdep > Tfj1 or that Tdep > Tfj2.

This means that the annotation in Figure 3 cannot be worse than those of
Figure 2, and can perform better in some cases. It is, therefore, a better option
than any of the others.

In addition to these basic operators, other specialized versions can be defined
and implemented in order to increase performance by adapting better to some
particular cases. In particular, it appears interesting to introduce variants for
the very relevant and frequent case of deterministic goals. For this purpose we
propose two new operators: &!>/2 and <&!/1. These specialized versions do not
perform backtracking and do not prepare the execution data structures to cope
with that possibility, which has previously been shown to result in a significant
efficiency increase in the underlying machinery [23].

3 The UOUDG and UUDG Algorithms

In this section we will present two concrete algorithms which generate code
annotated for unrestricted independent and-parallelism (as in Figure 3) starting
from sequential code. The proposed algorithms process one clause at a time and
work on a directed acyclic dependency graph (V,E) where nodes are associated
with body goals in the clause. We require that literals which are lexically identical
give rise to different nodes, by, e.g., attaching a unique identifier to them. This
is necessary in order not to lose information when building sets of nodes.

We assume a preprocessing stage which collapses sequences of mutually de-
pendent goals with a single incoming (resp., outgoing) dependency. For example,
in p:- a(X), b(X), c(X), d(Y), e(Y), f(X, Y) the sets {a/1, b/1, c/1}
and {d/1,e/1} are sequences in the clause, but they have a single outgoing de-
pendency on f/2. The preprocessing stage groups these sequences and assigns
them to a single node in the dependency graph. Every one of these sequences
can, for efficiency reasons, be folded into a unique predicate in order to avoid
meta-interpretation of sequential conjunctions.

The idea behind these algorithms is to publish goals for parallel execution
as soon as possible and to delay issuing joins as much as possible —but always
4 See [7] for a deduction.

102

Algorithm: UOUDG(G, Pub)

Input : (1) A directed acyclic graph G = (V, E).
(2) A set of already forked goals.

Output: A clause parallelized in unrestricted and fashion in which the order of
the solutions in the original clause is preserved.

begin
if V = ∅ then return (true)
else

Indep ← {v | v ∈ V, incoming(v, E) = ∅};
Dep ← {(v, Iv) | v ∈ V, Iv = incoming(v, E), Iv 6= ∅, Iv ⊆ Indep};
if Dep = ∅ then

(pvt ,Join)← (u, V) s.t. ∀(w ∈ (V \ {u})) . w ≺ u;
else

(pvt ,Join)←
(u, S) s.t. (u, S) ∈ Dep ∧ ∀((w, D) ∈ (Dep \ {(u, S)})) . u ≺ w;

end
Seq ← {v | v ∈ (Indep \ Pub), v →pvt ∈ E, v = pred(pvt)};
Fork ← {v | v ∈ (Indep \ Pub), v ≺ pvt} \ Seq ;
Join ← Join \ Seq ;
Pub ← Pub ∪ Fork ∪ Seq ;
G← G−(Join ∪ Seq);
return (gen body(Fork, Seq, Join, ∅), UOUDG(G, Pub));

end
end

Algorithm 1: UOUDG Annotation Algorithm.

respecting the dependencies in the graph (as in Figure 1). Intuitively, this should
maximize the number of goals available for parallel execution. In the following,
both algorithms use an auxiliary definition to denote the set of nodes which are
connected to some node v: incoming(v, E) = {u | (u → v) ∈ E}.

Note that, as mentioned in Section 2.1, we will consider in this paper only un-
conditional parallelism. However, the algorithms that we describe can be adapted
to deal with conditional parallelism without too much effort.

3.1 Order-Preserving Annotation: the UOUDG Algorithm

Algorithm 1 parallelizes a clause while preserving the order of the solutions
by respecting the relative order of literals in the original clause. In order to
keep track of that order, we assume that there is a relation ≺ on the literals
Li of the body of every clause H :- L1, L2, . . . , Lk−1, Lk such that Li ≺ Lj iff
i < j. Additionally, we assume that there is a partial function pred defined as
pred(Li+1) = Li, i.e., the literal at the left of some other literal in a clause.
We assume ≺ and pred are suitably extended to the nodes of the dependency
graph.5

5 Note, also, that the graph edges must respect the ≺ relation: (u→ v) ∈ E ⇒ u ≺ v.
The graph would have been incorrectly generated otherwise.

103

At every recursion step, new nodes (i.e., literals) in the graph are selected to
be published, joined, and executed sequentially. Subsequent iterations proceed
with a simplified graph in which the literals which have been joined and executed
sequentially, together with their outgoing edges, have been removed. The set
of goals which have already been published is kept in a separate argument to
schedule goals for parallel execution only once.

Two sets are key in each iteration: Indep, which contains the sources (i.e.,
all vertices without incoming edges in the current graph, which can therefore be
published), and Dep, which contains tuples (v, Iv) where, for each non-source
vertex v which can be reached from source vertices only, Iv is the set of source
vertices (Iv ⊆ Indep) on which v depends. I.e., Iv is the set of vertices to be
joined before v can start.

Also, pvt is the pivot vertex which will be used to decide which nodes are
to be joined, taking into account that we do not want to change the order of
solutions. If there are no Dep nodes, then all the remaining literals are already
independent and we can join up to the rightmost literal in the clause. Otherwise,
we select the leftmost node among those which have dependencies which can be
fulfilled in one step. These dependencies are readily available in Dep. Note that
as we select the leftmost node among those which can be joined, we are delaying
as much as possible joining nodes —or, alternatively, we are performing in every
step only the joins which are needed to continue one more step. This is aimed
at maximizing the number of parallel goals being executed at any moment.

It is possible for a literal to be scheduled to be forked and then immediately
joined. In order to detect these situations, which in practice would cause unnec-
essary overhead, we select (in Seq) the literal (only one) to which this applies,
and it is not taken into account for the set of Forked literals and removed from
the set of the Joined literals.

The algorithm then continues outputting a parallelized expression (returned
by gen body, Algorithm 3) composed with the parallelization of a simplified
graph, generated by a recursive call. Algorithm 3 is able to use determinism
information to reorder goals. Since Algorithm 1 preserves the order of solutions,
we do not use this capability at the moment. Therefore an empty set is passed as
determinism data and we define the function det(Lit, DetInfo) (used by Algo-
rithm 3) to return false if DetInfo = ∅, thus safely assuming non-determinism.

Termination can be proved based on the following observation: G is a finite
graph and it is simplified in each iteration provided Join or Seq are non-empty.
But Join is always non-empty because it is either V (which is non-empty) when
Dep = ∅ or else it is the second component of a tuple in Dep when Dep 6= ∅, and
this component is by definition non-empty. Note that we are not using acyclicity
to prove termination. However, all input graphs will be acyclic by definition.

3.2 Non Order-Preserving Annotation: the UUDG Algorithm

Algorithm 2 follows the same idea underlying Algorithm 1: publish early and join
late. However, it has more freedom to publish goals, since the order of solutions

104

Algorithm: UUDG(G, Pub, ID)

Input : (1) A directed acyclic graph G = (V, E). (2) A set of goals already
forked. (3) Determinacy information.

Output: An unrestricted parallelized clause in which the order of the solutions
in the original clause need not be preserved.

begin
if V = ∅ then return (true);
else

Indep ← {v | v ∈ V, incoming(v, E) = ∅};
Dep ← {Iv | v ∈ V, Iv = incoming(v, E), Iv 6= ∅, Iv ⊆ Indep};
if Dep = ∅ then

Join ← V ;
else

SS ← {Iv | Iv ∈ Dep, |Iv| = min card(Dep)};
Join = {s} s.t. s ∈ SS ; /* s any element from SS */

end
if (Join ∩ (Indep \ Pub)) = ∅ then

Seq = ∅;
else

Seq = {v} s.t. v ∈ (Join ∩ (Indep \ Pub)) ; /* v any element */

end
Fork ← Indep \ (Pub ∪ Seq);
Join ← Join \ Seq ;
Pub ← Pub ∪ Fork ∪ Seq ;
G← G−(Join ∪ Seq);
return (gen body det(Fork, Seq, Join, ID), UUDG(G, Pub, ID));

end
end

Algorithm 2: UUDG Annotation Algorithm.

does not need to be preserved. This is implemented by selecting, among the sets
of goals which can be joined at every moment, the one with the lowest cardinality
—i.e., we join as few goals as possible, thus postponing the rest of the joins as
much as possible, in order to exploit more parallelism. This is taken care of by
min card(S) = min({|s| | s ∈ S}, which returns the size of the smallest set in S.

Note that a random selection from a set is done at two points. Data regarding,
e.g., the relative run time of goals would allow us to take a more informed
decision and therefore precompute a perhaps better scheduling. Since we are not
using this information here, we just pick any available goal to join / execute
sequentially.

Algorithm 2 again uses Algorithm 3 to output a parallelized clause. In this
case Algorithm 3 makes use of determinism information as follows:

– Since we already have the possibility of switching goals around, we try to
minimize relaunching goals which are likely to be executed in parallel by
forking deterministic goals first.

105

Algorithm: gen body(Fork, Seq, Join, ID)

Input : (1) A set of vertices to be forked. (2) A set of vertices to be
sequentialized. (3) A set of vertices to be joined. (4) Determinacy
information.

Output: A parallelized sequence of literals Exp.
begin

Exp ← (true);
ForkDet = {g | g ∈ Fork, det(g, ID)};
ForkNonDet = {g | g ∈ Fork,¬det(g, ID)};
JoinDet = {g | g ∈ Join, det(g, ID)};
JoinNonDet = {g | g ∈ Join,¬det(g, ID)};
forall vi ∈ ForkDet do Exp ← (Exp, vi &!> Hvi);
forall vi ∈ ForkNonDet do Exp ← (Exp, vi &> Hvi);
if Seq = {v} then Exp ← (Exp, v);
forall vi ∈ JoinDet do Exp ← (Exp, Hvi <&!);
forall vi ∈ JoinNonDet do Exp ← (Exp, Hvi <&);
return Exp;

end

Algorithm 3: Determinism-aware generation of a parallel body.

G=(V,E) I D J S F J\S P Parallel Code

({a, b, c, d},{(a, b), (a, d), (c, d)}) ∅ p(X,Y,Z) :-

({a, b, c, d},{(a, b), (a, d), (c, d)}) {a, c} {b, d} {a} {a} {c} ∅ {a, c} c(Y) &> Hc, a(X,Z),

({b, c, d},{(c, d)}) {b, c} {d} {c} ∅ {b} {c} {a, b, c} b(X) &> Hb, Hc <&,

({b, d},∅) {b, d} ∅ {b, d} {d} ∅ {b} {a, b, c, d} d(Y,Z), Hb <&.

(∅,∅)

Table 1. Iterations of the UUDG algorithm when parallelizing p/3.

– Additionally, when a goal is known to have exactly one solution, we can use
specialized versions of the dep-operators [8] which do not need to perform
bookkeeping for backtracking (always complex in parallel implementations),
and are thus more efficient.

This program information can often be automatically inferred by the abstract
interpretation-based determinism analyzer in CiaoPP [18], and is provided as
input to the proposed annotators. Alternatively, this information can be stated
by the programmer via assertions [13].

Example 1 (UUDG Annotation). In order to illustrate how the UUDG algorithm
works, Table 1 shows the results obtained at each of the iterations of the par-
allelization process for the p/3 predicate introduced in Section 2.1 and whose
dependency graph is shown in Figure 1. Columns are labeled with the first char-
acter of each of the variables they represent. Note that in the first algorithm
step, both a and c are candidates for parallel execution (they are in Indep).
However, as a has to be joined too (it is necessary to continue executing either
b or d) it is selected to be sequentially executed.

106

AIAKL An abstract interpreter for the AKL language.
FFT An implementation of the Fast Fourier transform.
FibFun A version of Fib written in functional notation.
Hamming A program to compute the first N Hamming numbers.
Hanoi A program to compute movements to solve the well-known puzzle.
Takeuchi Computes the Takeuchi function.
WMS2 A scheduler assigning a number of workers to a series of jobs.

Table 2. Benchmark programs

4 Performance Evaluation

Our annotation algorithms have been integrated in the Ciao/CiaoPP system [13].
Information gathered by the analyzers on variable sharing, groundness, and free-
ness is used to determine goal independence, using the libraries available in
CiaoPP. Determinism is used in the annotators as described previously.

As execution platform we have used a high level implementation of the pro-
posed parallelism primitives [8], which we have developed as an extension of
the Ciao system. This implementation is an evolution and simplification of [12]
which is based on raising the level of certain components to the level of the source
language and keeping only some selected operations (related to thread handling,
locking, etc.) at a lower level. This approach does not eliminate altogether mod-
ifications to the abstract machine, but it greatly simplifies them. It should be
noted however that the dep-operators do not assume any particular architecture:
while our current implementation and all the performance results were obtained
on a multicore machine, the techniques presented can be also applied in dis-
tributed memory machines —and in fact, the first prototype implementation of
the dep-operators [5, 4] was actually made on a distributed environment.

We have evaluated the impact of the different annotations on the execution
time by running a series of benchmarks (briefly described in Table 2) in parallel.
Table 3 shows the speedups obtained with respect to the sequential execution,
i.e., they are actual speedups,6 when using from 1 to 8 threads. The machine we
used is a Sun UltraSparc T2000 (a Niagara) with 8 4-thread cores.7 The fork-join
annotators we chose to compare with are MEL [22] (which preserves goal order
and tries to maximize the length of the parallel expressions) and UDG [4] (which
can reorder goals). MEL can add runtime checks to decide dynamically whether
to execute or not in parallel. In order to make the annotation unconditional
(as the rest of the annotators we are dealing with), we simply removed the
conditional parallelism in the places where it was not being exploited. This is
why it appears in Table 3 under the name UMEL.

All the benchmarks executed were parallelized automatically by CiaoPP,
starting from their sequential code. Since UOUDG and UUDG can improve the
results of fork-join annotators only when the code to parallelize has at least a cer-

6 This is the reason why some speedups start below 1 for, e.g., one thread.
7 We did not use more than 8 cores since in that case, and due to access to shared

units, speedups are sublinear even for completely independent tasks.

107

Benchmark Annotator
Number of threads

1 2 3 4 5 6 7 8

AIAKL

UMEL 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98
UOUDG 0.97 1.55 1.48 1.49 1.49 1.49 1.49 1.49
UDG 0.97 1.77 1.66 1.67 1.67 1.67 1.67 1.67
UUDG 0.97 1.77 1.66 1.67 1.67 1.67 1.67 1.67

FFT

UMEL 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37
UOUDG 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37
UDG 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37
UUDG 0.98 1.82 2.31 3.01 3.12 3.26 3.39 3.63

FibFun

UMEL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UOUDG 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57
UDG 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UUDG 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57

Hamming

UMEL 0.93 1.13 1.52 1.52 1.52 1.52 1.52 1.52
UOUDG 0.93 1.15 1.64 1.64 1.64 1.64 1.64 1.64
UDG 0.93 1.13 1.52 1.52 1.52 1.52 1.52 1.52
UUDG 0.93 1.15 1.64 1.64 1.64 1.64 1.64 1.64

Hanoi

UMEL 0.89 0.98 0.98 0.97 0.97 0.98 0.98 0.99
UOUDG 0.89 1.70 2.39 2.81 3.20 3.69 4.00 4.19
UDG 0.89 1.72 2.43 3.32 3.77 4.17 4.41 4.67
UUDG 0.89 1.72 2.43 3.32 3.77 4.17 4.41 4.67

Takeuchi

UMEL 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63
UOUDG 0.88 1.62 2.17 2.64 2.67 2.67 2.67 2.67
UDG 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63
UUDG 0.88 1.62 2.39 3.33 4.04 4.47 5.19 5.72

WMS2

UMEL 0.85 0.81 0.81 0.81 0.81 0.81 0.81 0.81
UOUDG 0.99 1.09 1.09 1.09 1.09 1.09 1.09 1.09
UDG 0.99 1.01 1.01 1.01 1.01 1.01 1.01 1.01
UUDG 0.99 1.10 1.10 1.10 1.10 1.10 1.10 1.10

Table 3. Speedups for several benchmarks and annotators.

tain level of complexity, not all benchmarks with (independent) parallelism can
benefit from using the dep-operators. Additionally, comparing speedups obtained
with programs parallelized using order-preserving and non-order-preserving an-
notators is not completely meaningful.

Note that in this paper we are not focusing on the speedups themselves.
Although of utmost practical interest, raw speed is very connected with the
implementation of the underlying parallel abstract machine, and improvements
on it can be expected to uniformly affect all parallelized programs. Rather, our
main focus of attention is in the comparison among the speedups obtained using
different annotators.

A first examination of the experimental results in Table 3 allows inferring
that in no case is UUDG worse than any other annotator, and in no case is
UOUDG worse than (U)MEL. They should therefore be the annotators of choice
if available. Besides, there are cases where UOUDG is better than UDG, and the

108

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 3 4 5 6 7 8

MEL
UDG

UOUDG
UUDG

(a) Hanoi

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1 2 3 4 5 6 7 8

MEL
UDG

UOUDG
UUDG

(b) Takeuchi

Fig. 4. Speedups with different annotations for Hanoi and Takeuchi.

other way around, which is in accordance with the non-comparable nature of
these two algorithms.

Among the cases in which a better speedup is obtained by some of the
U(O)UDG annotators, improvements range between “no improvement” (because
no benefit is obtained for some particular cases and combinations of annotators)
to an increase of 752% in speedup, with several other stages in between. Also,
it is worth pointing out that the speedup does not stabilize in any benchmark
(at least in a sizable amount) as the number of threads increases; moreover, in
some cases the difference in speedup between the restricted and the unrestricted
versions grows substantially with the number of threads. This can (clearly) be
seen in, e.g., Figure 4(b).

Finally, we would like to comment specially on three benchmarks. FibFun
is the result of parallelizing a definition of the Fibonacci numbers written using
the functional notation capabilities of Ciao [6]. Because of the order in which
code is generated in the (automatic) translation into Prolog, the result is only
parallelizable by UOUDG and UUDG, hence the speedup obtained in this case.
The case of Hanoi is also interesting, as it is the first example in [22]: in the arena
of order-preserving parallelizers, UOUDG can extract more parallelism than MEL
for this benchmark. Lastly, the Takeuchi benchmark has a relatively small loop
which only allows parallelizing with a simple &/2. However, by unrolling one
iteration the resulting body has dependencies which are complex enough to take
advantage of the increased flexibility of the dep-operator annotators.

5 Conclusions

We have proposed two annotation algorithms which perform a source-to-source
transformation of a logic program into an unrestricted independent and-parallel
version of itself. Both algorithms rely on the use of more basic high-level primi-
tives than the fork-join operator, and differ on whether the order of the solutions
in the original program must be preserved or not. We have implemented the pro-
posed algorithms in the CiaoPP system, which infers automatically groundness,

109

sharing, and determinacy information, used to simplify the initial dependency
graph. The results of the experiments performed show that, although the par-
allelization provided by the new annotation algorithms is the same in quite a
few of the traditional parallel benchmarks, it is never worse and in some cases
it is significantly better. This supports the observations made based on the ex-
pected performance of the annotations. We have also noticed that the benefits
are larger for programs with high numbers of goals in their clauses, since their
more complex graphs make the ability to exploit non-restricted parallelism more
relevant.

Acknowledgments: This work was funded in part by Ministry of Education
and Science (MEC) project TIN2005-09207-C03 MERIT-COMVERS, by Min-
istry of Industry (MIN) PROFIT project FIT-350400-2006-44 GGCC, by Madrid
Regional Government (CM) project S-0505/TIC/0407 PROMESAS, and by IST
program of the European Commission FP6 FET project IST-15905 MOBIUS.
Manuel Hermenegildo and Amadeo Casas were also funded in part by the Prince
of Asturias Chair in Information Science and Technology at UNM.

References

1. K. A. M. Ali and R. Karlsson. The Muse Or-Parallel Prolog Model and its Perfor-
mance. In 1990 North American Conference on Logic Programming, pages 757–776.
MIT Press, October 1990.

2. F. Bueno, M. Garćıa de la Banda, and M. Hermenegildo. Effectiveness of Abstract
Interpretation in Automatic Parallelization: A Case Study in Logic Programming.
ACM Transactions on Programming Languages and Systems, 21(2):189–238, March
1999.

3. F. Bueno, M. Garćıa de la Banda, and M. Hermenegildo. Effectiveness of Abstract
Interpretation in Automatic Parallelization: A Case Study in Logic Programming.
ACM TOPLAS, 21(2):189–238, March 1999.

4. D. Cabeza. An Extensible, Global Analysis Friendly Logic Programming Sys-
tem. PhD thesis, Universidad Politécnica de Madrid (UPM), Facultad Informatica
UPM, 28660-Boadilla del Monte, Madrid-Spain, August 2004.

5. D. Cabeza and M. Hermenegildo. Implementing Distributed Concurrent Constraint
Execution in the CIAO System. In Proc. of the AGP’96 Joint conference on
Declarative Programming, pages 67–78, San Sebastian, Spain, July 1996. U. of the
Basque Country. Available from http://www.cliplab.org/.

6. A. Casas, D. Cabeza, and M. Hermenegildo. A Syntactic Approach to Combin-
ing Functional Notation, Lazy Evaluation and Higher-Order in LP Systems. In
FLOPS’06, Fuji Susono (Japan), April 2006.

7. A. Casas, M. Carro, and M. Hermenegildo. Annotation Algorithms for Unrestricted
Independent And-Parallelism in Logic Programs. Technical Report CLIP4/2007.0,
Technical University of Madrid (UPM), School of Computer Science, UPM, June
2007.

8. A. Casas, M. Carro, and M. Hermenegildo. Towards High-Level Execution Primi-
tives for And-Parallelism: Preliminary Results. In Colloquium on Implementation
of Constraint and LOgic Programming Systems (ICLP associated workshop). ACM
Press, September 2007.

110

9. G. Gupta, M. Hermenegildo, E. Pontelli, and V. Santos-Costa. ACE: And/Or-
parallel Copying-based Execution of Logic Programs. In International Conference
on Logic Programming, pages 93–110. MIT Press, June 1994.

10. G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo. Parallel Execu-
tion of Prolog Programs: a Survey. ACM TOPLAS, 23(4):472–602, July 2001.

11. M. Hermenegildo. Parallelizing Irregular and Pointer-Based Computations Auto-
matically: Perspectives from Logic and Constraint Programming. Parallel Com-
puting, 26(13–14):1685–1708, December 2000.

12. M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting Independent
And-Parallelism. New Generation Computing, 9(3,4):233–257, 1991.

13. M. Hermenegildo, G. Puebla, F. Bueno, and P. López Garćıa. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming, 58(1–2):115–140,
October 2005.

14. M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-Parallelism
in Logic Programs: Correctness, Efficiency, and Compile-Time Conditions. Journal
of Logic Programming, 22(1):1–45, 1995.

15. M. Hermenegildo and R. Warren. Designing a High-Performance Parallel Logic
Programming System. Computer Architecture News, Special Issue on Parallel Sym-
bolic Programming, 15(1):43–53, March 1987.

16. Sverker Janson. AKL. A Multiparadigm Programming Language. PhD thesis,
Uppsala University, 1994.

17. A.H. Karp and R.C. Babb. A Comparison of 12 Parallel Fortran Dialects. IEEE
Software, September 1988.

18. P. López-Garćıa, F. Bueno, and M. Hermenegildo. Determinacy Analysis for Logic
Programs Using Mode and Type Information. In Proceedings of the 14th Interna-
tional Symposium on Logic-based Program Synthesis and Transformation (LOP-
STR’04), number 3573 in LNCS, pages 19–35. Springer-Verlag, August 2005.

19. P. López-Garćıa, M. Hermenegildo, and S. K. Debray. A Methodology for Granu-
larity Based Control of Parallelism in Logic Programs. Journal of Symbolic Com-
putation, Special Issue on Parallel Symbolic Computation, 21(4–6):715–734, 1996.

20. E. Lusk et al. The Aurora Or-Parallel Prolog System. New Generation Computing,
7(2,3), 1990.

21. E. Mera, P. López-Garćıa, G. Puebla, M. Carro, and M. Hermenegildo. Combining
Static Analysis and Profiling for Estimating Execution Times. In Ninth Interna-
tional Symposium on Practical Aspects of Declarative Languages, number 4354 in
LNCS, pages 140–154. Springer-Verlag, January 2007.

22. K. Muthukumar, F. Bueno, M. Garćıa de la Banda, and M. Hermenegildo. Au-
tomatic Compile-time Parallelization of Logic Programs for Restricted, Goal-
level, Independent And-parallelism. Journal of Logic Programming, 38(2):165–218,
February 1999.

23. E. Pontelli, G. Gupta, D. Tang, M. Carro, and M. Hermenegildo. Improving the
Efficiency of Nondeterministic And–parallel Systems. The Computer Languages
Journal, 22(2/3):115–142, July 1996.

24. V. Santos-Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Parallel Prolog
System that Transparently Exploits both And- and Or-parallelism. In Proceedings
of the 3rd. ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 83–93. ACM, April 1991. SIGPLAN Notices vol 26(7), July
1991.

25. K. Shen. Overview of DASWAM: Exploitation of Dependent And-parallelism.
Journal of Logic Programming, 29(1–3):245–293, November 1996.

111

A Flexible, (C)LP-based Approach to the
Analysis of Object-Oriented Programs3

Mario Méndez-Lojo1, Jorge Navas1, and Manuel V. Hermenegildo1,2

1 University of New Mexico (USA)
2 Technical University of Madrid (Spain)

Abstract. Static analyses of object-oriented programs usually rely on
intermediate representations that respect the original semantics while
having a more uniform and basic syntax. Most of the work involving
object-oriented languages and abstract interpretation usually omits the
description of that language or just refers to the Control Flow Graph
(CFG) it represents. However, this lack of formalization on one hand re-
sults in an absence of assurances regarding the correctness of the trans-
formation and on the other it typically strongly couples the analysis to
the source language. In this work we present a framework for analysis of
object-oriented languages in which in a first phase we transform the in-
put program into a representation based on Horn clauses. This facilitates
on one hand proving the correctness of the transformation attending to
a simple condition and on the other allows applying existing analyzers
for (constraint) logic programming to automatically derive a safe ap-
proximation of the semantics of the original program. The approach is
flexible in the sense that the first phase decouples the analyzer from most
language-dependent features, and correct because the set of Horn clauses
returned by the transformation phase safely approximates the standard
semantics of the input program. The resulting analysis is also reasonably
scalable due to the use of mature, modular (C)LP-based analyzers. This
allows us to report good results for medium-sized programs.

1 Introduction

Analysis of object-oriented languages using abstract interpretation [9] is cur-
rently the subject of significant research (see, e.g., [21] and its references). The
abstract interpretation approach brings an interesting and useful combination of
characteristics: it is automatic and practical, producing useful results for a good
number of applications, while at the same time being rigorous and semantics-
based. The gap between programs and semantics is greater in the case of object-
oriented languages than in, for example, declarative languages. For this reason,
3 This work was supported in part by the Prince of Asturias Chair in Information

Science and Technology at UNM, the Information Society Technologies program of
the European Commission, Future and Emerging Technologies under the IST-15905
MOBIUS project, the Spanish Ministry of Education under the TIN-2005-09207
MERIT project, and the Madrid Regional Government under the S-0505/TIC/0407
PROMESAS program.

112

static analyses of object-oriented programs usually rely on intermediate lan-
guages that respect the original semantics while having a more uniform and
basic syntax (e.g., block-based representations) and a more declarative seman-
tics (e.g., static single assignment transformations). Some significant concrete
examples which have been proposed of such intermediate representations for
object-oriented programs are Jimple [32] for Java or BoogiePL [10] for .NET.

In this paper we propose the use of a Horn clause-based representation as
an intermediate language. Our objective is twofold. On one hand we would like
to take advantage of existing analyzers for (constraint) logic programs. On the
other, we want to be able to offer assurances that the output of the process
of transformation into the intermediate representation safely approximates the
standard semantics of the input program. Performing the analysis using logic
programming tools offers a number of advantages, such as the relative maturity
and sophistication of the solutions available, like abstract interpreters (which
offer parametric, efficient, and modular fixpoint algorithms) and verifiers (see,
e.g., [15, 12] and their references). A second strength of our transformational
approach is that the framework can be easily adapted to the analysis of other
languages without having to redefine the fixpoint algorithm [24]. In fact, us-
ing the intermediate representation that we propose, from the analyzer point of
view an object-oriented program is indistinguishable from, e.g., a Prolog one (al-
though of course different abstract domains and definitions of pseudo-builtins are
used). This brings in the additional advantage of being able to analyze multiple
languages within the same framework.

We start by describing our methodology (Section 2) and our approach to en-
suring correctness using some fundamental parts of the transformation of Java
programs into our representation as examples (Section 3). Section 4 shows how
analysis of specific aspects of Java can be optimized using metainformation. We
then illustrate the application of our approach to other languages, such as C#
(Section 5). We also report on an implementation of the ideas presented in this
paper using the abstract interpretation-based CiaoPP framework [15]. It can
be configured for many different analyses by simply plugging the corresponding
abstract domain. The examples try to detect null pointer dereferences (nullity
analysis) and eliminate dynamic dispatch (class analysis) in Java programs. The
experiments in Section 6 show that the technique scales well in non trivial sce-
narios, and results in smaller analysis times than similar previous work. Related
abstract interpretation-based frameworks, and how they differ from ours, are
discussed in Section 7, and Section 8 presents our conclusions.

2 Methodology: the transformational approach

Our framework is composed of a front-end preprocessor and a back-end analyzer,
as shown in Figure 1. The preprocessor transforms an input in Java source for-
mat into a set of Horn clauses that represent a safe approximation of its standard
semantics (Sect 3). Sometimes the source code is not available, so we also accept
Java bytecode as a valid input format. In this case the (de)compilation from

113

AnalysisTransformation

Java parser (in Ciao)

soot + Ciao

transform.

javac

Java bytecode

Java Source

Fixpoint

algorithm

Domains

Pre/Post pairs
Prog. Point Info

...

C#

(CiaoPP)

Horn clauses
(including

metainf.)

Fig. 1. Transformation and analysis pipeline.

bytecode to Horn clauses is based on a postprocessing of the Jimple represen-
tation returned by the Soot [32] tool. It is beyond the scope of this paper to
provide a detailed description of this particular transformation; the reader is
referred to [24] (which presents our transformation and a specific fixpoint algo-
rithm for analysis) for details. In both cases the same subset of the language
is covered by the framework. Our ultimate objective is to support the full Java
language but the current implementation has some limitations: it does not sup-
port dynamic loading of classes, threads, or runtime exceptions. Also, analysis
of the JDK libraries is done under worst-case assumptions.

