What SOA can do for
Software Dependability

Karl M. Goschka
Karl.Goeschka@tuwien.ac.at
Vienna University of Technology

Overview

Dependabillity challenges
Control loop: Adaptivity and evolution
The SOA potential

Challenges of today'‘s applications

heterogeneity (SOA, GRID)

large-scale (pervasive, GRID, ultra-large-scale)
dynamic (MANET, SOA)

run continously (24*7)

time to market

COSt pressure

- dependability degradation

The dependabillity gap

(short-/long-term) changes of ...

B the system itself (e.g., resource variability)
B the context (environment, failure scenarios)
B users’ needs and expectations

Complexity and emerging behaviour

B Interactions and interdependencies prevall
properties of a systems' constituents

- Human maintenance and repetitive software
development processes

B error-prone and costly

B slow, sometimes prohibitively

B BUT: self-learning and highly adaptive ;-)

Software development

Defects in software products and services ...
B may lead to failure
B may provide typical access for malicious attacks

Problematic requirements
B incomplete
B most users are inarticulate about precise criteria

B competing or contradictory (due to inconsistent
needs)

B will certainly change over time

Requirements

Requirements are the things that you should discover before
starting to build your product. Discovering the requirements
during construction, or worse, when your client starts using
your product, is so expensive and so inefficient, that we will
assume that no right-thinking person would do it, and will
not mention it again.

Robertson and Robertson
Mastering the Requirements Process

Needs, expectations, and requirements

Walking on water and
developing software from a specification
are easy

— 1f both are frozen

Edward V. Berard
Life Cycle Approaches

Requirements do change ...

... continously!

Trade-offs change as well

Domain know-how changes

Technical know-how changes

Retrofit originally omitted requirements

Impossible to predict all changes

Answer on the process level

Design for change in highly volatile areas!

Heavy weight (CMM) > light weight (ASD)

DIOCeSSeS

Differentiation:

B development in-the-small: Component, service,...
- agile development (ASD, XP), MDA, AOP, ...

B development in-the-large: Procurement/discovery,
generation, composition, deployment, ...
- EAIl, CBSE, (MDA), SOA, ...

Agile Development (ASD)

Conformance to Plan B - Planned

A - Start ' '

Conformance to Actual (Customer Value)

“In an extreme environment, following a plan C - Desired
produces the product you intended, just not Result
the product you need.”

Model-Driven Architecture (MDA)

Platform Independent Mapping
Model (PIM) information

Transformation

Platform Specific Model Mapping
(PSM), e.qg., EJB, .NET Information

____________________ Transformation

/" | Developer source code, .| Source Code, e.g.,
~.| e, businesslogic | - EJB, .NET

—

———

Not desired, but Deployable
required in practice Package

Dependability arguments for MDA

Verification of system properties at PIM level
B Formal verification
B Testing (?)

Verification of system properties at PSM level
B Formal verification

B Testing

B Required platform specific properties

In theory no component testing at code level
necessary

B Only System Test

Documentation always up-to-date

EAIl: Software Cathedral

Robust, long Lifecycle

B Co-Existent of diverse
different Technologies

dynamic, extensible
Re-usable Designs

B Based on a common
Framework-Architecture

Heterogeneous Architectures

,We build software
like cathedrals:
First, we build,

then we pray/’

[enuaiod

@jﬂ f
il

Legacy New
Systems Technologies

Heterogeneous Architectures

Component-based Software Engineering

,,Buy before build.
Reuse before buy*
Fred Brooks 1975(!)

Components: CBSE
and Product Lines

E—)

Product Line

Components of Mercedes E class cars are 70% equal.
Components of Boeing 757 and 767 are 60% equal.
—> most effort Is integration istead of development!

