Handling Nondeterminism in
Multi-Tiered Distributed Systems

Joseph Slember
Priya Narasimhan
Electrical & Computer Engineering Department

Carnegie Mellon University
Pittsburgh, PA

Carnegie Mellon

Carnegie Mellon

Motivation

m Consistent state-machine replication requires determinism

N Any two deterministic replicas should reach the same final state if
N They start from the same initial state and
N Execute the same ordered sequence of operations

N Even if the replicas run on completely different machines

m Challenges

N Many primary (first-hand) sources of nondeterminism
N System calls, multithreading,

~ Nondeterminism can “propagate” through invocations and responses
In a distributed multi-tier, multi-client application

m Research question

< How do we live with nondeterminism in a multi-client, multi-tier
distributed system, without compromising replication?

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

The Problem

m Multi-tier setting
N End-to-end operation spanning all (server) tiers
N Client 5 Server1 5 Server2 S5 S Servern

m Forward (downstream) path of invocations
w Client = Server1 = Server2 - - Servern

m Backward (upstream) path of replies
N Client < Server1 < Server2 « « Servern

m Nondeterminism in any tier can “contaminate” other tiers
N Forward nondeterminism — on the invocation path
N Backward nondeterminism — on the reply path

m Multiple clients can aggravate this further
~ Clients’ operations can intermingle and execute concurrently at each tier

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Carnegie Mellon

Just How “Ugly” Can It Get?

Or the Multi-Tier, Multi-Client Problem

DT TR Te
e]
-.--.--.'-'-.'-'-.E-_.
2 (i

.........

Forward nondeterministic state in each tier

S
o Y
g=R=
% ®
S g
D)
k= %ﬂ
w
R 2
25
yo—
o
pf' O
Replicated Replicated Replicated
Tier 2 Tier 3 Tier 4 /
Backward nondeterministic state in each tier
4

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Objectives

m Consistent server replication in the face of
N Any kind of nondeterminism at a server tier
N Forward propagation of nondeterminism across tiers
N Backward propagation of nondeterminism across tiers
~ Multiple clients causing concurrency side-effects at server tiers
N Failures (loss of a replica) at any of the server tiers

m Efficiency in addressing only the nondeterminism that matters

m Programmer intent must be respected

N Retain the application-level semantics that the programmer desires
N Example: Uphold any concurrency programmed into the application

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Our Approach

m Midas: Synergistic combination of
N Compile-time analysis with runtime compensation

m Compile-time static analysis
N (Currently) targets application-level nondeterminism
N Requires access to application source-code
N Flags nondeterminism that will cause replica divergence
~ Tracks the propagation of nondeterminism
N Inserts code to perform compensation

m Runtime compensation
N Two possible techniques to restore consistency
N Transfer of nondeterministic checkpoints
~ Re-execution of inserted code

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Taxonomy of Nondeterminism — I

Pure (or first-hand) nondeterminism
~ Originating (primary) source of nondeterministic execution
N random(), gettimeofday(),
N Must directly touch the persistent state that matters for replication
N Shared state among threads

Contaminated (or second-hand) nondeterminism
N Persistent state that has any dependency on pure nondeterministic state
~ Example
for (int j = 0; jJ < 100; j++) {
foo[J 1 = random();
bar[J + 100] = foo[j 1;

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Taxonomy of Nondeterminism — I1

Superficial nondeterminism
~ Potentially nondeterministic execution that does not ultimately lead to
divergence in persistent state across replicas
N Nondeterministic functions that do not touch persistent state

N System calls that appear to be nondeterministic but do not affect consistent
replicated state, upon further examination

N “Shared” state between threads, where each thread only operates on its
individual and distinct piece of the state

Superficial nondeterminism does not matter for consistent replication!

Pure determinism

N Persistent state that has neither any dependency on pure nondeterminism

nor represents pure nondeterminism in itself
for (int j = 0; j < 100; j++)
bar[J] = bar[jJ] + 10;

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Midas’ Static-Analysis Framework — I

m Front-end of a compiler
m Source-code analyzer and regenerator

m Control-flow and data-flow analyses to determine the extent to
which nondeterminism has pervaded the application code

m Custom-built for analyses of various kinds
~ Nondeterminism analysis — presence/type/amount of nondeterminism
~ Concurrency analysis — thread-level interactions and interleaving

N Dependency analysis — dependencies across clients/servers
N Forward nondeterminism
N Backward nondeterminism

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Carnegie Mellon

Midas’ Static-Analysis Framework — I1

m (Currently) works for C, C++ and Java distributed applications
N Converts all source-code to annotated intermediate representation
~ Similar to an AST (abstract syntax tree)
N Intermediate representation is amenable to our analyses

m “Nondeterminism dictionary” ‘

N 262 system calls -

N read, write, gettimeofday, etc.