The resulting Horn-clause intermediate representation is then analyzed using
the CiaoPP framework [15] and benefits from its advanced features: efficient
computation of fixpoints using memoization, context-sensitivity, modularity, etc.
The programmer needs only to implement (in Ciao [6], or in plain Prolog) the
particular abstract domain of interest, which includes also defining the abstract
meaning of a set of “built-in” predicates that represent the language-dependent
semantics of the basic operations of the source language. On the other hand, our
approach does liberate the designer of an analysis from the burden of coding a
fast, reliable, and efficient abstract interpretation platform. Analysis results are
given in the standard form (p, σ), where p uniquely identifies a program point
and σ is an abstract state which safely approximates all the possible states
at that program point during runtime. Metainformation computed during the
transformation process allows relating those line numbers with the ones of the
original bytecode or source program, making it possible to reflect back the results
on the original program text (as JML-like assertions [18]), pinpoint errors in the
original program, or implement compiler optimizations.

Other languages can be incorporated into the framework (i.e., analyzed) by
providing a correct transformation for them. For example, support for other
object-oriented languages like C#, that share many syntactic and semantics
features with Java, is easily achievable as illustrated in Section 5. In addition,

114

programs written in Ciao, which CiaoPP deals with natively, are obviously also
accepted by the system as input.

3 Overview of the semantic basis and correctness of the
transformation phase

Our Horn clause representation of a Java program is basically an unfolded,
three-address version of the source where the operational semantics of some in-
structions is made explicit. The transformed code is denoted by the c subindex:
for example, the result of transforming a virtual invocation v.m(v1, . . . , vn) is
vc.mc(v1c , . . . , vnc) = v.mc(v1, . . . , vn), since variable expressions are not trans-
formed (vc = v).

Correctness of the transformation requires that the original program prog
be emulated by progc thus CJprogK = CJprogcK, where the semantics operator
CJK : com 7→ (D 7→ D) takes as input a command com and a concrete state,
and returns the output state. The operator has been defined in [14] and (from a
denotational point of view) in [2, 29]. Correctness of preprocessing and analysis
requires that if the Horn clause program is safely approximated (using a given
abstract domain) by the analysis, so is the original: C∗JprogK = C∗JprogcK. The
C∗JK : com 7→ (D∗ 7→ D∗) operator is the abstract counterpart of CJK.

We will take a slightly different approach by interpreting Java semantics as a
particular case of SLD [17] resolution, in which the computation rule in use is left-
to-right (commands are executed in the order they appear in the program) and
the search rule used to determine the target method in an invocation in principle
does not really matter, since execution of the Java program is deterministic and
therefore for any literal there is exactly one clause that unifies with it at run
time. Therefore, if SJK : com 7→ (D 7→ P(D)) is the SLD semantics operator,
the condition SJprogK = {CJprogK} ensures S∗JprogK = C∗JprogK. Again, S∗JK :
com 7→ (D∗ 7→ D∗) is the (collecting) abstract version of SJK.

This formalization is useful since it helps understanding the Java source as a
set of Horn clauses (methods) composed by zero or more goals, the commands.
It is also helpful because our transformation introduces new clauses such that
now more than one clause might unify with a given literal. This is equivalent
to saying that the execution of the transformed program on some input state
might result in multiple output states, of which one is the unique state that the
original program would return: SJprogK ⊆ SJprogcK. An interesting property of
that transformed program is that its abstract semantics S∗JprogcK still correctly
approximates that of the original, i.e., S∗JprogK ≤ S∗JprogcK. Therefore, all
we have to prove in order to show that the results of the analysis are correct
is that SJprogK ⊆ SJprogcK (or CJprogK ∈ SJprogcK) holds. Space limitations
prevent us from discussing the whole transformation algorithm and providing
proofs. Instead, we describe and provide a proof sketch for the case of the virtual
invocation expression, which is one of the most complex operations supported.

115

staticCallSemantics(k$m(v, v1, . . . , vn), σ)

s = signature(call)
body = getBody(k$m, s)
return(bodySemantics(body, σ))

virtualCallSemantics(k?m(v, v1, . . . , vn), σ)

s = signature(call)
c = lookup(runtime class(v), s)
return staticCallSemantics(c$m(v, v1, . . . , vn), σ)

lookup(k, s)
a = k
do

if declares(a, s)
return(a)

a = ancestor(a)

while (true)

compileStaticCall(k$m(v, v1, . . . , vn), progc)

return k$m(v, v1, . . . , vn)

compileVirtualCall(k?m(v, v1, . . . , vn), progc)

s = signature(call)
C = resolve(k, s)
forall c ∈ C add to progc the clause

k$dyn*m(v, v1, . . . , vn) : −
c$m(v, v1, . . . , vn)

return k$dyn*m(v, v1, . . . , vn)

resolve(k, s)

result = ∅
Sub = subclasses(k) ∪ {k}
forall sub ∈ Sub

sk = lookup(sub, s)
result = result ∪ sk

return result

Fig. 2. Standard semantics (left) and transformation (right) of method calls.

3.1 Correctness of a virtual invocation

The description of the standard semantics in this section is a slightly simplified
version of the more formal specification described in [29]. We distinguish be-
tween two different kinds of invocations: virtual and static. Assume that calls
of the first type have been rewritten as k?m(v, v1, . . . , vn) and the static ones
as k$m(v, v1, . . . , vn) , where k is the declared type of v. Note that we rewrote
the call syntax so the invoked object v is now the first actual parameter. The
main difference between the two is that while in virtual invocations we need to
figure out the particular class of v through a lookup in the class hierarchy, that
operation is unnecessary in static calls since there is only one possible receiver.

In the left column of Figure 2 we present the pseudocode for the semantics
of a static call (here denoted by staticCallSemantics) and a virtual call (here
denoted by virtualCallSemantics). The particular signature of the invocation
has to be calculated in order to distinguish which implementation to choose,
since in Java (as in the Horn clauses) there can be many methods with the same
name and arity, but here they will differ in the type of at least one of the formal
parameters. Also, we will assume that there exists a function runtime class
that returns the runtime type of the object passed as parameter.

We refer to the tuple (v, v1, . . . , vn) as pars. The standard semantics of
the call in the original program is CJk?m(pars)Kσ = CJc$m(pars)Kσ, where c
is the value returned by lookup(runtime class(v), s). The SLD semantics of
the transformed version is SJk?mc(pars)Kσ, which the transformation ensures
to be SJk$dyn*m(pars)Kσ =

⋃
i SJci$m(pars)Kσ, where ci ∈ resolve(k, s). The

correctness condition is now reduced to proving that c is equal to some ci. This
is equivalent to showing that lookup(runtime class(v), s) ∈ resolve(k, s), which
can be further rewritten as lookup(runtime class(v), s) ∈ {lookup(sub, s) | sub ∈
subclasses(k)∪ {k}}. But the runtime type of v can only be k or a subclass of
it in a type safe language as Java, and therefore the condition always holds.

Example 1. Assume a hierarchy of classes like in Figure 3. The root class A
declares a method foo which is further redefined (overwritten) in subclasses B,

116

Y

B

Z

C

A

X

public void foo()

public void foo()

public void foo()

public void foo()

someMethod(){
X v;
...
v.foo();

}

(a) Fragment of the original program

SomeClass$someMethod():-
...
X$dyn*foo(v).

X$dyn*foo(w):-
B$foo(w)

X$dyn*foo(w):-
Z$foo(w).

(b) Fragment of the transformed program

Fig. 3. Transformation of a virtual invocation.

C, and Z. If the original program in Figure 3a) contains a virtual invocation
to foo in an instance declared as being of class X, our compiler automatically
transforms it into a call to a new method with two new clauses (methods) that
represent all the possible receiver implementations for the call. Because X is a
direct subclass of B, it can never inherit the original A implementation but only
the B one, represented by the first clause of xdynfoo. Alternatively, any object
of type Y and Z is also of type X and therefore we include a call to the Z version
of foo in the second clause. The C implementation is discarded because of type
incompatibility.

The process described has many interesting properties. First, it is based on
assuming SLD resolution semantics for the transformed Horn clause program.
This allows reusing existing analyzers without having to redefine the abstract
unification operator in order to deal with language-dependent features, as in
the case of virtual invocation. We implemented our Java analyses on top of
the CiaoPP Prolog analyzer [15] without modifying its code, even when specific
abstract domains and “builtin” definitions for Java language constructs had
to be provided. A second strength is that correctness of the transformation
depends only on showing that CJcommK ∈ SJcommcK holds for every command
(and expression) in the source language. Although not trivial, the proof can be
slightly modified for similar languages to Java, so neither the compiler nor the
abstract domains need to be completely rewritten. In the case of Ciao, the proof
is trivial since progc = prog.

4 Other (meta-)information added by the transformation

The addition of meta-information during the transformation, although not strictly
required, can help both efficiency and full independence from the source lan-
guage. In some cases the fixpoint algorithm can be optimized if some charac-
teristics related to the original source are known. In other cases the abstract

117

package examples;

public class Vector {

Element first;

public void add(int value){
Element e = new Element();
e.value = value;
Vector v = new Vector();
v.first = e;
append(v);

}
public void append(Vector v){

Element e = first;

if (e == null)
first = v.first;

else{
while (e.next != null)

e = e.next;

e.next = v.first;
}

}
}

class SubVector extends Vector{

public void append(Vector v){
//...

}
}

class ancestor

Vector Object
SubVector Vector
Element Object

method entry

Vector$init y
Vector$add y
Vector$dyn*append y
Vector$append y
Vector$append#1#2 n
Vector$append#3#4 n
SubVector$init y
SubVector$append y
Element$init y

Fig. 4. Vector example: source code and corresponding metainformation.

domain can use certain information about the program not directly encoded in
the Horn clauses. Both demands are solved via the addition of metainformation
to the transformation. We illustrate this point with the example in Figure 4,
which shows an alternative version of the JDK Vector class. The descendant
SubVector contains an alternative version of the append method. The corre-
sponding Horn clauses (represented as a Control Flow Graph) are shown in
Figure 5. We omitted the constructor (init) clauses for simplicity.

Space reasons prevent us from listing a complete description of the metain-
formation; only hierarchy and method type tables are shown in Figure 4 (such
tables are represented as sets of facts). In the case of the parent-child relations,
the purpose is to provide the abstract domain code with access to the class tree,
the more obvious application being class analysis [3]. The second table contains
a classification for each method, which can be y (entry) or n (internal). It is used
to optimize the performance of the fixpoint engine, avoiding projection and ex-
tension operations [5] (e.g., for blocks that share variable scope with the calling
context, such as conditionals).

An entry method corresponds in the original program to the first clause [14]
of the Java method of the same name and shares its signature, except for an extra
parameter that represents the value returned. The other clauses present in the
Java method are compiled into (components of) internal methods which share
the same set of variables: all the formal parameters and local variables they refer-
ence. Examples of constructions converted into internal clauses are if, while, or
for loops. In the example, we can see how the if (e==null)...else conditional
in the Vector implementation of append is converted into two different clauses,
one for each branch, which actually share the same name Vector$append#1#2
(Figure 5). In this case, the internal method is composed of two clauses which

118

asg(R0_,Vector,R0,Vector)
asg(R1_,Vector,R1,Vector)
gtf(R2,Element,R0_,Vector,first,Element)

Vector$append(Res,R0,R1)

Vector$append#1#2(Res,R0_,R1_,R2,R3,R4,R5)

ne(R4,Element,null,null_type)

Vector$append#3#4(Res,R0_,R1_,R2,R3,R4,R5)

Vector$append#1#2(Res,R0_,R1_,R2,R3,R4,R5)

gtf(R2,Element,R2,Element,next,Element)
SubVector$append(Res,R0,R1)

ne(R2,Element,null,null_type)eq(R2,Element,null,null_type)

Vector$append#3#4(Res,R0_,R1_,R2,R3,R4,R5)

gtf(R4,Element,R2,Element,next,Element)

Vector$append#1#2(Res,R0_,R1_,R2,R3,R4,R5)

eq(R4,Element,null,null_type)

Vector$append#3#4(Res,R0_,R1_,R2,R3,R4,R5)

stf(R0_,Vector,first,Element,R3,Element)

gtf(R3,Element,R1_,Vector,first,Element)

stf(R2,Element,next,Element,R5,Element)

gtf(R5,Element,R1_,Vector,first,Element)

stf(R3,Vector,first,Element,R2,Element)

Vector$dyn*append(Res,R0_,R3)

asg(R3,Vector,R4,Vector)
Vector$<init>#1650(_Void,R4)

new(R4,Vector)
stf(R2,Element,value,int,I0,int)

asg(R2,Element,R1,Element)
Element$<init>(_Void,R1)
new(R1,Element)
asg(R0_,Vector,R0,Vector)

Vector$add(Res,R0,I0)

Vector$append#1#2(Res,R0_,R1_,R2,R3,R4,R5)

tot(R0_, [SubVector])

SubVector$append(Res,R0_,R3)

Vector$dyn*append(Res,R0_,R3)

tot(R0_, [Vector])

Vector$append(Res,R0_,R3)

Vector$dyn*append(Res,R0_,R3)

...

Fig. 5. Call Graph for the example in Figure 4.

are indistinguishable from the caller’s point of view, thus causing invocations to
the method to be non-deterministic (i.e., causing the execution of one clause or
another). Entry clauses are marked in gray, internal ones in white; dotted arrows
denote non-deterministic flows while the continuous ones symbolize deterministic
calls.

Another flow transformation (extra clauses) tries to expose the internal struc-
ture of some complex Java features, which sometimes encode sophisticated op-
erations. That is the case of the virtual invocations studied in Section 3. Com-
ing back to the example in Figure 4, note that the call to append within add
is polymorphic: it might execute the implementation in Vector or the one in
SubVector. We make this semantics explicit by inspecting the application hier-
archy and replacing the virtual invocation with a set of resolved calls, one for
each possible implementation. The method acting as a “hub” is called an ex-
tra clause; in the example we have two, Vector$dyn*append, marked in black.
They behave in a very similar way to the conditional discussed previously, since
the program flow might go through two alternative paths (clauses), one for each
implementation of append. Each branch contains a guard (tot, see the first state-
ment in each of the Vector$dyn*append clauses) listing the acceptable types for
the callee.

It is interesting how, in an analogous way to the clause case, we introduced
extra statements to further simplify analysis. For example, the mentioned tot
(type of this) builtin filters the execution of subsequent statements when the class
of the instance is not listed in the set of possibilities; guard statements have a
similar goal in clauses that come from conditional constructions. In Figure 5 the
eq call at the beginning of the leftmost Vector$append#1#2 clause refers to the
condition for executing the first branch, while the ne call contains its negated
version, for the second alternative. Also, those methods that are entry but not
extra contain assignments to shadow variables that simulate the call-by-reference
semantics [24].

119

public class Lang{

public void foo(Location loc){
String lang = loc.getDefaultLanguage();
...

}
}

class Location {
public String getDefaultLanguage(){

return "English";
}

}

class China extends Location{
public String getDefaultLanguage(){

return "Mandarin";
}

}

class Sichuan extends China{
}

Lang$foo(Res,R0,R1):-
asg(R0_,Lang,R0,Lang),
asg(R1_,Location,R1,Location),
Location$dyn*getDefaultLanguage(R4,R1_),
ret.

Location$getDefaultLanguage(Res,R0):-
asg(R0_,Location,R0,Location),
asg(Res,java.lang.String,"English",java.lang.String),
ret.

China$getDefaultLanguage(Res,R0):-
asg(R0_,China,R0,China),
asg(Res,java.lang.String,"Mandarin",java.lang.String),
ret.

Location$dyn*getDefaultLanguage(Res,R1_):-
tot(R1_, [China,Sichuan]),
China$getDefaultLanguage(Res,R1_).

Location$dyn*getDefaultLanguage(Res,R1_):-
tot(R1_, [Location]),
Location$getDefaultLanguage(Res,R1_).

Fig. 6. Transformation for dynamic dispatch in Java.

5 Explicit semantics in other OO languages

Our framework can be adapted to other languages apart from Java (and Ciao),
especially for those like C# that share similar syntax and statement semantics
to Java. The examples in Figures 6 and 7 illustrate this point. In Figure 6, the
value returned by the getDefaultLanguage invocation in the foo method re-
turns English if loc has runtime type Location and Mandarin if the runtime
type is China or Sichuan, since this last class inherits the implementation of
getDefaultLanguage from China according to standard Java semantics [14].
The C# language is quite similar in most aspects, but polymorphic invocations
have been further refined (and complicated). In Figure 7 only class China over-
shadows the default definition for the getDefaultLanguage method given in
the superclass; HongKong inherits the Location implementation. Therefore, an
invocation like (new Hong Kong()).getDefaultLanguage() returns English.

When analyzing a virtual invocation like the one in the first line of foo,
we could have implemented internal mechanisms in the analyzer for differen-
tiating the two possible interpretations that the call might have in each lan-
guage. That implies an undesirable, double implementation of either the fix-
point algorithm or the abstract domains, since the analyzer would then be
language-dependent. To bypass this problem, we introduce additional pseudo-
builtins that contain language-dependent features. We can see in Figures 6 and 7
how the Horn clause representation is almost identical in both cases, except for
the bodies of the two Location$dyn*getDefaultLanguage clauses. In the case
of Java, we indicate that the first clause is executed if the runtime type of
this (tot) is either China or Sichuan, while the second requires that variable
to be of runtime type Location. The situation is reversed in the C# exam-
ple, in which instances of Location and HongKong share the implementation

120

namespace Lang{

public class Lang{
public void foo(Location loc){

string lang = loc.getDefaultLanguage();
...

}
}
class Location {

public string getDefaultLanguage(){
return "English";

}
}
class China:Location{

private string getDefaultLanguage(){
return "Mandarin";

}
}
class HongKong:China{}
}

Lang$foo(Res,R0,R1):-
asg(R0_,Lang,R0,Lang),
asg(R1_,Location,R1,Location),
Location$dyn*getDefaultLanguage(R4,R1_),
ret.

Location$getDefaultLanguage(Res,R0):-
asg(R0_,Location,R0,Location),
asg(Res,string,"English",string),
ret.

China$getDefaultLanguage(Res,R0):-
asg(R0_,China,R0,China),
asg(Res,string,"Mandarin",string),
ret.

Location$dyn*getDefaultLanguage(Res,R1_):-
tot(R1_, [China]),
China$getDefaultLanguage(Res,R1_).

Location$dyn*getDefaultLanguage(Res,R1_):-
tot(R1_, [Location,HongKong]),
Location$getDefaultLanguage(Res,R1_).

Fig. 7. Transformation for dynamic dispatch in C#.

Location$getDefaultLocation while invocations on objects of (exactly) class
China are redirected to China$getDefaultLocation.

The abstract domain is not required to know anything about which actual
language is to be analyzed but only to provide a common, correct transfer func-
tion for the tot builtin, which will return as output state the same input state
if the instance happens to have a runtime type included in the list of accepted
classes, and ⊥ if not.

6 Experimental results

We have completed a preliminary implementation of our framework within the
CiaoPP preprocessor [15]. CiaoPP offers a parametric and efficient top-down
analysis engine [23, 16] with a good number of abstract domains, including the
ones illustrated in this section. The efficiency of the algorithm relies on keeping
dependencies between different predicates during analysis so that only the really
affected parts need to be revisited after a change during the fixpoint process.
In addition, recomputation is avoided using memoization [11, 33, 23]. Another
characteristic is that it is multivariant (i.e., abstract calls to a given predicate
that represent different input patterns are automatically analyzed separately)
and follows a top-down approach, in order to allow modeling properties that
depend on the data flow characteristics of the program.

We have performed two experiments with our framework using the bench-
marks corresponding to the JOlden suite [31]. The first experiment is summa-
rized in Figure 8 and shows the scalability of the transformation phase. The first
three columns contain basic metrics about the application: number of classes
(k), methods (m) and instructions (i). Since the latter corresponds to the byte-
code representation of the source, we also list how many program points (pp)
are present in the Horn clause program analyzed. This metric differs slightly

121

name k m i pp ct

jolden.health.Health 8 30 637 933 1.1
jolden.bh.BH 9 70 1208 1739 3.2
jolden.voronoi.Voronoi 6 73 988 1340 2.2
jolden.mst.MST 6 36 445 665 0.1
jolden.power.Power 6 32 1017 1270 2.1
jolden.treeadd.TreeAdd 2 12 193 274 2.0
jolden.em3d.Em3d 4 22 447 669 0.1
jolden.perimeter.Perimeter 10 45 543 814 0.1
jolden.bisort.BiSort 2 15 323 476 0.1
jolden.all.All 50 317 5839 7251 11.0

Fig. 8. Statistics from the transformation phase.

from the number of instructions in the sense that extra clauses and builtins
make it somewhat larger; pp also provides a better approximation of the size
and complexity of the program analyzed because the semantics of the object-
oriented program is made explicit, as seen in Section 2. The fifth column (ct)
shows the time invested (given in seconds) in transforming the input program
and producing the Horn clause version and the metainformation.

The second experiment, shown in Figure 9, illustrates the scalability, effi-
ciency, and precision of the analysis component of our framework. We first use
a simple abstract domain, Nullity, capable of approximating which variables are
definitely null and which ones definitely point to a non-null location. The second
abstract domain is a Class Hierarchy Analysis (CHA) [3], which uses the com-
bination of the statically declared type of an object and the class hierarchy of
the program to determine the set of possible targets of a virtual invocation. The
use of a CHA shows the scalability of our framework for a domain with non-
linear worst-case complexity in its operations. Additionally, it also reflects the
usefulness of metainformation files since they are required by the CHA domain
in order to access the hierarchy tree. The columns labeled pp′ show the number
of program points reachable by the analyses. Therefore, pp′ may differ from pp
because the number of analyzed program points is not always the total number
of program points in the program: some commands are found to be unreachable.
Since our framework is multivariant and can thus keep track of different contexts
at each program point, at the end of analysis there may be more than one ab-
stract state associated with each program point. Thus, the number of abstract
states is typically larger than the number of reachable program points. The ast
columns provide the total number of these abstract states inferred by analysis.
The level of multivariance is the ratio ast/pp′, presented in the st columns. In
general, such a larger number for st tends to indicate more precise results. Run-
ning times are listed in columns pt (time invested in preprocessing the program
which includes the extraction of metainformation for each method in the Horn
clause program and the construction of the class hierarchy) and at (analysis
time); both are also given in seconds.

Both experiments have been performed on a Pentium M 1.73Ghz with 1Gb of
RAM, and averaging several runs after eliminating the best and worst values. We

122

Nullity CHA
pt pp′ ast st at pp′ ast st at

jolden.health.Health 2.1 921 5836 6.3 9.6 933 3542 3.8 52.1
jolden.bh.BH 2.2 1739 12384 7.1 50.1 1739 4757 2.7 59.4
jolden.voronoi.Voronoi 2.2 1277 5492 4.3 11.5 1340 5147 3.8 81.3
jolden.mst.MST 2.1 496 1503 3.0 1.1 665 1609 2.4 11.6
jolden.power.Power 2.1 1270 10560 8.3 29.9 1270 2908 2.3 32.7
jolden.treeadd.TreeAdd 2.0 274 880 3.2 0.6 274 729 2.6 6.1
jolden.em3d.Em3d 2.0 669 5565 8.3 0.9 669 3320 4.9 49.5
jolden.perimeter.Perimeter 2.1 814 2653 3.2 1.7 814 3731 4.5 25.0
jolden.bisort.BiSort 2.1 476 3353 7.0 5.8 476 1614 3.4 15.6
jolden.all.All 2.6 7188 48476 6.7 145.9 7251 29586 4.1 391.2

Fig. 9. Statistics for the Nullity and Class Hierarchy (CHA) domains.

chose to show separately the total times of the two phases (transformation and
analysis) because we expect the transformation process to be fully run only once.
Later executions can use incremental compilation for those files that changed,
so that the overhead of the preprocessing phase should be almost negligible in
medium to large programs. Although the same approach can be taken for the
analysis [16], the current implementation is not incremental.

7 Related work

Most previous research in analysis of object-oriented programs concentrates on
finding new abstract domains that better approximate a particular concrete
property of the program analyzed in order to optimize compilation (e.g., [4,
28]) or statically verify certain properties about the runtime behavior of the
code (e.g., [13, 19]). In contrast there has been comparatively little work on the
formal specification of the intermediate language to which the analyzed program
is transformed or in the application of existing logic programming techniques.
In [25] the authors describe how to automatically derive Prolog versions of Java
programs that share the same operational semantics. However, the compilation
applies to a smaller subset of Java than that supported in our work and no
experimental results are provided. Also, the technique is presented from a more
informal perspective and no analysis is attempted over the transformed logic
programs.

More closely related to ours is the work presented in [1], which draws in
part on the ideas of [26]. The authors also focus on how to reuse existing logic
programming tools, in order to analyze Java bytecode. The approach is based
on encoding an interpreter of the Java Virtual Machine bytecode in a logic
language, Ciao [6], and then partially evaluating this interpreter with respect to
the concrete program to be analyzed. This results in a residual program which
has the same semantics as the original one but is often easier to analyze than the
original set of bytecode+interpreter. As in our case, the analysis and verification
experiments are performed using the CiaoPP [15] tool.

123

While the approach of [1] is obviously very interesting, it also has the short-
coming that it is quite dependent on the quality of the results obtained by
the partial evaluator. Given the state of the art in partial evaluation, this may
clearly vary significantly depending on the input program. The approach pre-
sented herein is based instead on a direct translation from the Java program into
a Horn clause representation, which obviates this problem, at the cost of having
to write and prove correct the transformer. Also, in this translation we do not
try to mimic the operational semantics of the Java program in the Horn clause
version (i.e., the resulting program if run, e.g., on a Prolog system, would not
necessarily produce equivalent results to those of the Java program). Instead,
the aim is to safely approximate the semantics of the Java program in the Horn
clause representation by taking advantage of the (collecting) SLD semantics as-
sumed by the analyzer. This allows flexibility in the translation and eliminates
the burden of having to simulate exactly the operational semantics of the source
language since we do not want to execute the program but only to obtain safe
results by analyzing it. The flexibility and directness of this approach also allows
supporting a much larger subset of the language than in [1], including excep-
tions, inheritance, interfaces, etc. Also, presumably because of the directness of
the approach with it we have been able to analyze significantly larger programs,
and in less time.

In most of the (non CLP-based) abstract interpretation frameworks for anal-
ysis of Java (e.g., [4, 7]) the authors prefer to focus on particular properties and
therefore their solutions (abstract domains and analysis algorithms) are tied to
them, even when if they may be explicitly labeled as multipurpose [20]. In [27]
the authors use a framework that is closely related to Gaia [8] (itself closely re-
lated to [23]). However, the intermediate representation is not described and the
semantics of the interprocedural operations is again tied to the Java language.
Also, the benchmarks used are smaller than those that we report on. The more
recent Julia framework [30] is intended to be generic from the point of view
of domains but once more also targets Java as unique source language. This
framework is capable of analyzing large programs in a top-down way, as in our
approach, the main other difference being that we support multivariance, inher-
ited from the CiaoPP analyzer. Finally, in [22] another interesting generic static
analyzer for the modular analysis and verification of Java classes is presented.
The algorithm presented is also top down but is again tailored specifically to
Java source.

8 Conclusions and future work

We have presented a transformation-based framework for analysis of object-
oriented programs, which is generic in terms of the source language and abstract
domain in use. The framework consists of a two-step process: a transformation of
the program into a set of Horn clauses that represents a correct approximation
of its standard semantics, and a mature and sophisticated fixpoint algorithm.
We claim that our approach is flexible in the sense that the first phase decou-

124

ples the fixpoint algorithm from any language-dependent feature. Furthermore,
our experimental evaluations support the scalability of our framework showing
results for medium-sized programs as well as its efficiency analyzing them in a
reasonable amount of time, and precision showing high rates of multivariance.

We have performed some promising experiments on an ample subset of Java,
as shown in this paper, but our aim is to support the full Java language. Also,
we are currently incorporating more sophisticated abstract domains (e.g., points-
to/sharing analysis). Moreover, we expect to increase the scalability of our ap-
proach, analyzing larger programs than shown in this paper. To this end, we
are studying the inclusion of modular and incremental features in our fixpoint
algorithm.

References

1. E. Albert, M. Gómez-Zamalloa, L. Hubert, and G. Puebla. Verification of Java
Bytecode using Analysis and Transformation of Logic Programs. In Proc. PADL,
number 4354 in LNCS. Springer-Verlag, 2007.

2. Jim Alves-Foss, editor. Formal Syntax and Semantics of Java, volume 1523 of
Lecture Notes in Computer Science. Springer, 1999.

3. David F. Bacon and Peter F. Sweeney. Fast static analysis of c++ virtual function
calls. Proc. of OOPSLA’96, SIGPLAN Notices, 31(10):324–341, October 1996.

4. Bruno Blanchet. Escape Analysis for Object Oriented Languages. Application to
Java(TM). In Conference on Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA’99), pages 20–34. ACM, November 1999.

5. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming, 10:91–124, 1991.

6. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and G. Puebla
(Eds.). The Ciao System. Reference Manual (v1.10). Technical report, School of
Computer Science (UPM), 2004. Available at http://www.ciaohome.org.

7. Bor-Yuh Evan Chang and K. Rustan M. Leino. Abstract interpretation with alien
expressions and heap structures. In VMCAI’05, number 3385 in LNCS, pages
147–163. Srpinger, 2005.

8. B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic
Abstract Interpretation Algorithm for Prolog. ACM Transactions on Programming
Languages and Systems, 16(1):35–101, 1994.

9. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of POPL’77, pages 238–252, 1977.

10. Rob DeLine and K. Rustan M. Leino. BoogiePL: A typed procedural language for
checking object-oriented programs. Technical Report MSR-TR-2005-70, Microsoft
Research, 2005.

11. S. W. Dietrich. Extension Tables: Memo Relations in Logic Programming. In
Fourth IEEE Symposium on Logic Programming, pages 264–272, September 1987.

12. Christian Fecht. Gena - a tool for generating prolog analyzers from specifications.
In SAS ’95: Proceedings of the Second International Symposium on Static Analysis,
pages 418–419, London, UK, 1995. Springer-Verlag.

13. S. Genaim and F. Spoto. Information Flow Analysis for Java Bytecode. In Proc.
of VMCAI, LNCS. Springer-Verlag, 2005.

125

14. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language Spec-
ification, The (3rd Edition). Addison-Wesley Professional, 2005.

15. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Program Develop-
ment Using Abstract Interpretation (and The Ciao System Preprocessor). In Proc.
of SAS’03, pages 127–152. Springer LNCS 2694, 2003.

16. M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis
of Constraint Logic Programs. ACM TOPLAS, 22(2):187–223, March 2000.

17. R. Kowalski and D. Kuehner. Linear resolution with selection function. Artificial
Intelligence, 2:227–260, 1971.

18. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of jml: a
behavioral interface specification language for java. SIGSOFT Softw. Eng. Notes,
31(3):1–38, 2006.

19. Xavier Leroy. Java bytecode verification: An overview. In CAV’01, number 2102
in LNCS, pages 265–285. Springer, 2001.

20. Tal Lev-Ami and Shmuel Sagiv. TVLA: A system for implementing static analyses.
In SAS, number 1824 in LNCS, pages 280–301. Springer, 2000.

21. F. Logozzo and A. Cortesi. Abstract interpretation and object-oriented languages:
quo vadis? In Proc. of the 1st. Int’l. Workshop on Abstract Interpretation of Object-
oriented Languages (AIOOL’05), ENTCS. Elsevier Science, January 2005.

22. Francesco Logozzo. Cibai: An abstract interpreation-based static analyzer for mod-
ular analysis and verification of java classes. In VMCAI’07, number 4349 in LNCS.
Springer, Jan 2007.

23. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable De-
pendency Using Abstract Interpretation. JLP, 13(2/3):315–347, 1992.

24. J. Navas, M. Méndez-Lojo, and M. Hermenegildo. An Efficient, Context and Path
Sensitive Analysis Framework for Java Programs. In 9th Workshop on Formal
Techniques for Java-like Programs FTfJP 2007, July 2007.

25. J. Peralta and J.Cruz-Carlon. From static single-assignment form to definite pro-
grams and back. Extended abstract in International Symposium on Logic-based
Program Synthesis and Transformation (LOPSTR), July 2006.

26. J.C. Peralta, J. Gallagher, and H. Sağlam. Analysis of imperative programs
through analysis of constraint logic programs. In G. Levi, editor, Static Anal-
ysis. 5th International Symposium, SAS’98, Pisa, volume 1503 of LNCS, pages
246–261, 1998.

27. Isabelle Pollet. Towards a generic framework for the abstract interpretation of Java.
PhD thesis, Catholic University of Louvain, 2004. Dept. of Computer Science.

28. Erik Ruf. Effective synchronization removal for java. PLDI’00, SIGPLAN Notices,
35(5):208–218, 2000.

29. S. Secci and F. Spoto. Pair-sharing analysis of object-oriented programs. In SAS,
pages 320–335, 2005.

30. F. Spoto. Julia: A Generic Static Analyser for the Java Bytecode. In Proc.
of the 7th Workshop on Formal Techniques for Java-like Programs, FTfJP’2005,
Glasgow, Scotland, July 2005.

31. JOlden Suite. http://www-ali.cs.umass.edu/DaCapo/benchmarks.html.
32. Raja Vallee-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon,

and Phong Co. Soot - a Java optimization framework. In Proceedings of CASCON
1999, pages 125–135, 1999.

33. R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Global Flow
Analysis of Logic Programs. In Fifth International Conference and Symposium on
Logic Programming, pages 684–699. MIT Press, August 1988.

126

Preserving Sharing in the Partial Evaluation of
Lazy Functional Programs?

Sebastian Fischer1, Josep Silva2, Salvador Tamarit2, and Germán Vidal2

1 University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany.
sebf@informatik.uni-kiel.de

2 Technical University of Valencia, Camino de Vera S/N, E-46022 Valencia, Spain.
{jsilva,stamarit,gvidal}@dsic.upv.es

Abstract. The goal of partial evaluation is the specialization of pro-
grams w.r.t. part of their input data. Although this technique is already
well-known in the context of functional languages, current approaches
are either overly restrictive or destroy sharing through the specializa-
tion process, which is unacceptable from a performance point of view. In
this work, we present a new partial evaluation scheme for first-order lazy
functional programs that preserves sharing through the specialization
process and still allows the unfolding of arbitrary functions.

1 Introduction

Partial evaluation [7] is an automatic technique for the specialization of pro-
grams. This technique has already been developed for a variety of programming
languages, like C [4], Curry [12], Prolog [9], Scheme [13], etc.

In this work, we focus on a problem associated to the partial evaluation of
lazy functional languages. In these languages (e.g., Haskell [10]), it is essential
to share program variables in order to avoid losing efficiency due to the repeated
evaluation of the same expression. Consider, e.g., the following program excerpt:3

sumList([]) = Z
sumList(x : xs) = add(x, sumList(xs))
incList(n, []) = []
incList(n, x : xs) = add(n, x) : incList(n, xs)
add(Z, m) = m
add(S(n), m) = S(add(n, m))

where function sumList sums the elements of a list, incList increments the
elements of a list by a given number, and add performs the addition of two
natural numbers. Now, consider a partial evaluation of the following function
call: sumList(incList(e , Z : Z : [])), where e is any arbitrary expression:

sumList(incList(e , Z : Z : [])) ⇒ sumList(add(e , Z) : incList(e , Z : []))
? This work has been partially supported by the EU (FEDER) and the Spanish MEC

under grants TIN2005-09207-C03-02 and Acción Integrada HA2006-0008.
3 We use [] and “:” as constructors of lists and Z and S to built natural numbers.

127

Note that, although the expression e appears twice, it will only be evaluated
once in current lazy programming languages since the two occurrences of variable
n in the second rule of function incList are shared. If we build a residual rule—a
resultant—associated to the above partial evaluation, we would get the rule

new function(. . .) = sumList(add(e , Z) : incList(e , (Z : [])))

Now, however, if we evaluate new function using the above rule, the expression
e will be evaluated twice since both occurrences are not shared anymore, which

is unacceptable from a performance point of view.
Current partial evaluation schemes for lazy functional (logic) languages have

mostly ignored this point.4 Usually, partial evaluators include a restriction so
that the unfolding of functions whose right-hand side is not linear (i.e., whose
right-hand side contains multiple occurrences of the same variable) is forbidden.

In this work, we present an alternative to such trivial, overly restrictive treat-
ment of sharing during partial evaluation. In particular, we would like to produce
a residual rule of the following form:

new function(. . .) = let w = e
in sumList(add(w, Z) : incList(w, Z : []))

In this way, the two occurrences of the fresh variable w would be shared and
e would not be evaluated twice. In principle, one could define a post-unfolding

phase where, given a partial evaluation e0 ⇒ e1 ⇒ . . . ⇒ en, every occurrence of
a common subexpression e in en would be replaced by a fresh variable w and a
new let of the form let w = e in . . . would be added. However, if the semantics
used for partial evaluation does not model sharing, the identification of common
subexpressions would be rather difficult because their degree of evaluation need
not be the same.

In contrast, here we present a novel method which is based on a lazy seman-
tics [1] that models variable sharing by means of an updatable heap, which is
appropriately extended in order to perform symbolic computations. Then, we
also define how residual rules should be extracted from these symbolic compu-
tations. For simplicity, we will not introduce the details of a complete partial
evaluation scheme (but it would be similar to that of [2] by replacing the un-
derlying partial evaluation semantics and the construction of residual rules from
partial computations, i.e., control issues would remain basically unaltered).

2 Preliminaries

We consider in this work a simple, first-order lazy functional language. The syn-
tax is shown in Fig. 1, where we write on for the sequence of objects o1, . . . , on. A
program consists of a sequence of function definitions such that the left-hand side
has pairwise different variable arguments. The right-hand side is an expression
4 We note that this is a critical issue that has been considered in the context of inlining

(see, e.g., [11]), which could be seen like a rather simple form of partial evaluation.

128

P ::= D1 . . . Dm (program) Domains
D ::= f(x1, . . . , xn) = e (function definition)
e ::= x (variable) P1, P2, . . . ∈ Prog (Programs)

| c(x1, . . . , xn) (constructor call) x, y, z, . . . ∈ Var (Variables)
| f(x1, . . . , xn) (function call) a, b, c, . . . ∈ C (Constructors)
| let {xk = ek} in e (let binding) f, g, h, . . . ∈ F (Functions)
| case x of {pk → ek} (case expression) p1, p2, p3, . . . ∈ Pat (Patterns)

p ::= c(x1, . . . , xn) (pattern)

Fig. 1. Syntax for normalized flat programs

composed by variables, data constructors, function calls, let bindings (where the
local variables xk are only visible in ek and e), and case expressions of the form
case x of {c1(xn1) → e1; . . . ; ck(xnk

) → ek}, where x is a variable, c1, . . . , ck are
different constructors, and e1, . . . , ek are expressions. The pattern variables xni

are introduced locally and bind the corresponding variables of ei.
Observe that, according to Fig. 1, the arguments of function and constructor

calls are variables. As in [8], this is essential to express sharing without the use
of graph structures. This is not a serious restriction since source programs can
be normalized so that they follow the syntax of Fig. 1 (see, e.g., [8, 1]).

Laziness of computations will show up in the description of the behavior of
function calls and case expressions. In a function call, parameters are not eval-
uated but directly passed to the body of the function. In a case expression, the
outermost symbol of the case argument is required. Therefore, the case argument
should be evaluated to head normal form [6] (i.e., a variable or an expression
with a constructor at the outermost position).

3 Partial Evaluation of Lazy Functional Programs

The main ingredients of our new proposal which preserves sharing through the
specialization process are the following: i) partial computations are performed
with a lazy semantics that models sharing by means of an updatable heap (cf.
Sect. 3.1); ii) this semantics is then extended in order to perform symbolic com-
putations during partial evaluation (cf. Sect. 3.2); and iii) we introduce a method
to extract residual rules from partial computations (cf. Sect. 3.3).

3.1 The Standard Semantics

First, we present a lazy evaluation semantics for our first-order functional pro-
grams that models sharing. The rules of the small-step semantics are shown in
Fig. 2 (they are a simplification of the calculus in [1], which in turn originates
from an adaptation of Launchbury’s natural semantics [8]). It follows these nam-
ing conventions:

Γ,∆,Θ ∈ Heap = Var → Exp v ∈ Value ::= x | c(xn)

129

var

〈Γ [x 7→ e], x, S〉 ⇒ 〈Γ [x 7→ e], e, x : S〉 where e 6= x

val

〈Γ, v, x : S〉 ⇒ 〈Γ [x 7→ v], v, S〉 where v is a value

fun

〈Γ, f(xn), S〉 ⇒ 〈Γ, ρ(e), S〉 where f(yn) = e ∈ P and ρ = {yn 7→ xn}
let

〈Γ, let {xk = ek} in e, S〉 ⇒ 〈Γ [yk 7→ ρ(ek)], ρ(e), S〉 where ρ = {xk 7→ yk}
and yn are fresh variables

case

〈Γ, case e of {pk → ek}, S〉 ⇒ 〈Γ, e, {pk → ek} : S〉
select

〈Γ, c(xn), {pk → ek} : S〉 ⇒ 〈Γ, ρ(ei), S〉
where pi = c(yn) and ρ = {yn 7→ xn},
with i ∈ {1, . . . , k}

Fig. 2. Small-Step Semantics for (Sharing-Based) Lazy Functional Programs

A heap is a partial mapping from variables to expressions (the empty heap is
denoted by []). The value associated to variable x in heap Γ is denoted by Γ [x].
Γ [x 7→ e] denotes a heap with Γ [x] = e, i.e., we use this notation either as a
condition on a heap Γ or as a modification of Γ . A value is a constructor-rooted
term (i.e., a term whose outermost function symbol is a constructor symbol).

A state of the small-step semantics is a triple 〈Γ, e, S〉, where Γ is the current
heap, e is the expression to be evaluated (often called the control of the small-
step semantics), and S is the stack which represents the current context. We
briefly describe the transition rules:

– In rule var, the evaluation of a variable x that is bound to an expression e
proceeds by evaluating e and adding to the stack the reference to variable
x. If a value v is eventually computed and there is a variable x on top of the
stack, rule val updates the heap with x 7→ v. This rule achieves the effect of
sharing since the next time the value of variable x is demanded, the value v
will be returned thus avoiding the repeated evaluation of e.

– Rule fun implements a simple function unfolding. We assume that the consid-
ered program P is a global parameter of the calculus and that the variables
of the rule are fresh in every application of rule fun.

– In order to reduce a let construct, rule let adds the bindings to the heap
and proceed with the evaluation of the main argument of let. Note that the
variables introduced by the let construct are renamed with fresh names in
order to avoid variable name clashes.

– Rule case initiates the evaluation of a case expression by evaluating the case
argument and pushing the alternatives {pk → ek} on top of the stack. If a

130

value is eventually reached, then rule select is used to select the appropriate
branch and continue with the evaluation of this branch.

In order to evaluate an expression e, we construct an initial state of the form
〈[], e, []〉 and apply the rules of Fig. 2. We denote by ⇒∗ the reflexive and
transitive closure of ⇒.

3.2 The Partial Evaluation Semantics

To perform partial computations in a functional context, missing data is usually
denoted by free variables. Therefore, the semantics of Fig. 2 is not appropriate to
perform computations at partial evaluation time. Here, we follow the approach
of [3] and introduce a residualizing version of the standard semantics as follows.

First, logical variables are used to represent missing information. In a heap
Γ , a logical variable x is represented by a circular binding x 7→ x such that
Γ [x] = x. Now, they are also considered values in rule val.

In the new semantics, we assume that the rules of the semantics are applied
until no more rule is applicable. The termination of partial computations is
ensured by using function annotations.5 Basically, annotated functions—we use
an underscore to annotate function calls and case expressions—should not be
unfolded in order to have a finite computation.6 Underlined function calls and
case expressions are also treated as values in rule val.

Because of the introduction of the new “values” (logical variables and an-
notated functions and cases), rule select does not suffice anymore to evaluate a
case expression whose argument reduces to a value. Therefore, we introduce the
following new rules, which are shown in Fig. 3:

– First, rule fun stop applies when the argument of a case expression evaluates
to an annotated function call f(xn). The current stack, x : {pk → ek} : S,
means that the original case expression had the form case x of {pk → ek},
so that x was eventually reduced to f(xn). In this case, we annotate the
original case expression, update the binding for x, and return the annotated
case expression. Intuitively, once an annotated function call suspends the
computation, we should reconstruct the context in the heap and terminate
the computation.

– Rule case stop proceeds in a similar way, the only difference being that the
computed value is now an annotated case expression.

– Rule guess applies when the argument of a case expression reduces to a
logical variable (i.e., to some missing data). Here, rather than suspending
the computation, we return the annotated case expression, which can then
be reduced by rules case of case and residualize, depending on the current
stack.

5 Note that we consider an offline scheme for partial evaluation for simplicity; in-
deed, our main contributions (the partial evaluation semantics and the extraction of
residual rules) could also be used within an online scheme.

6 We do not deal with termination issues in this paper but refer the interested reader
to, e.g., [12, 5].

131

fun stop

〈Γ, f(xn), x : {pk → ek} : S〉 ⇒ 〈Γ [x 7→ f(xn)], case x of {pk → ek}, S〉

case stop

〈Γ, case y of {p′
q → e′

q}, x : {pk → ek} : S〉
⇒ 〈Γ [x 7→ case y of {p′

q → e′
q}], case x of {pk → ek}, S〉

guess

〈Γ [x 7→ x], x, {pk → ek} : S〉 ⇒ 〈Γ [x 7→ x], case x of {pk → ek}, S〉

case of case

〈Γ [x 7→ x], case x of {p′
m → e′

m}, {pk → ek} : S〉
⇒ 〈Γ, case x of {p′

m → case e′
m of {pk → ek}}, S〉

residualize

〈Γ [x 7→ x], case x of {pk → ek}, []〉 ⇒ case x of {p′
k → 〈Γ [x 7→ p′

k, ynk 7→ ynk], e′
k, []〉}

where pi = c(xni), ρi = {xni 7→ yni}, yni are fresh,
with p′

i = ρi(pi), and e′
i = ρi(ei), for all i = 1, . . . , k

Fig. 3. Partial Evaluation Rules

– Rule case of case (originally introduced in the context of deforestation [14]) is
used to reduce a case whose argument is another case with a logical variable
as argument. This rule moves the outer case to the branches of the inner case.
Intuitively, it is used to lift case expressions with a logical variable, i.e., non-
deterministic choices, to the topmost position so that rule residualize applies.
Essentially, rule residualize residualizes the case expression (i.e., it is already
considered part of the residual code) and continue with the evaluation of the
different branches. Note that bindings of the form x 7→ p′

i, i = 1, . . . , k, are
applied to the different branches so that information is propagated forward in
the computation. As in rule let, we rename the variables of the case patterns
to avoid variable name clashes, so that p′

i and e′i denote the renaming of
pi and ei, respectively. Moreover, since the pattern variables of p′

i are not
bound in e′i, we add them to the heap as logical variables, i.e., as circular
bindings of the form xni 7→ xni.

Note that the new rules are basically required in order to deal with missing
information and annotated function calls. The preservation of sharing through
the specialization process is achieved thanks to the use of a standard semantics
that models sharing.

Observe that, if we apply the rules of the partial evaluation semantics as much
as possible, every state 〈Γ, e, S〉 in the derived expression (if the computation
does not fail) would have an empty stack. This is an easy consequence of the
fact that every function and case expression is either reduced, annotated or
residualized, so that an empty stack is finally obtained.

132

〈[], let {x = x, w = double(x)} in double(w), []〉
⇒let 〈[x 7→ x, double(w), []〉

w 7→ double(x)],
⇒fun 〈[x 7→ x, add(w, w), []〉

w 7→ double(x)],
⇒fun 〈[x 7→ x, case w of []〉

w 7→ double(x)], {Z → w; S(u) → let {v = add(u, w)} in S(v)}
⇒case 〈[x 7→ x, w, [{. . .}]〉

w 7→ double(x)],
⇒var 〈[x 7→ x, double(x), [w, {. . .}]〉

w 7→ double(x)],
⇒fun stop 〈[x 7→ x, case w of []〉

w 7→ double(x)], {Z → w; S(u) → let {v = add(u, w)} in S(v)}

Fig. 4. Derivation with the partial evaluation semantics

The following simple example illustrates the way our new semantics deals
with sharing in a partial computation.

Example 1. Consider the following simple program:

double(x) = add(x, x)
add(n, m) = case n of {Z→ m; S(u) → let {v = add(u, m)} in S(v)}

Given the initial state 〈[], let {x = x, w = double(x)} in double(w), []〉,
we have the computation shown in Fig. 4. Note that, thanks to the use of the
partial evaluation semantics, we can evaluate the considered expression as much
as needed but we still keep track of shared expressions in the associated heap.

3.3 Extracting Residual Rules

Now, we consider how residual rules are extracted from the computations per-
formed with the semantics of Fig. 2 and 3.

Definition 1 (resultant). Let P be an annotated program and e be an expres-
sion. Let 〈[], e, []〉 ⇒∗ e′ be a computation with the rules of Fig. 2 and 3 such
that e′ is irreducible. The associated resultant is given by the following rule:

f(xn) = [[del(e′)]]

where f is a fresh function symbol,7 xn are the logical variables of e, function
del removes the annotations (if any), and the function [[]] is defined as follows:

[[e]] =
{

case x of {pk → [[ek]]} if e = case x of {pk → ek}
let Γ in e′ if e = 〈Γ, e′, []〉

7 Consequently, some calls in the right-hand side should also be renamed. We do not
deal with renaming of function calls in this paper; nevertheless, standard techniques
would be applicable.

133

Here, Γ represents the set of bindings stored in Γ except those for xn (which are
now the parameters of the new function) as well as those which depend on xn.

Let us illustrate the extraction of a residual rule with an example.

Example 2. Consider the computation of Example 1 shown in Fig. 4. The asso-
ciated resultant is as follows:

f(x) = [[〈 [x 7→ x, case w of
w 7→ double(x)], {Z→ w; S(u) → let {v = add(u, w)} in S(v)}, []〉]]

which is reduced to

f(x) = let {w 7→ double(x)} in
case w of {Z→ w; S(u) → let {v = add(u, w)} in S(v)}

Observe that sharing is preserved despite the unfolding of a function which is
not right-linear (i.e., double). Note also that inlining the let expression (i.e.,
replacing all occurrences of w by double(x)) would destroy this property since
double would be evaluated twice, once as an argument of the case expression
and another one when selecting the corresponding case branch.

3.4 Correctness

The correctness of our approach to the partial evaluation of first-order lazy func-
tional programs relies on two results. On the one hand, one should prove that the
partial evaluation semantics is somehow equivalent to the standard one. Basi-
cally, this means that, given a computation with the partial evaluation semantics,
e ⇒∗ e′, it represents every possible computation with the standard semantics
(i.e., the only difference is that non-deterministic branching is encoded by means
of residualized case expressions). A similar proof (though for the simpler LNT
semantics without sharing) can be found in [3].

Regarding the extraction of resultants from computations with the partial
evaluation semantics, its correctness can easily be proved by exploiting previous
results and the clear operational equivalence between a configuration of the form
〈Γ, e, []〉 and an expression like let Γ in e.

4 Discussion

Despite the extensive literature on partial evaluation, we are not aware of any
approach to the specialization of lazy functional (logic) languages where sharing
is preserved through the specialization process in a non-trivial way. For instance,
[2, 3] presents a partial evaluation scheme for a lazy language but sharing is not
preserved since the underlying semantics does not model variable sharing.

In this paper, we have presented a promising approach by first extending a
standard semantics (where sharing is modeled by using an updatable heap) and,
then, defining a method to properly extract the associated residual rules. Our

134

new approach is not overly restrictive since every function can be unfolded (even
if it is not right-linear) and still preserves sharing, thus avoiding the introduction
of redundant computations in the residual program.

An implementation of the new partial evaluation scheme has been undertaken
by extending a previous offline partial evaluator [12].

References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational Semantics
for Declarative Multi-Paradigm Languages. Journal of Symbolic Computation,
40(1):795–829, 2005.

2. E. Albert, M. Hanus, and G. Vidal. A Practical Partial Evaluation Scheme for
Multi-Paradigm Declarative Languages. Journal of Functional and Logic Pro-
gramming, 2002(1), 2002.

3. E. Albert, M. Hanus, and G. Vidal. A Residualizing Semantics for the Partial Eval-
uation of Functional Logic Programs. Information Processing Letters, 85(1):19–25,
2003.

4. L.O. Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen, 1994.

5. G. Arroyo, J.G. Ramos, J. Silva, and G. Vidal. Improving Offline Narrowing-Driven
Partial Evaluation using Size-Change Graphs. In Logic-based Program Synthesis
and Transformation (revised and selected papers from LOPSTR’06), pages 60–76.
Springer LNCS 4407, 2007.

6. H.P. Barendregt. The Lambda Calculus—Its Syntax and Semantics. Elsevier, 1984.
7. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-

gram Generation. Prentice-Hall, Englewood Cliffs, NJ, 1993.
8. J. Launchbury. A Natural Semantics for Lazy Evaluation. In Proc. of the ACM

Symp. on Principles of Programming Languages (POPL’93), pages 144–154. ACM
Press, 1993.

9. M. Leuschel, D. Elphick, M. Varea, S. Craig, and M. Fontaine. The Ecce and Logen
Partial Evaluators and Their Web Interfaces. In Proc. of PEPM’06, pages 88–94.
IBM Press, 2006.

10. S. Peyton-Jones, editor. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

11. S.L. Peyton Jones and S. Marlow. Secrets of the Glasgow Haskell Compiler Inliner.
Journal of Functional Programming, 12(4&5):393–433, 2002.

12. J.G. Ramos, J. Silva, and G. Vidal. Fast Narrowing-Driven Partial Evaluation for
Inductively Sequential Systems. In Proc. of the 10th ACM SIGPLAN Int’l Conf.
on Functional Programming (ICFP’05), pages 228–239. ACM Press, 2005.

13. P. Thiemann. The Program Generator Generator PGG. Available from the URL:
http://www.informatik.uni-freiburg.de/proglang/software/pgg/.

14. P.L. Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical
Computer Science, 73:231–248, 1990.

135

Denotation by Transformation
Towards Obtaining a Denotational Semantics by

Transformation to Point-free Style

Bernd Braßel and Jan Christiansen

Institute of Computer Science
University of Kiel, 24098 Kiel, Germany
{bbr,jac}@informatik.uni-kiel.de

Abstract. It has often been observed that a point-free style of program-
ming provides a more abstract view on programs. In the middle-term we
aim to use the gain in abstraction to obtain a denotational semantics for
functional logic languages in a straightforward way. Here we propose a set
of basic operations based on which arbitrary functional logic programs
can be transformed to point-free programs. Surprisingly, the additional
features of functional logic languages do require less basic operations
to obtain point-free programs than known approaches for functional lan-
guages. This effect is mostly due to employing so called function patterns.

1 Introduction

The importance of a point-free view on programming has been emphasized par-
ticularly in the applications of category theory to semantics of programming
languages. We expect the application of point-free style to declarative program-
ming to be very fruitful. Our medium-term aim is to obtain a relation algebraic
semantics for functional logic languages by interpreting a set of basic operations
within that algebra. Point-free versions of arbitrary functional logic programs
can then be composed from these basic operations. On the other hand, we show
in this paper that every program can be transformed to point-free style such that
the relation algebraic semantics would cover the whole language. Such semantics
would then enable us to use algebraic calculations to optimise operator defini-
tions and to concisely express soundness results for sophisticated techniques like
partial evaluation, as done in an early work on relation algebraic semantics [16].

In this paper we present a transformation to express arbitrary functional
logic programs in a point-free style, fully taking account of laziness.

1.1 Functional Logic Languages

We consider a functional logic program as a constructor-based rewriting system,
allowing extra variables on the right hand side and so called function patterns.
This section establishes some of the involved notation, referring to [10] for func-
tional logic programming and [2] for function patterns. For our examples we
adopt the syntax of Curry [12].

136

For a program P , ΣP is a signature partitioned into two sets, the set of con-
structors CP and the set of defined operations OP . We denote n-ary constructor
(operation) symbols by cn (fn, gn) omitting the arity where it is apparent. For
a set of (sorted) variables X , the sets of (well-sorted) terms and constructor
terms are denoted by T (ΣP ,X) and T (CP ,X), respectively. The function var(t)
yields the set of variables occurring in term t. A term is linear if every variable
occurs at most once. Sorts and constructors are introduced by a data declara-
tion, as shown in Example (1). The “a” in the third declaration denotes that

data Success = Success

data Bool = True | False

data [a] = [] | a : [a]

(1)
[a] is a polymorphic type. We use syntac-
tic sugar for list terms, e.g., [True,False]

instead of (True : (False : [])). Operations
are defined by rewrite rules of the form

“f p1 . . . pn = e” where fn ∈ OP and p1, . . . , pn are called patterns. The
standard way to define an operation in Curry is that each pattern of the rewrite
rules is a constructor term and each variable occurs not more than once in
the whole pattern. In other words, the term (p1, . . . , pn) must be a linear con-
structor term. Such standard Curry programs are evaluated by weakly needed
narrowing [11]. A narrowing step is a rewrite step combined with substitutions
for extra variables needed to match the left-hand side of an applicable rule.
E.g., a narrowing step for (2) is app x [True] →{x 7→ []} [True].

app [] ys = ys

app (x:xs) ys = x : (app xs ys)
(2)

In addition to defining rules, type sig-
natures are used to declare the sorts
an operation is defined for. As an ex-

ample, app :: [a] -> [a] -> [a] declares that app is an operation which maps
two (polymorphic) lists to a list. These lists have elements of the same type.

As in Example (2) there might be more than one possible narrowing step.
Functional logic languages provide non-deterministic search to obtain values in
this situation. Non-determinism does not only stem from narrowing but also
from operator definitions with overlapping left hand sides.

coin :: Bool

coin = True

coin = False

(3)
E.g., there are two derivations coin → True and coin →
False or, for short, coin → True | False. The operation
coin is very popular because it can be used to exemplify an
important feature of functional logic languages: call-time

choice, cf. [9]. With call-time choice non-deterministic choices for arguments are
done before application, at least conceptually. In combination with laziness call-
time choice is affine to the concept of referential transparency, as illustrated in
the next example.

or :: Bool -> Bool -> Bool

or x y = if x then x else y
(4)

For example, employing call-time choice
the expression e := or coin True is eval-
uated to True only, because both occur-

rences of x are substituted with the same value. That is, employing call-time
choice there are the derivations e → if True then True else True → True and
e → if False then False else True → True. In the dual conception, run-time
choice, e is reduced to if True then coin else True → coin → True | False

137

and if False then coin else True → True. That is, the evaluation of e yields
non-deterministically True or False.

An important operation in functional logic languages is the strict equality
(=:=) :: a -> a -> Success. The intended meaning is that the equation e1=:=e2

is satisfied iff e1 and e2 can be reduced to the same constructor term, see [8] for
a detailed discussion. In Curry, satisfying a predicate like the above equation is
modelled by a reduction to the special type Success, cf. Program (1).

Strict equality can be employed to allow a certain type of non-standard op-
erator definitions. A non-linear left hand side of a rewrite rule l = e with x
occurring n times in l can be taken as syntactic sugar for a rule where x is
replaced by different variables x1 ...xn in l and e is extended by constraints
(x1=:=x2), . . . , (x1=:=xn). See [1, 4.1] for a discussion of this transformation.

Finally, function patterns [2] allow operator definitions with arbitrary first
order patterns. The intended meaning of a function pattern is that only the
pattern is evaluated to a constructor term. The argument is evaluated until a
unification is possible. Unlike extra variables unified with strict equality (=:=)

this unification may bind a pattern variable to an unevaluated term. Non-linear
patterns are still treated with (=:=) as described above.

last (app xs [x]) = x (5) The operation last yields the last element of
a given list. We apply last (5) to the list

[True,False], that is, we evaluate the term e := last [True,False]. We get
the following reduction:

app xs [x] →{xs 7→ y:ys} y : (app ys [x])) →{ys 7→ []} [y,x] (6)

[y,x] can be unified with [True,False] yielding e→{xs7→[True],x7→False} False.

1.2 Point-free Style

The term point-free originates from topology where you have points in a space
and functions that operate on these points. In functional programming spaces
are types, functions are functions and points are the arguments of a function. In
point-free style you do not explicitly access the points, that is, the arguments of a
function. The idea of the point-free programming paradigm is to build functions
by combining simpler ones. It was introduced by John Backus in his Turing
Award Lecture in 1977 [3]. The counterpart of point-free is point-wise, that is,
functions that explicitly access their arguments. Here, point-free programs are
based on a couple of point-wise primitives.

