
1

Dependability of

Web Service Architectures

James Skene, Franco Raimondi and

 Wolfgang Emmerich
London Software Systems

Dept. of Computer Science

University College London

http://sse.cs.ucl.ac.uk

2

Setting the scene

“Deutsche Bank AG has agreed to
outsource two internal business
processes to Accenture Ltd. as part of
its ambitious program to cut costs and
increase efficiency by moving non-core
operations to external service providers.
Under the service agreement
announced Thursday, Deutsche Bank
will outsource its worldwide corporate
purchasing and accounts payable
services to Accenture. The global
consultancy and software development
group, located in Hamilton, Bermuda,
will provide IT systems and tools to
manage the bank's entire procurement-
to-payment process.”

 [Source: IDG, 30 Jan 2004]

3

Setting the scene

Tracking

Funds

Transfer

Order

Accounts

Receivable

Accounts

Payable

Purchase

Request

Server

Purchase

Request

Client

4

Web Service Dependability

• Current WS standards mainly
focus on functionality

• But organizations depend on
quality of services provided by
3rd parties

• Their service needs to be
delivered with agreed quality
– Availability / Timeliness

– Reliability

– Confidentiality

– Integrity, …

2

5

Dependability Management

• Testing web services alone

insufficient because service

dependability determined by

– Resource provision available in the

run-time environment

– Service usage profile

• For web services, we need to

– have quality norms and standards

– know how to measure quality

– have continuous quality monitoring

– use quality criteria for service selection

• These need to be reified at run-time

6

Achieving dependability in WS Architectures

Purchase

Request

Server

Purchase

Request

Client

Client

Monitor

Server

Monitor

SLA

violations

 Component

Message passing

Generation

Feedback Loop

SLA

7

Service Level Agreements

• Associate penalties to aberrant

service behaviour

• Are often part of service delivery

contracts

• Mitigate risk

• Previously mostly written in natural

language

– Ambiguous

– Incomplete

– Inconsistent

• We focus on SLAs in formal

languages

8

Service Level Agreements

• Determine required and

provided service quality

• Written in terms of

– Non-functional requirements

– Usage constraints

• Often annexed to a service

provision contract

• Bi-lateral

• Bi-directional

3

9

SLA content

SLAs determine conditions, e.g.

• Reliability

• Timeliness

• Availability

• Throughput

• Backup

May include terms determining

• Monitorability

• Penalties

• Administration

• Schedules of applicability

10

SLA Language Engineering

• Aim: defining precise and
unambiguous SLAs language

• Use OMG’s Meta Object
Facility (MOF) to define
– Abstract syntax of SLA language

– Service observation domain
model

• Define semantics of SLA langu-
age in model denotational style
– Behavioural constraints between

syntax and domain model

SLA

Abstract Syntax

Service Observation

Domain Model

Behavioural

 constraints

See: J. Skene, D.D. Lamanna and W. Emmerich: Precise Service Level Agreements. Proc. ICSE 04

11

Syntax definition for web service SLAs in MOF

ServiceTerms

ReliabilityClause

+maximumLatency

+reliability

+window

InputThroughputClause

+inputWindow

+concurrency

FailureModeDefinition

+kind

+maximumLatency

OperationDefinition

ServiceConditions

SLA ServiceDefinition

PenaltyDefinition

1..* operations

penalty

terms

conditions

penalties

failureModes

operations

services

1..*

1..*

1..*

1..*

reliability

inputThroughput

1..*

1..*
See: http://www.sourceforge.net/slang

conditions

sLA

12

SLA in OMG Human readable Textual Notation

SLA() {
 terms = ServiceTerms[terms]() {
 penalties = {

 ::slang::PenaltyDefinition[p1]("Pay client 100 dollars.")
 }
 services = ServiceDefinition[service](Notification port")
 operations = {
 OperationDefinition[o1]("notify") { }

 OperationDefinition[o2](”subscribe") { }
 }
 failureModes = {
 FailureModeDefinition[f1]() {

 kind = OPERATION;
 operations = {OperationDefinition[o1]}
 maximumLatency = ::types::Duration(5, S)
 }

 }
 }

4

13

SLA in HUTN (cont’d)
 conditions = ServiceConditions[conditions]() {
 inputThroughput = {
 InputThroughputClause[iTC1]() {

 inputWindow = ::types::Duration(1, min)
 inputConcurrency = 10
 operation = {OperationDefinition[o1]}
 }

