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Abstract. Many processes in the cell involve interaction among the
proteins and determination of the networks of such interactions is of im-
mense importance towards the complete understanding of cellular func-
tions. As the experimental techniques for this purpose are expensive
and potentially erroneous, there are many computational methods being
put forward for prediction of protein-protein interactions. These meth-
ods use different genomic features for indirect inference of protein- pro-
tein interactions. As the interaction among two proteins is facilitated
by domains, there are many methods being put forward for inference
of such interactions using the specificity of assignment of domains to
proteins. We present here an heuristic optimization method, particle
swarm optimization, which predicts protein-protein interaction by using
the domain assignments information. Results are compared with another
known method which predicts domain interactions by casting the prob-
lem of interactions inference as a maximum satisfiability (MAX-SAT)
problem.

1 Introduction

Computational inference of protein-protein interactions is an interesting and
challenging area of research in modern biology. Computational methods infer
potential interactions using one or more genomic features related to the protein
pairs as predictor attributes. Many genomic experiments have produced some
high quality information regarding genes/proteins which is not directly related
to their interaction but could potentially be used for such a purpose.

Many computational methods use a single type of genomic data to pre-
dict protein interactions,e.g, using similarity in phylogenetic profiles, gene fusion
methods, or the hypothesis involving co-expression or co-localization of interact-
ing partners. Other methods integrate different genomic features using a variety
of machine learning methods to infer new protein-protein interactions. In [1–3],
one can find a few recent reviews regarding experimental and computational
methods for protein-protein interaction prediction.

An important area under focus in many research projects is to infer protein
interactions by looking at their domain compositions. Domains are evolution-
arily conserved sequence units which are believed to be the responsible for the



interactions among the proteins to which they belong. There are many different
methods which infer protein interactions using information on their domain com-
position. A protein pair is thought to be physically interacting if at least one of
their constituent domain pair interacts. Most of the proteins in organisms like S.

Cerevisiae are assigned one or more domains and information about the domains
pairs in high confidence experimentally determined protein interaction data sets
can be used to infer domain-domain and hence, protein-protein interaction. As
there are no specific domain interaction data available, many methods have been
developed for finding potential domain interaction from available experimentally
determined high confidence protein-protein interaction datasets and then that
information is used to predict back the novel protein-protein interactions as
well [4–7]. In other words, these methods infer domain-domain interactions from
protein protein interactions and use these inferred domain interactions to pre-
dict new protein-protein interactions, given the composition of domains in those
proteins.

In a recent work [8, 9], a combinatorial approach is proposed for the inference
of protein interactions using domain information. In the framework they use, this
inference problem is presented as a satisfiability (more precisely MAX-SAT)
problem, as explained in detail in Section 2, which is then solved using linear
programming method by relaxing some of constraints of the original MAX-SAT
problem.

In this work we propose the use of particle swarm optimization to solve this
maximum satisfiability problem, using the problem formulation based on the
one originally proposed in [8] and we also implement the technique employed by
them to compare the results. Particle swarm optimization (PSO) is a population
based heuristic optimization technique [10, 11], inspired by the social behavior of
bird flocking or fish schooling [13]. It has been successfully used for optimizing
high dimensional complex functions, mostly in continuous application domains.
A good recent review about the different developments and applications on PSO
can be found in [14].

This paper is organized as following. Section 2 details the formulation of the
protein interaction problem into a MAX-SAT problem, as it is done originally
in [8]. Section 3 proposes the use of a Particle Swarm Optimization algorithm
(PSO) for this problem and discusses the related design issues for the use of PSO.
In section 4, data sets about the domain assignments and protein interactions
used in the experiments are described, and computational results are reported.
Finally, Section 5 concludes the paper.

2 Protein Interaction Inference as MAXSAT Problem

We follow the problem formulation as is done in [8, 9], based on the hypothesis
that a protein pair is interacting if and only if at least one pair of their domains
(one from each protein) interact and non-interacting otherwise. We denote P =
{p1, p2, ..., pM} as a set of proteins, D = {d1, d2, ..., dN} as a set of domains and



Ωij as the set of unique domain pairs contained in a protein pair (pi, pj). Let us
consider two variables defining protein-protein and domain-domain interactions.

Pij =

{

1 if proteins pi and pj interact
0 Otherwise

Dnm =

{

1 if domains dn and dm interact
0 Otherwise

Given the domain-domain interactions, we can predict the protein pairs in-
teracting or non-interacting depending upon their corresponding domain pairs
as:

P ′

ij =
∨

dnm∈Ωij

Dnm (1)

Where the true outcome of this logical operation means the corresponding
protein pair is interacting (i.e, 1) and false means non-interacting (i.e., 0). Us-
ing this relationship one needs to find the best assignment of 1’s and 0’s to
the domain variables which best represents the data, i.e., a SAT (satisfiability)
assignment satisfying all interacting and non-interacting protein pairs. As we
know there are many false positives and false negatives in experimental data,
such an assignment is not possible to find, so we will look for an assignment
which satisfies the maximum number of relationships (clauses), which is known
as the MAX-SAT problem. These problems are very difficult to solve in general
and their exact solutions are not possible in general. This problem is solved in
[8] using linear programming by relaxing some of the constraints as described in
equations 2 and 3. The following linear program was formulated by relaxing the
binary constraints on the variables.