2 Transformation to Point-free Style

In this section we define a small set of point-wise operations which allow the
definition of arbitrary functional logic operations in a point-free style.

Composition of Operations The first such “primitive” is sequential composi-
tion, occasionally simply referred to as “composition”.

138

(*) :: (a -> b) -> (b -> c) -> a -> c

(f * g) x = g (f x)
(7) gf

The primitive (*) is a flipped version of (.). Whereas (f . g) reads as “f after
g”, (f * g) is more like “f before g”. This is more convenient with regard to our
aim of a relation-algebraic treatment of programming semantics. Furthermore,
the left-to-right reading provides a very descriptive graphical representation. The
composition is visualised by connecting two operations with a line, indicating
that the output of one is the input of the other. Such visualisations were also
used in connecting functional programs [13] and allegory theory with hardware
design [5] and to describe physical structures in general [15]. Simple definitions
can be made point-free by using sequential composition, cf. Example (8).

involution x = not (not x)

involution = not * not
(8) notnot

Operations with several arguments are composed by parallel composition.

(/) :: (a -> c) -> (b -> d) -> (a,b) -> (c,d)

(f / g) (x,y) = (f x,g y)
(9)

f

g

Example (10) illustrates the use of parallel composition. All primitive opera-
tors are right associative. Instead of using precedences we use parenthesises to
increase readability.
nor :: Bool -> Bool -> Bool

nor x y = not x && not y

nor :: (Bool,Bool) -> Bool

nor = (not / not) * and

(10) and

not

not

We have effectively changed the type of nor to a so called “uncurried” version.
We use curried operations only when higher order is employed, as discussed in
Paragraph “Higher Order”.

Interface Adaption So far, we can express only right linear rules. Sharing ar-

fork :: a -> (a,a)

fork x = (x,x)
(11)

guments is the first of the primitives deal-
ing with what we call “interface adap-
tion”. Interface adaption means that the

connectives of two operations have to be copied, joined or reordered in some
way. An uncurried and point-free version of the boolean operator “if and only
if” (12) can be formulated using (/) and fork.

(<=>) :: Bool -> Bool -> Bool

x <=> y = x && y || not x && not y

(<=>) :: (Bool,Bool) -> Bool

(<=>) = fork * (and/((not/not)*and)) * or

(12)
or

and

and

not

not

There are two more primitives for interface adaption. The operator unit to “dis-
card a value” and the identity id to “pass a value on”. Both are exemplified in
the following sections.

139

unit :: _ -> ()

unit _ = ()
(13) id :: a -> a

id x = x
(14)

Data Structures, Inversion and Pattern Matching We do not wish to ab-
stract from concrete domains at this point. In the semantics we would treat data
structures in the standard way of sums and products. Here we define different
operations to construct data. Each constructor of the original program will be
assigned one operation.
nil :: () -> [a] true, false :: () -> Bool

nil () = [] true () = True

cons :: (a,[a]) -> [a] false () = False

cons (x,xs) = x : xs

(15)

Note that these operations are again uncurried and that the constants True,
False, and [] are extended with an argument. The reason for the latter extension
will become apparent soon.

What we have seen so far is a more or less standard treatment of expressing
functional programs in a point-free style. To concisely express pattern matching
and to combine several rules we employ two additional features of functional
logic programming, i.e., non-determinism and function patterns.
(?) :: a -> a -> a

x ? _ = x

_ ? y = y

(16) coin :: () -> Bool

coin = true ? false
(17)

As stated in the introduction, overlapping rules in functional logic languages
lead to non-deterministic search, cf. [11]. In principal, all non-determinism can
be introduced by permitting only a single operation with overlapping rules (?)

(16), cf. [1]. We use (?) to combine the rules of a function, cf. Example (17).
Note that the introduction of the argument () for constant constructors extends
to all definitions of constants.

invert :: (a -> b) -> (b -> a)

invert f = f’ where f’ (f x) = x
(18)

Function patterns can be used to in-
vert arbitrary operations. This yields
the primitive invert defined in (18).

The semantics of function patterns are described in [2] in terms of a possibly in-
finite set of rewrite rules. We aim at giving a denotational semantics for function
patterns for the first time.

The expressive power of function patterns can be estimated by consider-
ing that all other logic features can be obtained by using function patterns.
E.g., invert unit :: () -> a yields a logic variable when applied to () and
invert fork :: (a,a) -> a performs unification, cf. Section 1.1. Therefore we
can define the following useful abbreviations for interface adaption.

unknown :: () -> a

unknown = invert unit
(19) join :: (a,a) -> a

join = invert fork
(20)

There are two more functions useful abbreviations for interface adaption: fst

and snd. Instead of using the standard definition we prefer to give a definition
based on the primitives introduced so far:

140

fst :: (a,_) -> a

fst = (id / (unit * unknown)) * join
(21)

snd :: (_,a) -> a

snd = ((unit * unknown) / id) * join
(22)

Using fst and snd the standard functions head and tail can easily be expressed.
head :: [a] -> a tail :: [a] -> [a]

head = invert cons * fst tail = invert cons * snd
(23)

In addition to (?) to combine rules, the primitive invert can be used to express
arbitrary pattern matching including function patterns. A constructor pattern
is a linear constructor term, cf. Section 1.1. In order to match such a pattern
we only have to invert the according constructors and then adapt the result
like shown in (23). From this point of view it becomes apparent why constant
constructors are extended with an argument: to make them invertible.

The expressive power gained by function patterns is paid with computational
overhead [2]. It is thus desirable to replace a function pattern by an equivalent
standard operation. We think that the semantics we want to base on the pre-
sented transformation will be helpful to develop according optimizing techniques.

There is one last feature concerning pattern matching in connection with
laziness. If a value is discarded, e.g., by using unit, it is not evaluated. The
semantics of pattern matching demands that matching is ensured regardless of
whether the resulting variable bindings are used or not. The operations head and
tail defined in (23) use one of the variables bound by the matching and therefore
the pattern matching is indeed performed. In general we have to combine several
of the primitives introduced so far to achieve the desired evaluation.

null :: [a] -> Bool

null [] = True

null (_:_) = False

(24)

Example (24) shows a case in which the bind-
ings of the matching are discarded. The point-free
version has to make sure that a) the empty tu-
ple of (invert nil) and b) the pair resulting from

(invert cons) are demanded, and not more. The following definition provides
these properties.

null = invert nil * true ? invert cons * (unit/unit) * join * false (25)

The astute reader might wonder why we introduce non-determinism for a per-
fectly deterministic operation like the pattern matching of null. The reason for
this is twofold. 1) From a semantic point of view the non-deterministic branch-
ing does not matter. If the matching was indeed deterministic, for a given de-
terministic value all but one branch will finitely (even immediately) fail. 2) In a
functional logic language patterns are not always deterministic nor treated in a
sequential way (like in Haskell). Overlapping patterns induce non-determinism
which is easily captured by our approach.

member :: [a] -> a

member (x:_) = x

member (_:xs) = member xs

(26)

For example, the operation member defined
in (26) non-deterministically relates a list
with each of its elements. Without further
additions this behaviour is captured by the

transformation. The following definition shows a point-free version of member.

141

member = (invert cons * fst) ? (invert cons * snd * member) (27)

Example (26) also illustrates that recursive functions simply stay recursive.
There is no need for changes, e.g., a special recursion operator. Complex pat-
terns are treated like complex expressions, i.e., they are composed with (*) and
(/) before inverting the whole expression. We treat function patterns in the very
same way. For example, the function last (5) is translated to:

last = invert ((id / ((id/nil) * cons)) * app) * snd * up (28)

Higher Order In order to introduce higher-order operations we need to adapt
the well known pair apply and curry to our setting. A first point to consider is

apply :: (a -> b,a) -> b

apply (f,x) = f x
(29)

that values of type a correspond to operations
of type () -> a. Because higher-order opera-
tions should be first class objects we need to

translate them in the same way. An operation of type (a -> b) must become an
object of type () -> (a -> b) when used as an argument of an operation. If we
assume this kind of translation we can define apply and curry straightforwardly.

curry :: (() -> (a,b) -> c) -> () -> (a -> b -> c)

curry f = \ () x y -> f () (x,y)
(30)

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

(31)

The step to obtain the first curried ver-
sion of a given function cannot be for-
mulated in an equally general way be-
cause of call-time choice. This is illus-

trated by a standard example of a higher-order operation in Example (31). We
can already translate map with the primitives introduced so far, adding apply.

map :: (a -> b,[a]) -> [b]

map = (invert (id / nil) * nil)

? (invert (id / cons) * adapt * (apply / map) * cons)

(32)

We assume adapt to map the tuple structure (f,(x,xs)) to ((f,x),(f,xs)). We
omit its concrete definition by means of id, unit, invert and fork. We want to
map the operation not on the list [False,True].

not = (invert true * false) ? (invert false * true)

listFalseTrue = fork * (false / (fork * (true / nil) * cons)) * cons

mapNot = fork * (curryNot / listFalseTrue) * map

(33)

What should curryNot :: () -> (Bool -> Bool) be defined as? A first version
might be curryNot = const not. But evaluating mapNot () yields no solution.
The reason is call-time choice. Because f is a variable the choice whether f is
the operation “invert true * false” or “invert false * true” is made consis-
tently for all applications of f. But this decision has to be made anew for each
application of f. This can be achieved by η-expansion.

curryNot () x = not x (34) Using definition (34) (mapNot ()) evaluates to
[True,False] as intended. The example shows

that a second version of each operation which will be applied higher order is
needed.

142

We have illustrated all the point-wise primitives necessary to translate arbi-
trary Curry programs: (*) (7), (/) (9), fork (11), unit (13), id (14), (?) (16),
invert(18), apply (29) and curry (30). In the final paper we will give a formal
definition of the transformation and consider its soundness.

3 Related and Future Work

Cunha, Pinto and Proença [7, 6] present a framework for transformations of func-
tional programs into point-free style. They implement a library for point-free pro-
gramming in Haskell and transform Haskell programs into point-free programs
which are based on this library. Conceptually, their approach first transforms a
subset of Haskell to a simply-typed λ-calculus, and back to a Haskell program
which represents a cartesian closed category. Because of the intermediate trans-
formation to λ-calculus, the resulting programs bear only a remote resemblance
to the original. In contrast, one of our aims is to keep the resulting programs
close to the original. For example, we preserve the recursive structure of the
program instead of expressing it by primitive recursion operators and we keep
the data types and definitions of the original program instead of transforming
them into generic sum and product types. Moreover, the framework of functional
logic programming allows us to reduce the number of point-wise primitives on
which the resulting point-free programs are based. For example we express the
operation snd by using primitives while in a functional approach snd has to
be a primitive itself. Furthermore we express all pattern matching by a single
primitive, namely invert. Although we employ less primitives, we are able to
transform a larger set of programs, proposing the first approach to transform
functional logic programs to point-free style.

The book “Algebra of Programming” by Bird and de Moor [4] has been very
influential for this work. They present a calculus for the algebraic manipulation
of functional programs. We hope that we could give an idea that the framework
of functional logic languages is an even more natural and promising field for this
style of reasoning about programs. The elementary difference is the existence
of non-determinism. Whereas in [4] every inversion and every non-deterministic
definition resulting from inversion must be eliminated, the framework of func-
tional logic languages allows much less restricted use of algebraic methods. The
same is true a fortiori for approaches like [14] that aim on deriving a functional
definition to compute the inversion of a given function definition.

Regarding the denotational semantics of functional (logic) languages, we want
to relate our approach especially with two papers as future work. [16] proposes a
denotational semantics for a functional language employing relation algebra. [9]
provides a denotational semantics for functional logic languages based on cones.
There are many interesting extensions to the framework of [9] which we want
to investigate. However, our work presents a promising step towards covering
function patterns for the first time.

143

References

1. S. Antoy. Evaluation strategies for functional logic programming. Journal of
Symbolic Computation, 40(1):875–903, 2005.

2. S. Antoy and M. Hanus. Declarative programming with function patterns. In
Proceedings of the International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’05), pages 6–22. Springer LNCS 3901, 2005.

3. J. Backus. Can programming be liberated from the von neumann style?: a func-
tional style and its algebra of programs. Commun. ACM, 21(8):613–641, August
1978.

4. R. Bird and O. de Moor. Algebra of programming. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1997.

5. Carolyn Brown and Graham Hutton. Categories, Allegories, and Circuit Design.
In Proceedings of the 10th Annual IEEE Symposium on Logic in Computer Science.
IEEE Computer Society Press, Los Alamitos, California, July 1994.

6. A. Cunha. Point-free program calculation. PhD thesis, Universidade do Minho,
Departamento de Informática, 2005.

7. A. Cunha, J. Sousa Pinto, and J. Proença. A Framework for Point-free Program
Transformation. In Andrew Butterfield, editor, Revised Papers of the 17th Inter-
national Workshop on Implementation and Application of Functional Languages
(IFL’05), number 4015 in Lecture Notes in Computer Science. Springer-Verlag,
2005.

8. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel leaf: A logic plus
functional language. Journal of Computer and System Sciences, 42(2):139–185,
1991.

9. J. C. González-Moreno, Maria Teresa Hortalá-González, Francisco Javier López-
Fraguas, and Mario Rodŕıguez-Artalejo. An approach to declarative programming
based on a rewriting logic. J. Log. Program., 40(1):47–87, 1999.

10. M. Hanus. The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming, 19&20:583–628, 1994.

11. M. Hanus. A unified computation model for functional and logic programming.
In Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pages 80–93, 1997.

12. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.2). Avail-
able at http://www.informatik.uni-kiel.de/~curry, 2006.

13. Geraint Jones and Mary Sheeran. Designing arithmetic circuits by refinement in
Ruby. In R. S. Bird, C. C. Morgan, and J. C. P. Woodcock, editors, Mathematics
of Program Construction, volume 669. Springer Verlag, 1993.

14. Shin-Cheng Mu. A Calculational Approach to Program Inversion. PhD thesis,
Oxford University Computing Laboratory, 2003.

15. Hermann von Issendorff. Algebraic description of physical systems. In Roberto
Moreno-Dı́az, Bruno Buchberger, and José Luis Freire, editors, EUROCAST, vol-
ume 2178 of Lecture Notes in Computer Science, pages 110–124. Springer, 2001.

16. Hans Zierer. Programmierung mit Funktionsobjekten: Konstruktive Erzeugung se-
mantischer Bereiche und Anwendung auf die partielle Auswertung. PhD thesis,
Technische Universität München, Fakultät für Informatik, 1988.

144

Snapshot generation in a constructive object-oriented
modeling language

Mauro Ferrari1, Camillo Fiorentini2, Alberto Momigliano2 and Mario Ornaghi2

1 Dipartimento di Informatica e Comunicazione, Università degli Studi dell’Insubria, Italy
mauro.ferrari@uninsubria.it

2 Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, Italy
{fiorenti,momiglia,ornaghi}@dsi.unimi.it

Abstract. CooML is an object-oriented modeling language where specifications
are theories in a constructive logic designed to handle incomplete information.
In this logic we define snapshots as a formal counterpart of object populations,
which are associated with specifications via the constructive interpretation of log-
ical connectives. In this paper, we introduce the “snapshot semantics” of CooML
and we describe a snapshot generation (SG) algorithm, which can be applied to
validate specifications in the spirit of OCL-like constraints over UML models.
Differently from the latter and from the standard BHK semantics, the logic al-
lows us to exploit a notion of partial validation that is appropriate to encodings
characterised by incomplete information. SG is akin to model generation in an-
swer set programming. We show that the algorithm is sound and complete so that
its successful termination implies consistency of the system.

1 Introduction

We are developing the constructive object-oriented modeling language CooML [19]
(http://cooml.dsi.unimi.it), a specification language for OO systems. Similarly
to UML/OCL [22], CooML provides a framework for the design of system specifica-
tions in the early stages of he development process. The language allows the user to
distinguish between internally-defined elements and the problem domain (PD), which
may involve loosely or incompletely defined components. This encourages the selection
of the appropriate level of abstraction w.r.t. specifications.

CooML follows the spirit of lightweight formal methods [10]: it does not focus on
full formalization, nor on whole system correctness, but emphasizes partiality in anal-
ysis and specification. In the context of OO modeling, both the validation of a spec-
ification and consistency checking can be achieved via the notion of snapshot, i.e. a
population of objects in a given system state that satisfies the specification. Previous
work has used snapshots for validation of UML/OCL models [8], as well as specifica-
tions in JML based on symbolic animation [4].

The novelty of CooML’s approach resides in its semantics, which is related to the
constructive explanation of logical connectives (a.k.a. the BHK interpretation [21]).
Specifically, the truth of a CooML proposition in a given interpretation is explained by
a mathematical object that we call an information term. For the time being, the latter
can be visualized as a sort of proof term inhabiting a type/formula. The underlying logic

145

is characterized how classical and constructive information co-exists, the main “entry”
point being the different way in which an atomic formula A is given evidence (for more
details we refer the kind reader to the original formulation of the logic in [15]). If we
call a piece of information the pair I : P, where P is a formula and I is its information
term, then I : P is a particular piece of information that may be true or false in a clas-
sical interpretation w, called a world. Thus, we have a notion of a model of a piece of
information based on classical logic. In particular, we use T{F} to indicate the truth
of F ; in fact, T does not contain evidence for F , but it yields a piece of information
true in all the models of F . This introduces a novel and flexible way to handle incom-
plete information, a notorious difficulty in other information systems such as relational
databases.

Crucially, the constructive side of the logic allows the identification of snapshots
with information terms, thus providing a formal counterpart to the intuitive notion of
object populations. We argue that CooML’s proof-theoretic snapshot generation may be
advantageous w.r.t. a model-theoretic one, especially in cases where not all the informa-
tion required to define a model is even present. The possibility of treating information
in this less committed way means that we can select only the relevant information; this
may have a cascade of benefits in terms of efficiency of the representation.

The contribution of this paper is twofold. First, we apply the semantics developed
in purely logical terms in [15] to object oriented modeling languages. We model an
OO system specification as a CooML theory T , the system snapshots as the pieces of
information I : T , and the related information content as a suitable set of formulae. We
show that the latter can be seen as the minimum information needed to give evidence to
snapshots and that is related to snapshot consistency. Secondly, we describe (and im-
plement) a snapshot generation algorithm (SGA), taking as inputs: (i) a CooML theory
T , axiomatizing a set of classes in a problem domain PD; (ii) the user’s generation re-
quirements G , which serve an analogous purpose to domain predicates in the grounding
phase of ASP’s [17]. As snapshots should be consistent with respect to PD and G , we
prove that consistency checking is sound and that SG is complete, i.e., if a consistent
snapshot satisfying the generation requirements exists, it will be generated. This is not
too faraway from adequacy results in the theory of CLP’s [7].

2 CooML specifications

In this section we informally present the language via an example adapted from [3],
while we defer the formal treatment to Section 2.1. The problem domain concerns a
small coach company. Each coach has a specified number of seats and can be used
for regular or private trips. In a regular trip, each passenger has its own ticket and seat
number. In a private trip, the whole coach is rented and there may be a guide. The corre-
sponding CooML specification is contained in the package coachCompany (Fig. 1). To
explain our example we need to introduce CooML types system. We distinguish among
data types (in our example, Integer and Boolean), PD types (Person), and object
types (Coach, Trip, Passenger). They inherit from the top type Value the identity re-
lation and the string representation. Data types are “statically” defined, i.e., their values
do not depend on the current state. CooML assumes the existence of an implementation

146

that evaluates ground terms to values. A PD type extends Value with a set of problem
domain functions.

package coachCompany;
pds{type Person;
Integer numberOfSeats(Coach c) = (* the number of seats of c *);
Boolean guides(Person p, Trip t) = (* p guides trip t *);
Boolean nobooking(Passenger p, Trip t) = (* p has no booking in t *);
Boolean vacant(Integer s, Coach c, Trip t) =

(* s is a vacant seat on c in t *);
Boolean booked(Passenger p, Integer s, Coach c, Trip t) =

(* p has booked seat s on c in t *);
<constr name=bookingConstraints language=prolog>

false :- vacant(S,C,T), booked(_P,S,C,T).
false :- booked(P1,S,C,T), booked(P2,S,C,T), not(P1==P2).
false :- nobooking(P,T), booked(P,_Seat,_Coach,T).

</constr>
}

class Coach{
coachPty: and{

seats: exi{Integer seatsNr; seatsNr = numberOfSeats(this)}
trips: for{Trip trip; trip is Trip(this) --> true} }
Integer getSeats(){ return seats.seatNr }

}
class Trip{ env(Coach coach)
TripPty: case{private: case{T{exi{Person p; guides(p,this)}}

T{not exi{Person p; guides(p,this)}}}
regular: for{Integer seat; (seat in 1..coach.getSeats()) -->

case{vacant: vacant(seat,coach,this)
booked: exi{Passenger p; T{and{p is Passenger(this)

booked(p,seat,coach,this)}}
}}}}}

class Passenger{ env(Trip trip)
PsngrPty: case{c1: nobooking(this,trip)

c2: exi{Integer seat, Coach coach;
T{and{trip is Trip(coach)

booked(this,seat,coach,trip)}}
}}}

Fig. 1: The coachCompany package

Nothing is assumed about PD types; they may be characterized by a set of formal or
informal loose properties that we call PD constraints, introduced by the tag <constr>.

The special subtype Obj of Value introduces object identities. Objects are created
by CooML classes, which are structured in a single inheritance hierarchy rooted in Obj.
The definition of a class C may depend on some environment parameters, namely C(e)
is a class with environment parameters e. If e is a ground instance of the environment
parameters e, then C(e) can be used to create new objects. We write “o is C(e)” to
indicate that o has been created by C(e), while “o instanceof C(e)” means that o

147

has environment e and has been created by a subclass C’ of C. We call those class
predicates.

In a package: (i) data types are assumed to be externally implemented; (ii) PD types
are defined in the pds (Problem Domain Specification) section; (iii) classes are intro-
duced by suitable class declarations.
pds declaration and world states. The pds section specifies our general knowl-
edge of the problem domain. It introduces PD types, functions and predicates using
data and class types. In our example we introduce the PD type Person and func-
tions numberOfSeats, guides, . . . The informal descriptions (*...*) use terms of
the global signature provided by the analysis phase [11]. A <constr> declaration in-
troduces a set of PD constraints representing general problem domain properties that
are not interpreted by CooML, but that could be interpreted by some external tool.
In the example PD constraints are expressed in Prolog assisting the SG algorithm in
filtering out undesired snapshots. The class predicate “o is C(e)” is represented by
the Prolog predicate isOf(o, C, [e]), while “o istanceOf C(e)” is translated into
instanceOf(o, C, [e]). The first constraint says that a coach seat cannot be va-
cant and booked at the same time, the second one excludes overbooking (a seat can be
booked by at most one person), while the third says that the predicate nobooking(P,T)
holds if person P has not booked a seat on the coach associated with trip T. In this pa-
per, we assume that the signature ΣT of a CooML theory T (including PD types, data
types and classes) is first order and that we can represent the possible states of the “real
world” by reachable ΣT -interpretations, dubbed world states. Reachability means that
each element of the interpretation domains is represented by some ground terms, in
our case CooML values. In a world state, PD symbols are interpreted over the external
world, data types are interpreted according to their implementation, and class predicates
represent the current system objects. For instance the class predicates

mini is Coach(), t1 is Trip(mini), t2 is Trip(mini), t3 is Trip(mini),
john is Passenger(t1)

represent a small company with a single mini-bus mini, three trips t1,t2,t3 operated
by mini and, so far, only one passenger john associated with trip t1.
class declarations and properties. A class declaration introduces the name C of the
class, its (possible) environment parameters e, its property PtyC(this,e), and its meth-
ods 1. An object o created by C(e) stores a piece of information structured according to
PtyC(o,e), and uses the methods implemented by C(e).

For class properties, CooML uses a prefix syntax, where formulas may be labeled.
Labels are used to refer to subformulae. For example, the label seats is used in the
getSeats method to refer to seatsNr. A class property P is an atomic formula over ΣT ,
or (recursively) a formula of the form and{P1 . . . Pn}, case{P1 . . . Pn}, exi{τ x;P},
for{τ x;G→P}, T{Pext}, where Pext is a property that may also use negation not and
implication imp. We stress that not and imp cannot be used outside T.

In CooML’s semantics, a property P defines a set of possible pieces of information
of the form I : P, where I is an information term, that is a structure justifying the truth
of P. Each piece of information I : P for P has an information content, a set of simple
properties intuitively representing the minimum amount of information needed to jus-
tify P according to I. In fact, we call simple property an atomic formula of the form

1 We use the self-reference this as in Java.

148

T{Pext}. A simple property S represents a basic information unit, i.e., it has a unique
information term tt where tt is a constant. This means that the only information we
have is the truth of S, and that the associated information content is simply the set {S}.
Exemplifying,

tt : t1 is Trip(mini)

has information content {t1 is Trip(mini)} and means that the trip t1 is assigned
to the coach mini in the current world state.

The operator T may enclose a complex property P and indicates that we are inter-
ested only in its truth. Let us consider

tt: T{exi{Person p; guides(p,t2)}} tt: T{not exi{Person p; guides(p,t3)}}

The first piece of information says that t2 is a guided trip without indicating who the
guide is; the second one says that t3 has no guide.

By default2 the truth of a simple property S in a world state w (w |= S) is defined as in
classical logic, by ignoring T (i.e., w |= T{P} iff w |= P}) and interpreting case as ∨,
and as ∧, not as ¬, imp as →, exi as ∃ and for{τ x;G(x)→P(x)} as ∀x(G(x)→ P(x)).

In contrast, non-simple properties are interpreted constructively, by means of infor-
mation terms. A piece of information I : P may have one of the following forms:

Existential. (x,I):exi{τ x; P(x)}, where τ is the type of the existential variable x. The
term x is a witness for x and the information content is the one of I : P(x). For example,

(4,tt) : exi{Integer seatNr; seatNr = numberOfSeats(mini)}

has witness 4 and information content {4 = numberOfSeats(mini)}, signifying that
our mini-bus has 4 passenger seats. Note that, differently from the case of simple prop-
erties, we know the value of x which makes P(x) true.

Universal. ((x1, I1),...,(xn, In)):for{τ x; G(x) → P(x)}, where G(x) is an
x-generator, i.e., a formula true for finitely many x3. The information con-
tent is the union of those of I1 : P(x1), . . . , In : P(xn) and of the domain
property dom(x; G(x); [x1,...,xn]), a special simple property interpreted as
∀x(G(x)↔ member(x, [x1, . . . ,xn])). For example, the information content of

((t1,tt),(t2,tt),(t3,tt)) : for{Trip trip; trip is Trip(mini) → true}

is {dom(trip; trip is Trip(mini); [t1,t2,t3])}, showing that the domain of
the trip-generator “trip is Trip(mini)” is {t1,t2,t3}. Since the atomic formula
true corresponds to no information, it can be ignored.
Conjunctive. (I1, . . . , In) : and{P1 . . .Pn}. The information content is the union of those
of I j : Pj, for all j ∈ 1..n. For instance, a piece of information for the class property
coachPty(mini) and the related information content IC1 are

((4,tt), ((t1,tt), (t2,tt), (t3,tt))) : and{seats(mini) trips(mini)}
IC1 = {4 = numberOfSeats(mini), dom(trip; trip is Trip(mini); [t1,t2,t3])}

2 But one can change this. We do not discuss this issue here for lack of space.
3 In this paper the precise syntax of generators is omitted.

149

Disjunctive. (k,Ik):case{P1 . . .Pn}. The selector k ∈ 1..n points to the true subformula
Pk and the information content is Ik : Pk’s. For example, if the object john with class
predicate john is Passenger(t1) contains the information term (1,tt), then

(1,tt) : case{c1:nobooking(john,t1) c2: ...}

selects the first sub-property of PsngrPty, with information content
{nobooking(john,t1)}, i.e. john has no booking in trip t1 in the current state.

The information content of classes. Let C(e) be a class with property PtyC(this,e).
We associate with C the class axiom

clAx(C): for{Obj this, τ e; this is C(e) → PtyC(this,e)}

The corresponding pieces of information and information content are those for universal
properties. The piece of information for class Coach and its information content IC2 is:

((mini,CoachInfo)) : for{Obj this; this is Coach() → coachPty(this)}
IC2 = {dom(this; this is Coach();[mini]), 4 = numberOfSeats(mini),

dom(trip; trip is Trip(mini); [t1,t2,t3])}

where CoachInfo:coachPty(mini) is defined as in the conjunctive case.

System snapshots and their information content. Let P be a package introducing a
set of constraints T and the CooML classes C1, . . . ,Cn. We associate with P a CooML
theory TP = 〈thAx,T 〉, where thAx = and{clAx(C1) · · · clAx(Cn)}.

A piece of information I : thAx represents the information content of the whole
system. We call it a system snapshot, to emphasise that the system may evolve through
a sequence I0 : thAx, . . . , In : thAx, A snapshot for our coachCompany system is of
the form:

(I1,I2,I3) : and{clAx(Coach) clAx(Passenger) clAx(Trip)}

and possible information terms I1, I2, I3 are

I1 = ((mini,CoachInfo)), I2 = (([john,t1],(1,tt)), ([ted,t2],(1,tt)))
I3 = (([t1,mini],(2,((1,tt), (2,(john,tt)),(3,tt),(4,tt)))),

([t2,mini],(1,(1,tt))),
([t3,mini],(1,(2,tt))))

where [...] denote tuples. A relevant part of the information content for
coachCompany is given in Fig. 2.

dom(o; o is Coach(); [mini]), dom(o; o is Trip(mini); [t1,t2,t3]),
dom([o,t]; o is Passenger(t); [[john,t1],[ted,t2]]),
dom([o,c]; o is Trip(c); [[t1,mini],[t2,mini],[t3,mini]]),
4=numberOfSeats(mini), nobooking(john,t1), vacant(1,mini,t1),
booked(john,2,mini,t1), vacant(3,mini,t1), vacant(4,mini,t1),
T{exi{Person p; guides(p,t2)}}, T{not exi{Person p; guides(p,t3)}}

Fig. 2: Part of the information content of coachCompany.

150

The above information content could be seen as an “incompletely specified” model
of the coachCompany theory, where numberOfSeats, nobooking, vacant, booked and
class predicates are completely specified, while for guides we have only some partial
knowledge, expressed by the T-properties, and moreover nothing is said about Person.
The relationship with classical models can be better explained by comparing the con-
structive and classical reading of CooML properties. Let T = 〈thAx,T 〉 be a CooML
theory. We can switch to the classical interpretation of thAxsimply by using the T op-
erator, i.e., by considering the simple property T{thAx}. One can prove that T{thAx}
has a reachable model if and only if IC(I : thAx) has a reachable model, for at least
one piece of information I : thAx. Furthermore, one can prove that IC(I : thAx) is the
minimum set of simple formulas that justifies I as an explanation of thAx.

