
An Assume-Guarantee Method for Modular
Verification of Evolving Component-Based Software

An Assume-Guarantee Method for Modular
Verification of Evolving Component-Based Software

Pham Ngoc Hung, Nguyen Truong Thang, and Takuya Katayama
Japan Advanced Institute of Science and Technology – JAIST

{hungpn, thang, katayama}@jaist.ac.jp

2DSN 2007 – WADS, Edinburgh, UK June 27, 2007

ContentsContents

Introduction
Background

A Framework for Modular Verification
of Evolving CBS

Assumption Regeneration Method

Related Work & Conclusion

3DSN 2007 – WADS, Edinburgh, UK June 27, 2007

Component-Based Software (CBS)Component-Based Software (CBS)

Structured from a set of well-defined components
Ideally, components are plug-and-play
Advantages: low development cost and time, flexible for
changes, etc.

One of key issues of CBS is "component
consistency"

The currently well-known technologies as CORBA,
COM/DCOM or .NET, JavaBeans and EJB (Sun), etc.
only support "component plugging" -> plug-and-play
mechanism often fails
A potential solution: modular verification based on
assume-guarantee reasoning

4DSN 2007 – WADS, Edinburgh, UK June 27, 2007

Evolving CBSEvolving CBS

CBS evolution seems to
be an unavoidable task

Bug fixing, adding or
removing some features,
etc.
-> the whole evolved CBS
must be rechecked

How to recheck the
evolved CBS by reusing
the previous verification
results?

CBS development

Assume-Guarantee Verification

<A(p)> <p>F

<true> <A(p)>C1

<true> <p>F║C1

Verifying consistency
among components

CBS evolution

A set of individual
components

• Evolving by adding
some behaviors of the
existing components
• How to recheck the
evolved CBS?

5DSN 2007 – WADS, Edinburgh, UK June 27, 2007

Background (1/3)Background (1/3)

Labeled Transition Systems (LTSs)
A LTS M = <Q, αM, δ, q0>

Parallel Composition Operator "║"
Synchronizing the common actions
Interleaving the remaining actions

Safety LTS, Safety Property, Satisfiability
A safety LTS: a deterministic LTS that
contain no π state (π denotes the special
error state)
A safety property is specified as a safety
LTS p
A LTS M satisfies p (M╞ p) iff ∀δ∈L(M):
(δ↑αp) ∈ L(p)

Input║Output

0,a

in

ack

0,b 0,c

1,a

2,a

1,b

2,b

1,c

2,c
out

in in

out

out

send

Input║Output

0,a

in

ack

0,b 0,c

1,a

2,a

1,b

2,b

1,c

2,c
out

in in

out

out

send

Input
in

ack

send
0 1 2

Output
send

a

ack

out

b c

6DSN 2007 – WADS, Edinburgh, UK June 27, 2007

Background (2/3)Background (2/3)

Assume-guarantee reasoning
“Divide and conquer mechanism” for
decomposing a verification task into subtasks
about the individual components of software
<A(p)> F <p>, <true> C1 <A(p)> both hold
-> F║C1╞ p
To check <A(p)> F <p>:

1. Creating perr from p: δperr = δp∪ {(q,a,π)| not exist
q’∈Qp: (q,a,q’)∈ δp}

2. Computing A(p)║F║perr

3. If π is unreachable -> satisfied

Checking <true> C1 <A(p)> by computing
C1║A(p)err

in

out

1. 〈A(p)〉 F 〈p〉
2. 〈true〉 C1 〈A(p)〉

〈true〉 F || C1 〈p〉

7DSN 2007 – WADS, Edinburgh, UK June 27, 2007

Background (3/3)Background (3/3)

Component refinement
Adding some states and transitions into the old component
C1=<Q1,αC1,δ1, q0

1>, C2=<Q2,αC2,δ2, q0
2>: C2 is the

refinement of C1 iff Q1 ⊆ Q2, δ1 ⊆ δ2, q0
1 = q0

2
=> L(C1) ⊆ L(C2)

Output’
send

ack

out
sendOutput

send

ack

out refinement

8DSN 2007 – WADS, Edinburgh, UK June 27, 2007

ContentsContents

Introduction
Background
A Framework for Modular Verification
of Evolving CBS
Assumption Regeneration Method
Related Work
Conclusion

9DSN 2007 – WADS, Edinburgh, UK June 27, 2007

Framework (1/2)Framework (1/2)
Suppose that the system
contains a framework F and an
extension C1 and F║C1╞ p
Generating an assumption A(p)

Strong enough for F to satisfy p but
weak enough to be discharged by
C1

<A(p)>F<p> and <true>C1<A(p)>
hold
When C1 is refined into C2

The goal: checking F║C2╞ p by
reusing the previous assumption
A(p)

refinementC1

F

C2

A(p)

10DSN 2007 – WADS, Edinburgh, UK June 27, 2007

Framework (2/2)Framework (2/2)

Solution
Only check <true>C2<A(p)>
If yes -> F║C2╞ p
Otherwise, F║C2╞ p or A(p)
is too strong for C2 to satisfy
A new assumption Anew(p) is
re-generated by reusing A(p)
if A(p) is too strong

refinementC1

F

C2

A(p)

F

C2

Anew(p)

Anew(p) is generated if A(p) is too
strong for C2 to satisfy

How to generate the new
assumption Anew(p)?