~ 163 library functions within C/C++ standard 1/0O, memory and machine-
dependent OS libraries

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Midas for Multi-Tier Architectures

m Midas’ program analysis used to analyze the architecture

N To extract dependencies between tiers
N To extract effects on state within each tier

m Architecture across tiers broken down into compensation-tier pairs
~ Consider each tier in conjunction with its immediate communicating tiers
~ Compensation of nondeterminism can then be performed in a scalable way

m Architecture at each tier broken down into tier-centric slivers
N Consider execution within each tier in terms of blocks (“slivers”) of code
N Each sliver encapsulates a basic unit of forward/backward nondeterminism
at that tier
~ Allows for easier compensation

Handling Nondeterminism in Multi-Tier Distributed Systems

Joe Slember

Tier-Centric Slivers

m Forward sliver
1. Anincoming request from an upstream tier

2. Some post-request processing that might lead to execution and state
changes

3. An outgoing (nested) request to some downstream tier

m Backward sliver
4. Incoming replies for requests sent in the previous step

5. Some post-reply processing that might lead to additional execution and
state changes

6. An outgoing reply to the upstream tier that issued the request in step 1

m Possible nested behavior where steps 3, 4 and 5 repeat
N Yields multiple forward slivers and one backward sliver

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Compensation Tier-Pairs

m Replicas in each tier need to know which state is actually used by
the adjacent tiers with which they communicate

~ If the replicas of tier A make a downstream request to tier B, which
replica’s request was chosen by tier B?

m ConsideranoperationCS T1ST2S T3S T4
~ Possible compensation tier-pairs: (C, T1), (T1, T2), (T2, T3) and (T3, T4)
~ A tier can be in more than one pair, e.g., tier T2

m Group into forward and backward compensation tier-pairs
N Forward compensation tier-pairs encapsulate forward slivers’
communication

N Backward compensation tier-pairs encapsulate backward slivers’
communication

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Midas’ Compensation Techniques

m Technique #1: Checkpoint-to-compensate
N Track all first-hand and second-hand nondeterminism
N Nondeterministic checkpoint consists of the tracked information

m Technique #2: Reexecute-to-compensate
N Track only first-hand nondeterminism

N Execute inserted code to regenerate second-hand nondeterministic state, given the
tracked (first-hand) information as input

m Totally ordered, reliable multicast messages between tiers

m How does compensation happen at runtime?
N Tier T1 issues a request to Tier T2
N T2’s replicas track nondeterminism and piggyback it to reply to T1

N T1 sends an asynchronous callback to T2’s replicas with choice of T2 replica and
that replica’s nondeterminism

N T2’s replicas copy received nondeterministic information onto their state
N Re-execute, if technique #2 is being used; otherwise, nothing to do 14

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Carnegie Mellon

Putting It All Together

[28 Forward State foo0) { S
|

15t2"d Backward State bar();

— Forward Reques’[SR B ¢ = gettimeofday();

— Reply
— Fwd Callback
Bwd Callback

Tier 2 Tier 3

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Conclusion

m Midas: Inter-disciplinary approach to handling nondeterminism

N Synergistic combination of compile-time analysis with runtime
compensation

~ Intentionally non-transparent

m For multi-tier distributed software architectures
N Replica consistency in the face of “propagating” nondeterminism
~ Forward and backward nondeterminism
N Compensation-tier pairs
N Tier-centric slivers

m Next steps
N Deploy and evaluate with a real-world, multi-tier application
N Determine scalability with number of tiers and number of clients
N Determine performance of various compensation techniques

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Carnegie Mellon

Joe Slember
Islember@ece.cmu.edu
www.ece.cmu.edu/~|slember

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Extra Slides

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Midas’ Source-Code Modifications

m Data structures added to store results of nondeterministic actions

N What is stored depends on the compensation technique
N Store first-hand nondeterministic state OR
N Store both first-hand and second-hand nondeterministic state

N Tracks thread-level execution and interleaving of state

m Code snippets generated and inserted as functions

N Re-execute second-hand nondeterministic actions, given the first-hand
nondeterministic state as input

~ Snippets only replay the minimum needed to recreate the second-hand
nondeterministic state

~ Example: first-hand nondeterministic variable X contaminates two other
variables y and z through functions f() and g(), respectively

N Code snippet will contain f(x) and g(x) to recreate the second-hand
nondeterministic variables y and z, given X as input

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Nondeterminism in Multi-tier Architecture

- Forward State 00 bare()={random()-
f=a+5;
1stj2nd Backward State - :
— Forward Request A . gettimeofd:
— Reply
-
Client

Tier 1 - \/

Problems?