In this context we are mainly interested in the notion of consistency with respect
to the PD constraints, assuming that the latter can be interpreted as first order sen-
tences. In our example, we interpret a program clause H : −B1, . . . ,Bn as the univer-
sal closure of B1 ∧ . . .∧Bn → H, as usual. A system snapshot I : thAx for a theory
T = 〈thAx,T 〉 is consistent if its information content IC(I : thAx) is true in a reach-
able classical model of T ; T is consistent if there is a consistent snapshot for it. For
example, the above snapshot (I1, I2, I3) is consistent with respect to the first and second
constraint of the pds section, but not with the third, since both nobooking(john,t1)
and booked(john,2,mini,t1) belong to the information content of Fig. 2.

2.1 Formal definitions

Let T = 〈thAx,T 〉 be a CooML theory and ΣT the associated first order signature. The
set of information terms for a property P (IT(P)) is inductively defined as follows, where
x stands for values of x:

IT(P) = {tt}, if P is simple
IT(and{P1 · · · Pn}) = { (I1, . . . , In) | I j ∈ IT(Pj) for all j ∈ 1..n}
IT(case{P1 · · · Pn}) = { (k, I) | 1 ≤ k ≤ n and I ∈ IT(Pk)}
IT(exi{τ x;P}) = { (x, I) | I ∈ IT(P)}
IT(for{τ x;G(x)→P}) = { ((x1, I1), . . . ,(xn, In)) | I j ∈ IT(P) for all j ∈ 1..n}

A piece of information for a ground property P is a pair I : P, with I ∈ IT(P). A collection
is a set of ground simple properties. The information content IC(I : P) is the collection
inductively defined as follows:

IC(tt : P) = {P}, where P is simple
IC((I1, . . . , In) : and{P1 · · · Pn}) =

Sn
j=1 IC(I j : Pj)

IC((k, I) : case{P1 . . . Pn}) = IC(I : Pk)
IC((x, I) : exi{τ x; P(x)}) = IC(I : P(x))
IC(((x1, I1), . . . ,(xn, In)) : for{τ x;G(x)→P(x)}) =

Sn
j=1 IC(I j : P(x j))

∪ {dom(x;G(x); [x1, . . . ,xn])}

The information content IC(I : P) represents the minimum amount of information
needed to get evidence for P according to I. We say that a collection C gives evidence

151

to I : P, and we write C B I : P, iff one of the following clauses holds:

C Btt : P iff P ∈ C
C B (I1, . . . , In) : and{P1 · · · Pn} iff C B I j : Pj for all j ∈ 1..n
C B (k, I) : case{P1 . . . Pn} iff C B I : Pk
C B (x, I) : exi{τ x; P(x)} iff C B I : P(x)
C B ((x1, I1), . . . ,(xn, In)) : for{τ x;G(x)→P(x)} iff dom(x;G(x); [x1, . . . ,xn]) ∈ C

and C B I j : P(x j) for all j ∈ 1..n

The information content IC(I : P) represents an information about the current world
state. We define the information content of C as its closure under (classical) logical
consequence, for C ∗ = {P | C |= P}. We say that C 1 contains less information than C 2
(written C 1 v C 2) iff C ∗

1 ⊆ C ∗
2. Intuitively, the definition ofv is justified by the fact that

an user will “trust” C ∗, whenever he trusts C . We could use a different trust-relation,
considering different logics. We only need the following to hold:

(1). C ⊆ C ∗;
(2). C 1 ⊆ C ∗

2 implies C 1 v C 2.

Using the above properties, we can establishes the minimality of IC(I : P) with respect
to v:

Theorem 1. Let I : P be a piece of information:

1. IC(I : P)B I : P
2. For every collection C , C B I : P implies IC(I : P)v C .

Now we can apply the above discussion to the problem of checking snapshots
against constraints. Let T = 〈thAx,T 〉 be a CooML theory. We recall that a snapshot for
T is a piece of information I : thAx. We introduce the following notions of consistency
for snapshots.

– A snapshot I : thAx is consistent with respect to the constraints T (T -consistent)
iff there exists a reachable model of IC(I : thAx)∪T .

– T is snapshot-consistent iff there is at least one snapshot I : thAx such that I : thAx
is T -consistent.

The latter definition is related to classical consistency by the following result:

Theorem 2. Let T = 〈thAx,T 〉 be a CooML theory. T is snapshot-consistent iff there
is a reachable model of T{thAx}∪T .

3 A snapshots generation algorithm and its theory

A snapshot generation algorithm (SGA) for a CooML theory T = 〈thAx,T 〉 takes as in-
put the user’s generation requirements and tries to produce T -consistent snapshots that
satisfy such requirements. Roughly, generation states represent incomplete snapshots,
e.g. in logic programming parlance, partially instantiated terms; inconsistent attempts
are pruned, when recognized as such during generation.

Consistency checking plays a central role. It depends on the PD logic and it is dis-
cussed next. In Subsection 3.2 we illustrate the use of snapshot generation for validating
CooML specifications. Finally, in Subsection 3.3 we briefly outline a non deterministic
algorithm based on which one may develop sound and complete implementations.

152

3.1 Consistency check

To recognize inconsistent attempts, SGA uses an internal representation of the informa-
tion content of the current generation state S, denoted by INFOS.

Here we briefly discuss a simplified version of consistency check in our Prolog im-
plementation, called SnaC. Let PS be the internal Prolog translation of the information
content INFOS. For this simplified version, we assume that PS is executed by a suitable
meta-interpreter. Without giving the formal details, we notice that INFOS consists of
ground facts, clauses of the form H :- eq(t1,t2) or false :- B, where:

– We use eq to avoid Prolog’s standard unification interfering with Skolem con-
stants. Indeed, the latter represent unknown values originating from the translation
of T{exi{...}}, where different constants may represent the same value. In the
simplified version, the eq atoms are just residuated by the meta-interpreter in a list
of “unsolved equations”.

– The reserved atom false is introduced to detect inconsistency: its finite failure
signals snapshot consistency, conversely, its success corresponds to inconsistency.

Clauses with head false are called integrity constraints and false may occur only as
such. A SnaC representation PS has the following property: if the meta-interpretation of
a goal G succeeds from PS with answer σ and a list L of unsolved equations, then Gσ is
a logical consequence of PS ∪L. Furthermore, consistency is preserved and the models
of PS are models of INFOS (in the declarative reading of PS, we interpret eq as equality
and false as falsehood). As an example, let us consider the SnaC representation PcComp
in Fig. 3 of the information content of the coachCompany package (Fig. 2).

isOf(mini,’Coach’,[]). false :- isOf(O,’Coach’,[]), not(member(O,[mini]).
isOf(john ’Passenger’,[t1]). isOf(ted ’Passenger’,[t2]). ...
numberOfSeats(mini,4). nobooking(john,t1). booked(john,2,mini,t1).
vacant(1,mini,t1). vacant(3,mini,t1). vacant(4,mini,t1).
guides(P,t2):- eq(P,p0).
false :- guides(P,t3).

Fig. 3: The SnaC representation PcComp.

The facts and the constraint in the first lines come from the translation of do-
main properties. For example, the first row contains the translation of dom{o; o is
Coach(); [mini])}. The other facts come from the translation of atoms. The clause
guides(P,t2):- eq(P,p0) is the translation T{exi{Person p; guides(p,t2)}},
where p0 is a fresh Skolem constant. Finally, false :- guides(P,t3) is the transla-
tion of T{not exi{Person p; guides(p,t3)}}.

Let us analyse the three possible outcomes of consistency check starting from the
example in Fig. 3:

(a) false finitely fails for the program PcComp. This entails that false does not belong
to the minimum model M of PcComp∪{eq(X,X)}. The latter contains all the ground
atoms in Fig. 3 as well as guides(p0,t2). Since M is a model of PcComp, it is also
a model of the information content of the coachCompany package thanks to the
properties of the translation.

153

(b) If we add the constraint

c1) false :- nobooking(P,T), booked(P,_S,_C,T).

to PcComp, now the goal false succeeds from program PcComp ∪ {c1}, residuat-
ing the empty list. This implies that the snapshot corresponding to the information
content of coachCompany is inconsistent w.r.t. c1.

(c) If we add the constraint

c2) false :- guides(P,T), isOf(P,’Passenger’,[T]).

the goal false succeeds from program PcComp∪{c2}, residuating [eq(ted,p0)].
This implies that false belongs to the minimum model M of PcComp ∪
{c2,eq(ted,p0)}. The equality eq(ted,p0) is returned to the user as a source
of inconsistency.

The above discussion is reflected in the following theorem:

Theorem 3. Let T = 〈thAx,T 〉 be a CooML theory, I : thAx a snapshot and P a
program containing the translation of IC(I : thAx) and the PD constraints T .

1. If false finitely fails from P, then I : thAx is T -consistent.
2. If false succeeds from P residuating a set of constraints U, then I : thAx is

inconsistent with respect to T ∪U.

In the first case, SnaC accepts I : thAx as a T -consistent snapshot. In the second,
U being empty signals inconsistency. If U is not empty, it is returned as an answer. We
omit the proof, since it is somewhat implicit in the above discussion.

A more general result can be obtained admitting a larger class of simple proper-
ties and PD constraints, using techniques similar to those used in CLP, as constraint
systems [7]. Roughly, we can consider T as a program of a CLP system using as cal-
culus an extension of the standard logic programming operational semantics, where the
constraint system is the Herbrand universe under CET, modified to deal with Skolem
constants.

3.2 Validating specifications via the SGA

One of the purposes of snapshot generation is understanding and validating a CooML
specification. To this aim, the user can specify suitable generation requirements in order
to reduce the number of generated examples to a manageable size and show only the
aspects he is interested in. We explain the language of generation requirements and its
semantics through our example. It may be helpful to keep in mind the analogy with how
an answer set program is constructed by grounding.

In the implementation, the number of generated snapshots can be limited by means
of the the special atom choice(A). This plays the role of domain predicates in ASP.
The SG algorithm will instantiate A according to its axiomatisation. For example:

choice(isOf(C,’Coach’,[])) :- member(C,[c1,c2]).
choice(isOf(P,’Passenger’,[T])) :- member(P,[anna,john,ted]).
choice(isOf(T,’Trip’,[C])) :- member((T,C), [(t1,c1),(t2,c2),(t3,c1)]).
choice(numberOfSeats(c1,3)).
choice(numberOfSeats(c2,60)).

154

instructs SG to generate one coach c1 with 3 seats and possible trips t1, t3, and another
c2 with 60 seats and trip t2. The declarative meaning of choice is given by the axiom
schema A → choice(A), which, together with the user definition of choice, sets up
the generation requirements. The generated snapshots will satisfy the PD constraints,
as well as the generation requirements.

Once the SG algorithm loads a CooML theory and the user generation requirements,
it can be queried with generation goals (G-goals). A sample G-goal is:

(g1) [[3,tt], Trips] : isOf(C,’Coach’,[]).

Since [3,tt]:seats(C) has information content 3 = numberOfSeats(C), the query
looks for the information Trips:trips(C) for every coach C with 3 seats. More pre-
cisely, the G-goal includes both a generation goal (“generate all the coaches C with
3 seats that satisfy the generation requirements”) and a query (“for each C, show the
information on the trips assigned to it”). An answer to g1 is:

Trips = [[t1,tt]] and C = c1

with information content

isOf(c1,’Coach’,[]), isOf(t1, ’Trip’, [c1])

The rest of the snapshot, including information terms for all classes in the package,
is omitted for the sake of space. If the user asks for more solutions, all possible snap-
shots will be shown. In the above example, there are two more solutions, where c1 has
two assigned trip or none.

We now sketch some ways in which the SG can be used in the process of system
specification and development. This will be the focus of future work.
Validating specifications The goal is to show that a CooML theory “correctly” mod-
els the problem domain. Validation is empirical by nature: it relates the theory to the
modeled world. The idea is to generate models that satisfy given generation require-
ments and check whether they match the user expectations. To this aim, it is useful
to tune the generation requirements to separately consider various aspects that can be
understood within a small, “human viable” number of examples, as usual in this con-
text [8]. For instance, we may concentrate on the validation of the booking part of the
CoachCompany package. In particular, we can find some supporting evidence of the
correctness of the specification in a match between the expected and actual number of
snapshots, where parameters of the latter are chosen as small as possible, while preserv-
ing meaningfulness. Naturally, snapshots can be used as inputs to tools for automatic,
specification-based testing generation, in the spirit of [18].
Partial and full model checking As traditional in software model checking, here the
goal is to show that, under the assumption of the generation requirements, no snap-
shot satisfies an undesired property. This is obtained if the SGA finds a snapshot-
inconsistency, i.e., it halts without exhibiting any snapshot. Equivalently, one can prove
that every snapshot satisfies a given property by showing that its negation is snapshot-
inconsistent. We call this approach partial model checking, because in general snapshot
consistency may depend on the selection of generation requirements. We may perform
full model checking if the set of generated snapshots is representative of all models of
the theory w.r.t. the property under consideration.

155

3.3 A schematic algorithm

We now describe a general schema for the Snapshot Generation Algorithm, of which
SnaC is just a first rough implementation. Let T = 〈thAx,T 〉 be a CooML theory, where
thAx = and{clAx(C1), . . . ,clAx(Cn)}. Its information terms are represented by sets of
G-goals that we call populations. The generation process starts from a set P0 of G-goals
to be solved, i.e. to become grounded. The SGA gradually instantiates P0, possibly gen-
erating new G-goals. It divides the population in two separate sets: TODO, containing
the G-goals not solved yet and DONE, containing the solved ones. A generation state
has the form S = 〈DONE,TODO,CLOSED, INFO〉, where:

– CLOSED is a set of predicates closed(C,e). Such a predicate is added to CLOSED
when all the objects with creation class C(e) have been generated. It prevents the
creation of new objects of class C(e) in subsequent steps.

– INFO is the representation in the PD language of the information content of DONE,
i.e., for every I : isOf(o,C, [e]) ∈ DONE, IC(I : PtyC(o,e))⊆ INFO.

The following definitions are in order:

– A state S is in solved form if TODO = /0.
– Dom(S) = {isOf(o,C, [e]) | I : isOf(o,C, [e]) ∈ DONE∪TODO}.
– 〈DONE1,TODO1,CLOSED1, INFO1〉 � 〈DONE2,TODO2,CLOSED2, INFO2〉 iff

1. DONE1 ⊆ DONE2, Dom(S1)⊆ Dom(S2) and INFO1 ⊆ INFO2;
2. If closed(C,e) ∈ CLOSED1, then

isOf(o,C, [e]) ∈ Dom(S1) iff isOf(o,C, [e]) ∈ Dom(S2).

The SGA starts from initial state S0 = 〈 /0,TODO0, /0, /0〉 and yields a solu-
tion S = 〈DONE, /0,CLOSED, INFO〉 such that S0 � S; since TODO = /0, for ev-
ery I : isOf(o,C, [e]) ∈ TODO0, DONE contains a ground information term (I :
isOf(o,C, [e]))σ solving it. The algorithm computes a solution of S0 that is mini-
mal with respect to � through a sequence of expansion steps. The latter are triples
〈S, I : isOf(o,C, [e]), S′〉 such that:

p1. I : isOf(o,C, [e]) ∈ TODO (the selected goal);
p2. (I : isOf(o,C, [e]))σ ∈ DONE′ and I : isOf(o,C, [e]) 6∈ TODO′ (it has been solved);
p3. S ≺ S′ and, for every S∗ in solved form, S ≺ S∗ � S′ entails S∗ = S′ (no solution is

ignored).

The high-level code for a non deterministic SGA based on expansion steps is listed in
Fig.4, where TODO0 are the G-goals to be solved under theory 〈thAx,T 〉 and gener-
ation requirements G . The variable UC stores the “unsolved constraints” generated by
the “error tests” error(S) and globalError(S). They check consistency against “lo-
cal” and “global” integrity constraints. error must be monotonic, i.e., error(S) and
S � S′ entails error(S′); globalError applies only to states in solved form.

The SG is a general schema, whose core is the implementation of expansion steps
and error predicates. The latter use the integrity constraints false :- B to detect in-
consistency and are based on a generalization of the ideas presented in Section 3.1.

156

SG (〈thAx,T 〉, G , ToDo0)
1 T hy = thAx; PDAx = T ∪G ; S = 〈 /0,ToDo0, /0, /0〉; UC = /0;
2 while ToDo 6= /0 do
3 if error(S) fail;
4 else % Generation Step:
5 Choose I : isOf(o,C, [e]) ∈ ToDo and compute 〈S, I : isOf(o,C, [e]), S′〉;
6 S = S′;
7 if globalError(S) fail;
8 else return S, UC

Fig. 4: The SG Algorithm.

A call to an error predicate either returns “true” when an inconsistency is detected, or
updates UC and returns “false”. When a state S in solved form is reached, SG returns
UC as an answer; if it is empty, S is consistent. The current implementation could be
improved, namely in detecting more than the trivial inconsistencies; no simplification
is supported.

To state the adequacy results, we introduce some additional notation (ITP) in order
to associate a class C j and population P with their information terms:

ITP(P,C j) = [[[o j1 , e j1], I j1] , . . . , [[o jk , e jk], I jk]]

ITP(P) = [ITP(P,C1) , . . . , ITP(P,Cn)]

where, I j1 : isOf(o j1 ,C j, [e j1]), . . . , I jk : isOf(o jk ,C j, [e jk]) are the G-goals of P with
class C j (1 ≤ j ≤ n); if no G-goal with class C j belongs to P, then ITP(P,C j) is the
empty list.

Theorem 4 (Correctness). Let S∗ = 〈DONE∗, /0,CLOSED∗, INFO∗〉 be a state com-
puted by SG with theory T = 〈thAx,T 〉 and generation requirements G , and let
I∗ = ITP(DONE∗) be the information term of the population DONE∗. Then, either UC
is empty and I∗ : thAx is G ∪T -consistent, or I∗ : thAx is inconsistent with respect to
G ∪T ∪UC.

The proof easily follows assuming that for every state S: (i) INFOS satisfies G ,
by the way SG performs grounding; (ii) when error(S) or globalError(S) returns
“true”, then INFOS is inconsistent with respect to T ; (iii) when globalError(S) re-
turns “false”, then either UC is empty and INFOS∪T is consistent, or INFOS∪T ∪UC
is inconsistent.

Theorem 5 (Completeness). Let S0 = 〈 /0,TODO0, /0, /0〉 be an initial state of
SG with theory T and generation requirements G . If there is a state
S = 〈DONE, /0,CLOSED, INFO〉 such that S0 � S, then SGA reaches a state S∗ in solved
form such that S0 � S∗ � S.

The proof of Theorem 5 follows from the above properties p1, p2, p3.

157

4 Related work and conclusion

We have presented the semantics of the object-oriented modeling language CooML, a
language in the spirit of UML, but based on a constructive semantics, in particular the
BHK explanation of logical correctives. We have introduced a proof-theoretic notion of
snapshot based on populations of objects and information terms, from which snapshot
generation algorithms can be designed. More technically, we have introduced genera-
tion goals and the notion of minimal solution of such goals in the setting of a CooML
specification, and we have outlined a non-deterministic generation algorithm, showing
how finite minimal solutions can, in principle, be generated. We use a constraint lan-
guage in order to specify the general properties of the problem domain, as well as the
generation requirements. In an implementation of the SGA, a consistency checking al-
gorithm is assumed, which either establishes the (in)consistency of the current snapshot,
or residuates a set of unsolved constraints.

The relevance of SG for validation and testing in OO software development is
widely acknowledged. The USE tool [8] for validation of UML/OCL models has been
recently extended with a SG mechanism; differently from us, this is achieved via a pro-
cedural language. Other animation tools [4] are based on JML specification. In [2] the
specification of features models are translated into SAT problems; tentative solutions
are then propagated with a Truth Maintenance System. If a inconsistency is discovered
the TMS explains the causes in view of possible model repair. Related work includes
also [16], where design space specs are seen as trees whose nodes are constrained by
OCL statements and BDD’s used to find solutions.

Snapshot generation is only one of CooML’s aspects, once we put our software
engineering glasses on and see it more generally as a specification rather than modeling
language [9,12]. In this paper we have not considered methods, although the underlying
logic supports a clean notion of (correct) query methods, namely methods that do not
update the system state, but extract pieces of information from it. The existence of a
method M answering P (i.e., computing I : P) is guaranteed when P is a constructive
logical consequence of thAx. Moreover, M can be extracted from a constructive proof
of P. The implementation of query and update methods is a crucial part of future work.

We plan to improve and extend the snapshot generation algorithm. There are two
directions that we can pursue; first, we can fully embrace CLP as a PD logic, strength-
ening the connection that we have only scratched in Section 3.1. In the current proto-
type there is little emphasis on the simplification of unsolved constraints. This could
be partially ameliorated by adopting CLP, in particular over finite domains. More in
general, it is desirable to relate Theorem 3 with the notion of satisfaction-completeness
in constraint systems [7]. Another direction comes from the relation between CooML’s
approach to incomplete information and answer set programming [1, 17], in particular
disjunctive LP [13]. A naive extension of the SGA to this case would yield inefficient
solutions, yet the literature offers several ways constraints and ASP may interact [5,14].
We may explore the possibility of combining snapshot generation with SAT provers, to
which we may pass ground unsolved constraints in order to check global consistency.
Finally we intend to explore the more general issue of the relationships between infor-
mation terms and stable models, in particular partial stable models [20] in the context
of partial logics [6].

158

References

1. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. CUP,
2003.

2. D. S. Batory. Feature models, grammars, and propositional formulas. In J. H. Obbink and
K. Pohl, editors, SPLC, volume 3714 of LNCS, pages 7–20. Springer, 2005.

3. A. Boronat, J. Oriente, A. Gómez, I. Ramos, and J. A. Carsı́. An algebraic specification of
generic OCL queries within the Eclipse modeling framework. In A. Rensink and J. Warmer,
editors, ECMDA-FA, volume 4066 of LNCS, pages 316–330. Springer, 2006.

4. F. Bouquet, F. Dadeau, B. Legeard, and M. Utting. JML-testing-tools: A symbolic animator
for JML specifications using CLP. In N. Halbwachs and L. D. Zuck, editors, TACAS, volume
3440 of Lecture Notes in Computer Science, pages 551–556. Springer, 2005.

5. F. Buccafurri, N. Leone, and P. Rullo. Strong and weak constraints in disjunctive datalog.
In J. Dix, U. Furbach, and A. Nerode, editors, LPNMR, volume 1265 of Lecture Notes in
Computer Science, pages 2–17. Springer, 1997.

6. M. Fitting. Partial models and logic programming. Theor. Comput. Sci., 48(3):229–255,
1986.

7. T. Fruewirth and S. Abdennadher. Essentials of Constraint Programming. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2003.

8. M. Gogolla, J. Bohling, and M. Richters. Validating UML and OCL models in USE by
automatic snapshot generation. Software and System Modeling, 4(4):386–398, 2005.

9. J. V. Guttag and J. J. Horning. Larch: languages and tools for formal specification. Springer-
Verlag New York, Inc., New York, NY, USA, 1993.

10. D. Jackson and J. Wing. Lightweight formal method. IEEE Computer, April 1996.
11. C. Larman. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and Iterative Development. Prentice Hall, Upper Saddle River, NJ, 2004.
12. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: a behavioral interface

specification language for Java. SIGSOFT Softw. Eng. Notes, 31(3):1–38, 2006.
13. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV

system for knowledge representation and reasoning. ACM Trans. Comput. Log., 7(3):499–
562, 2006.

14. V. W. Marek, I. Niemelä, and M. Truszczynski. Logic programs with monotone cardinality
atoms. In V. Lifschitz and al., editors, LPNMR, volume 2923 of LNCS, pages 154–166.
Springer, 2004.

15. P. Miglioli, U. Moscato, M. Ornaghi, and G. Usberti. A constructivism based on classical
truth. Notre Dame Journal of Formal Logic, 30(1):67–90, 1989.

16. S. Neema, J. Sztipanovits, G. Karsai, and K. Butts. Constraint-based design-space explo-
ration and model synthesis. In R. Alur and I. Lee, editors, EMSOFT, volume 2855 of Lecture
Notes in Computer Science, pages 290–305. Springer, 2003.

17. I. Niemelä and P. Simons. Smodels - an implementation of the stable model and well-founded
semantics for normal LP. In LPNMR, pages 421–430, 1997.

18. J. Offutt and A. Abdurazik. Generating tests from UML specifications. In R. France and
B. Rumpe, editors, Proc. of UML’99, volume 1723 of LNCS, pages 416–429. Springer, 1999.

19. M. Ornaghi, M. Benini, M. Ferrari, C. Fiorentini, and A. Momigliano. A constructive object
oriented modeling language for information systems. ENTCS, 153(1):67–90, 2006.

20. T. C. Przymusinski. Well-founded and stationary models of logic programs. Ann. Math.
Artif. Intell., 12(3-4):141–187, 1994.

21. A. S. Troelstra. From constructivism to computer science. TCS, 211(1-2):233–252, 1999.
22. J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modelling with UML.

Object Technology Series. Addison-Wesley, Reading/MA, 1999.

159

Symbolic Generation of Optimal Control Policies
for Discrete-Time Systems

Michel Sintzoff

Department of Computing Science and Engineering
University of Louvain

Extended Abstract - August 6, 2007

Abstract. We present a symbolic, logic-based technique generating op-
timal control policies for discrete-time systems where state-spaces are not
necessarily finite. These systems are symbolically represented by finite
sets of actions, which are guarded assignments with costs. The control
objective is to minimize costs of exexutions reaching a given target set.
Control policies are represented by tuples of action guards. Optimal con-
trol policies are generated by a symbolic iteration which is based on
backwards induction and takes the control objective into account.

1 Introduction

An algorithm over states is ”state-based” - or enumerative - if it handles states
individually. It is ”symbolic” otherwise. To design symbolic algorithms, we rep-
resent discrete-time dynamical systems by finite sets of actions. Actions are
assignments with guards and costs; they represent finite or infinite sets of tran-
sitions. Guards are predicates characterizing definition domains of actions. Any
tuple of guards represents some memoryless control policy. The control objective
is to minimize the costs of executions reaching a given target set. Our aim is to
generate the policy which realizes the latter objective. The proposed symbolic
approach is simple: policy-iterates, viz. tuples of guard-iterates, are generated
iteratively by backwards induction, on the basis of the optimality constraints.

The paper is organized as follows. Sections 2 and 3 introduce the framework
and recall relevant results. Section 4 develops the proposed symbolic iteration.
In Section 5, the latter iteration is displayed and is illustrated, and its complex-
ity is analyzed. Related work is discussed in Section 6, and Section 7 offers a
conclusion. A key proof is detailed in an Appendix.

Notations. If the context is clear, universal quantifiers and domains of variables
may be omitted. The satisfiability expression P 6≡ false is equivalent to ∃x :
P (x). The set of non-negative integers is denoted by IN, its cardinal by #IN,
and IN ∪ {#IN} by IN∞. The set of (partial) functions from X to Y is denoted
by X → Y . The definition domain of f is denoted by Dom(f), and its range
Rng(f) is the image of Dom(f) by f . If (P (m))m∈M is an ascending chain then
P (sup M) .= supm∈M{P (m)}. A tuple may be denoted by C̄ and its i-th component
by Ci. The substitution of u for x in E is denoted by Ex

u .

160

2 Action Systems and their Graphs

Simple action-systems symbolically represent discrete transition systems on finite
or infinite state-spaces. They determine labelled, weighted transition-graphs.

2.1 Action Systems and Control Policies

Action Systems. A (symbolic action) system S is an iteration of guarded
commands [?], of the form S = do A od where A = A0 [] · · · []AN−1. So N is
the number of commands in S. The set I is a finite set of (action) labels; here
I = IN∩ [0, N − 1]. Thus A = []i∈IAi. For each i ∈ I, the action Ai is a guarded
assignment

Bi(x) → x := fi(x) <wi > . (1)

The state-space X of S is a set of states. The variable x ranges over X. If
X = Z0 × · · · ×Zm, this variable may be replaced by variables zl over Zl where
l = 0 · · ·m. The action map is fi ∈ X → X. The guard Bi is a predicate
characterizing a subset of Dom(fi). A target (predicate) Q accompanies S.

The action cost wi is a strictly positive integer, and the maximum action
cost is Mw, viz. Mw

.= maxi∈I{wi}. In case action costs are initially given as
rational numbers, they are mapped to integers by a change of scale.

Existential Predicate Transformer. It yields a predicate characterizing the
set of states from which there is an execution by S to a state verifying a given
predicate P . It is denoted by pre.S and has a classical definition (e.g. [?]):

pre.S.P ≡
∨

n∈IN

(pre.A)n.P, pre.A.P ≡
∨
i∈I

pre.Ai.P, pre.Ai.P ≡Bi∧P x
fi(x) (2)

where i ∈ I, and where αn+1.P ≡ αn.(α.P) and α0.P ≡ P for α = pre.A.

Symbolic Control Policies. Given an action system S with actions as in (??),
a (symbolic control-)policy for S is a tuple C̄ of guards such that the i-th guard
Ci implies Bi for each i ∈ I, namely

∧
i∈I(Ci ⇒ Bi). A tuple C̄ of guards can

be seen as a label-to-predicate map such that C̄(i) ≡ Ci.
If C̄ is a policy for S then the system S↓C̄ - or S controlled by C̄ - is the

result of replacing each i-th guard in S by Ci.
Given two policies C̄ and C̄ ′ for S, C̄ refines C̄ ′ iff

∧
i∈I(Ci ⇒ C ′

i) holds. We
also say that C̄ ′ is weaker than C̄. Policy refinement - or strengthening [?] - is a
basic form of program refinement (e.g. [?]).

Example. Consider the state-space X = IR, the action system

S = do A0 : x≥0 → x := 4x <26> [] A1 : x≥0 → x := x+1 <13> od (3)

and the target predicate Q(x) ≡ 8 ≤ x ≤ 10. The actions in (??), without costs,
amount to the recurrence inclusion xk+1 ∈ {4xk | xk ≥ 0} ∪ {xk + 1 | xk ≥ 0}.