11DSN 2007 – WADS, Edinburgh, UK June 27, 2007

Assumption regeneration processAssumption regeneration process

Model Checking

1. Ai║F |= pLearning

real
error?

2. C2 |= Ai

Ai

counterexample – strengthen assumption

counterexample – weaken assumption

false

true
true

false

YN

p holds
in F||C2

p violated
in F||C2

cex║F |≠ p ?

cex ∉ L(Ai)

Setting
A0=A(p)

12DSN 2007 – WADS, Edinburgh, UK June 27, 2007

EffectivenessEffectiveness

To obtain the assumption Anew(p), instead of
starting from λ [Cobleigh’03], we start from the
previous assumption A(p)

This improvement reduces some steps of the
assumption regeneration process

13DSN 2007 – WADS, Edinburgh, UK June 27, 2007

Correctness and terminationCorrectness and termination
Theorem: Given F, C2 is a refinement of C1, a
property p and an assumption A(p): <A(p)>F<p>,
<true>C1<A(p)>. The process terminates and
returns Anew(p) if F║C2╞ p and false otherwise

Correctness
Guaranteed by the compositional rule
Always achieving Anew(p) by starting from A(p)

C2╞ A(p) and C2╞Anew(p) -> Anew(p) is weaker than A(p)

Termination
At any iteration, it returns true or false and terminates or continues
by providing a counterexample to L* Learning
|A0| ≤ |A1| ≤ … ≤ |AW|
In the worst case: L* Learning produces AW -> terminates!

14DSN 2007 – WADS, Edinburgh, UK June 27, 2007

Related WorkRelated Work

Assume-guarantee verification [Cobleigh’03]
The basic case: two components C1, C2
Assumption generation by using L* algorithm

Verification of evolving software [Sharygina’05]
Key idea: component substitutability analysis

Containment check: all local behavior of the old component
contained in new one
Compatibility check: safety w.r.t other components in assembly

OIMC [Thang&Katayama’04]
Focus on the interaction between two components Base
and Extension
Deriving a set of preservation constraints at the interface
states of Base

15DSN 2007 – WADS, Edinburgh, UK June 27, 2007

ConclusionConclusion

A framework for evolving CBS verification in
the context of component refinement
An assumption regeneration method

Reuse the previous assumption
Reduce several steps of the process

Future work
Evaluating the effectiveness formally
Applying the method for some larger case studies

16DSN 2007 – WADS, Edinburgh, UK June 27, 2007

Thanks for your listening!Thanks for your listening!

17DSN 2007 – WADS, Edinburgh, UK June 27, 2007

Assume-guarantee verification [Cobleigh’03]Assume-guarantee verification [Cobleigh’03]

The main ideas base on Assume-Guarantee
The system has only two components; M1, M2

The main goal: checking M1║M2 ╞ p without
composing M1 with M2?
Finding an assumption A satisfying the
compositional rule by using L*
If these components are changed ->
assumption generation process re-runs on the
whole system from beginning

18DSN 2007 – WADS, Edinburgh, UK June 27, 2007

Verification of evolving software [Sharygina’05]Verification of evolving software [Sharygina’05]

Key idea: component substitutability analysis
Obtain a finite behavioral model of all components
by abstraction
Containment check: all local behavior of the old
component contained in new one

Use under- and over- approximations

Compatibility check: safety w.r.t other components
in assembly

Use dynamic assume-guarantee reasoning (dynamic L*)

19DSN 2007 – WADS, Edinburgh, UK June 27, 2007

Verification of evolving software [Sharygina’05]Verification of evolving software [Sharygina’05]

Component refinement: adding and removing
some behavior of component implementation
Using abstraction to obtain a new model of
the upgraded component
Try to reuse the old assumption to verify the
new system by improving L* -> dynamic L*
Our opinion: adding is enough
We want not only to reuse the previous
assumptions but also to reuse the previous
models

20DSN 2007 – WADS, Edinburgh, UK June 27, 2007

Proposed by D. Angluin, improved by Rivest
learns an unknown regular language U
produces a Deterministic Finite state Automata
(DFA) C such that L(C) = U (the minimal DFA C
corresponding to U)

DFA M = (Q, q0, αM, δ, F) :
Q, q0, αM, δ : as in deterministic LTS
F ⊆ Q : accepting states
L(M) = {σ | δ(q0, σ) ∈ F}

Learning algorithm - L*Learning algorithm - L*

aq0 q1

a,b

baaa∈L(M), aaab∉L(M)
A DFA example

21DSN 2007 – WADS, Edinburgh, UK June 27, 2007

The base idea of L*The base idea of L*

Myhill-Nerode Theorem
For every regular set U ⊆∑* there exists a unique

minimal deterministic automata whose states are
isomorphic to the set of equivalence classes of
the following relation:
w ≈ w’ iff ∀ u ∈ ∑* : wu ∈ U ⇔ w’u ∈ U

Basic idea: learn the equivalence classes
Two prefixes are not in the same class iff there is a
distinguishing suffix u