Application AWOH B

Quality,
time to market,
but complexity

- re-use

Fault tolerance technigues

persistence (databases)

transaction monitors

replication

group membership and atomic broadcast

reliable middleware with explicit control of
guality of service properties

also addressing scale and dynamics: e.g.,
gossipping protocols

Overview

Control loop: Adaptivity and evolution
The SOA potential

Control loop approach

Short-term adaptivity to react to observed, or
act upon expected (temporary) changes

Often termed , autonomous®, ,self-*“, or
,Software agility*

Control-loop approach:

B Monitoring

B Diagnosis (analysis, interpretation)

B Re-configuration (repair)

BUT: focus on system‘s components
contradicts complexity theory

Adaptive Coupling

Complexity theory demands focus on structure
and interaction rather than properties of the
iIndividual constituents

Relationships of differing strengths = mixture
of tightly and loosely coupled parts

-> overall system properties are also
determined by the strength of coupling

-> Inner loop provides adaptivity by controlling
the strength of coupling

Inner loop (short-term adaptivity)

properties are balanced by negotiation
between infrastructure and application

explicit control of coupling mechanisms, e.g.,
run-time selection and reconfiguration of
dependability protocols disurbance

context change

key IEITE:EI 1 key idea 2 (environment, failures)
H W S |
set point B I controller T : aciuaior controlled : aciual value
user needs }Q - i protocol et Syster | >
i PR negotiation | coupling SW system I dependability
with respect ", 1 | and security
to dependability ™ |_ _! properties
and security R
properties

SENSOr, FHE'E!.SEH'!:J'!g transducer

measurement of dependability and <
security properties

Forms of coupling

coupling type

tightly—coupled

loosely—coupled

temporal

synchronous

El-S}-"IlChI‘ onous

referential

explicit binding, partition

discovery, space—based

constraint validation

constraint management

constraint decision

per instance,
transaction

operation, or

implicit

boolean (valid/violated)

postponed, triggered, or background
task

explicit

imprecise, negotiation

system health detection

system repair

deterministic

reactive repair

gradual — “good enough”

proactive repair or homeostasis

update propagation
replica placement

replica consistency

synchronous, eager
full replication

1—copy—serializability

lazy or probabilistic (epidemic)
partial and statistical replication

e—serializability

atomicity roll-back undo or compensation
isolation level serializable phantom read, dirty read, ...
locking || strict best effort reservation
consensus || deterministic probabilistic

Long-term evolution

regulate emerging behaviour (policies)
evolvement of user needs and context

-> change the system’s design while running!

requires run-time accessible and processable
requirements and design-views, e.g.

B constraints
B models (,UML virtual machine®)
B (partial) architectural confgurations

Outer loop (long-term evolution)

measurement of properties (incl. history)
negotiation of needs

explicit manipulation of requirements/design:
constraints, models (,UML virtual machine®),
(partial) architectural confgurations

disturbance
. context change
key idea 1 (environment, failures)

S § A £ ————— |

ER= =R :

A5 ontroller Z actuator controlled I
sef point = controtier 2o ; svstem I actual value

)Q > constraintand | . - ! >
user needs - o i _
negotiation I ; I :
g | | model change | SW system | dependability

| I properties

e .

key idea 2
saftware fevolution) sensors,
m[’ﬂ.ﬂfi’fﬂg transducer L

measurement of properties

Run-time software development

requires middleware support

B stored in repositories

B accessed via reflection

B aspect-oriented programming (dynamic aspects)
B protocols for meta-data exchange

-> convergence of software development tools
with middleware services (,re-engineering
running software®)

- new challenges: e.g., run-time testing and
verification

Constraint management

Predicates, that stem from requirements

Lifecycle:

B informal during analysis

B formal during design (e.g., UML+OCL)
B tangled with implementation code

Can be a problem:
B checked in different places
B requirements traceability and verification

B design-by-contract principle (heterogeneous
composition)

B run-time control (e.g., activation/de-activation)

Distributed constraint validation

Constraint validation itself becomes subject to node
and link failures

Possibly stale copies may be used for validation -
consistency threat

Potential inconsistencies may be accepted: Integrity is
(temporarily) relaxed to increase availability
Negotiation:

B static (deployment or run-time)

B dynamic (run-time: application call-back or user intervention)

Requires explicit management of constraints and
consistency threats

Loosely-coupled validation

Explicit run-time constraints allow to decouple
constraint validation from business activity

B Asynchronous validation at any time (continously,
triggered)

B Check-out/check-in (e.g., in mobile systems)

B Asynchronous negotiation and reconciliation
(decoupled from system health set-points)

Explicit run-time constraints allow to decouple
constraint activation from business activity