161

The weakest optimal policy C̄ is the pair of guards (C0, C1) where C0 ≡
(0.5 ≤ x ≤ 0.625) ∨ (1.5 < x ≤ 2.5) and C1 ≡ (0 ≤ x ≤ 0.5) ∨ (0.625 < x ≤
1.5) ∨ (2.5 < x < 8); the derivation of C̄ is tackled later (§5.1). For instance,
x = 1.40873 verifies C1 because there is an optimal execution with the initial
state 1.40873 and the initial action A1. The optimally controlled system S↓C̄ is

doA0 : (0.5 ≤ x ≤ 0.625)∨(1.5 < x ≤ 2.5) → x := 4x <26>

[]A1 : (0 ≤ x ≤ 0.5)∨(0.625 < x ≤ 1.5)∨(2.5 < x < 8) → x := x+1 <13> od.

2.2 Graphs, Paths and their Costs

Graphs. Given an action system S, the graph of S is the tuple (X, ES , wS)
where the set ES ⊆ X×I×X of labelled edges is

⋃
x∈X,i∈I{(x, i, fi(x)) | Bi(x)}

and the weight function wS ∈ I → IN\{0} is defined by wS(i) = wi for i ∈ I.

Paths. A path by S is a non-empty, alternating sequence of states and com-
patible labels, generated by the graph of S. It may thus be a sequence such as
(x0) where x0 ∈ X, or as (x0, i1, x1, . . . , in, xn) where (xk−1, ik, xk) ∈ ES for
k ∈ IN ∩ [1, n]. A path by S may be infinite.

The set of paths by S is denoted by Paths.S. If C̄ ′ is weaker than C̄ (§2.1)
then Paths.(S↓C̄) ⊆ Paths.(S↓C̄ ′). The set of paths by S which begin with x ∈
X is denoted by Paths.S.x. If P is a predicate characterizing a subset of X then
Paths.S.x.P denotes the set of finite paths by S which begin with x ∈ X and
finish in a state verifying P . Because of (??), (pre.S.P)(x) ≡ (Paths.S.x.P 6= ∅).

Consider two paths p1 and p2 by S such that the final state of p1 is the
initial state of p2. Their (chop-)concatenation p1.p2 is the concatenation of the
sequence p1 with the sequence p2 from which its initial state has been removed.

Path Costs. The function cost ∈ Paths.S → IN∞ yields the total cost of any
path by S. It is additive: cost((x, i, y).p) = wi + cost(p) and cost((x)) = 0.

Let nbedges(p) be the number of occurrences of edge labels in a path p by S.
Since each action cost wi verifies 1 ≤ wi ≤ Mw (§2.1), it is easy to derive

∀p ∈ Paths.S : nbedges(p) ≤ cost(p) ≤ nbedges(p)×Mw. (4)

3 State-Based Generation of Optimal Control Policies

Given a system S and a target predicate Q, the (optimality) domain is the
predicate D such that D(x) ≡ (Paths.S.x.Q 6= ∅). We write D instead of DS,Q

for brevity. On the basis of §2.2, we observe that

D ≡ pre.S.Q, ∀i ∈ I, x ∈ X : Bi(x) ∧D(fi(x)) ⇒ D(x). (5)

We recall a few classical results (e.g. [?][?][?]). The (state-to-)value function
V ∈ X → IN, a.k.a. cost-to-go function, is standard: for all x such that D(x),

V (x) = min{cost(p) | p ∈ Paths.S.x.Q}. (6)

162

Because of (??) and (??), for all x ∈ X and i ∈ I such that Bi(x) ∧D(fi(x)),

V (x) ≤ wi + V (fi(x)). (7)

Hence V (x) = mini∈I{wi + V (fi(x)) | Bi(x)∧D(fi(x))}. The (weakest) optimal
policy C̄ for S and Q is the policy for S such that, for all x ∈ X,

Paths.(S↓C̄).x = {p | p ∈ Paths.S.x.Q ∧ cost(p) = V (x)}. (8)

There is no other, weaker optimal policy because C̄ permits all the optimal paths
by S to Q (§2.2). Given (??), C̄ can also be characterized as follows:

∀i∈I, x ∈ X : Ci(x) ≡ Bi(x) ∧D(fi(x)) ∧ (V (x) = wi + V (fi(x))). (9)

So each optimal guard Ci implies ¬Q, given V (x) > 0 ≡ ¬Q(x). Moreover

D ≡ Q ∨
∨
i∈I

Ci, ∀x ∈ X : Ci(x) ⇒ D(x) ∧D(fi(x)). (10)

(State-Based Generation Method) Assume the state-space X is finite. The opti-
mal control policy for a system S and a target Q can be obtained in two steps:
first, compute the state-to-value function (??); second, unfold (??).

The complexity of this method is polynomial in the number #X of states,
thanks to efficient algorithms for shortest paths [?][?][?]. Determinism is not
required by (??), but in practice the generated policies usually are deterministic.

4 Development of a Symbolic Generation Technique

In the greedy algorithm [?] for shortest paths, each iteration step computes
the next optimal value, if needed, and generates one new state having the last
computed optimal value; there are as many steps as states. Here we use a set-
based greedy schema: each step computes the next optimal value and generates
the set of all states having this value; there are as many steps as optimal values.

The optimal policy is thus iteratively generated level by level, where levels
rank optimal values. The policy-iterate for level n restricts the optimal policy to
the states having an optimal value less or equal to the n-th one.

4.1 Bijection between Levels and Optimal Values

The set XL of (optimality) levels is IN ∩ [0,#Rng(V) − 1] if Rng(V) is finite,
and it is IN otherwise; cf. (??). The level-to-value bijection VL ∈ XL → Rng(V)
enumerates the optimal values in increasing order: for n, n + 1 ∈ XL,

VL(0) = 0, VL(n + 1) = min
x:D(x)

{V (x) | V (x) > VL(n)}. (11)

Obviously, the inverse bijection V −1
L yields the level of any optimal value.

The (optimality) level of a state x verifying D is the level V −1
L (V (x)) of its

optimal value V (x). So the (state-to-)level function L ∈ X → XL is given by
L = V −1

L ◦ V . Clearly, for x such that D(x) and y such that D(y),

V = VL ◦ L, V (x) ≥ L(x), V (x) > V (y) ⇒ L(x) > L(y). (12)

163

4.2 Symbolic Computation of Optimal Policies

The policy-iterate C̄(n) = (C(n)
0 , · · · , C(n)

N−1) is the restriction of the optimal
policy C̄ = (C0, · · · , CN−1) to the states x having a level at most n. Accordingly
the guard-iterate C

(n)
i characterizes a level set: for n ∈ XL, i ∈ I and x ∈ X,

C
(n)
i (x) ≡ Ci(x) ∧ L(x) ≤ n. (13)

The policy-stratum F̄ (n) = (F (n)
0 , · · · , F

(n)
N−1) restricts C̄ to the states which have

the level n. It is thus the fringe - or front - of the policy-iterate C̄(n). So the
guard-stratum F

(n)
i is the fringe of the guard-iterate C

(n)
i :

F
(n)
i (x) ≡ Ci(x) ∧ L(x)=n. (14)

The domain-iterate D(n) and domain-stratum H(n) are defined similarly:

D(n)(x) ≡ D(x) ∧ L(x) ≤ n, H(n)(x) ≡ D(x) ∧ L(x)=n, (15)

The optimality radius ρ ∈ IN∞ is the number of nonzero optimal values. So,
given (??),

ρ = supXL = supDom(VL). (16)

Clearly, Ci ≡
∨

n∈XL
C

(n)
i ≡ C

(ρ)
i . Hence the optimal guards and the domain-

iterates are generated as follows: for i ∈ I and n, n + 1 ∈ XL,

F
(0)
i ≡ false, C

(0)
i ≡ false, C

(n+1)
i ≡ C

(n)
i ∨ F

(n+1)
i , Ci ≡ C

(ρ)
i (17)

H(0) ≡ Q, D(0) ≡ Q, H(n+1) ≡
∨

i∈I F
(n+1)
i (18)

D(n+1) ≡ D(n) ∨H(n+1). (19)

If ρ is finite then it is the maximum n+1 such that ¬D(n)∧pre.A.D(n) 6≡ false.
The iteration condition is ¬D(n) ∧ pre.A.D(n) 6≡ false.

It remains to show how to compute the guard-strata F
(n+1)
i symbolically.

4.3 Asynchronous Symbolic Computation of Guard-Strata

In (??), we unfold Ci using (??), apply the level-to-value bijection VL instead of
the state-to-value map V and eliminate the state-to-level map L.

To this end, we introduce the predicates opti over levels and the level-to-level
maps gi such that, for all i ∈ I and n ∈ XL,

opti(n) ≡ (VL(n)− wi ∈ Rng(VL)), opti(n) ⇒ VL(n)− wi = VL(gi(n)). (20)

The guard-stratum F
(n+1)
i is then computed by

F
(n+1)
i ≡

{
¬D(n) ∧ pre.Ai.H

(gi(n+1)), if opti(n+1)
false, otherwise.

(21)

164

The iteration step (??) is asynchronous since in general we have n > gi(n + 1).
It results from two properties, as shown in the Appendix: for all i ∈ I, x ∈ X
and n ∈ XL,

(Abstraction) Ci(x) ⇒ opti(L(x)), Ci(x) ⇒ L(fi(x)) = gi(L(x)) (22)

(Confinement) opti(n) ⇒ (pre.Ai.H
(gi(n)) ⇒ D(n)). (23)

The functions opti, gi and VL over levels are computed as follows: for n > 1,

opti(n) ≡
∨

m∈IN∩[0,n−1]

VL(n) = wi + VL(m), (24)

gi(n) = min
m∈IN∩[0,n−1]

{m | VL(n) = wi + VL(m)} if opti(n) (25)

VL(n) = min
i∈I,m∈IN∩[0,n−1]

{wi+VL(m) | ¬D(n−1) ∧ pre.Ai.H
(m) 6≡ false}. (26)

5 Asynchronous Iterative Generation of Optimal Policies

The symbolic procedure resulting from the development in §4 is displayed here-
after. It is called a ”semi-algorithm” because it does not always terminate.

In the generated expressions, valid simplifications may be used freely, and
the applications of the auxiliary functions pre.Ai, opti, gi and VL are evaluated
according to (??), (??), (??) and (??).

Recall that a policy-iterate C̄(n) is the tuple (C(n)
0 , · · · , C(n)

N−1).

5.1 Symbolic Semi-Algorithm OptPol

The input data are formal expressions for an action system S and a target
predicate Q (§2.1). Let n, n+1 ∈ IN and i ∈ I.

begin for i : (F (0)
i := false; C

(0)
i := false); (27)

H(0) := Q; D(0) := Q; (28)
for n from 0 while ¬D(n) ∧ pre.A.D(n) 6≡ false :

for i : F
(n+1)
i :=

{
¬D(n) ∧ pre.Ai.H

(gi(n+1)), if opti(n+1)
false, otherwise;

(29)

C
(n+1)
i := C

(n)
i ∨ F

(n+1)
i ; (30)

H(n+1) :=
∨
i∈I

F
(n+1)
i ; D(n+1) := D(n) ∨H(n+1); (31)

C̄ := C̄(sup Dom(VL)) end (32)

Correctness. By construction (§4), the result C̄ is the weakest optimal policy
for S and Q. The semi-algorithm OptPol terminates iff the number of optimal
values is finite (??) and the auxiliary evaluations, e.g. in (??), terminate.

165

Example (continued). See (??). The semi-algorithm OptPol generates the weak-
est optimal policy C̄ = (C0, C1). The optimality radius ρ is 6; cf. (??). So
C̄ = C̄(6) = (C(6)

0 , C
(6)
1). For the first three levels, the iterates are

VL(0) = 0
F̄ (0) = (F (0)

0 , F
(0)
1) = (false, false), C̄(0) = (C(0)

0 , C
(0)
1) = (false, false)

H(0) ≡ Q ≡ 8 ≤ x ≤ 10, D(0) ≡ H(0) ≡ 8 ≤ x ≤ 10
VL(1) = 13

F̄ (1) = (false, (7 ≤ x < 8)), C̄(1) = (false, (7 ≤ x < 8))
H(1) ≡ F

(1)
0 ∨ F

(1)
1 ≡ 7 ≤ x < 8, D(1) ≡ D(0) ∨H(1) ≡ 7 ≤ x ≤ 10

VL(2) = 26
F̄ (2) = ((2≤x≤2.5), (6≤ x<7)), C̄(2) = ((2 ≤ x ≤ 2.5), (6 ≤ x < 8))
H(2) ≡ (2 ≤ x ≤ 2.5) ∨ (6 ≤ x < 7), D(2) ≡ (2 ≤ x ≤ 2.5) ∨ (6 ≤ x ≤ 10).

For instance, given (??), F
(2)
0 ≡ ¬D(1)∧pre.A0.H

(g0(2)) ≡ ¬D(1)∧pre.A0.H
(0) ≡

¬(7 ≤ x ≤ 10) ∧ x ≥ 0 ∧ (8 ≤ 4x ≤ 10) ≡ (2 ≤ x ≤ 2.5). Indeed opt0(2)
and g0(2) = 0 follow from VL(2) = w0 + VL(g0(2)), VL(2) = 26, w0 = 26 and
VL(0) = 0; see (??) and (??).

The optimal policy C̄ is nondeterministic on the state 0.5 because C0∧C1 ≡
(x = 0.5). There are two optimal paths from 0.5, namely (0.5, 0, 2, 0, 8) and
(0.5, 1, 1.5, 1, 2.5, 0, 10); their cost 52 is the 4-th optimal value, viz. 52 = VL(4).
The optimality domain D is Q ∨ C0 ∨ C1 ≡ 0 ≤ x ≤ 10; see (??).

5.2 Complexity Analysis

Given a semi-algorithm A, let T (A) be its complexity, and let TSPRE(A) be the
complexity of evaluating the satisfiability expressions and predicate transforma-
tions used in A. Assume also that f ∈Poly(g) stands for ∃k∈ IN:f ∈O(gk).

Complexity of OptPol. Recall N = #I (§2.1). Given §5.1,

T (OptPol) ∈ Poly(ρ + N + TSPRE(OptPol)). (33)

Thus OptPol is more practical than the state-based method (§3) in two cases:
(a) X is finite but huge, and ρ + N + TSPRE(OptPol) ∈ Poly(log #X); (b) X is
infinite, ρR is finite and the auxiliary symbolic evaluations terminate. Case (a)
entails an exponential reduction of complexity. Case (b) is illustrated in §5.1.

Comparison with the Symbolic Generation of Reachability Sets. As
classical (e.g. [?]), the reachability predicate R is generated by the semi-algorithm
ReachSet

.= beginR(0) := Q; (for n from 0 while ¬R(n)∧pre.A.R(n) 6≡ false :
R(n+1) := R(n)∨pre.A.R(n)); R := R(ρR) end. The iteration in ReachSet clearly
is synchronous. Of course R(x) ≡ (pre.S.Q)(x) ≡ (Paths.S.x.Q 6= ∅).

The reachability radius ρR is the least cardinal such that, for all x verifying R,
there exists p ∈ Paths.S.x.Q such that nbedges(p) ≤ ρR. For important classes of

166

problems, ρR is finite (e.g. [?]). ¿From (??), it is possible to derive the following
relations between the optimality radius ρ and the reachability radius ρR :

ρR ≤ ρ ≤ ρR ×Mw. (34)

In particular, ρ is finite iff ρR is finite.
So (??) becomes T (OptPol) ∈ Poly(ρR +Mw +N +TSPRE(OptPol)). On the

other hand, it is clear that T (ReachSet) ∈ Poly(ρR + N + TSPRE(ReachSet)).
As a consequence, the complexity of OptPol is that of ReachSet if no action

cost is exponentially greater than the reachability radius and if constraint solving
is not exponentially harder in OptPol than in ReachSet. In other terms,

(Mw ∈ Poly(ρR)) ∧ (TSPRE(OptPol) ∈ Poly(TSPRE(ReachSet)))
⇒ T (OptPol) ∈ Poly(T (ReachSet)).

Because of this similarity, the techniques used to implement the semi-algorithm
ReachSet can be reused to implement the semi-algorithm OptPol, and the ap-
plicability range of OptPol is often akin to that of ReachSet.

6 Related Work

The proposed semi-algorithm generalizes a synchronous iterative method [?]
which produces termination policies. Actually, the latter policies match the op-
timal policies determined by action costs which are all equal. In the latter case,
gi(n + 1) = n for all i and n; then the iteration steps (??) are synchronous. If
the action maps and the target predicate are left unchanged, different tuples of
action costs in general give rise to different optimal policies, which correspond
to different termination policies.

Symbolic methods generating optimal policies have been developed for hy-
brid systems. Discrete-time systems have not been tackled so far. Regarding
hybrid systems, a relevant contribution [?] presents a symbolic procedure which
yields optimal strategies for timed game-automata with costs. In the latter work,
candidate strategies are first generated by a synchronous iteration, and optimal
strategies are then determined using a set of cost-dependent polyhedral sets.
Besides, the constraints defining the dynamics are linear, as typical for hybrid
systems (e.g. [?]), and the resulting optimal strategies are deterministic. Here,
action maps may be nonlinear, as usual in programs, and the optimal policies
are the weakest ones, viz. they are maximally nondeterministic, which permits
further refinement steps in design.

7 Conclusion

The approach introduced in the paper leads to a simple but unexpected conclu-
sion: the symbolic iterative techniques which serve to ensure qualitative proper-
ties such as reachability or termination can easily be adapted in order to ensure
a quantitative property such as optimality. Indeed, it suffices to replace syn-
chronous iterations by asynchronous ones.

167

Appendix : Proof of (??). Let x ∈ X, i ∈ I and n + 1 ∈ XL.

F
(n+1)
i (x)

≡ (L(x) = n + 1) ∧ Ci(x) [(??)]
≡ (L(x) = n + 1) ∧ Ci(x) ∧ opti(n + 1)

∧(L(fi(x)) = gi(n + 1)) [(??)]
≡ (L(x) = n + 1) ∧Bi(x) ∧ opti(n + 1)

∧D(fi(x)) ∧ (L(fi(x)) = gi(n + 1)) [(??), (??), (??)]
≡ (L(x) = n + 1) ∧Bi(x)∧opti(n+1)∧H(gi(n+1))(fi(x)) [(??)]
≡ (L(x) = n + 1) ∧opti(n + 1)∧ pre.Ai.(H(gi(n+1))(x)) [(??)]

≡ ¬D(n)(x) ∧ opti(n + 1) ∧ pre.Ai.(H(gi(n+1))(x)) [(??), (??)].

The proofs of (??), (??), (??) and (??) are rather easy. They are omitted because
of space limitations.

Acknowledgments. We gratefully acknowledge helpful suggestions by J.-F.
Raskin, F. Cassez, referees and participants to meetings of IFIP Working Groups
2.1 (Algorithmic Languages and Calculi) and 2.3 (Programming Methodology).

References

1. Back, R.-J., and J. von Wright, Refinement Calculus, Springer, New York, 1998.
2. Bellman, R., Dynamic Programming, Princeton Univ. Press, 1957.
3. Bertsekas, D., Dynamic Programming and Optimal Control, Athena Scientific, Bel-

mont, Mass., 2000.
4. Bouyer, P., F. Cassez, E. Fleury and K. Larsen, Synthesis of optimal strategies

using HyTech, Electronic Notes Theor. Computer Sci. 119 (2005) 11-31.
5. Clarke, E.M., O. Grumberg and D.A. Peled, Model Checking, MIT Press, Cam-

bridge, Mass., 1999.
6. Dijkstra, E.W., A note on two problems in connexion with graphs, Numerische

Mathematik 1 (1959) 269-271.
7. Dijkstra, E.W., Guarded commands, non-determinacy and formal derivation of

programs, Commun. ACM 18 (1975) 453-457.
8. Floyd, R., Algorithm 97 (Shortest path), Commun. ACM 5 (1962) 345.
9. Henzinger, T.A., R. Majumdar and J.-F. Raskin, A classification of symbolic tran-

sition systems, ACM Trans. Computational Logic 6 (2005) 1-32.
10. Sontag, E.D., Mathematical Control Theory, Springer, New-York, 1990.
11. van Lamsweerde, A., and M. Sintzoff, Formal derivation of strongly concurrent

programs, Acta Informatica 12 (1979) 1-31.
12. Wong-Toi, H., The synthesis of controllers for linear hybrid automata. In Proc.

36th IEEE Conf. Decision and Control, pp. 4607-12, IEEE Computer Press, 1997.

168

Synthesis of data views for
communicating processes

(extended abstract)

Iman Poernomo1

Department of Computer Science,
King’s College London, Strand, London, WC2R2LS.

iman.poernomo@kcl.ac.uk

1 Introduction
System components interact with clients by two means: they expose methods to
change their state, and provide side-effect-free data views of their state. Often,
a system requires that such communication adheres to a protocol or order. For
instance, in a banking component, the data on an account holder’s bank balance
should not be accessed prior to the account holder entering a correct identification
code. This paper is concerned with the specification and synthesis of such data
retrieval protocols.

We describe an augmented version of Milner’s Calculus of Communicating sys-
tems for defining data retrieval protocols, a novel approach to the specification of
data retrieval protocols based on traditional realizability notions and a deductive
system for simultaneously deriving protocols and their specification.

We will be specifying and synthesizing the behaviour of distributed programs
built on a synchronous and asynchronous messaging infrastructure. In particular,
we address an important and relatively unexplored issue in the formal develop-
ment of complex systems: the synthesis of complex, side-effect-free data views for
distributed programs. Data views are an important aspect of all software. In object-
oriented terms, they are often implemented as accessor methods that enable clients
to obtain information about the state that an object encapsulates. In the case of
enterprise applications, data views implement domain-specific business logic and
are consequently difficult to specify and implement correctly. Our work uses proofs-
as-programs techniques to specify and develop provably correct complex data views
in tandem with distributed programs.

Rather than work with a specific programming language, we will consider an ab-
stract coordination language to model distributed data retrieval protocols. Our co-
ordination language consists of Milner’s Calculus of Communicating Systems (CCS)
[2] without fixed points, extended with extra constructs to denote data views that
can be accessed at certain points in a system execution. Terms of our language can
be easily transformed into actual systems. Basic components are modelled as CCS
processes. CCS messages represent side-effect producing methods of component in-
terfaces and data views represent side-effect-free accessor methods of interfaces. The
absence of recursion corresponds to the absence of feedback loops within component
architectures (the usual situation in case of enterprise systems). Synchronous and
asynchronous communication between components is modelled via CCS message
exchange. Data views of components are represented as lambda terms.

169

An important aspect of our language is that it supports the modelling of system
protocols – the orders in which messages should be received and sent. We extend the
traditional representation of a system protocol in the CCS to include data views.
There are points in a system’s execution where data views should not be accessed.
For instance, as part of a security protocol, an authorizing message might need to
be received to enable access to confidential data. Our language enables us to model
such protocols.

We specify program behaviour as modal Hennessy-Milner formulae and provide
a constructive proof system for reasoning with these specifications. Hennessy-Milner
formulae are not enough to specify associated data views and the logic alone cannot
be used to synthesize required views. We will define a method for data views and
their dynamic behaviour with respect to system execution. We shall be able to
specify two aspects of data view behaviour. 1. Functional behaviour. We can specify
what kind of values a data view should have, with respect to an associated system
description. 2. Dynamic behaviour. As a system executes, the value of a data view
will evolve. The accessor method of an object will not necessarily produce the same
result at different stages in the object’s lifetime, as the state of the object will change.
We will show how to specify modal development in data view values: requirements
of data view evolution and protocols with respect to message activity. Our method
adapts notions of constructive realizability to make such specifications, enabling a
synthesis methodology that adapts traditional proofs-as-programs to extract data
retrieval protocols from proofs of their specification.

This paper proceeds as follows. Section 2 summarizes our augmented version
of the CCS. Section 3 defines the Hennessy-Milner formulae, explaining how these
formulae specify behaviour of CCS processes and, by extending realizability notions,
data views. Section 4 presents our Hennessy-Milner logic and shows how proofs of
the logic can be encoded within a logical type theory. We sketch the idea of proofs-
as-distributed-programs in Section 5. We briefly review related work and provide
concluding remarks in section 6.

Lambda terms for a many sorted signature. Our approach is parametrized
by the choice of a many-sorted signature Σ = 〈S, TF, P 〉, consisting of: 1) a set
S of sorts. Sorts are generated from a set of basic sorts, B(S) according to the
following inductive definition. First, B(S) ⊆ S. Also, if s1 and s2 are in S, then so
are the function sort (s1 → s2), the product sort (s1 ∗ s2) and the disjoint union
(s1|s2). We assume that B(S) includes a special sort, called Unit. 2) sorted function
symbols, TF . We assume a single inhabitant () of the sort Unit ∈ B(S). 3) sorted
predicate symbols P of predicate symbols. We define the terms Term(Σ) for a
signature Σ = 〈S, TF, P 〉 in the usual manner, but extended to include a lambda
calculus, written in an SML style syntax.The terms have a semantics given by the
usual lambda reduction rules. The semantics is given by the reduction relation
BΣ .The relation is defined by the usual reduction rules and additional rules for
dealing with projections and cases, together with a rule for evaluating function
symbol application. We assume that function symbols will evaluate according to a
semantics given by Σ.

170

2 CCS with data views
We now define our extended version of CCS. We define the set of Actions to consist
of incoming messages m and outgoing messages m̄ with m ranging over some set of
messages. The grammar for our extension, CCS with data views (written CCS) is
given as follows.

CCS := 0 | X | (p + q) | (p|q) | p/s | s.p | µX.p | (p view a)

where p, q ∈ CCS, X is ranges over a given set of variables TV ar, s ranges over
Actions and a is a closed lambda term from Term(Σ). Process terms form a seman-
tics of system architectures in the following standard sense. A CCS process denotes
the state of a distributed system in terms of its ability to perform actions and the
protocol in which actions are to be performed. Actions are either sending or re-
ceiving messages or internal computation. Incoming and outgoing message actions
are denoted by letters, taken from the same set, with outgoing messages marked
by an overbar (¯). The τ action designates internal computation (processing that
is not observable to a client). Proceses are built using the standard recursion, non-
deterministic choice, parallel composition and action sequencing constructs of [2].

Data views are functions that access the state of the distributed system and
provide information on it. The domain-specific function symbols of Σ provide basic
data views. More complex combinations of functional views are provided as lambda
terms of Term(Σ). A data view t is associated with a process p via the constructor
(p view t).
Operational semantics of CCS. The way in which CCS programs evaluate is
given by a labelled transition system semantics. A process p can receive or send a
message m, resulting in a new process p′, denoted by a labelled transition p

m−→ p′.
We use the same rules as Milner gives in [2] but with the following addition that
says data views can be discarded when evaluating processes

p
m−→ q

(p view f) m−→ q
(pure)

Definition 1. We define the relation m⇒ to hold between two terms a and b when
b evolves from a via the action m with possibly some number of τ transitions in
between: a = a0

τ−→ a1
τ−→ . . .

τ−→ ai| {z }
0 ≤ i

m−→ b0
τ−→ b1

τ−→ bj| {z }
0 ≤ j

= b

3 Specification of system architectures

We define modal many-sorted formulae for a signature WWF (Σ) as ordinary many-
sorted formulae with universal and existential quantification, extended by modal
necessity [m]F . We use modal many-sorted formulae to specify and reason about
two related aspects of our architectures: possible behaviours and possible data views.
This understanding of formulae as specifications is key to our adaptation of proofs-
as-programs.
Behavioural specification. Possible behaviour is specified in the standard fashion
for Hennessy-Milner formulae with many-sorted quantification.

171

Definition 2. A formula F is true of the behaviour of a term t, written t F ,
according to the following recursive definition:

– If F is atomic, then h(F, t) = True.
– If F ≡ ∀x : T •G, then for every a : T , t G[a/x].
– If F ≡ ∃x : T •G, then there is an a : T such that t G[a/x].
– If F ≡ G ∨H, then t G or t H.
– If F ≡ G ∧H, then t G and t H.
– If F ≡ G ⇒ H, then t G entails t H.
– If F ≡ [m]G, then for every u where t

m⇒ u it is the case that u G.
– If F ≡ 〈m〉G, then there is a u such that t

m⇒ u and u G.
– t ` ⊥ is never true.

Specification of data views. A specification of a data view defines the re-
quired behaviour of a data view function at a state in a system’s execution. Data
views are specified as required constructive content of formulae, in a fashion anal-
ogous to how functional programs are specified as constructive content of intu-
itionistic formulae in the proofs-as-programs approach. For instance, the formula
∃l : Location • ConnectedDB(l) can also be seen as specifying a process that eval-
uates with a data view whose content is a constructive witness for l, the location of
the database which the process has connected to,

A possible data view specification is a specification of a data view function’s be-
haviour at some future stage in a system’s execution. We utilize modalities to make
such specifications. For instance, the formula 〈iCard〉∃d : Account•V alidDetails(d)
specifyies a realizing a data view r of a program. The formula requires that, if the
program receives a message iCard, then possibly the program provides an output
data view r, acting as the witness for d, such that r is a valid account record (not an
error record, when V alidDetails(r) is true). The program
(iCard.chkCard.0 view acDetails) satisifes this specification, as there are possi-
ble executions after receiving iCard such that the data view acDetails is a valid
account record (V alidDetails(r)).

We use the definition of Harrop formulae and the type extraction map xsort(.)
defined in [5]. This maps logical formulae to Σ sorts. Then we need to extend the
notion of Skolem form to our modal formulae, as follow.

Definition 3 (Skolem form and Skolem functions). Given a closed formula A,
we define the Skolemization of A to be the Harrop formula Sk(A) = Sk′(A, ∅), where
Sk′(A,AV) is defined as follows. A unique function letter fA (of sort xsort(A)) called
the Skolem function, is associated with each A. AV represents a list of variables
which will be arguments of fA.

– If A is Harrop, then Sk′(A,AV) ≡ A.
– item If A ≡ B ∨ C, then

Sk′(A,AV) = (∀x : xsort(A).fA(AV) = Inl(x) ⇒ Sk′(B,AV)[x/fB])
∧(∀y : xsort(B).fA(AV) = Inr(y) ⇒ Sk(C,AV)[y/fC])

172

– If A ≡ B ∧ C, then

Sk′(A,AV) = Sk′(B,AV)[fst(fA)/fB] ∧ Sk′(C,AV)[snd(fA)/fC]

– If A ≡ B → C, then
• if B is Harrop, Sk′(A,AV) = B → Sk′(C,AV)[fA/fC].
• if B is not Harrop and C is not Harrop,

Sk′(A,AV) = ∀x : s.(Sk′(B,AV)[x/fB] → Sk′(C,AV)[(fAx)/fC])

– If A ≡ ∃y : s.P , then
• when P is Harrop, Sk′(A,AV) = Sk′(P,AV)[fA(AV)/y]
• when P is not Harrop,

Sk′(A,AV) = Sk′(P,AV)[fst(fA(AV))/y][snd(fA(AV))/fP]

– If A ≡ ∀x : s.P , then Sk′(A,AV) = ∀x.Sk′(P,AV)[(fAx)/fP].
– If A ≡ [m]P , then Sk′(A,AV) = [m]Sk′(P,AV).

