
Handling Nondeterminism in
Multi-Tiered Distributed Systems

Joseph Slember
Priya Narasimhan
Electrical & Computer Engineering Department
Carnegie Mellon University
Pittsburgh, PA

2

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Motivation

Consistent state-machine replication requires determinism
Any two deterministic replicas should reach the same final state if

They start from the same initial state and
Execute the same ordered sequence of operations

Even if the replicas run on completely different machines

Challenges
Many primary (first-hand) sources of nondeterminism

System calls, multithreading, ……
Nondeterminism can “propagate” through invocations and responses
in a distributed multi-tier, multi-client application

Research question
How do we live with nondeterminism in a multi-client, multi-tier
distributed system, without compromising replication?

3

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

The Problem

Multi-tier setting
End-to-end operation spanning all (server) tiers
Client Server 1 Server 2 ………….. Server n

Forward (downstream) path of invocations
Client Server 1 Server 2 ………….. Server n

Backward (upstream) path of replies
Client Server 1 Server 2 ………….. Server n

Nondeterminism in any tier can “contaminate” other tiers
Forward nondeterminism – on the invocation path
Backward nondeterminism – on the reply path

Multiple clients can aggravate this further
Clients’ operations can intermingle and execute concurrently at each tier

4

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Just How “Ugly” Can It Get?
Or the Multi-Tier, Multi-Client Problem

Client 1

Client 2

Replicated
Tier 2

Replicated
Tier 3

Replicated
Tier 4

Forward nondeterministic state in each tier

Backward nondeterministic state in each tier

R
ep

lic
as

 in
 e

ac
h

 t
ie

r
ca

n
 d

iv
er

ge
 in

 s
ta

te

5

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Objectives

Consistent server replication in the face of
Any kind of nondeterminism at a server tier
Forward propagation of nondeterminism across tiers
Backward propagation of nondeterminism across tiers
Multiple clients causing concurrency side-effects at server tiers
Failures (loss of a replica) at any of the server tiers

Efficiency in addressing only the nondeterminism that matters
Programmer intent must be respected

Retain the application-level semantics that the programmer desires
Example: Uphold any concurrency programmed into the application

6

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Our Approach

Midas: Synergistic combination of
Compile-time analysis with runtime compensation

Compile-time static analysis
(Currently) targets application-level nondeterminism
Requires access to application source-code
Flags nondeterminism that will cause replica divergence
Tracks the propagation of nondeterminism
Inserts code to perform compensation

Runtime compensation
Two possible techniques to restore consistency
Transfer of nondeterministic checkpoints
Re-execution of inserted code

7

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Taxonomy of Nondeterminism – I

Pure (or first-hand) nondeterminism
Originating (primary) source of nondeterministic execution
random(), gettimeofday(), ….

Must directly touch the persistent state that matters for replication
Shared state among threads

Contaminated (or second-hand) nondeterminism
Persistent state that has any dependency on pure nondeterministic state
Example
for (int j = 0; j < 100; j++) {

foo[j] = random();
bar[j + 100] = foo[j];

}

8

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Taxonomy of Nondeterminism – II

Superficial nondeterminism
Potentially nondeterministic execution that does not ultimately lead to
divergence in persistent state across replicas

Nondeterministic functions that do not touch persistent state
System calls that appear to be nondeterministic but do not affect consistent
replicated state, upon further examination
“Shared” state between threads, where each thread only operates on its
individual and distinct piece of the state

Superficial nondeterminism does not matter for consistent replication!
Pure determinism

Persistent state that has neither any dependency on pure nondeterminism
nor represents pure nondeterminism in itself
for (int j = 0; j < 100; j++)

bar[j] = bar[j] + 10;

9

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Midas’ Static-Analysis Framework – I

Front-end of a compiler
Source-code analyzer and regenerator
Control-flow and data-flow analyses to determine the extent to
which nondeterminism has pervaded the application code
Custom-built for analyses of various kinds

Nondeterminism analysis – presence/type/amount of nondeterminism
Concurrency analysis – thread-level interactions and interleaving
Dependency analysis – dependencies across clients/servers

Forward nondeterminism
Backward nondeterminism

10

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Midas’ Static-Analysis Framework – II

(Currently) works for C, C++ and Java distributed applications
Converts all source-code to annotated intermediate representation
Similar to an AST (abstract syntax tree)
Intermediate representation is amenable to our analyses

“Nondeterminism dictionary”
262 system calls

read, write, gettimeofday, etc.