B Deactivate/revoke constraint to ,heal” the system
B Introduce new constraints

B Alternate constraints for different system missions

Inconsistency Management

Explicit run-time constraints - decouple
validation/activation from (degraded) business activity

Explicit constraint management supports system
maintenance and evolution: Deploys a smooth way of
re-design without service interruption or re-compilation

Performance impairment often acceptable
Inconsistency management (large-scale)

Constraint-in-the-small vs. constraint-in-the-large
B imprecise, require negotiation

B part of heterogeneous and dynamic composition

B undergo continous evolution

Overview

The SOA potential

How to actually implement this?

different pace of change
complemetary approaches

share the need for

1. Reconfiguration of the architectural coupling,
iIncluding strength of coupling

2. Measurement and negotiation of properties

3. Run-time processable requirements and design
artifacts (meta-data) - information sharing
between application and infrastructural service

Can SOA address these needs?

SOA Is an evolution, not a revolution

EAl — Enterprise Application Integration (MoM)

(note: Was an argument for CBSE as well)

WIMS — Workflow Management Systems - BPEL

CBSE — Components are not obsolete!

- WS provide a virtual component model

WWW — Loose coupling: Heterogeneous, flexible,

and dynamic orchestration

Re-use (note: Was an argument for CBSE,

Middleware, ...)

Interface management (note: ...)

Business integration (,business goals with IT")

Related WS Standards and Concepts

WS-Coordination: Consensus, e.g. WS-
Transactions and WS-BusinessActivity

Discovery: UDDI did not work, alternative
approaches are investigated and discussed

WS-MetaDataExchange: Important means for
run-time adaptation

Service Oriented Middleware?

M particular challenge for end-to-end properties

B but natural support for vertical integration

Service Replication: The wheel need not be re-
iInvented

A framework for business integration

ICT complexity

4

global-scale
heterogeneous

large-scale
mobile
pervasive

enterprise
multiple administration -
domains

centralized
single administration domain -
client/server

monolithic
(stand-alone or
building block)

Need for adaptiveness,
self-properties, and
autonomous computing

h

Agilit
M

"
i
1

[}
l
.
I

‘MN 80 "S0)
SANTUSEIU |
Buipoddns
SUEMS| PRI
Jusuodiuog
a0Inas

]

Lonauny
SSalISng
MO |JHIOM

ssa0ud
Ssalisng
uoeadood
aibaeds

Business and organizational complexity

- global market

temporary/flexible organizations
| (inter-organization projects,
disaster management)

enterprise organization
- dynamic groups

(intra-organization projects)

- team, group, departmeant

- personal

Dimensions of complexity

large and
complex Need for flexible 5-.'.1, | ICT determines business function EICIT.T'::II'I'I-.LIF: :
composability (cost-driven)
s ™ Infermation management

ICT agility (requirement-driven)

Need for < Susiness function determines ICT | Top-down

Feedback

Emergence

ﬁ {F Meed for interaction/
W

Human Machine Interaction integration of ICT and

{P
4} 4} {} business function

= e = 0= 0

2833 8% 2235

@ 3 BN ® 3J T » & o

=352 D85 Sa3¢

s = W o < B R

O Cc 2o 0 o= F 00

=+ = 5o gEEI S 5w

T 532 @ = & 3 o =

Il and P = O 3 = = .

small an a3 5 = =2
- —
self-contained o

Summary

SOC addresses some needs for adaptive
dependability (coordination, meta-data)

There are many complementary approaches
(e.g., WS-Reliabllity,...), but none widely
adopted yet.

In some cases, SOC is ,yet another technology
(wrapper)“ where the wheel need not be re-
Invented (e.d., replication)

There are new research challenges, In
particular SLA for end-to-end properties

- future research is needed: SOM, actual
realization of interface-“promises”

What SOA can do for
Software Dependability

Karl M. Goschka
Karl.Goeschka@tuwien.ac.at
Vienna University of Technology

System Life Cycle

Development Environment: physical world, human

developers, development tools, production and
test facilities - development faults.

Use Environment: physical world, administrators,

users, providers, infrastructure, intruders.

Use phase: service delivery, service outage,

service shutdown.

Maintenance: repairs and modifications (iterative

development process).

Design-time/run-time convergence

