
Rogério de Lemos DSN 2007 WADS – June 2007 – 1

Verification and Validation of a Verification and Validation of a
FaultFault--Tolerant Architectural AbstractionTolerant Architectural Abstraction

Patrick H. S. Brito - Unicamp, Brazil

Rogério de Lemos - University of Kent, UK

Eliane Martins - Unicamp, Brazil

Cecília M. F. Rubira - Unicamp, Brazil

Rogério de Lemos DSN 2007 WADS – June 2007 – 2

MotivationMotivation

Fault tolerance at the architectural level
idealised fault tolerant architectural element

exception handling

Fault tolerance doesn’t come for free
increase in complexity

e.g., exception propagation

Improve confidence
verification by model checking architectural configurations

validation by generation of test cases

How the abstraction is implemented is not the topic of
this paper

Rogério de Lemos DSN 2007 WADS – June 2007 – 3

OutlineOutline

Motivation

Exception handling and software fault tolerance

Idealised fault tolerant architectural element

Rigorous development approach

Conclusions

Future work

Rogério de Lemos DSN 2007 WADS – June 2007 – 4

Architectural Exception HandlingArchitectural Exception Handling

An architectural solution based on exception handlingexception handling

components need to collaborate for handling certain
failure scenarios

configurations that allow the propagation of exceptions
controlled error propagation

Exception handling is not “the” solution, there are other
alternatives

it might be perceived as undesirable, but it’s reality

depends on the failure assumptions and costs

Rogério de Lemos DSN 2007 WADS – June 2007 – 5

iFTEiFTE: Architectural Abstraction: Architectural Abstraction

system ifte_abstraction
features

I_iFTE_PS_i: in event data port Service;
I_iFTE_PS_o: out event data port Service;
I_iFTE_PE_o: out event data port Exception;
I_iFTE_RS_i: in event data port Service;
I_iFTE_RS_o: out event data port Service;
I_iFTE_RE_i: in event data port Exception;

flows
Ret_Ser_a: flow path I_iFTE_PS_i -> I_iFTE_PS_o;
Sig_Exc_a: flow path I_iFTE_PS_i -> I_iFTE_PE_o;
Req_Ser_b: flow path I_iFTE_PS_i -> I_iFTE_RS_o;
Ret_Ser_b: flow path I_iFTE_RS_i -> I_iFTE_PS_o;
Sig_Exc_b: flow path I_iFTE_RS_i -> I_iFTE_PE_o;
Ret_Ser_c: flow path I_iFTE_RE_i -> I_iFTE_PS_o;
Sig_Exc_c: flow path I_iFTE_RE_i -> I_iFTE_PE_o;

end ifte_abstraction;

I_iFTE_PS

I_iFTE_PE

I_iFTE_RS

I_iFTE_RE

<<element>>
idealised fault-tolerant architectural element

Idealised fault tolerant architectural element (iFTE)

Rogério de Lemos DSN 2007 WADS – June 2007 – 6

iFTEiFTE: Behavioural Scenarios: Behavioural Scenarios

Rogério de Lemos DSN 2007 WADS – June 2007 – 7

A Rigorous Development ApproachA Rigorous Development Approach

The main objectives of the approach

Provide support for analysing exception propagation at
the architectural level

Analyse application-specific details about the
exception propagation

Define a scalable solution with support for automatic
verification

Define an approach for generating testing cases

Rogério de Lemos DSN 2007 WADS – June 2007 – 8

A Rigorous Development ApproachA Rigorous Development Approach

Rogério de Lemos DSN 2007 WADS – June 2007 – 9

A Rigorous Development ApproachA Rigorous Development Approach

Rogério de Lemos DSN 2007 WADS – June 2007 – 10

Architecture RepresentationArchitecture Representation

For each service of an iFTE
Provided interfaces

Required interfaces

Provided exceptions

Required exceptions

Maskable exceptions
For the software architecture

The architectural configuration

Rogério de Lemos DSN 2007 WADS – June 2007 – 11

Architecture RepresentationArchitecture Representation

B-Method

Type representation
different contexts for each type of exceptions

Easiness to represent relations between types
architectural configuration, exception conversions, etc.