163 library functions within C/C++ standard I/O, memory and machine-
dependent OS libraries

11

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Midas for Multi-Tier Architectures

Midas’ program analysis used to analyze the architecture
To extract dependencies between tiers
To extract effects on state within each tier

Architecture across tiers broken down into compensation-tier pairs
Consider each tier in conjunction with its immediate communicating tiers
Compensation of nondeterminism can then be performed in a scalable way

Architecture at each tier broken down into tier-centric slivers
Consider execution within each tier in terms of blocks (“slivers”) of code
Each sliver encapsulates a basic unit of forward/backward nondeterminism
at that tier
Allows for easier compensation

12

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Tier-Centric Slivers

Forward sliver
1. An incoming request from an upstream tier
2. Some post-request processing that might lead to execution and state

changes
3. An outgoing (nested) request to some downstream tier

Backward sliver
4. Incoming replies for requests sent in the previous step
5. Some post-reply processing that might lead to additional execution and

state changes
6. An outgoing reply to the upstream tier that issued the request in step 1

Possible nested behavior where steps 3, 4 and 5 repeat
Yields multiple forward slivers and one backward sliver

13

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Compensation Tier-Pairs

Replicas in each tier need to know which state is actually used by
the adjacent tiers with which they communicate

If the replicas of tier A make a downstream request to tier B, which
replica’s request was chosen by tier B?

Consider an operation C T1 T2 T3 T4
Possible compensation tier-pairs: (C, T1), (T1, T2), (T2, T3) and (T3, T4)
A tier can be in more than one pair, e.g., tier T2

Group into forward and backward compensation tier-pairs
Forward compensation tier-pairs encapsulate forward slivers’
communication
Backward compensation tier-pairs encapsulate backward slivers’
communication

14

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Midas’ Compensation Techniques

Technique #1: Checkpoint-to-compensate
Track all first-hand and second-hand nondeterminism
Nondeterministic checkpoint consists of the tracked information

Technique #2: Reexecute-to-compensate
Track only first-hand nondeterminism
Execute inserted code to regenerate second-hand nondeterministic state, given the
tracked (first-hand) information as input

Totally ordered, reliable multicast messages between tiers
How does compensation happen at runtime?

Tier T1 issues a request to Tier T2
T2’s replicas track nondeterminism and piggyback it to reply to T1
T1 sends an asynchronous callback to T2’s replicas with choice of T2 replica and
that replica’s nondeterminism
T2’s replicas copy received nondeterministic information onto their state
Re-execute, if technique #2 is being used; otherwise, nothing to do

15

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Putting It All Together

T2:R1 T3:R1

T3:R2

Client

1st 2nd

2nd1st

Forward State

Backward State
Forward Request
Reply
Fwd Callback
Bwd Callback

T2:R2

foo() {
a = random();
b = a + 5;
bar();
c = gettimeofday();
d = c * 60;

}

bar() {
e = random();
f = a + 5;

}

Tier 2 Tier 3

Tier 1

16

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Conclusion

Midas: Inter-disciplinary approach to handling nondeterminism
Synergistic combination of compile-time analysis with runtime
compensation
Intentionally non-transparent

For multi-tier distributed software architectures
Replica consistency in the face of “propagating” nondeterminism
Forward and backward nondeterminism
Compensation-tier pairs
Tier-centric slivers

Next steps
Deploy and evaluate with a real-world, multi-tier application
Determine scalability with number of tiers and number of clients
Determine performance of various compensation techniques

17

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Joe Slember
jslember@ece.cmu.edu

www.ece.cmu.edu/~jslember

18

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Extra Slides

19

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Midas’ Source-Code Modifications

Data structures added to store results of nondeterministic actions
What is stored depends on the compensation technique