If A ≡ 〈m〉P , then Sk′(A,AV) = 〈m〉Sk′(P,AV).

In a typical proofs-as-programs method such as [5], a formula A specifies a
functional lambda term program p if, and only if, the program is an intuitionistic
modified realizer of A, now defined.

Definition 4 (Intuitionistic modified realizers). Let p be closed element of
Term(Σ). Let A be a non-modal formula. Then p is an intuitionistic modified real-
izer of A when ` Sk(A)[p/fA].

We extend this definition to hold between process terms and formulae, to specify
possible data views of processes. Data views are functional programs. So, a data
view can be specified as an intuitionistic modified realizer. The presence of modal
formulae permits us to formally extend the concept of realizability to specification
of possible data views of processes. For instance, we treat modal formulae of the
form [m]B to specify processes whose execution of event m will result in a data
view that is a Skolem formula for B.

Data views may be contained within process terms. This fact requires us to
extend realizability to views for subterms that are contained within parallel, choice,
recursion and message input or output terms. The idea is as follows. A formula
can describe the view for an entire process, if such a view exists, and it can also
describe visible views of subprocesses in the process. For instance, a parallel term
is of the form a|b or ((a|b) view f). If it is the latter, then f is the data view for
the process, and a formula F correctly describes this view if f is an intuitionistic
realizer. If it is the former, then the term contains two data views – one for each of
the subprocesses a and b. The single formula F describes this term accurately if it
describes the views of both a and b as realizers.

The definition below extends these ideas recursively to all terms.

Definition 5 (Modal Realizability). A process p is a modal realizer of a formula
A, written p mr A, when the following conditions are satisfied.

173

– If A is Harrop, then ` p �A is provable.
– Assume A is of the form [m]B. Then for all p′ such that p

m⇒ p′ we know that
p′ mr B.

– Otherwise,
• if p is of the form (p view f), and fB̂Σ,panswer, then
` p � Sk(A)[answer/fA] holds.

• If p is of the form q|r, then q mr A and r mr A.
• If p is of the form q + r, then q mr A and r mr A.
• If p is of the form q/m, then q mr A.
• If p is of the form µX.q then q[µX.q/X] mr A.

A process p is said to satisfy a process/formula pair q � A when 1) the formula
is true of the behaviour of p, 2) the formula correctly specifies a possible data view
of p as a modal realizer and 3) p and q are identical, modulo differences in data
views. When this is the case, we say that p is a process realizer of l�A, and we write
p pr l �A.

p �A ∈ AX
` p �A

(Axiom-I)

` pa�G ` qb�G

` parallel(p, q)a|b�G
(parallel)

` pa�F ` qb�F

` union(p, q)a+b�F
(union)

provided Msg(G) 6⊆ Msg(a) ∪Msg(b)

` pb�P a
n⇒ b

` pos(p, n)a�〈n〉P
(pos)

` pa�P X is free in a

` repl(X.p)µX.a�P
(rec)

` pa�P m does not occur in P

` hide(p, m)a/m�P
(hide)

` pa�F `Int qF⇒G

` cons(p, q)a�G
(cons)

Fig. 1. Type theoretic presentation of the structural rules of the IHM logic. The standard
rules of IHM can be recovered by ignoring the proof-term subscripts, retaining only the
superscript types (the program/formula pairs).

4 Deductive system
Hennessy-Milner logics are formal systems for simultaneously reasoning about and
constructing CCS programs. A sequent-based Hennessy-Milner logic was first de-
scribed in [6]. We shall employ a simpler, constructive, natural deduction version
of that logic, called Intuitionistic Hennessy-Milner logic (IHM), for reasoning about
and synthesizing provably correct CCS programs with views.
Calculus. The logic manipulates theorems, which consist of pairs of programs and
formulae of the form p � F , where the left hand side of the diamond is a process,
and the right hand side is a specification of the process’s behaviour.

Our system is defined with respect to a separate logical subsystem. For purposes
of adapting proofs-as-programs, we take this subsystem to be intuitionistic logic, as
presented in [4].

174

The rules of IHM can be obtained from Fig. 1. We motivate each rule as follows.
1) The (parallel) rule tells us that, if G is a property shared by two programs a
and b, then G is also true of their parallel composition a|b. 2) The (union) rule
says that, if G is a property shared by two programs a and b, then G is also true
of their nondeterministic choice composition a + b. 3) The rule (pos) asserts that,
if process a can possibly evolve to b by performing action m (and possibly some
internal actions), and A is known to hold over b, then 〈m〉A holds for a. 4) The
(repl) rule says that if P is known for a then it is known for the replication of a. 5)
The (hide) rule says that if P is true of a and does not involve a statement about
m, then P is still a true statement about a/m. 6) The (cons) rule permits us to use
intuitionistically derived inferences to conclude new things about the same process.

Both the subsystem Int and IHM proper have rules for introducing axioms from
a set AX into a proof. The former rule permits the use of intuitionistic axioms
which, by application of (cons), are provable to hold for all processes. The latter
rule permits us to add known domain specific truths about processes to the calculus.

One of the important properties of the calculus is that, given a proof of a theorem
p � F , the formula F is a correct behavioural description of the process p.

The calculus is sound: a proof of a theorem F will result in an accompanying
process that satisfies F as a behavioural specification. However, it says nothing
about the satisfaction of F as a data view specification. The calculus alone is not
enough to produce processes with correct data views with respect to a specification.
We need to employ program extraction techniques to do this. The next step in
providing such an adaptation is to define the logic as a type theory, to encode
proofs for eventual transformation.
Type-theoretic presentation. Our calculus forms a logical type theory, LTT,
with proofs represented as terms (called proof-terms), program/formula pairs rep-
resented as types, and logical deduction given as type inference. The proof-terms use
a grammar similar to that of standard proofs-as-programs approaches for denoting
proofs in Int, but extended with new terms to incorporate the structural rules of
the IHM. Because of the (cons) rule, proof-terms corresponding to structural rule
applications can involve proof-terms corresponding to intuitionistic logic rule appli-
cation. Type theoretic presentations of Int and IHM are given in [5](It is important
to note that this LTT is a lambda calculus that is separate and distinct from the
lambda calculus that is used for data views. See [4] for a deeper discussion of the
general form of type theories for logics.)

5 Extraction

We now outline our process of extracting process realizers from proofs of specifica-
tions. We define an extraction map extract : LTT → CCS, from the terms of the
logical type theory, LTT, to processes of CCS. Our map is an extension of the usual
intuitionistic extraction map extractInt from Int proof-terms to modified realizers, as
presented in [5].

We assume that the intuitionistic extraction map always takes axiom introduc-
tion proof-terms (of the form AxiomInt(A)) to modified realizers (lambda terms that

175

realize A). Also, we assume that each IHM axiom introduction rule is with a proof-
term of the form Axiom((l view f) � A) such that f is a modified realizer of A and
(l view f) is a process realizer of A. This assumption means that axioms that spec-
ify processes and views are always transformed into programs that satisfy these
specifications.

We have the following soundness result for intuitionistic extraction.

Theorem 1 (Soundness of intuitionistic extraction). Take any intuitionistic
proof, represented in the LTT as `Int pP Then extractInt(p) will produce a modified
realizer of P `Int Sk(P)[extractInt(p)/fP].

Proof. The proof proceeds according to the usual proofs of extraction soundness for
intuitionistic logic (see, e.g., [5]). The presence of modal formulae does not affect
the proof.

We wish to derive a similar result for the extraction map over IHM proof-terms.
However, the proof is not as straightforward as the intuitionistic case. We require
the following definition of modular proof-terms.

Definition 6. A proof-term t is modular if, and only if, it does not contain sub-
terms of the form cons(a, bC⇒D) where C is non-Harrop and a contains subterms
of the form parallel(p, q) or union(p, q).

Soundness of extraction is provable for modular proofs.

Theorem 2 (Soundness of modular proof extraction).
Consider any modular proof ` rg�G. It is true that extract(r) pr g �G.

In general Theorem 2 does not hold for non-modular terms. If we have a system-
atic way of transforming non-modular proof-terms into equivalently typed modular
proof-terms, then we can use the extraction map and Theorem 2 to obtain correct
processes from proofs. This transformation is done via a normalization strategy that
moves all applications of the (cons) rule up a derivation, before applications of other
structural rules, in the fashion of our example. It is essentially the normalization
relation (β reduction) adapted to our lambda calculus of proof-terms and to moving
structural rules.

The strong normalization property tells us that the normalization process over a
calculus will always terminate. To show that this property holds over our calculus,
we need to show that the proof-terms are strongly normalizable, posessing only
finite reduction sequences that result in normal, irreducible proof-terms.

Lemma 1. After normalization, all proof-terms are modular.

Then, by soundness, Lemma 1 and Theorem 2, we can normalize proof-terms
and then apply extract to obtain required process realizers from any proof of a
specification.

176

6 Related work and conclusions

To the best of our knowledge, there has been only one attempt to adapt proofs-as-
programs methods to distributed systems synthesis, in the recent paper [1]. Those
authors also use a constructive version of the Hennessy-Milner logic, but, rather
than using a transformative extraction mapping, they directly take the modal proofs
as distributed programs. Proof-terms for the various modalities are understood as
remote procedure calls, commands to broadcast computations to all nodes in the
network, commands to use portable code and commands to invoke computational
agents. An important difference between our approach and these methods is that
they are not concerned with data view synthesis, while this is our primary focus. To
the best of our knowledge, proofs-as-program style synthesis has never been adapted
for synthesis of distributed programs with data views, nor to the case of assertion
generation.

In particular, it is interesting to compare the treatment of normalization to
work done in the synthesis of (non-distributed) structured code from proofs about
CASL specifications [3]. Our results show a successful and practical approach to
merging constructive proofs-as-programs with a Hennessy-Milner logic. We retain
the advantages of both methods, using them to target their concerns separately.
Hennessy-Milner logic is retained to reason about and develop the behaviour of
processes. Constructive realizability is adapted to reason and develop functional
views of processes. Throughout the extraction process, programs with both aspects
are synthesized from proofs.

References

1. Limin Jia and David Walker. Modal proofs as distributed programs (extended abstract).
In David A. Schmidt, editor, Programming Languages and Systems, 13th European
Symposium on Programming, ESOP 2004, Barcelona, Spain, March 29 - April 2, 2004,
volume 2986 of Lecture Notes in Computer Science, pages 219–233. Springer-Verlag,
2004.

2. Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
3. Iman Poernomo, John Crossley, and Martin Wirsing. Programs, proofs and

parametrized specifications. In Maura Cerioli and Gianna Reggio, editors, Recent
Trends in Algebraic Development Techniques, 15th International Workshop, WADT
2001, Genova, Italy, April 1-3, 2001, Selected Papers, volume 2267 of Lecture Notes in
Computer Science (LNCS), pages 280–304, Berlin, 2002. Springer-Verlag.

4. Iman Poernomo, John Crossley, and Martin Wirsing. Adapting Proofs-as-Programs:
The Curry-Howard Protocol. Monographs in Computer Science. Springer, 2005.

5. Iman Poernomo and John N. Crossley. Protocols between programs and proofs. In
Kung-Kiu Lau, editor, Logic Based Program Synthesis and Transformation, 10th In-
ternational Workshop, LOPSTR 2000 London, UK, July 24-28, 2000, Selected Papers,
volume 2042 of Lecture Notes in Computer Science. Springer-Verlag, 2001.

6. Alex K. Simpson. Compositionality via cut-elimination: Hennessy-milner logic for an
arbitrary gsos. In LICS 1995, Proceedings 10th Annual IEEE Symposium on Logic in
Computer Science, San Diego, California, USA, 26-29 June 1995, pages 420–430. IEEE
Computer Society Press, 1995.

177

A Clausal View for Access Control and

XPath Query Evaluation

Barbara Fila, Siva Anantharaman

LIFO - Université d’Orléans (France),
e-mail: {fila, siva}@univ-orleans.fr

Abstract. Any positive XPath query Q (in a suitable format) can be
evaluated on any given XML-like document t, under unambiguous runs
of a transition system SQ that we associate with Q. The transitions of SQ

on t are expressed as clauses. Query evaluation can be subject to access
control policies enforced on the documents; the policies themselves are
formulated as clauses, possibly subject to some constraints.
Keywords: XML, XPath, query, access control, constraints, clauses.

1 Introduction

We briefly recall some details on the XPath language (cf. [10]). We are concerned
in this work with XPath queries involving the navigational axes of XPath as well
as the data at the nodes on documents (given as unranked trees). We shall assume
the queries to be positive, to simplify, in the sense that no negation is allowed
on the navigational axes (but is allowed on the data filter parts of the query).
The following XPath axes – referred to as basic in the sequel – will be used for
navigation: self, child, parent, ancestor, descendant, following-sibling,
preceding-sibling. (The other axes of XPath can be described in terms of
these basic axes, up to a notion of equivalence; cf. e.g., [4].)

An alphabet Σ is assumed given for naming the nodes (or tags) on the
documents; its elements will be referred to as nodenames or tagnames. Att will
stand for the set of all attribute names at the nodes of all possible documents;
and att, att1, . . . will stand for variables running over Att. All data (including
PCDATA) at the nodes on the documents will be assumed given in the form
att = ‘val′ where val stands for a value assignable to att.

A filter type is an expression generated by the non-terminal F in the following
grammar – where A stands for a basic XPath axis among the seven mentioned
above, and σ ∈ Σ ∪ {∗} (‘∗’ stands here for an ‘arbitrary’ element of Σ), and op

is an operator in the set Op = {=, 6=, >, <, ≥,≤}:
L ::= @ att op ‘val′ | position() = i | true

S ::= A::σ | A::σ[L] | A::σ[L][S]

G ::= S | A::σ[L][G] | G or G | G and G

F ::= L | G

The expressions of the form [F] where F is a filter type, are said to be
filter expressions or just filters. A filter expression of the form [L], with no

178

navigational axes, will be said to be local. We shall identify A::σ[true] with
A::σ. Given a context node u on any XML document t, any given filter expression
[F] evaluates either to ‘true’ or to ‘false’ at u on t; cf. e.g., [10].

Positive XPath query expressions are defined as the expressions Q generated
by the grammar below – where A, σ are as above, and [F] is any filter expression:

Q0 ::= /A::σ | /A::σ[F] | Q0 Q0

Q′ ::= Q0 | Q0/attribute::att | Q0/attribute::∗
Q ::= Q′ | Q′ or Q′

(Note: attribute is a non-navigational axis of XPath, and /@ att is short for
the syntax /attribute::att; the ‘∗’ in the last production stands for ‘any’.) The
query expressions generated by this grammar are either of the form /C1/. . . /Cn,
– each Ci being of the type A::σ[F] –, or a disjunction of such queries; they
will be referred to as canonical. All our queries in the sequel will be assumed to
be canonical. The filter expressions in the Ci are referred to as their filter compo-
nents. A query of the form /axis::σ[F] will be said to be elementary. A loca-
tion expression (resp. location step) is an expression of the form [axis::σ[F]]

(resp. axis::σ[F]) where axis is one of the seven (basic) navigational axes
mentioned above, σ ∈ Σ, and [F] is a filter. If the filter is local, the location
expression (resp. location step) will be said to be atomic. Any location step will
be written in the form axis::σ[L][F], where [L] is local, and the navigational
axes are all in [F].

The notion of selection of any given node v, on a document t, wrt the Root

node of t, by any given query expression Q, is defined inductively; cf. e.g., [10].
(Root is the fictive root node assigned in XML to any document t, just above the
actual root node of the tree t; we shall denote this latter as root.) For any node
u on a document t, we denote by Datat(u) the data stored at u on t, and set t(u)
to be the pair (σ, Datat(u)), where σ is the tagname of t at u. If Q =/C1/. . ./Cn

is any query in canonical form, the answer for Q on t is the set Evalt(Q) of all
t(u)|Q, where u is any node selected by Q on t, and t(u)|Q is the projection of
t(u) on the set of attributes selected by Cn.

Remark. a) We shall also need two further navigational axes that are only
implicitly defined in XPath, namely the right-sibling and left-sibling axes; we
shall refer to these as right,left, respectively; by definition, we have (cf. [10]):

right::σ is equivalent to following-sibling::σ[position() = 1],
left::σ is equivalent to preceding-sibling::σ[position() = 1].

b) To each axis among the seven basic axes above, we associate a step-wise axis
denoted as dir-axis, the role of which is to move from node to node (on any
tree t), along the direction given by axis. self is its own step-wise axis; here is
the correspondence table for the other axes:

axis dir-axis

parent parent

child child

descendant child

axis dir-axis

ancestor parent

following-sibling right

preceding-sibling left

c) To any given basic XPath axis axis, we associate a (Boolean valued) unary
predicate Fin-axis(), which evaluates to ‘true’ at any node u on any given
XML document t, iff there exists no node v such that u dir-axisv holds on t.

179

(We define Fin-self() to be always ‘true’.) For an axis 6= self it evaluates to
‘true’ at the root, or at the leafs, or at the right-most or left-most nodes on t.

Any (positive XPath) query Q will be seen as a concatenation of its steps of
certain types; to each of which is associated a transition system, and the transi-
tion system SQ for Q will be the join of all these individual systems (Section 2).
The evaluation of Q on any given document t is obtained under step-wise runs
of SQ on t; and each step-wise run will be formulated in terms of clauses. The
runs of SQ on t are defined in such a way that we get a linear complexity bound
wrt the number of atomic location steps in Q, and the number of edges on t.
Such a step-wise evaluation of any query Q allows us to integrate access control
policies specified on any given document t, into the evaluation mechanism: the
conditions specified by the policies are expressed as first-order clauses over the
attribute names and/or attribute values (Section 3).

2 The Transition System for Evaluating a Query

Let Q =/C1/C2/. . . /Cn be a canonical query where each /Ci is of the form
/Ci =/axisi::σi[Li][Fi], 1 ≤ i ≤ n, with a local filter [Li], and a filter [Fi]

containing all the navigational part. For redactional simplicity, we assume that
the filter components of Q are free from conjunction and disjunction.

Case of an atomic elementary query: We first consider the case where /Ci

is of the form /Ci =/axisi::σi[Li], with a local filter [Li].
The elementary transition system (ETS) for the atomic elementary query

Ci =/axisi::σi[Li], is defined as the system Si whose set of states is Statesi =
{initi, oki, faili}, and whose transitions are defined by the following clauses
t1, . . . , t6 – where x = σi[Li], and y = σi[Li] stands for the complement of the
data represented by σi[Li]:
If axisi ∈ {self, child, parent}:

t1. 〈oki, v〉 ← 〈initi, u〉, if (t(v) |= x), (u dir-axisi v);
t2. 〈faili, v〉 ← 〈initi, u〉, if (t(v) |= y), (u dir-axisi v);

If axisi 6∈ {self, child, parent}:

t3. 〈oki, v〉 ← 〈initi, u〉, if (t(v) |= x), (u dir-axisi v);
t4. 〈faili, v〉 ← 〈initi, u〉, if (t(v) |= y), (u dir-axisi v);
t5. 〈faili, v〉 ← 〈faili, u〉, if (t(v) |= y), (u dir-axisi v);
t6. 〈oki, v〉 ← 〈faili, u〉, if (t(v) |= y), (u dir-axisi v);

The role of the system Si for /Ci, is to select the nodes on any given document
t answering the part /C1/. . ./Ci of the given query Q; this is done with the help
of a run of Si on t. The run of Si on t is defined as a mapping Mi : Nodes(t)→
P(Statesi), using the following transition rules, where u, v are nodes on t, and
〈q, u〉 stands for q ∈Mi(u):

1a. 〈initi, u〉 ← u = Root, if i = 1;
〈initi, u〉 ← 〈oki−1, u〉, if i > 1;

2a. 〈initi, u〉 ← 〈oki, u〉, if axisi 6∈ {self, child, parent}.

180

Case of a non-atomic elementary query: Consider now an elementary
query /Ci =/axis0

i::σ
0
i [L

0
i][Fi]; it can be written under the form /Ci =

step0
i [step

1
i[step

2
i[. . .[step

k(i)
i]. . .], for some positive integer k(i), and each

step
p
i = axis

p
i ::σ

p
i [L

p
i] is atomic, for 0 ≤ p ≤ k(i). The transition system Si for

such an elementary subquery /Ci is defined as the ‘concatenation’ of one-step
transition systems (STS, for short) S

p
i corresponding to step

p
i . In the sequel, for

every p ∈ {0, . . . , k(i)}, x will stand for σ
p
i [L

p
i], and y for σ

p
i [L

p
i]. Depending

on the role played by the location step step
p
i = axis

p
i ::σ

p
i [L

p
i], we have three

different types of STS; in each case, the transitions are similar to those of the
atomic case; only the state sets will be different (cf. [4] for full details):

– S0
i corresponds to the step /step0

i[; the states here are init0i , fail0i , ok
0
i [−].

– For 1 ≤ p < k(i), the system S
p
i corresponds to the step [step

p
i [; here the

states are init
p
i [−], fail

p
i [−], fail

p
i [⊥], okp

i [−].

– S
k(i)
i for [step

k(i)
i]; its states are init

k(i)
i [−], fail

k(i)
i [−], fail

k(i)
i [⊥], ok

k(i)
i [⊤].

The system S0
i finds the nodes v potentially selected by /C1/. . . /Ci, and the

systems S
p
i , for 1 ≤ p ≤ k(i), validate (or invalidate) the selections of S0

i .

The system Si, for /Ci =/step0
i[step

1
i[step

2
i[. . . [step

k(i)
i]. . .], is defined as

the union of the systems S
p
i , for 0 ≤ p ≤ k(i); its set of states is defined as:

Statesi = {init0i , fail0i }
⋃k(i)−1

p=0 {okp
i [γ] | γ ∈ {−,⊥,⊤}}

⋃k(i)
p=1{init

p
i [γ], fail

p
i [γ] | γ ∈ {−,⊥,⊤}} ∪ {ok

k(i)
i [⊤]}.

For any given document t, the run of Si on t, is a mapping Mi : Nodes(t)→
P(Statesi), under the transitions 1−11 below, all formulated in terms of clauses.
We first introduce some notation used in these transitions: we consider a 3-
valued logic over the truth table {1, 0, ω} with 0 < ω < 1; the ω here stands
for ‘undefined’, and we set: 1̄ = 0, 0̄ = 1, ω = ω. For every p ∈ {0, . . . , k(i)} we
define a (3-valued) unary predicate Ω

p
i , which will be evaluated recursively, at

any node u of any given document t, as follows:

i) Case where Fin-axis
p
i (u) is true:

Ω
p
i (u) = 1 iff a state of the form q

p
i [⊤] is in Mi(u);

Ω
p
i (u) = 0 iff Mi(u) has a state of the form q

p
i [⊥];

Ω
p
i (u) = ω otherwise.

ii) Case where Fin-axis
p
i (u) is false:

Ω
p
i (u) = Supv{Ω

p
i (v) | u dir-axis

p
i v}

Transition rules for Mi (u, v are nodes on t, p ∈ {0, . . . , k(i)}, 〈s, u〉 stands for
s ∈Mi(u), q, q′ ∈ {init, fail, ok}):

1. 〈init0i , u〉 ← u = Root, if i = 1;
〈init0i , u〉 ← 〈oki−1, u〉, if i > 1 (rule to go from Si−1 to Si)

2. 〈init
p+1
i [−], u〉 ← 〈okp

i [−], u〉, if p ≤ k(i)− 1 (rule to go from S
p
i to S

p+1
i)

3. 〈qp
i [⊤], u〉 ← 〈qp

i [−], u〉, Ω
p
i (u), for p ≥ 1

(back-propagate [⊤] along path traversed)
4. 〈okp−1

i [⊤], u〉 ← 〈okp−1
i [−], u〉, 〈init

p
i [⊤], u〉 (signal filter ‘true’ to step

p−1
i)

5. 〈oki, u〉 ← 〈ok0
i [⊤], u〉 (validate potential selection at u)

181

6. 〈init0i , u〉 ← 〈oki, u〉, (continue with Mi from a validated node u)
if axisi 6∈ {self, child, parent}

7. 〈fail
p
i [⊥], u〉 ← 〈fail

p
i [−], u〉, Fin-axis

p
i (u), if p ≥ 1
(we are at an ‘end’, step

p
i is false)

8. 〈qp
i [⊥], u〉 ← 〈qp

i [−], u〉, Ω
p
i (u), if p ≥ 1

(back-propagate [⊥] along path traversed)
9. 〈okp−1

i [⊥], u〉 ← 〈okp−1
i [−], u〉, 〈init

p
i [⊥], u〉, (signal filter ‘false’ to step

p−1
i)

if axisp−1
i ∈ {self, child, parent}

10. 〈init
p−1
i [−], u〉 ← 〈okp−1

i [−], u〉, 〈init
p
i [⊥], u〉,

if axisp−1
i 6∈ {self, child, parent}

(filter false at u for step
p
i , continue with step

p−1
i)

11. 〈init0i , u〉 ← 〈ok
0
i [⊥], u〉, (continue with Mi from an invalidated node u)

if axisi 6∈ {self, child, parent}

Rules 1, 2 are the ‘start’ transitions; validating a potentially selected node is
done by rules 3−6; rules 7−11 take care of invalidating potential selections (see
[4] for the details on the semantics of runs).

The transition system SQ for the full query Q =/C1/C2/. . . /Cn, is then
defined as the system whose set of states is StatesQ =

⋃n

i=1 Statesi. A run
MQ of SQ on any given document t, is defined as a mapping MQ : Nodes(t) →
P(StatesQ), with MQ =

⋃n

i=1 Mi, with the following two additional transitions:

12. 〈init1, u〉 ← 〈okn, u〉, if axis1 6∈ {self,child,parent}
13. 〈init01, u〉 ← 〈okn, u〉, if axis0

1 6∈ {self,child,parent}

The answer for Q on t is the set of all nodes u of t, such that okn ∈MQ(u). We
have then the following result (cf. [4], for the proof):

Proposition 1. The complexity of the step-wise evaluation of any XPath query
Q on any XML document t by the run of SQ, is linear on the number of atomic
location steps in Q and the number of edges on t.

3 Access Control

Various methods have been proposed for controlling the access to data (cf. e.g.,
[6]). The approach of [8] allots access keys to nodes, or more generally to subsets
of attributes at the nodes; the keys could depend on a notion of category to
which the consultant belongs. In [3] is suggested a somewhat different approach:
to every category of consultants, associate a set of first-order clauses with con-
straints. [9] proposes to attach some special labels to the nodes of the document,
such as −r,−R, to signify ‘local’ (resp. ‘recursive’) access denial. Our proposal in
this paper is to model access control policies as first-order clauses. (It is shown in
[4], that such a view can cover all the approaches mentioned above.) The clauses
modeling access control will be subject, in general, to some constraints referred
to as scope constraints, as illustrated in in the following example:

Example 1. Suppose given an (XML-format) database “Faculty”, with as
children nodes “Teacher”, “Student”, and “COURSE”.

182

Faculty

.name

.lcourse
.name
.age
.quality

Student
.name
.age
.quality

Student
.title
.label
.resp
.lstud

COURSE

.title

.label

.resp

.lstud

COURSETeacher
.name
.lcourse

Course
.dom

.curric

.resp

.grade

Course
.dom

.curric

.resp

.grade

Teacher

Here is an access control policy on this document, formulated in plain text,
for two categories of users consulting such a document: Adm (resp. Acad) for
administrative (resp. academic) staff.

Adm: a user of this category may not have access both to the name of a
student and to the grade obtained in any of the course the student follows; but
access to either one of these two data is allowed.

Acad: a user of this category is allowed access to the name of a student, and
to the grade obtained by the student in any course, iff the user is the person
giving the course.

We consider any category as a unary predicate, evaluating to ‘true’ only on
the identifiers assigned to each user of the category. The policy for Adm can then
be modeled as the following pure negative clause:

(1): ← Adm(∗), Student.name, Course.grade,
[Student.name child Course.grade]

where ‘∗’ stands for any identifier for a user of the category Adm. The intended
meaning is that, for a user of category Adm, the policy is violated if the knowledge
(s)he gains by consulting the database (possibly repeatedly), contains the name
of a student, as well as the grade obtained by the student in a course; the scope
constraint (in square brackets) says that the attributes ‘name’ and ‘grade’ are
at two child-related nodes with tagnames ‘Student’ and ‘Course’, respectively.

The current state of data, stored at a node v, disclosed directly or indirectly
to the user with identifier id, having launched a query Q (and possibly also
some other queries prior to Q), will be represented by a set Histid(v, Q) of pure
positive clauses, containing at least the positive clause Cat(id) ←, where Cat

stands for the category of the user. Suppose we are at a context node u on t, under
the run of the transition system SQ, and a node v is to be reached under the next
transition of SQ; this transition will correspond to a well-determined location
step Q′ of Q; a set Deduceid(v, Q′) of positive clauses will then be constructed
to model the knowledge that the user can acquire – directly or indirectly – on
the data stored at v on t, by firing this transition. By definition, then, the run
of SQ on t will select the node v, if and only if:

Deduceid(v, Q′) ∪ Histid(v, Q) ∪ {(1)} 6|= ⊥

where (1) is the negative clause above, modeling the access control policy for the
category Adm. The positive clauses of Deduceid(v, Q′) will all be added to the

183

history record of the user, for controlling the data (s)he accesses under future
queries. The construction of the sets of clauses – such as Histid() – needed for
such a clause-based, step-wise evaluation of queries, is done below.

Definitions: We formalize here the clause-based view for access control.
Definition (1): By User, we mean a (finite) set of individual users; and by

Category we shall mean a finite set of users, with a given specific name or label
(as in the Example above). Both are seen as unary predicates: User(), Cat().
Consider a given document t, on which a given access control policy has been
enforced; it will be assumed that every access condition of the policy is expressed
as a pure negative clause, possibly subject to a scope constraint (as in the Ex-
ample above); the set of all such negative (constrained) clauses will be denoted
as P . Every literal appearing in any of these clauses is therefore either a unary
predicate (of the form User() or Cat()), or a propositional symbol of the form
u.a where u is a nodename, and a is an attribute name. The scope constraint
of a clause in P is, by definition, a constraint of the form [constr] where constr
is a (finite) conjunction of expressions of the form ui.ai axisi vi.bi (where axisi

is a basic axis or a corresponding dir-axis), and/or of expressions of the form
uj .aj op val, where val is a data value, and op ∈ Op.