Minimize
∑

ij

|Pij − P ′

ij |

Subject To:
∑

dnm∈Ωij

Dnm ≥ Pij ∀(i, j) (2)

0 ≤ P ′

ij ≤ 1 ∀(i, j)

0 ≤ Dnm ≤ 1 ∀(n, m)

Pij is 1 or 0 if the two proteins pi and pj interact or not respectively, according
to experimental data. Equation 2 can also be expressed in the following form.

Minimize
∑

Pij=0

P ′

ij −
∑

Pij=1

P ′

ij

Subject To:
∑

dnm∈Ωij

Dnm ≥ Pij ∀(i, j) (3)

0 ≤ P ′

ij ≤ 1 ∀(i, j)

0 ≤ Dnm ≤ 1 ∀(n, m)



The real values obtained for variables P ′

ij and Dnm after optimization represent
the probabilities of they taking the integer value 1, and a threshold can be used
to convert them back to binary.

3 Binary Particle Swarm Optimization Algorithm for

Inference of Protein Interactions

Particle swarm optimization (PSO) is a population-based stochastic optimization
technique developed by Eberhart and Kennedy in 1995 [10–12], inspired by the
social behaviour of bird flocking or fish schooling.

PSO shares many similarities with evolutionary computation techniques such
as Genetic Algorithms (GA). The system is initialized with a population of ran-
dom solutions (particles) and searches for optima of the given objective function
by iteratively updating the positions of those particles. However, unlike GA,
PSO has no genetic operators such as crossover and mutation. In PSO, the
potential solutions, called particles, fly through the problem space as they are
attracted by the other particle positions in the neighbourhood representing good
quality candidate solutions. An individual’s neighbourhood may be defined in
several ways,configuring somehow the ”social network” of the individual. Several
neighbourhood topologies exist (full, ring, star, etc.) depending on whether an
individual interacts with all, some, or only one of the rest of the population.

PSO has shown promising results on many applications, especially contin-
uous function optimisation. A good recent review of relevant research in this
area can found in [14]. The basic idea of the proposed work here is to extend
the application of PSO to a more challenging real world problem, namely the
inference of protein interactions, which can be framed as an optimization prob-
lem (as discussed in section 2) given the assignment of domains to the proteins,
where the goal is to find the network of interactions that best explains the given
experimental dataset.

In the Binary version of PSO individual components of a candidate solution
(particle) are not real valued, rather 1 or 0, and velocity is interpreted as pro-
portional likelihood, which is used in the logistic function to generate a particle’s
binary positions, i.e.

vt+1

id = w ∗ vt
id + c1 ∗ φ1 ∗ (pt

id − xt
id) + c2 ∗ φ2 ∗ (pt

gd − xt
id) (4)

xt+1

id = 1 if φ3 <
1

1 + e−k∗v
t+1

id

else 0 (5)

Where xid ∈ {0, 1} is the value for the dth dimention of particle i and vid is
the velocity, which is clamped between to a maximum value, |Vmax|. pid and pgd

are the best positions in the dth dimenstion of particle i and its neighbourhood’s
best particle g respectively. t is the iteration index, and w is the inertia weight,
determining how much of the previous velocity of the particle is preserved. This



plays the role of balancing the global and local search ability of PSO [15]. Pa-
rameter k in the logistic function is a positive constant which controls the shape
of the curve. c1, c2 are two positive acceleration constants while φ1, φ2 and φ3 are
three uniform random numbers sampled from U(0, 1). For the velocity update
equation, in terms of social psychology as a metaphor, the second part of the
right hand side of the velocity update equation represents the private thinking by
itself; the third part is the social part, which represents the cooperation among
the individuals.

3.1 Solution Representation and Objective function

Each particle represents a candidate solution to the inference problem. The po-
sition vector of particle m is Xm = {dij} where index ij runs over all unique
domains pairs in the data, i.e, a particle consists of a binary string where each
bit refers to a distinct unique domain pair in the training data. These are the
bits which the particle will try to optimise during the course of evolution by
updating its velocity and position according to equations 4 and 5, by interacting
with its neighbourhood. The gbest version of binary PSO is used for these exper-
iments. Each protein pair expressed in terms of its constituent domain pairs is a
clause from the point of view of logic. The objective is to maximize the number
of satisfied clauses or equivalently minimize the number of unsatisfied clauses.
Let us define a variable P ′

ij for each protein pair (pi, pj) to indicate whether
it is predicted interacting or not according to the given assignment of domain
pairs by some particle (solution). The objective function can be expressed as a
minimization problem.

Min f =
∑

ij

| Pij − P ′

ij |

Such that P ′

ij =
∨

dnm∈Ωij

Dnm (6)

4 Experimental Design and Results

4.1 Protein-Protein Interaction and Domain Assignment Data

We obtained domain assignments from SUPERFAMILY data base [16, 17]. Su-
perfamily database is a library of Hidden Markov Models that represents all
proteins of known structure. These models are used to annotate the sequence of
over 50 genomes. For S. Cerevisiae organism there exists 3346 sequences with
at least one domain assignment, which is about 50% of the total sequences. In
total 4681 domains are assigned, and there are 685 superfamily domains with at
least one assignment.