Store first-hand nondeterministic state OR
Store both first-hand and second-hand nondeterministic state

Tracks thread-level execution and interleaving of state

Code snippets generated and inserted as functions
Re-execute second-hand nondeterministic actions, given the first-hand
nondeterministic state as input
Snippets only replay the minimum needed to recreate the second-hand
nondeterministic state
Example: first-hand nondeterministic variable x contaminates two other
variables y and z through functions f() and g(), respectively

Code snippet will contain f(x) and g(x) to recreate the second-hand
nondeterministic variables y and z, given x as input

20

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Nondeterminism in Multi-tier Architecture

T2:R1 T3:R1

T3:R2

Client

1st 2nd

2nd1st

Forward State

Backward State
Forward Request
Reply

T2:R2

foo() {
a = random();
b = a + 5;
bar();
c = gettimeofday();
d = c * 60;

}

bar() {
e = random();
f = a + 5;

}

Tier 2 Tier 3

Tier 1

Problems?

STATE IS INCONSISTENT!
APPLICATION SEMANTICS HAVE BEEN VIOLATED!

21

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Multi-tier Example

T2:R1

T2:R2

T3:R1

T3:R2

T4:R1

T4:R2

Client

1st 2nd

2nd1st

Forward State

Backward State
Forward Request
Reply
Fwd Callback
Bwd Callback

22

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Conclusion

Midas: Program-analytic approach to handling nondeterminism
Deliberately non-transparent
Consistency in the face of nondeterminism
Synergistic combination of compile-time analysis with runtime
compensation

Efficient: Addresses only the nondeterminism that matters
Different analyses to gain insight into application behavior

Dependency analysis, concurrency analysis, nondeterminism analysis

Different techniques for runtime compensation
checkpoint-to-compensate, reexecute-to-compensate

Leaves application semantics (and programmer intent) unaffected

23

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Insights from Results

Lower amounts of nondeterminism cause much less overhead
Adding more clients increases the overhead due to increase in the
number of callbacks
Application characteristics will determine overhead
Re-execution vs. transfer of contaminated state

Depends on processing costs of second-hand nondeterminism

24

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Preliminary Evaluation

Multi-tier, multi-client nondeterministic application
Multi-threaded application with shared state across threads
Nondeterministic system calls

Experimental setup
Pentium III, 850MHZ, 256MB RAM
Timesys Linux 2.4, Emulab, 100 Mbps Lan

Varied number of clients: 2 and 4
Varied number of tiers: 2 and 4
Varied amount of forward and backward ND: 5% and 60%

25

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Techniques Evaluated

Vanilla (serves as baseline)
Nondeterministic application running with no compensation
State will be divergent across replicas (but we don’t care)

Transfer-checkpoint (transfer-ckpt)
Transfers all of the persistent state in all callbacks

Checkpoint-to-compensate (transfer-contam)
Reexecute-to-compensate (reexec-contam)
Metric of comparison: Round-trip latency on the client-side

26

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Initial Results – 5% Fwd and 5% Bwd ND

In 4-tier case, transfer-contam and reexec-contam scale well

27

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Initial Results – 60% Fwd and 60% Bwd ND

In 4-tier case with high actual nondeterminism,
transfer-contam and reexec-contam see increased overhead

28

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Deterministic Behavior

Replica 1

Replica 2

Input message
Output messages

are identicalIdentical state changes

Client

29

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Nondeterministic Behavior

Replica 1

Replica 2

Input message
Output messages
may be differentReplica divergence occurs

Client

Examples of nondeterminism
gettimeofday(), random()

Multithreaded execution

30

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Current & Future Directions

Vary application-level characteristics in evaluation
Request size, state size, processing time, inter-request latency

Add dynamic analysis techniques
Comparative analysis with a transparent technique
Combine transparent technique with Midas
Real-world benchmark

Welcome suggestions
Petstore?
Apache?