 }
 reliability = {
 ReliabilityClause[rC1]() {
 failureModes = {FailureModeDefinition[f1]} // When > 5 secs
 reliability = ::types::Percentage(0.9)

 window = ::types::Duration(1, min)
 penalties = {
 UnreliabilityPenaltyClause() {
 penalty = ::slang::PenaltyDefinition[p1]

 }
 }
 }
 }

 } 14

Further SLA syntax: Administration

SLA Administration

ViolationCalculation

Reconciliation Account

Party

Violation

Evidence

+date

calculation

admin

violation

reconciliation agreed

owner

evidence

1..* 1..*

ServiceTerms ClientDefinition

violator
clientDefinitionterms

party

ServerDefinition
serverDefinition

party

sLA

sLA

admin

admin

15

Service observation domain model

Party

Evidence

+date

ServiceUsageRecord

+duration

+outcome:Outcome

Report

ReportRecord

+sent

+received

Outcome

+SUCEEDED:int=1

+FAILED:int=2

+NO_RESPONSE:int=3

+DATA_AGED:int=4

DefectReport

+defectKind

DefectKind

+PARAMETER:int=1

+OPERATION:int=2

+SERVICE:int=3

+DATA:int=4

OperationDefinition

owner

evidence

operation

1..*

1..*

records

report

measurement

reportdefectEvidence

16

Semantics of input-throughput clause

class InputThroughputClause {

invariant {
 conditions.sLA.admin->forAll(

 a : ::services::Administration |
 violationFirstUsage(a.reconciliation.agreed)->forAll(

 first : ::services::es::ServiceUsageRecord |

 a.calculation.violation->one(
 v : ::services::Violation |

 v.violator = conditions.sLA.terms.clientDefinition.party
 and v.violatedClause = self

 and v.penalty = penalty
 and v.evidence =

 violationEvidence(a.reconciliation.agreed, first)

)
)

)
}

5

17

Reminder

Purchase

Request

Server

Purchase

Request

Client

SLA

Server

Monitor

Client

Monitor

SLA

violations

18

Generating SLA Monitors

• SLAs machine readable

• MOF gives standard
representation

• Idea: Generate monitoring
component from SLA

• Given service observation
data monitor decides
whether actual service
level complies with SLA

• Generator written using
– Java Metadata Interface

(Sun)

– Eclipse Platform

19

Key idea

• SLAs concern many timeliness constraints:

– Latency

– Input and Output Throughput

– Reliability

– Availability

• Events can be intercepted and time stamped without

changing web service requester and provider

• Monitors can be expressed using timed automata

• Detection of SLA violations reduces to acceptance of

timed words that consist of timed events

20

Timed Automata

• A time sequence is a sequence of real numbers
= 1 2… n such that i> i-1.

• A timed word is a pair (w,) where w is a word of
length n and t is a time sequence of length n

• Timed automata extend finite automata in the
following way:
– They introduce a set of clocks

– They allow definition of time constraints over transitions

– They allow to reset clocks.

• Timed automata accept timed words and recognize
timed languages.

See: Alur & Dill, 1994: A Theory of Timed Automata. Theoretical Computer Science 126(2):183-253

6

21

Expressing Web Service Reliability Constraints

• Negate constraint (i.e. timed automaton accepts

timed word that indicates non-reliability)

• In this example, no more than one failure occurrence

(fm) per minute.

• Online monitoring per transition is efficient (constant

in number of outgoing transitions per state).

See: F. Raimondi, J. Skene, W. Emmerich & B. Wozna: A Methodology for On-line Monitoring

Non-Functional Requirements Specifications of Web Services. Proc. PROVECS Workshop

at Tools Europe. Zurich. 2007.
22

On-line monitoring Architecture

Client Provider

in
te

rc
e
p
to

r

SLA

Monitor

SLA

Violation

Evidence

SLA
Timed

Automata

23

Performance

24

Summary

Purchase

Request

Server

Purchase

Request

Client

SLA

Server

Monitor

Client

Monitor

SLA

violations

7

25

Ongoing Work

• Integration of SLAs with

Service Orchestrations:

• Given:

– SLAs with service providers

– A BPEL orchestration

• What SLA can be offered

for the composite service?