STATE IS INCONSISTENT!
APPLICATION SEMANTICS HAVE BEEN VIOLATED!

Tier 2 Tier 3

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Carnegie Mellon

Multi-tier Example

2" Forward State

\I
151288 Backward State -
— Forward Request N N
— Reply
— Fwd Callback R
—— Bwd Callback

s
........
........
=======
L

s
mmmmmmmm
........
mmmmmmmm
SR

Joe Slember

Handling Nondeterminism in Multi-Tier Distributed Systems

Conclusion

m Midas: Program-analytic approach to handling nondeterminism
N Deliberately non-transparent
N Consistency in the face of nondeterminism

N Synergistic combination of compile-time analysis with runtime
compensation

m Efficient: Addresses only the nondeterminism that matters

m Different analyses to gain insight into application behavior
N Dependency analysis, concurrency analysis, nondeterminism analysis

m Different techniques for runtime compensation
N checkpoint-to-compensate, reexecute-to-compensate

m Leaves application semantics (and programmer intent) unaffected

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Insights from Results

m Lower amounts of nondeterminism cause much less overhead

m Adding more clients increases the overhead due to increase in the
number of callbacks

m Application characteristics will determine overhead

m Re-execution vs. transfer of contaminated state
N Depends on processing costs of second-hand nondeterminism

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Preliminary Evaluation

m Multi-tier, multi-client nondeterministic application
N Multi-threaded application with shared state across threads
~ Nondeterministic system calls

m Experimental setup
~ Pentium Ill, 850MHZ, 256 MB RAM
N Timesys Linux 2.4, Emulab, 100 Mbps Lan

m Varied number of clients: 2 and 4
m Varied number of tiers: 2 and 4

m Varied amount of forward and backward ND: 5% and 60%

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Techniques Evaluated

m Vanilla (serves as baseline)
N Nondeterministic application running with no compensation
~ State will be divergent across replicas (but we don’t care)

m Transfer-checkpoint (transfer-ckpt)
N Transfers all of the persistent state in all callbacks

m Checkpoint-to-compensate (transfer-contam)
m Reexecute-to-compensate (reexec-contam)

m Metric of comparison: Round-trip latency on the client-side

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Initial Results — 5% Fwd and 5% Bwd ND

SO0 —
P | B2 Clients |
% 500000+ B |4 Clients
g g —— =
= =
= - =
‘S 400000 -
£ - =
E ——
= 300000
I‘= ______:
3 ———
- =
I
S 200000 -
= —
& —~
=
ok
h -
- ——

vanilla

transfer-
o—— 2 Tier Case - ckpt

Compensation Technigue

o—— d-Tier Case -

In 4-tier case, transfer-contam and reexec-contam scale well

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Initial Results — 60% Fwd and 60% Bwd ND

TOOO0D |

|4 Clisnts

| DU @2 Clients| |
=

RILLELT

- B
| _
l

400000~

300000 |

200000 | E

Average Round-Trip Time (microseconds)
|
|
|
[

100000 |

contam
&— 2-Tier Case -

Compensation Technigue

vanilla

a——— 4-Tier Case &

In 4-tier case with high actual nondeterminism,

transfer-contam and reexec-contam see increased overhead -

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Carnegie Mellon

Deterministic Behavior

Replica 1

Input message

v

: Output messages
Identical state changes are identical

Client

Replica 2

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Carnegie Mellon

Nondeterministic Behavior

m Examples of nondeterminism
< gettimeofday(), random()

< Multithreaded execution

Replica 1

Input message

. Output messages
Replica divergence occurs may be different

v

_—

Client

v

Replica 2

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Current & Future Directions

m Vary application-level characteristics in evaluation
N Request size, state size, processing time, inter-request latency

m Add dynamic analysis techniques
m Comparative analysis with a transparent technique
m Combine transparent technique with Midas

m Real-world benchmark
N Welcome suggestions
N Petstore?
N Apache?

