Mqr[
LAl

JAFAN

ADVANCED INSTITUTE OF

SCIENCE AKD TECHNOLOGY
1990

An Assume-Guarantee Method for Modular
Verification of Evolving Component-Based Software

Pham Ngoc Hung, Nguyen Truong Thang, and Takuya Katayama
Japan Advanced Institute of Science and Technology — JAIST
{hungpn, thang, katayama}@jaist.ac.jp

Contents

+ Introduction
+ Background

+ A Framework for Modular Verification
of Evolving CBS

+ Assumption Regeneration Method
+ Related Work & Conclusion

DSN 2007 — WADS, Edinburgh, UK June 27, 2007

Component-Based Software (CBS)

+ Structured from a set of well-defined components
» ldeally, components are plug-and-play
» Advantages: low development cost and time, flexible for
changes, eftc.
+ One of key issues of CBS is "component
consistency”

» The currently well-known technologies as CORBA,
COM/DCOM or .NET, JavaBeans and EJB (Sun), etc.
only support "component plugging" -> plug-and-play
mechanism often fails

» A potential solution: modular verification based on
assume-guarantee reasoning

DSN 2007 — WADS, Edinburgh, UK June 27, 2007

Evolving CBS
+ CBS evolution seems to 6\%@ PR s

be an unavoidable task

» Bug fixing, adding or
removing some features,
etc.

» ->the whole evolved CBS
must be rechecked
+ How to recheck the
evolved CBS by reusing
the previous verification

results?

1 CBS development

Assume-Guarantee Verification

<A(p)>| F |<p>

<true> | C, |<A(p)>

Verifying consistency -
among components <true>| F||C, | <p>

l CBS evolution

* Evolving by addi@
some behaviors of the
existing components

* How to recheck the
evolved CBS?

DSN 2007 — WADS, Edinburgh, UK June 27, 2007

Background (1/3)

+ Labeled Transition Systems (LTSs) : RRES :
> ALTSM=<Q, aM, 5, q,> I 0 (2
L Parallel Composition Operator " ||" === =
I Output 1

» Synchronizing the common actions I send out

|
» Interleaving the remaining actions | |

+ Safety LTS, Safety Property, Satisfiability

» Asafety LTS: a deterministic LTS that

contain no 7 state (7t denotes the special
error state)

» A safety property is specified as a safety
LTS p

> ALTS M satisfies p (ME p) iff vdeL(M):
(0tap) € L(p)

DSN 2007 — WADS, Edinburgh, UK June 27, 2007 >

Background (2/3)

+ Assume-guarantee reasoning ; t<A(p)>CF ?

» “Divide and conquer mechanism” for S EEE/RC DY
decomposing a verification task into subtasks (true) F || C4 (p)
about the individual components of software

» <A(p)> F <p>, <true> C, <A(p)> both hold =
>F[Cikp Q@

» To check <A(p)> F <p>: out

Order Property p
1. Creating p,,, from p: O

q,EQp: (q1a,q,)e 6p} ir]
2. Computing A®)[F e, R__3T
3. If mis unreachable -> satisfied e, : i

serr = OpU {(g,a,m)| not exist

» Checking <true> C, <A(p)> by computing
Ci | A(P)err

DSN 2007 — WADS, Edinburgh, UK June 27, 2007

Background (3/3)

+ Component refinement

» Adding some states and transitions into the old component
> C1=<Q1,(XC1,61, q01>, C2=<Q2,OLC2,62, q02>: C2 |S the
refinement of C, iff Q, = Q,, ;= d,, q;' = 42
=>L(C,) c L(Cy)

loutput -~ ~ ~ ~ '; loutput ~ send |
| send out] ! send out I
I | refinement _ |

L T o :
| ack ! |.____a:k___I

DSN 2007 — WADS, Edinburgh, UK June 27, 2007 !

Contents

+ A Framework for Modular Verification
of Evolving CBS

+ Assumption Regeneration Method
+ Related Work
+ Conclusion

DSN 2007 — WADS, Edinburgh, UK June 27, 2007

Framework (1/2)

+ Suppose that the system T :

contains a framework F and an Cy |rctinement
extension C, and F||C, Fp ;
+ Generating an assumption A(p) [A®)

» Strong enough for F to satisfy p but
weak enough to be discharged by

C,

» <A(p)>F<p> and <true>C,<A(p)>
hold

» When C, is refined into C,

» The goal: checking F|| C, |= p by
reusing the previous assumption

A(p)

DSN 2007 — WADS, Edinburgh, UK June 27, 2007

Framework (2/2)

................................