For instance, a policy clause of the form:
← User(10), u.a, v.b, w.c, [u.a child v.b, u.a right w.c, v.b 6= 10]

stipulates that a user with identity 10 is not allowed access to the data stored
by attribute a at node u, by attribute b at node v, and by attribute c at node w,
all three together; by the “all three together”, it is meant that such a combined
access is disallowed to User(10), under one or more queries on the document.

Definition (2): At any node u of t, if a set Du(t) of defining functional rela-
tions is specified on the data stored at u on t, then we also assume that Du(t)
is formulated as a set of Horn clauses of the form u.air

← u.ai1 , u.ai2 , . . . , u.aik
,

where the aj are attribute names at u.
The document t being given, we shall drop references to t as indices (or

otherwise), in the definitions below.
Definition (3): For any query Q =/C1/C2/. . ./Cn that is being evaluated by

a run of its associated transition system SQ on the given document t, suppose
a transition of the run, from a context node u to a node v on t, is a transition
of a one-step transition system S

p
k for some p, k; then, by the current query-step

of Q at u, we mean the corresponding location step step
p
k in Q (notation of the

previous section).
Definition (4): For any given query Q launched by a given user with iden-

tity id, and a run of the associated system SQ, we define three sets of positive
clauses – denoted as Histid(v, Q), Scopeid(v, Q) and Accessid(v, Q) – at every
node v traversed by the run; these three sets are constructed, inductively in
the following manner, wrt the the various queries successively launched by the
user. Let Q(0), Q(1), . . . , Q(i), . . . denote the sequence of the successive queries
launched by the given user; the identity id of the user once fixed, we shall omit
it (for readability), in the constructions below (in these constructions, by ‘root’,
we mean the actual root node of the tree t):

184

Step 0. Set i = 0.
Step 1. Case v is the root node of t: Define Scope(root, Q(i)) = ∅;
if i = 0, then History(root, Q(i)) is a singleton: {User(id)←} or {Cat(id)←};
if i > 0, History(root, Q(i)) is defined as Hist(root, Q(i−1));
if i = 0, then Access(root, Q(i)) is set to be empty;
if i > 0, Access(root, Q(i)) is defined as Hist(root, Q(i−1)).
Step 2. Case v is a non-root node:
Let u be the context node for the current transition of SQ(i) to the node v. For

all nodes u′ traversed prior to u (including u), by the run of SQ(i) evaluating Q(i)

(i.e., the i-th query launched by the given user), assume having constructed the
sets Access(u′, Q(i)), Scope(u′, Q(i)), and Hist(u′, Q(i)). The sets Scope(v, Q(i)),
Access(v, Q(i)), and Hist(v, Q(i)) are then constructed as follows:

1. Let axis be the axis of the current query-step at u, and suppose there is
a node u′ on t already traversed by the run such that u′ axis v holds on t;
if a (resp. att) is an attribute name at u′ (resp. at v), such that u′.a axis

v.att appears in the scope constraint of some policy clause, then create
a positive ‘scope clause’ [u′.a axis v.att] ←; and define Scope(v, Q(i)) as:
Scope(v, Q(i−1)) ∪ {[u′.a axis v.att] ←}

2. For every v.att appearing in the body of a policy clause in P , such that
v.att is consistent with σ[L] (where the current query-step is of the form
axis::σ[L]), create a positive ‘data-access clause’ v.att←, and set

Access(v, Q(i)) = Access(v, Q(i−1)) ∪ {v.att←}.
3. Set Hist(v, Q(i)) = Hist(v, Q(i−1)) ∪ Scope(v, Q(i)) ∪Access(v, Q(i)).

Step 3. Set i = i + 1, and GOTO Step 1.
Definition (5): In the presence of an access control policy P on t, a transition

of the system SQ, from a context node u to some node v on t, assigns a selecting
state to the node v if and only if: Hist(v, Q(i)) ∪ Dv(t) ∪ P 6|= ⊥.

Effectively Using the Method: i) Clausal resolution is essential for the step-
wise query evaluation technique proposed above. In addition to the usual first-
order rules for resolving between positive and negative literals, we shall also need
some additional rules, such as those in the following non-exhaustive list:

1. a literal u.att can resolve with a literal (of the opposite sign) of the form
u.∗; the same also for literals (of opposite sign) of the form User(id) and
User(∗), etc.

2. a scope literal [u.a child v.b] can resolve with a scope literal of the form
[v.b parentu.a], etc.

3. a negative scope literal [u.a axis v.b] can resolve with a positive scope literal
of the form [u.a axis v.b, u.a 6= ‘val′]

ii) Keeping the history records at the nodes is necessary if the access control
policy is not to be violated; for details, see [4].

iii) The step-wise evaluation method described above, is deductively complete
in the sense of the following proposition (its proof follows from definitions):

185

Proposition 2. Let P be a set of negative clauses, implementing an access con-
trol policy for a given category of users, on a document t. Then a piece of data,
stored on t by an attribute att at some node with tagname u on t, is accessible
to a user of this category (under some XPath query) iff u.att← is element of a
set S of positive data-access and scope clauses, which is consistent with P.

4 Related Works, Conclusion

We have modeled access control policies, as well as the knowledge that a person
can acquire by querying the documents, as a set of first-order clauses. The idea
of constructing, for any given query Q, a node selecting transition system SQ has
some similarity with the automaton associated with Q in [7]; but our system SQ

is not constructed in one single piece, and it also serves a very different purpose.
[6] is a survey presenting the generalities on logical frameworks suited for access
control, but the concern is not on query evaluation techniques. In [3], the focus
is on a notion of non-interference of a given policy wrt a given query, and access
control via clauses seems suggested only at the end. It is not difficult to extend
the result of Proposition 1 in the presence of an access control policy, to get a
complexity bound for query evaluation that is linear on the number of atomic
location steps in Q, the number of edges of t, and the size of the data stored on
t (which always bounds the current size of the history record). Finally, it seems
possible to extend our approach to cover negation on the navigational part, by
using suitable ‘built-in’ unary predicates, as in [5].

References

1. M. Abadi, Logic in Access Control In Proc. LICS’03, IEEE, pp. 228–233,
2. M. Abadi, B. Warinschi, Security Analysis of Cryptographically Controlled Access

to XML Documents In Proc. of PODS’05, pp. 108–117, ACM, June 2005,
3. V. Benzaken, M. Burelle, G. Castagna, Information Flow Security for XML Trans-

formations, In Proc. of ASIAN’03, pp. 33–53, LNCS 4246, Springer-Verlag, 2003,
4. B. Fila, S. Anantharaman, A Clausal View for Access Control and XPath Query

Evaluation, Research Report available at: www.univ-orleans.fr/lifo/prodsci/
rapports/RR/RR2007/RR-2007-12.ps.gz

5. M. Frick, M. Grohe, C. Koch, Query Evaluation on Compressed Trees, In Proc.
of LICS’03, IEEE, pp. 188–197.

6. I. Fundulaki, M. Marx, Specifying Access Control Policies for XML Documents
with XPath In Proc. of SACMAT’04, pp. 61–69, ACM, 2004.

7. T. Green, G. Miklau, M. Onizuka, D. Suciu, Processing XML Streams with Deter-
ministic Automata, In ACM Trans. on Database Systems, 29(4):752–788, 2004.

8. G. Miklau, D. Suciu, Controlling access to published data using cryptography, In
Proc. of VLDB’03, pp. 898–909, 2003.

9. M. Murata, A. Tozawa, M. Kudo, XML Access Control Using Static Analysis,
In Proc. of the 10th ACM Conf. on Computer and Communications Security
(CCS’03), pp.73–84, ACM, 2003.

10. World Wide Web Consortium, XML Path Language (XPath Recommendation),
Available at: http://www.w3c.org/TR/xpath/

186

Action Refinement in Process Algebra and
Security Issues?

Annalisa Bossi1, Carla Piazza2, and Sabina Rossi1

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy
{bossi,srossi}@dsi.unive.it

2 Dipartimento di Matematica e Infomatica, Università di Udine, Italy
carla.piazza@dimi.uniud.it

Abstract. In the design process of distributed systems we may have
to replace abstract specifications of components by more concrete speci-
fications, thus providing more detailed design information. In the context
of process algebra this well-known approach is often referred to as ac-
tion refinement. In this paper we study the relationships between action
refinement and security properties within the Security Process Algebra.

1 Introduction

In the development of a complex system it is common practice first to describe
it succinctly as a simple abstract specification and then to stepwise refine it
towards a more concrete implementation [14].

In the context of process algebra, the refinement methodology amounts to
defining a mechanism for replacing abstract actions with more concrete pro-
cesses. We adopt the terminology action refinement to refer to this stepwise
development of systems specified as terms of a process algebra (see, e.g., [9]). In
this context, action refinement is also referred as vertical refinement as opposed
to horizontal refinement indicating any transformation of a system making it
more nearly executable, for instance more deterministic, without adding new
actions or expanding sub-computations. The latter is usually expressed in terms
of pre-orders such as trace inclusion or various kinds of simulation. We studied
the relationships between this second form of refinement and information flow
security in [2]. However these results cannot be used to deal with vertical re-
finement since the two forms of refinement provide orthogonal mechanisms for
program development.

We model action refinement as a ternary function Ref taking as arguments
an action r to be refined, a system description E on a given level of abstraction
and an interpretation of the action r on this level by a more concrete process
F on a lower abstraction level. The refined process, denoted by Ref (r, E, F), is
? This work has been partially supported by the MIUR projects “Fondamenti Logici

dei Sistemi Distribuiti e Codice Mobile” (grant 2005015785) and ”Vincoli per la
programmazione con insiemi, l’analisi di sistemi con automi, il ragionamento su
intervalli e la bioinformatica” (grant 2005015491).

187

intended to be obtained from E by expanding each occurrence of r in E through
F . This operation can be easily realized in a language including a sequential
composition operator, but in this paper we consider the Security Process Algebra
(SPA) language introduced in [5], which is a variant of CCS, and does not provide
a sequential composition operator. To overcame this problem, we define action
refinement of SPA processes by exploiting the notion of well-terminating process
and the Before operator introduced by Milner in [12].

The main motivation behind our approach is that of studying the relation-
ships between action refinement and security of SPA processes. Indeed, in sys-
tem development, it is important to consider security related issues from the
very beginning. A security-aware stepwise development requires that the secu-
rity properties of interest are either preserved or gained during the development
steps, until a concrete (i.e., implementable) specification is obtained. In this pa-
per we consider information flow security properties (see, e.g., [8, 5, 10]), i.e.,
properties that allow one to express constraints on how information should flow
among different groups of entities. These properties are usually formalized by
considering two groups of entities labelled with two security levels: high (H) and
low (L). The only constraint is that no information should flow from H to L. For
example, to guarantee confidentiality in a system, it is sufficient to label every
confidential (i.e., secret) information with H and then partition each system user
as H and L, depending on whether such a user is authorized to access confiden-
tial information. The constraint of no information flow from H to L guarantees
that no access to confidential information is possible by L-labelled users.

In [3] we studied persistent information flow security properties for the SPA
language. These properties are obtained as instances of a generalized unwinding
condition which requires that each high level action is “simulated” in such a
way that it is impossible for the low level user to infer which high level actions
have been performed. This general framework allows us to uniformly deal with
some decidable subclasses of the well-known NDC and BNDC properties for
SPA processes defined in [5]. The fact that we do not modify our language to
introduce action refinement allows us to reason on the relationships between
action refinement and the security properties of SPA processes. In particular,
we study the conditions under which our notions of security are preserved under
action refinement.

2 The SPA Language

The Security Process Algebra (SPA) language [5] is a variation of Milner’s CCS
[12] where the set of visible actions is partitioned into two security levels, high
and low, in order to specify multilevel systems. SPA syntax is based on the same
elements as CCS, i.e.: a set L = I ∪ O of visible actions where I = {a, b, . . .}
is a set of input actions and O = {ā, b̄, . . .} is a set of output actions; a special
action τ which models internal computations, not visible outside the system; a
function ·̄ : L → L, such that ¯̄a = a, for all a ∈ L. Act = L ∪ {τ} is the set of

188

a.E
a→ E

E1
a→ E′

1

E1 + E2
a→ E′

1

E2
a→ E′

2

E1 + E2
a→ E′

2

E1
a→ E′

1

E1|E2
a→ E′

1|E2

E2
a→ E′

2

E1|E2
a→ E1|E′

2

E1
l→ E′

1 E2
l̄→ E′

2

E1|E2
τ→ E′

1|E′
2

E
a→ E′

E \ v
a→ E′ \ v

if a, ā 6∈ v
E

a→ E′

E[f]
f(a)→ E′[f]

T [recZ.T [Z]]
a→ E′

recZ.T [Z]
a→ E′

Fig. 1. The operational semantics of SPA terms.

all actions. The set of visible actions is partitioned into two sets, H and L, of
high security actions and low security actions such that H = H and L = L.

The syntax of SPA terms is as follows3:

T ::= 0 | Z | a.T | T + T | T |T | T \ v | T [f] | recZ.T

where Z is a variable, a ∈ Act , v ⊆ L, f : Act → Act is such that f(l̄) = f(l)
for l ∈ L, f(τ) = τ , f(H) ⊆ H ∪ {τ}, and f(L) ⊆ L ∪ {τ}. We apply the
standard notions of free and bound (occurrences of) variables in a SPA term.
More precisely, all the occurrences of the variable Z in recZ.T are bound ; while
an occurrence of Z is free in a term T if it is not bound. A SPA process is a SPA
term without free variables.

We introduce also a notion of bound and free actions. We say that an action
a is bound in a term T if it belongs to a restriction, i.e., \v occurs in T and
a ∈ v, or is used in a relabelling operator, i.e., f occurs in T and f(a) 6= a or
f(b) = a for some action b 6= a. We identify SPA terms up to α-conversion, thus
we can assume that a bound action can occur only in a restriction or a relabelling
operator or in their scopes. Hence, as a general assumption, we assume that the
set of actions occurring in a term T can be split into two disjoint sets: the set
bound(T) of actions which are bound in T and the set free(T) of actions which
are not bound in T .

The operational semantics of SPA processes is given in terms of Labelled
Transition Systems (LTS) as depicted in Figure 1 where a ∈ Act and l ∈ L.

The concept of behavioural equivalence is used to establish equalities among
processes and it is based on the idea that two processes have the same semantics
if and only if their behaviour cannot be distinguished by an external observer. We
recall here the definition of strong bisimulation [12], which equates two processes
when they are able to mutually simulate their behaviour step by step.

3 Actually in [5] recursion is introduced through constant definitions instead of the
rec operator.

189

Definition 1. (Strong Bisimulation) A symmetric binary relation R ⊆ E×E
over processes is a strong bisimulation if (E,F) ∈ R implies, for all a ∈ Act, if
E

a→ E′, then there exists F ′ such that F
a→ F ′ and (E′, F ′) ∈ R.

Two processes E and F are strongly bisimilar, denoted by E ∼ F , if there
exists a strong bisimulation R containing the pair (E,F).

The free occurrences of variables in a SPA term can be seen as holes in which
other SPA terms can be inserted. The result of this substitution is still a SPA
term. For instance, in the term h.0|(l.X + τ.0) we can replace the variable X
with the process h̄.0 obtaining the process h.0|(l.h̄.0 + τ.0); or we can replace
X by the term a.Y obtaining the term h.0|(l.a.Y + τ.0). A SPA term with free
variables is called context4. Given the context C[Y1, . . . , Yn] with free variables
Y1, . . . , Yn, we denote by C[T1, . . . , Tn] the term obtained from C[Y1, . . . , Yn] by
simultaneously replacing all the free occurrences of Y1, . . . , Yn with the terms
T1, . . . , Tn, respectively.

Finally, observe that our calculus does not provide a sequential composition
operator. However, following Milner [12], we can define it by introducing the con-
vention that processes indicate their termination by a distinguished label done.

Definition 2. (Strongly Well-terminating process) Let F be a SPA pro-
cess. F is strongly well-terminating if for all F ′ ∈ Reach(F): (1) F ′ done→ is

impossible; (2) if F ′ α→∼ 0 then F ′ ∼ done.0; (3) if F ′ done→ then F ′ ∼ done.0.

When F is strongly well-terminating, the sequential composition of processes
F and E can be defined through the operator Before introduced by Milner in [12].

Definition 3. (Before operator) Let E and F be SPA processes such that F
is strongly well-terminating.

Before[F,E] def= (F [f̄/done]|f.E) \ {f}

where f̄/done denotes the relabelling function replacing done with a new name f̄ .

3 Action Refinement

It is standard practice in software development to obtain the final program by
first defining an abstract, possibly not executable, specification and then refining
it until one arrives to a concrete specification that can directly be implemented.
Abstract operations are replaced by more detailed programs which can possibly
be further refined. In the context of process algebra, this stepwise development
amounts to interpreting actions on a higher level of abstraction by more complex
processes on a lower level. This is obtained by introducing a mechanism to trans-
form actions into processes. There are several ways to do this. Here we follow a
syntactic approach defining the refinement as a syntactic process transformation.

First, we need to specify which are the processes F that can be used to refine
a process E and which are the actions r refinable in E.
4 Notice that a SPA term denotes either a process or a context.

190

Definition 4. (Replaceable process and Refinable actions) Let E and F
be SPA terms and r ∈ L.

– The process F is replaceable in E if: (1) bound(E) ∩ free(F) = bound(F) ∩
free(E) = ∅; (2) F is not the process 0; (3) F is strongly well-terminating.

– The action r is said to be refinable in E with F if: (1) F is replaceable in
E; (2) r 6∈ bound(E); (3) r does not occur in F .

The notion of action refinement for SPA processes is defined by structural
induction on the term to be refined by using in the main basic case the operator
Before.

Definition 5. (Action Refinement) Let E,F be SPA terms such that r is
an action refinable in E with F . The refinement of r in E with F is the term
Ref (r, E, F) inductively defined on the structure of E as follows:

(1) Ref (r,0, F) def= 0

(2) Ref (r, Z, F) def= Z

(3) Ref (r, r.E1, F) def= Before[F,Ref (r, E1, F)]
(4) Ref (r, a.E1, F) def= a.Ref (r, E1, F), if a 6= r

(5) Ref (r, E1[f], F) def= Ref (r, E1, F)[f]
(6) Ref (r, E1 \ v, F) def= Ref (r, E1, F) \ v

(7) Ref (r, E1 + E2, F) def= Ref (r, E1, F) + Ref (r, E2, F)
(8) Ref (r, E1|E2, F) def= Ref (r, E1, F)|Ref (r, E2, F)
(9) Ref (r, recZ.E1, F) def= recZ.Ref (r, E1, F)

Point (3) of the above definition deals with the basic case in which we re-
place an occurrence of r with the refining process F . In all the other cases the
refinement process enters inside the components of E.

Example 1. Let E
def= r.a.0 and F be a strongly well-terminating process such

that r is refinable in E with F . Then Ref (r, E, F) def= Before[F,Ref (r, a.0, F)] def=
Before[F, a.0] represents the process which first behaves as F and then, when
the execution of F is terminated, proceeds as a.0.

From now on when we write Ref (r, E, F) we tacitly assume that r is refinable
in E with F .

Our refinement operation satisfies the following compositional properties.

Lemma 1. Let E1, . . . , En and F be SPA terms and r ∈ L be refinable with
F in E1, . . . , En. Let C[Z1, . . . , Zn] be a SPA context with no occurrences of r.
Then Ref (r, C[E1, . . . , En], F) def= C[Ref (r, E1, F), . . . ,Ref (r, En, F)].

Lemma 2. Let E,F1, F2 be SPA terms and r1 and r2 be two actions refinable
in E with F1 and F2, respectively. If r1 does not occur in F2 and r2 does not
occur in F1 then

– Ref (r2,Ref (r1, E, F1), F2)
def= Ref (r1,Ref (r2, E, F2), F1),

– Ref (r2,Ref (r1, E, F1), F2) ∼ Ref (r1, Ref(r2, E, F2),Ref (r2, F1, F2)).

191

4 Preserving Security Properties under Refinement

In this section we first present some information flow security properties for SPA
processes. Then we investigate conditions under which our notions of security
are preserved under action refinement.

Security Properties. Information flow security in a multilevel system aims at
guaranteeing that no high level (confidential) information is revealed to users
running at low security levels [7, 11], even in the presence of any possible mali-
cious process (attacker).

In [5] Focardi and Gorrieri introduce the properties Non-Deducibility on
Compositions (NDC) and Bisimulation-based Non-Deducibility on Compositions
(BNDC) in order to capture every possible information flow from a classified
(high) level of confidentiality to an untrusted (low) one. The definitions of NDC
and BNDC are based on the basic idea of Non-Interference [8]: “No information
flow is possible from high to low if what is done at the high level cannot interfere
in any way with the low level”. More precisely, a system E is secure if what a
low level user sees of the system is not modified by composing any high process
Π to E. The concept of low observation is expressed in terms of an equivalence
relation on low level actions between processes. The idea is that two systems
cannot be distinguished by a low level observer if and only if they are equated
by an equivalence relation considering low level actions only. The two properties
NDC and BNDC differ only on the low level observation equivalence they con-
sider. NDC is based on trace equivalence on low actions, denoted by ≈l

T , while
BNDC considers the notion of weak bisimilarity on low actions, denoted by ≈l

B .
The definitions of weak bisimilarity on low actions and trace equivalence on low
actions are the same as the definitions of weak bisimilarity and trace equivalence
except that low and silent actions only (belonging to the set L ∪ {τ}), instead
of all actions (belonging to the set Act), are considered.

Properties BNDC and NDC are thus formally defined as follows:

E ∈ BNDC if for all high level process Π, E ≈l
B (E|Π)

E ∈ NDC if for all high level process Π, E ≈l
T (E|Π)

Since weak bisimilarity on low actions is stronger than trace equivalence on
low actions, it holds that BNDC implies NDC.

Properties NDC and BNDC are difficult to use in practice: NDC is not
decidable in polynomial time, while the decidability of BNDC is still an open
problem. In [6], Focardi and Rossi introduce the property Persistent BNDC
(P BNDC) which is a natural persistent extension of BNDC (i.e., a system E
is P BNDC if every state E′ reachable from E is BNDC) and it is a sufficient
condition for BNDC. They show the decidability of P BNDC by exploiting a
bisimulation based characterization. Other persistent security properties have
been later introduced, e.g., the properties Persistent NDC (P NDC) in [4] and
Compositional P BNDC (CP BNDC) in [1].

All the persistent properties mentioned above can be defined as instances of
a generalized unwinding condition [1] which requires that each high level action

192

is “simulated” in such a way that it is impossible for the low level user to infer
which high level actions have been performed [13]. The generalized unwinding
condition is parametric with respect to two binary relations on processes: an
equivalence relation on low actions, vl, which represents the low level view, and
a transition relation, 99K, which characterizes a local connectivity.

Definition 6. (Generalized Unwinding) Let ∼l be an equivalence relation
on low actions and 99K be a binary relation on processes. The unwinding class
W(vl, 99K) is defined as

W(vl, 99K) def= {E ∈ E | ∀ F,G ∈ Reach(E)
if F

h→ G then ∃G′ such that F 99K G′ and G vl G′}.

It holds that P NDC coincides withW(≈l
T ,

τ̂=⇒) [4], P BNDC coincides with

W(≈l
B ,

τ̂=⇒) and CP BNDC coincides with W(≈l
B ,

τ=⇒) [1], where τ̂=⇒ denotes
a sequence of zero or more τ transitions while τ=⇒ denotes a sequence of at least
one τ transition. We have P NDC ⊆ NDC and P BNDC ,CP BNDC ⊆ BNDC .

Example 2. Let us consider a distributed data base (adapted from [9]) which
can take two values and which can be both queried and updated. In particular,
the high level user can query it through the high level actions qry1 and qry2,
while the low level user can only update it through the low level actions upd1

and upd2. Hence qry1, qry2 ∈ H and upd1, upd2 ∈ L. We can model the data
base with the SPA process E defined as

E
def= recZ.(qry1.Z + upd1.Z + τ.Z+

upd2.recW.(qry2.W + upd2.W + τ.W + upd1.Z)).

The process E is P BNDC . Indeed, whenever a high level user queries the data
base with a high level action moving the system to a state X then a τ action
moving the system to the same state X may be performed, thus masking the
high level interactions with the system to low level users. ut

Classes of Secure Processes closed under action refinement. We now investigate
conditions under which our notions of security are preserved under action re-
finement. In particular, we are interested in the definition of classes of processes
satisfying an instance of W(∼l, 99K) and closed under action refinement. We first
introduce the concept of (P, r)-refinable context, where P is a process property
and r is an action. Intuitively, a class of contexts is (P, r)-refinable if it contains
all the processes satisfying P and is closed under refinement of the action r.

Definition 7 ((P, r)-refinable contexts). Let P be a class of processes and
r be an action. A class C of contexts is said to be a class of (P, r)-refinable
contexts if:

– if E ∈ C and E is a process, then E ∈ P;

193

– if E,F ∈ C and r is refinable in E with F then Ref (r, E, F) ∈ C.

Given a sequence s = s1, s2, . . . , sn of actions and a set v of actions, we
denote by s.E the process s1.s2. . . . sn.E and by s∩v the set of actions occurring
both in s and in v. Moreover, given a relabelling f we denote by f [s] the set
{si | f(si) 6= si}. Let 99K be a binary relation on processes we say that s entails
99K if E

s→ E′ implies E 99K E′.

Definition 8. (Cs(99K)) Let s ∈ (L ∪ {τ})∗ be a sequence of low and silent
actions and 99K be a binary relation on processes such that s entails 99K.
Cs(99K) is the class of contexts containing: the process 0; Z, where Z is a variable;
l.C1, h.C1 + s.C1, C1 \ v, C1[f], C1 +C2, C1|C2, and recZ.C1, with l ∈ L∪{τ},
h ∈ H, s ∩ v = ∅, f [s] = ∅, and C1, C2 ∈ Cs(99K).

We are now ready to state the main results of this work. The next theo-
rem says that for any property P derived from our generalized unwinding (see
Definition 6), all the contexts of Definition 8 are (P, r)-refinable. The subse-
quent corollary provides a sufficient condition to preserve the security property
P under refinement.

Theorem 1. Let W(∼l, 99K) be an unwinding condition. Let r be an action
which does not occur in s. It holds that the class Cs(99K) is (W(∼l, 99K), r)-
refinable.

Corollary 1. Let E,F be terms and r be a refinable action in E with F . If
E,F ∈ Cs(99K) and r does not occur in s, then Ref (r, E, F) ∈ W(∼l, 99K) and
Ref (r, E, F) ∈ Cs(99K).

Example 3. Consider again the abstract specification of the distributed data base
represented through the SPA process E of Example 2. The process E belongs
to the class Cτ (τ=⇒) of Definition 8. In fact, C1

def= qry2.W + upd2.W + τ.W +
upd1.Z ∈ Cτ (τ=⇒), so C2

def= recW.C1 ∈ Cτ (τ=⇒). Hence, C3
def= qry1.Z+upd1.Z+

τ.Z + upd2.C2 ∈ Cτ (τ=⇒). Thus E
def= recZ.C3 ∈ Cτ (τ=⇒).

We can refine the update actions by requiring that each update is requested
and confirmed, i.e., we refine upd1 using F1

def= req1.cnf1.done.0 and upd2 us-
ing F2

def= req2.cnf2.done.0, where req1, cnf1, req2, cnf2 are low security level
actions. By automatically applying Definition 5 we obtain:

Ref (upd2,Ref (upd1, E, F1), F2)
def=

req2.cnf2.τ.recW.(qry2.W + req2.cnf2.τ.W + τ.W + req1.cnf1.τ.Z)).

Since F1 and F2 are in Cτ (τ=⇒), by applying Corollary 1 we have that the process
Ref (upd2,Ref (upd1, E, F1), F2) is in W(≈l

B ,
τ=⇒), i.e., it is P BNDC .

194

References

1. A. Bossi, R. Focardi, D. Macedonio, C. Piazza, and S. Rossi. Unwinding in Informa-
tion Flow Security. Electronic Notes in Theoretical Computer Science, 99:127–154,
2004.

2. A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Refinement Operators and Infor-
mation Flow Security. In Proc. of the 1st IEEE Int. Conference on Software En-
gineering and Formal Methods (SEFM’03), pages 44–53. IEEE Computer Society
Press, 2003.

3. A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Verifying Persistent Security Prop-
erties. Computer Languages, Systems and Structures, 30(3-4):231–258, 2004.

4. A. Bossi, C. Piazza, and S. Rossi. Modelling Downgrading in Information Flow
Security. In Proc. of the 17th IEEE Computer Security Foundations Workshop
(CSFW’04), pages 187–201. IEEE Computer Society Press, 2004.

5. R. Focardi and R. Gorrieri. Classification of Security Properties (Part I: Infor-
mation Flow). In R. Focardi and R. Gorrieri, editors, Proc. of Foundations of
Security Analysis and Design (FOSAD’01), volume 2171 of LNCS, pages 331–396.
Springer-Verlag, 2001.

6. R. Focardi and S. Rossi. Information Flow Security in Dynamic Contexts. In
Proc. of the IEEE Computer Security Foundations Workshop (CSFW’02), pages
307–319. IEEE Computer Society Press, 2002.

7. S. N. Foley. A Universal Theory of Information Flow. In Proc. of the IEEE
Symposium on Security and Privacy (SSP’87), pages 116–122. IEEE Computer
Society Press, 1987.

8. J. A. Goguen and J. Meseguer. Security Policies and Security Models. In Proc.
of the IEEE Symposium on Security and Privacy (SSP’82), pages 11–20. IEEE
Computer Society Press, 1982.

9. R. Gorrieri and A. Rensink. Action Refinement. Technical Report UBLCS-99-09,
University of Bologna (Italy), 1999.

10. H. Mantel. Possibilistic Definitions of Security - An Assembly Kit -. In Proc. of
the IEEE Computer Security Foundations Workshop (CSFW’00), pages 185–199.
IEEE Computer Society Press, 2000.

11. J. McLean. Security Models and Information Flow. In Proc. of the IEEE Sympo-
sium on Security and Privacy (SSP’90), pages 180–187. IEEE Computer Society
Press, 1990.

12. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
13. A. W. Roscoe and M. H. Goldsmith. What is intransitive noninterference? In

Proc. of the IEEE Computer Security Foundations Workshop (CSFW’99), pages
228–238. IEEE Computer Society Press, 1999.

14. N. Wirth. Program Development by Stepwise Refinement. Communications of the
ACM, 14(4):221–227, 1971.

195

