
 195

Teaching on the Wiki Web
���������	
���

Pace University, New York City: berginf@pace.edu • http://csis.pace.edu/~bergin
A wiki is a completely interactive web site. Any page can be edited
by any visitor. It is driven by a specialized web server or set of cgi
scripts generating dynamic pages from the results of visitor edits. A
visitor edits a page by grabbing the current content of a page in an
ordinary web form and editing it arbitrarily and then saving it back.
Users can also create new pages. Generally the name of a page is the
name of a topic. Most wikis are text only. The syntax of a wiki is
simpler than HTML, but HTML is recognized by some wikis. Some
wikis are very easy to administer. There is no history or automatic
backup, however. A wiki is totally “live.”
I have a jwiki (simple java wiki) for each of my courses. Students
reach it through a URL with a non-standard port number. It gives me
a way to communicate easily and asynchronously with them on
course topics. They also use it to communicate with me and each
other. I also use it to quickly dispel misconceptions and correct errors
I might make in class.
Some features of my course wikis.
Home pages. Each student can put up a home page in which they say
some things about themselves.
Anonymous feedback. This is a page of unsigned posts about the
course. It is a place to gripe if it is needed and a place where students
can respond to the gripes of others.

Search: The wiki supports full text search, giving a list of pages with
the search terms.
Grow your own FAQ. On this page students post questions that they
or I can answer. The resulting list of answered questions can be used
in subsequent courses easily.
Not an assignment. Ideas related to the course (or not) that gives them
things to explore. Anyone can add to this of course. It has pointers to
auxiliary material, etc.
Discussions. In some courses these pages are used to run threaded
discussions on a variety of topics. Topic leaders post the initial
questions.
Captured chats. I do online chats in some courses. I capture the results
and post them for those that can't attend.
Recent Changes. Any visitor can get a list of pages changed in the last
week.
Infrastructure hints. These pages include hints on how to use the
course software effectively and to solve problems that arise.
The wiki I use is an open source Java project. The original wiki
(http://c2.com/cgi/wiki?WelcomeVisitors) was written in perl by
Ward Cunningham and his is the virtual home of the software patterns
community. It is also used for collaborative projects of all kinds, from
online committee meetings to paper preparation.

Very Active Learning of Network Routing
Lillian N. Cassel

Villanova University; Villanova PA USA; cassel@acm.org
Active learning promises students will really own what they have
learned because they have done something rather than only read or
listen. The following classroom exercise has been used at both the
undergraduate and graduate level Computer Networks courses.
There has been no formal study of its effectiveness, but an informal
result is telling: Two routing algorithms presented in class. On an
exam, students are asked to choose one of them and describe it. In
several years of using this classroom exercise, nearly all the
students chose the method we did with this exercise and they all
explained the algorithm correctly.
The classroom exercise: Distance Vector Routing
A number of pieces of string are required, each with a label on each
end. The label identifies a router. The strings indicate connections.
Each router has several strings. The students do not see the
topology of the network. Each student takes the part of a router. If
there are more students than routers, the students can work in pairs
with one passing information and the other recording information.
Each router starts with an empty routing table that must be filled in.
The first entry in the table is the router’s own ID. The distance is
entered as 0. Next, the router looks to see to what other routers it is
connected. It enters the ID of each of its adjacent routers into the
table, with a distance of 1. Now, the router exchanges its table with
all its neighbors and learns of other routers that are two steps away.

For each newly found location, the router enters its ID, the ID of the
router through which the new one is reached at a distance of 1 plus
the distance from the neighbor. If the same destination is
discovered from more than one neighbor, the router chooses the one
with the smallest distance. After recording the information
obtained, the router again exchanges its table with its neighbors,
discovering yet more potential destinations. Soon, the router stops
seeing new destinations and knows how to reach every site in the
network. The router does not know all the connections, but it does
know how to reach every destination.
At that point, each router is given a message to deliver and the
messages move through the network, being stamped with the ID of
each router it passes. We soon see that all the messages are
delivered, and that each follows the shortest available route. And
we still don’t know how the network is connected.
The classroom gets interesting during this exercise. It is generally
not possible for everyone to stay seated. They get up and move
around to be able to reach the endpoints of the string. One year a
string was tangled and we could not get it to unravel, so the students
suggested that we had a wireless connection and happily continued.
The exercise fits easily into one class period and the results appear
to stay with the students after we are finished.

Copyright is held by the author/owner(s).
ITICSE’02, June 24-26, 2002, Aarhus, Denmark.
ACM 1-58113-499-1/02/0006.