31

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Transparent Handling of ND

Pros
Does not need access to source code
Can typically be applied to any application in a plug and play
fashion

Cons
Not every nondeterminism action results in state divergence
Many transparent techniques don’t know dependencies

Transparent techniques are unable to differentiate between actual and
superficial nondeterminism

32

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Types of Nondeterminism

Two kinds of ND: Interaction and Control Flow
Interaction

System Calls
gettimeofday, read, write

Input-output
Input from user, database, NIC card, etc.

Control Flow
Multithreading
Asynchronous Events

Interrupts, Exceptions, Signals

33

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Searching for Additional Sources of ND

Functions are extracted from all source code
App. defined functions removed from list

Some application-level functions might be added back in due to control flow
nondeterminism

Matches between the remaining list and the dictionary are removed
We know that these are nondeterministic

Functions dependent on functions in dictionary are added to the dictionary and
removed from list
Remaining functions are potentially nondeterministic

Must go through manually with programmer

34

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Searching for Control Flow ND

Determine all shared state between threads
Classification of shared state as ND

All reads and writes are considered 1st-hand ND

Do not impose interlocking
Assume all interleaving is possible

This may be naïve, but optimizations are future work

Compensation is done after the fact
Techniques described later in talk

35

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Second-hand Nondeterminism

Control-Flow and data-flow analysis used for dependency analysis
Need to determine dependencies on 1st-hand nondeterminism
These dependencies are determine based on execution path
2nd-hand nondeterminism is determined by tracing possible paths
of execution
Both 1st-hand and 2nd-hand ND can cause state to diverge across
replicas

36

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Some Related Work

Fault-Tolerant CORBA standard
OS and virtual machine solutions [Bressoud 96/98]
Special schedulers [Basile 03, Jimenez-Peris 00, Poledna 00,
Narasimhan 98]
Specific replication styles [Barrett 90, Budhiraja 93]
Execution histories [Frolund 00]

37

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Checkpoint-to-compensate

Only data structure annotations are used
Track all first and second-hand ND
Assume a multi-tier example

client C ↔ server S1 ↔ server S2
S1 and S2 are replicated server groups

Assume nondeterminism exists in S2
When S1 makes a request to S2 tier, S2 replicas will process
request and they will all reply
Piggyback their ND data structures on reply

38

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Checkpoint-to-compensate cont.

S1 replicas will all choose same response due to totally ordered
delivery of messages

Remaining messages are dropped

S1 replicas pull the ND checkpoint piggybacked information and
make an asynchronous callback to S2 replicas with this chosen
checkpoint
S2 replicas update their state with the ND checkpoint sent
All replicas should be consistent at this point

39

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Reexecute-to-compensate

Both types of annotations to source-code are used
Only first-hand nondeterminism is tracked
S2 replicas only piggyback first-hand ND on reply to S1
S1 send out asynchronous message to S2 replicas with first-hand
ND choice
S2 replicas copy over first-hand information to their state, but then
execute code snippets to compensate for second-hand ND

40

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Forward and Backward ND

The compensation callbacks described above can be both
forward and backward
Forward and backward ND need to be handled with different
callbacks, both forward and backward

41

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Different Fault-Tolerance Strategies

Active / State-machine
Every copy receives and processes
every message
Every copy is active

Passive (primary-backup)
Only one (primary) copy processes
all of the messages
Other (backup) copies receive state
updates from the primary
Backups are passive

42

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Multi-tier Example

T2:R1

T2:R2

T3:R1

T3:R2

T4:R1

T4:R2

Client

1st 2nd

2nd1st

Forward State

Backward State
Forward Request
Reply
Fwd Callback
Bwd Callback

43

Carnegie Mellon

Handling Nondeterminism in Multi-Tier Distributed SystemsJoe Slember

Three-Tier Example

T2:R1

T2:R2

T3:R1

T3:R2

Client

1st 2nd

2nd1st

Forward State

Backward State
Forward Request
Reply
Fwd Callback
Bwd Callback

foo() {
a = random();
b = a + 5;
bar();
c = gettimeofday();
d = c * 60;

}

bar() {
e = random();
f = a + 5;

}

Tier 2: Runs foo() and calls bar() Tier 3: Runs bar()

Tier 1: Client calls foo()