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Transparent Handling of ND

Pros
m Does not need access to source code

m Can typically be applied to any application in a plug and play
fashion

Cons
m Not every nondeterminism action results in state divergence

m Many transparent techniques don’t know dependencies

N Transparent techniques are unable to differentiate between actual and
superficial nondeterminism

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Types of Nondeterminism

m Two kinds of ND: Interaction and Control Flow

m Interaction
N System Calls

N gettimeofday, read, write
~ Input-output
N Input from user, database, NIC card, etc.
m Control Flow

N Multithreading

N Asynchronous Events
U Interrupts, Exceptions, Signals

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Searching for Additional Sources of ND

m Functions are extracted from all source code

m App. defined functions removed from list
N Some application-level functions might be added back in due to control flow
nondeterminism
m Matches between the remaining list and the dictionary are removed
N We know that these are nondeterministic

m Functions dependent on functions in dictionary are added to the dictionary and
removed from list

m Remaining functions are potentially nondeterministic
N Must go through manually with programmer

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Searching for Control Flow ND

m Determine all shared state between threads

m Classification of shared state as ND
~ All reads and writes are considered 15t-hand ND

m Do not impose interlocking

m Assume all interleaving is possible
~ This may be naive, but optimizations are future work

m Compensation is done after the fact
N Techniques described later in talk

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Second-hand Nondeterminism

Control-Flow and data-flow analysis used for dependency analysis
Need to determine dependencies on 15-hand nondeterminism

These dependencies are determine based on execution path

2"d-hand nondeterminism is determined by tracing possible paths
of execution

m Both 1st-hand and 2"d-hand ND can cause state to diverge across
replicas

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Some Related Work

m Fault-Tolerant CORBA standard
m OS and virtual machine solutions [Bressoud 96/98]

m Special schedulers [Basile 03, Jimenez-Peris 00, Poledna 00,
Narasimhan 98]

m Specific replication styles [Barrett 90, Budhiraja 93]

m Execution histories [Frolund 00]

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Checkpoint-to-compensate

m Only data structure annotations are used
m Track all first and second-hand ND

m Assume a multi-tier example
N client C < server S1 < server S2
N S1 and S2 are replicated server groups

m Assume nondeterminism exists in S2

m When S1 makes a request to S2 tier, S2 replicas will process
request and they will all reply

m Piggyback their ND data structures on reply

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Checkpoint-to-compensate cont.

m Sl replicas will all choose same response due to totally ordered
delivery of messages
~ Remaining messages are dropped

m Sl replicas pull the ND checkpoint piggybacked information and
make an asynchronous callback to S2 replicas with this chosen
checkpoint

m S2 replicas update their state with the ND checkpoint sent

m All replicas should be consistent at this point

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Reexecute-to-compensate

Both types of annotations to source-code are used
Only first-hand nondeterminism is tracked

S2 replicas only piggyback first-hand ND on reply to S1

S1 send out asynchronous message to S2 replicas with first-hand
ND choice

m S2 replicas copy over first-nand information to their state, but then
execute code snippets to compensate for second-hand ND

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Carnegie Mellon

Forward and Backward ND

m The compensation callbacks described above can be both
forward and backward

m Forward and backward ND need to be handled with different
callbacks, both forward and backward

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Different Fault-Tolerance Strategies

Actively Replicated Actively Replicated m Active / State-machine

Client Object A Server Object B

‘ ‘ . . . ~ Every copy receives and processes
every message
e e

N Every copy is active

m Passive (primary-backup)
N Only one (primary) copy processes

Duplicate uplicate
= ;r?pfg”d all of the messages
N Other (backup) copies receive state
Passively Replicated Passively Replicated LlpdateS from the prlmal‘y
Client Object A Server Object B
® 0 -0 O @O ackups are passive
State State

|

Invocation

Response
State Transfer

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

Carnegie Mellon

Multi-tier Example

2" Forward State

\I
151288 Backward State -
— Forward Request N N
— Reply
— Fwd Callback R
—— Bwd Callback

s
........
........
=======
L

s
mmmmmmmm
........
mmmmmmmm
SR

Joe Slember

Handling Nondeterminism in Multi-Tier Distributed Systems

Carnegie Mellon

Three-Tier Example

- Forward State foo() { bareoz{randomo.
|
15t2"d Backward State bar();
— Forward Request S - ¢ = gettimeofday();

— Reply
— Fwd Callback
Bwd Callback

Tier 1: Client calls foo()

Tier 2: Runs foo() and calls bar() Tier 3: Runs bar()

Joe Slember Handling Nondeterminism in Multi-Tier Distributed Systems