CSP

Easiness to represent complex ordered events
execution scenarios, complex architectural propagation rules

Rogério de Lemos DSN 2007 WADS – June 2007 – 12

Architecture VerificationArchitecture Verification

The ProB model checker is used to check for both

Violations of structural (architectural configuration)
constraints

Extended architectural descriptions are used to
analyse exception flow properties

Users can specify their own properties for a specific
exception handling model

Violations result in error messages and counter-examples

Rogério de Lemos DSN 2007 WADS – June 2007 – 13

Architecture VerificationArchitecture Verification

Some architectural properties that are verified

Absence of deadlock

Explicit declaration of external exceptions (component
interfaces)

All the required exceptions are handled

Only maskable exceptions can be masked

Rogério de Lemos DSN 2007 WADS – June 2007 – 14

Integration OrderIntegration Order

Integration order tries to minimise dependencies
among architectural elements

Reduce the integration test effort for constructing
stubs

Provides a way for reasoning about the coupling among
architectural elements (dependency matrix)

Rogério de Lemos DSN 2007 WADS – June 2007 – 15

Generation of Test CasesGeneration of Test Cases

The only input is the formal model (B + CSP) of the
software architecture

A graph is created for representing the interaction
among architectural elements

Test cases are identified based on the paths of the
interaction graph

Stubs are specified by analysing the arrows departing
from the required interfaces nodes

Rogério de Lemos DSN 2007 WADS – June 2007 – 16

An Application Example: An Application Example:
A Mining Control SystemA Mining Control System

7 iFTE architectural elements: 4 comps. and 3 conns.

4 non-iFTE architectural components

Rogério de Lemos DSN 2007 WADS – June 2007 – 17

Architecture VerificationArchitecture Verification

Architecture configuration property

every required service refers to a valid provided
service of another component.

The following goal might never be satisfied:
Ec1, c2 e ArchitecturalElements, t e EventType, s e
ArchitecturalServices, e e ArchitecturalExceptions •
(c1, c2, t, s, e) e sequenceHistory ¶ c1 Î c2 ¶ s ‰
providedArchService(c2)

Rogério de Lemos DSN 2007 WADS – June 2007 – 18

iFTEiFTE Detailed DesignDetailed Design

The architectural elements of an iFTE follow recursively the
iFTE abstraction

<<component>>
Provided

I_iFTE_PS

I_iFTE_PE

<<component>>
Normal

<<component>>
Abnormal

I_iFTE_RS

I_iFTE_RE

<<component>>
Required

 I_A_RS

 I_N_RS

I_A_PE

 I_N_PE

I_P_RE

I_P_RS

<<connector>>
Coordinator

I_R_PS

I_R_PEI_A_RE

<<element>>
idealised fault-tolerant architectural element

 I_N_PS

I_N_RE

I_A_PS

Rogério de Lemos DSN 2007 WADS – June 2007 – 19

iFTEiFTE Detailed DesignDetailed Design

<<component>>
Provided

I_iFTE_PS

I_iFTE_PE

<<component>>
Abnormal

I_iFTE_RS

I_iFTE_RE

<<component>>
Required

 I_A_RS

I_A_PE

 I_N_PE

I_P_RE

I_P_RS

<<connector>>
Coordinator

I_R_PS

I_R_PEI_A_RE

<<element>>
idealised fault-tolerant architectural element

 I_N_PS

I_N_RE

I_A_PS

<<component>>
Normal

<<component>>
COTS

<<component>>
Provided

<<component>>
Required

I_N_RS

I_C_RSI_C_PS

Rogério de Lemos DSN 2007 WADS – June 2007 – 20

ConclusionsConclusions

Fault tolerance at the architectural level

error handling
since iFTE is application dependent, we need to obtain
assurances when it is instantiated to a particular application

model checking specifications for exception propagation

ProB (B Method and CSP)

generation of testing cases for integration testing

Rogério de Lemos DSN 2007 WADS – June 2007 – 21

Future WorkFuture Work

Adapt the proposed approach to other architectural
abstractions using other fault models, e.g., crash
failures

Improve the tool support for:

Generating the formal models from a UML
component diagram (UML2Formal)
Additional information about the exceptional
behaviour can be represented in XMI through meta
tags