 196

A Diagnostic Technique for Addressing Group
Performance in Capstone Projects

��������	�

School of Information Technology, Auckland University of Technology • Email Address: Tony.Clear@aut.ac
INTRODUCTION
“Students’ awareness of their own group processes can be poor (or
Absent)” [1]. Yet professional software development situates much
work within groups, and capstone courses are often designed to
develop capabilities, such as effective teamwork. Supervising group
processes can be challenging, and encouraging students to reflect
upon group functioning can be a delicate exercise. A technique is
outlined below, for group performance review and diagnosis of issues
preventing teams functioning effectively.
THE TECHNIQUE
This technique is adapted from that proposed in [1], p. 249 for
“moderation using student input” and has been applied using the
“peer and self evaluation forms” on p.250 - 251. The technique is
expressed below using the pattern provided in [1] for a bundle of
transferable practice.
This bundle allows supervisors to facilitate a group reflective process,
which supports group improvement and diagnoses areas of group
dysfunction.
The way it works is that the supervisor arranges a face-to-face meeting
with the group, at which peer and self-evaluation forms are issued to
team members. Each student completes a set of forms, one for each
member of the team including themselves. These are handed to the
supervisor who briefly reviews them to compare significant
disparities. The reviews for the first member of the group are then
laid out, and ratings compared, and discussed on an item-by-item

basis. Significant disparities are noted and feedback is elicited from
the rater(s) and the person being rated.
It works better if the facilitator emphasizes the subjective nature of the
evaluations, the fact that these are perceptions to which each person is
entitled, and the goal is to improve the performance of the team, or
diagnose its issues. It is also an opportunity for each member of the
team to experience a form of performance review and direct feedback,
and to learn about themselves from the process. It also works better if
the exercise is conducted in a spirit of openness and generosity, and
manages to avoid judgment and defensiveness. At the conclusion of
the meeting, the facilitator summarizes the outcomes and thanks the
group members for their contribution to the process.
It doesn’t work unless students are willing to take personal risks by
exposing themselves to honest criticism, are prepared to be honest
and direct about the performance of colleagues, and have some
commitment to learning from the process. It makes demands of the
facilitator, who can fail to read the situation carefully, manage the
criticisms, and resolve the issues that arise in a positive and active
manner.
So: use a facilitated meeting for group reflection, performance
review and diagnosis.

REFERENCES
Fincher S., Petre M., Clark M., (Eds.) , (2001), Computer Science
Project Work Principles and pragmatics Springer-Verlag, London pp.
3 –26.

��������	
�������
����
��������
������
�����

William Fone

Staffordshire University, Stoke on Trent, ST4 2AZ, United Kingdom, W.Fone@Staffs.ac.uk
Providing individual feedback to large groups of students can be
difficult. By asking students to record their confidence in multiple
choice test answers the quality of feedback can be improved. In a
“multiple choice question” (MCQ) test the student is asked to make a
selection of one or more correct alternatives from a given list in
response to a “question stem”.
Students rely heavily upon the teacher to provide academic guidance.
To provide individualised guidance to student when group sizes are
large can be difficult. Feedback can be used to inspire a student but it
may also demoralise. De-motivation may occur if the student does not
understand the feedback or can not use it to determine the correct
remedial action to improve. To provide advice that a student can use
effectively will normally require the advice to be personalised. [1]
The methods used to reduce the distortion that could be caused by
guessing include negative marking and value choice [2]. In both these
situations the student may pay a penalty for attempting a question
where there is an element of uncertainty. A student with doubts may
avoid answering some questions if negative marking is being used.
This limits the amount of useful information a grader can obtain from
looking at an answer sheet.
In an attempt to provide better feedback a system has been devised
that seeks to establish the confidence the student has in the given
answer. The student is asked to select an answer .

The student is also asked to indicate the level of confidence they
have in the selection. Choosing; very confident/confident/
uncertain/ very uncertain.
If a selection is marked very confident and the selection is correct
little needs to be said, this is also true if a wrong selection is indicated
to be an uncertainty. However if an incorrect selection is flagged as
confident or very confident then a misconception has been identified.
This provides a filter for the important issues that need to be raised in
feedback. Reducing the amount of feedback yet making it more
potent. Where low confidence was indicated against correct answers
reassuring feedback can be offered to raise confidence and provide
stimulation.
CONCLUSION
By asking students to supply an indication of how confident they feel
about their answers in MCQs misconceptions and insecurities can be
identified. This allows personalised feedback to be given that is
concise yet of high value. The overheads to the student are minimal.

REFERENCES
[1] Gipps, C. V., 1994. Beyond testing towards a theory of
educational assessment. London. Falmer Press.
[2] Walker, D. M., 2001. A note on multiple choice exams with
respect to students risk preference and confidence. Assessment &
Evaluation in Higher Education. Vol. 26 No 3 pp. 261-2

Copyright is held by the author/owner(s).
ITICSE’02, June 24-26, 2002, Aarhus, Denmark.
ACM 1-58113-499-1/02/0006.