+ Solution Ci refinemeny) Gy

- -

» Only check <true>C,<A(p)> A(p)
> Ifyes->F|C,Fp -
> Otherwise, F||C, F/p or A(p)
IS too strong for C, to satisfy =
_ _ A ..(p) is generated if A(p) is too
» A new assumption A, (p) is strong for C, to satisfy
re-generated by reusing A(p) -
If A(p) is too strong
C,
How to generate the new "o
assumption A, ...(p)? nen P
F

DSN 2007 — WADS, Edinburgh, UK June 27, 2007 10

Assumption regeneration process

counterexample — strengthen assumption

Setting
Ao=A(p) Model Checking
Learning A o 1. A || Fl=p false
1 l‘rrue
2.C, |= A

DSN 2007 — WADS, Edinburgh, UK June 27, 2007

Effectiveness

"“tit?' , Initial assumption for
assumg |onAor re-generating new Weakest
generating A(p) assumption A__(p) assumption
— A1 > AZHH A(p) R — Anew(p) > A\N
weaken

+ To obtain the assumption A .. (p), Instead of
starting from A [Cobleigh’03], we start from the
previous assumption A(p)

+ This improvement reduces some steps of the
assumption regeneration process

DSN 2007 — WADS, Edinburgh, UK June 27, 2007 12

Correctness and termination

+ [Theorem: Given F, C, is a refinement of C,, a
property p and an assumption A(p): <A(p)>F<p>,
<true>C,<A(p)>. The process terminates and

returns A ..(p) If F C, E p and false otherwise
» Correctness

v" Guaranteed by the compositional rule
v Always achieving A ., (p) by starting from A(p)

= C,FA(p)and C, A .,(p) > A..,(p) is weaker than A(p)
» Termination

v At any iteration, it returns true or false and terminates or continues

by providing a counterexample to L* Learning
A S IA <L <A

v In the worst case: L* Learning produces A, -> terminates!

DSN 2007 — WADS, Edinburgh, UK June 27, 2007 13

Related Work

+ Assume-guarantee verification [Cobleigh'03]

» The basic case: two components C,, C,
» Assumption generation by using L* algorithm

+ Verification of evolving software [Sharygina'03]

» Key idea: component substitutability analysis

v~ Containment check: all local behavior of the old component
contained in new one
v Compatibility check: safety w.r.t other components in assembly

+ OIMC [Thang&Katayama’'04]
» Focus on the interaction between two components Base
and Extension
» Deriving a set of preservation constraints at the interface
states of Base

DSN 2007 — WADS, Edinburgh, UK June 27, 2007 14

Conclusion

+ A framework for evolving CBS verification in
the context of component refinement

+ An assumption regeneration method
» Reuse the previous assumption
» Reduce several steps of the process

+ Future work
» Evaluating the effectiveness formally
» Applying the method for some larger case studies

DSN 2007 — WADS, Edinburgh, UK June 27, 2007 15

Thanks for your listening!

DSN 2007 — WADS, Edinburgh, UK June 27, 2007

16

Assume-guarantee verification [Cobleigh’03]

> The main ideas base on Assume-Guarantee

» The system has only two components; M,, M,

> The main goal: checking M, [|M,, E p without
composing M; with M,?

» Finding an assumption A satisfying the
compositional rule by using L*

» |If these components are changed ->
assumption generation process re-runs on the
whole system from beginning

DSN 2007 — WADS, Edinburgh, UK June 27, 2007 7

Verification of evolving software [Sharygina’09]

+ Key idea: component substitutability analysis

» Obtain a finite behavioral model of all components
by abstraction

» Containment check: all local behavior of the old
component contained in new one
v" Use under- and over- approximations

» Compatibility check: safety w.r.t other components
In assembly
v" Use dynamic assume-guarantee reasoning (dynamic L*)

DSN 2007 — WADS, Edinburgh, UK June 27, 2007 18

Verification of evolving software [Sharygina’09]

+ Component refinement: adding and removing
some behavior of component implementation

+ Using abstraction to obtain a new model of
the upgraded component

+ Try to reuse the old assumption to verify the
new system by improving L* -> dynamic L*

+ Our opinion: adding is enough

+ \We want not only to reuse the previous

assumptions but also to reuse the previous
models

DSN 2007 — WADS, Edinburgh, UK June 27, 2007 19

Learning algorithm - L*

+ Proposed by D. Angluin, improved by Rivest
+ learns an unknown regular language U

+ produces a Deterministic Finite state Automata
() C such that L(C) = U (the minimal DFA C
corresponding to U)

+ DFA M=(Q, q°% aM, 5, F) :
> Q, g% aM, 6 : as in deterministic LTS
» F < Q: accepting states
>
aaaclL(M), aaabgL(M) b

A DFA example

DSN 2007 — WADS, Edinburgh, UK June 27, 2007 20

The base idea of L*

Myhill-Nerode Theorem

For every regular set U 3 * there exists a unique
minimal deterministic automata whose states are
Isomorphic to the set of equivalence classes of
the following relation:

w=w iff Yued*:wuelUoewuel

Basic idea: learn the equivalence classes

» Two prefixes are not in the same class iff there is a
distinguishing suffix u

DSN 2007 — WADS, Edinburgh, UK June 27, 2007 21