 197

The Student Record Book:

Showing the Value of Documentation
Robyn Gibson

School of Computing,University of Tasmania, Australia,R.Gibson@utas.edu.au
Students in an introductory programming subject are encouraged to
keep a record book of their activities. By the end of semester many
have come to realise, almost to their surprise, that documentation is
useful. The encouragement includes the use of “carrots” and “sticks”.
WHAT IS IN THE RECORD BOOK?
It is a folder in which students record what they do and what they find
during their study of the subject.
A few components are prescribed. These are:
• Time log sheets. Students are expected to log all the time they
spend on work in the subject and to classify each entry into one of
four categories: (C)lass, (L)ab, (O)ut of lab, (R)ecording.
• Weekly summaries of the time logs and a self-assessment of
current progress and understanding.
• A front page with the student’s name and other details.
• The rest of the book contains whatever material students choose.
They are encouraged to include such things as:
• Their findings while working on tutorial activities
• Notes that they record during lectures
• Annotated hard copies of programs that they have written
THE CARROTS AND STICKS
The record book is the only paper that students are permitted to take
into the final examination. This is the big carrot.

A few marks are given during semester for having weekly summaries
up to date. This is the little carrot.
Students are required to have their record book with them at tutorials.
Otherwise they are recorded as absent. This is the stick.
DOES THE RECORD BOOK SUPPORT STUDENTS’
LEARNING?
It seems so - in a number of ways.
Keeping a record book means that students are obliged to have all
their material for the subject in the same place and organised in some
way. This is a skill that many beginning university students lack.
Students are encouraged to use their weekly summaries to reflect on
the effectiveness of their study techniques. Tutors, when checking the
books, try to make constructive suggestions. For instance, if a student
is spending long hours in the lab and not much time out of the lab, the
tutor might suggest that they spend more time out of the lab planning
and desk checking their programs.
DO STUDENTS REALISE THE IMPORTANCE OF
DOCUMENTATION?
It seems so. The value of having everything organised and in one
place becomes apparent quickly. Most students work willingly on
their books since they realise that this work in the semester will lead
directly to an easier time in the exam.
In the longer term, students have seen that documentation allows
them to reflect on their work and to see ways to improve.

A Musical Approach to Teaching Design Patterns
���������	�

Department of Computer Science, University of Auckland. J.Hamer@cs.auckland.ac.nz
In case you missed the signs, design patterns [2] have suddenly
become a core programming topic. The Computing Curricula 2001
[1] includes the topic as a major part of SE1 “software design,” and in
a recent survey [4] software practitioners ranked “software design and
patterns” as one of the areas of knowledge they consider most
important to their work.
Teaching design patterns, however, is not so easy. Patterns need to be
studied in the context of a software design project; to do otherwise
renders the topic asomatous. We have met with some success in
using “musical composition” to teach a number of standard design
patterns, including Composite, Decorator, Visitor, and Factory. The
idea of musical composition comes from Paul Hudak’s Haskore
system [3].
The project centers on the design of a “musical object,” by which we
mean either a note (with a pitch and duration), a rest (having just a
duration), or a combination of musical objects. The combinations can
be contemporaneous (as for a chord), or sequential (like a scale). The
two primitive music types together with the combinators come
together using the Composite inheritance pattern. Decorators can
then be added to describe tempo changes (the scaling of the duration
of all parts of a musical object), pitch transpositions, and to assign
different instruments to parts of a composition.

With the descriptive part of the system so formed, a Visitor can be
used to traverse the musical tree and generate a linear sequence of
“musical events,” which can then be written as type 1 MIDI files for
playback on most standard PC equipment. As well as learning about
design patterns, students are given the opportunity to try their hand at
transcription or composition. Some examples of their work can be
found at http://www.cs.auckland.ac.nz/courses/ compsci360fc/
archive/1999/Ass2/PickOfTheBest/.

REFERENCES
[1] ACM and IEEE Computer Society, Final report of the

Computing Curricula 2001 project (CC2001),
<http://www.computer.org/education/cc2001/>

[2] Gamma, E., Helm, R., Johnson,R., and Vlissides,J. Design
Patterns Elements of Reusable Object-Oriented Software,
Addison-Wesley (1994.)

[3] Hudak, P. The Haskell School of Expression: Learning
Functional Programming Through Multimedia, Cambridge
University Press (2000)

[4] Lethbridge, T. “What knowledge is important to a software
professional?” IEEE Computer (May 2000)

Copyright is held by the author/owner(s).
ITICSE’02, June 24-26, 2002, Aarhus, Denmark.
ACM 1-58113-499-1/02/0006.

 198

Self-Assessment as a Powerful Learning Experience
������������

Department of Education in Science and Technology, Technion – Israel Institute of Technology, Haifa 32000 ISRAEL,
lapidot@tx.technion.ac.il

Every teacher would like to have students that are motivated
towards autonomous learning with self-enthusiasm. This Tip
presentation will offer one method for achieving such a goal.
For three consequential years (1998-2000) I was teaching a
“computing literacy teaching methods” course for CSE students in
the Technion. The focus of the course was on computing teaching
methods and learning processes.
A major part of the course was devoted to a project the students had
to develop. They had to collect data, analyze it, organize and
represent it to their colleagues. They had to work in small teams and
could choose their own topic as long as they were using different
computing tools such as Internet, email, spreadsheet, and others.
The projects ranged topics such as: Wine, women in Islam,
Michelangelo, UFO, wedding traditions, Greek mythology, and
Marathon history.

At the beginning of the course, the students were told the
assessment of their projects would be determined together. Several
meetings of the course were devoted to discussions and decisions on
the assessment and grading of these projects.
In two of the three courses the students developed a complicated
assessment method that was a combination of self-assessment,
colleagues and teacher assessment. They agreed on 10-13 different

criteria for judging their projects, such as clarity, design, creativity,
and teamwork. They decided which percentage of the grade should
be given to each stage of the data collection, analyzing, organization
and representation.
In the third course, students decided to give everyone the highest
grade possible 100. We had a non-signed contract that I will accept
their decision and give everyone 100 as a final grade in the project
(which was 50% of the course grade) and they will do their best to
justify this grade. From this point on they had to determine how
hard they were willing to work.

As it turned out, I never saw students more committed to their work.
They spent more time with their projects than I ever saw before.
Their projects were the best one could expect and they became
experts in their fields as one could expect from a learning period of
half a semester.
These exciting three experiences pose several questions, such as:
How far could we go in order to allow our students experience such
meaningful learning experiences? Is it possible to determine similar
requirements for a project that will focus on hard-core topics of
computer science?
ItiCse participants are welcome to share their thoughts about these
questions and others that might rise from this Tip presentation.

Evaluating Student Team Project Experiences
��	������	�

Rose-Hulman Institute of Technology, Terre Haute, Indiana, USA, laxer@rose-hulman.edu
The first two courses in the computer science major at Rose-Hulman
(Algorithm & Program Design and Data Structures) each have a five-
week team-programming project as a component of the course. At the
end of the projects, in addition to their program code, each team has
to submit a user’s manual and a technical manual for their product,
and give a 15-20 minute oral presentation. The students are also
required to evaluate the project experience on an individual basis.
To facilitate the project evaluation, I designed three forms. One form
is given to each team leader to complete, one form is given to the
other team members, and the third form is used by me to evaluate
(i.e., grade) the project. The general team member evaluation form
asks the student if, in the student’s opinion, everyone contributed his
or her fair share to the project, how they viewed their time
commitment to the project, what the strengths and weaknesses of their
team leader were, to summarize the team dynamics on the project,
and to comment on how worthwhile the project was. The evaluation
form the team leaders complete asks them about the contributions of
their team members; recommendations for “pay raises,”
“promotions,” and “dismissals;” team dynamics; their strengths and
weaknesses as team leaders; and how worthwhile the project was. The
form I use to evaluate the projects has areas for me to comment on
their oral presentation, the software quality, the program design, and
the documentation, as well as provide a numeric grade in each area.

I ask all students to sign the forms, making them stand behind what
they write, just like I will sign their project evaluation forms and stand
behind the grade I give them and the comments I write. I assure them
the information they provide is strictly confidential; only I will read
the forms. The information is used to adjust borderline grades in the
course at the end of the term.
Overall, I have been extremely pleased with the results of these
evaluations. I have used these forms for several years and have
always gotten well written, almost professional quality comments
from my students. They have had plenty of praise for their peers, but
they have also told me, in a proper way, when things did not go quite
so well. I continue to use these forms when I have team projects to
evaluate. Sample copies of the forms will be available at the
conference Tips & Techniques session.

CATEGORIES & SUBJECT DESCRIPTORS
K.3.2 [Computers and Education]: Computer and Information
Science Education---Computer science education; K.6.1
[Management of Computing and Information Systems]: Project and
People Management---Staffing.

GENERAL TERMS: Management.

Copyright is held by the author/owner(s).
ITICSE’02, June 24-26, 2002, Aarhus, Denmark.
ACM 1-58113-499-1/02/0006.