We obtained the sS. Cerevisiae interaction data set from DIP (Data base
of Interacting Proteins [18]). We obtained nearly 5000 high confidence positive



interaction in DIP which is a subset of experimentally determined interaction
in DIP, called CORE. Negative interactions are hard to find. As used by many
researchers in this field (e.g. [20],[21]), we use protein pairs being defined as non-
interacting if they are not in same cellular compartment. This gives us many
hundreds of thousand of protein pairs which are not co-localized. This is a huge
data set compared with the number of positives, so we randomly sample some
negatives from this pool of possible negatives, in order to obtain a more bal-
anced class distribution for the classification algorithm. Then we only want to
keep those positive or negative pairs which have at least one domain assignment
for each protein in the pair in the superfamily database, as there are some pro-
teins which do not have any significant domain assignment. This process reduces
our data set of positive interactions to 3070 pairs. We also created two sets of
negative examples, one with the same number of negative examples (protein
pairs) as the number of positive examples, i.e., 3070, while the other with 4000
negatives. In our experiments, we will call the first dataset containing 3070 pos-
itive interactions and 3070 negative interactions as data1, while the other data
set contraining 3070 positive interactions and 4000 negative interactions will be
called as data2.

4.2 PSO Parameters

We rely on the standard PSO parameters settings [13]. The two constants c1

and c2 are set to 2.0, while parameter k in the logistic function is set to 5.0.
Maximum velocity (Vmax) is set to 4.0 and individual particle’s velocities in each
dimension are initialized uniformly between −Vmax and +Vmax. An important
issue regarding the initialization of swarm is analyzed in detail.

PSO Initialization: A Data-Driven Approach We have to decide a starting
configuration for PSO, e.g., the probability of a particle taking the value 1 (or
0) in each dimension, for all particles in the swarm. Usually the population
in PSO is initialized completely randomly, but PSO has dependance on initial
conditions (in this case, how many 1’s or 0’s we put into the system at the start).
Hence, one needs to find an objective and consistent way to decide the initial
configuration,i.e., initial number of 1’s (or zeros for that matter) in the system.

In our case, one solution to this issue is to use the domain assignment in-
formation apriori to calculate the initialization probability (of being 1 or 0) for
each domain separately, and use that to probabilistically assign 1 or 0 value to
all the domain pair variables, that is, for every domain pair ij, we calculate the
counts of being in interacting protein pairs and non-interacting protein pairs,
denoted Cij

p and Cij
n respectively. We have the probability of being in state 1

given by Eq. 7.

Fij =
Cij

p

(Cij
p + C

ij
n )

(7)



Now for each domain pair ij, we generate a random number r from a uniform
probability distribution U(0, 1). If this number is less than Fij , we assign 1 to
that domain else 0. We use this scheme for all the experiments done using PSO.

4.3 Cross-validation: Predicting Domain-Domain Interactions

In order to solve the linear program formulated in equation 4, as originally done
in [8], we used GNU Linear Programming Kit [19](version 4.7). We used the
interior point method which is a polynomial time linear programming algorithm
within GNU Linear Programming Kit. The P ′

ij values for protein pair i, j are
calculated by summing over all domain pair variables Dnm ∈ Ωij and dividing
by the number of domain pairs each protein pair contains in order to keep it
within the bounds set in the linear program in equation 3. Since the variables
Dnm are not binary now, we used a threshold of 0.6 to convert them back to
binary form, in accordance with the original work.

An important observation about our data sets is that many of the domain
pairs occur either in positive protein pairs or negatives protein pairs only. This
probably has something to do with our composition of the negative data. So, in
the case of PSO, we in fact exclude those domain pairs from the PSO update
process, i.e., they are fixed as either zero or one, depending upon which class
of protein pairs they occur, but indeed they are included while evaluating the
objective function in equation 6. This does not affect the prediction accuracy,
but it greatly improves the running time of the algorithm, since the algorithm
has fewer unknown variables to optimize.

For both data sets, we do a 10-fold cross validation procedure. For each
experiment, we divide the data (for both positive and negative classes separately)
randomly in ten equal folds. Each time we use nine out of ten folds as training
and the remaining one fold as a test. This process is repeated ten times each
time using a different fold as the test set. For data1 in the Tables 1 and 2, we
used 100 particles and PSO was allowed to run for 500 iterations, while in the
case of data2, the number of iterations was increased to 1000.

For each of the 10 iterations of cross-validation procedure, we infer the do-
main pair interactions from the training set and use those interactions to predict
protein pair interactions in the test set by using the relationship in equation 1,
which can also be expressed in the following algebraic form.

P ′

ij = 1 −
∏

dnm∈Ωij

(1 − Dnm) (8)

Tables 1 and 2 report the average results over all 10 cross-validation folds
with corresponding standard deviations, for both datasets corresponding to the
particle swarm optimization algorithm as well as the linear programming method
(referred as LP in tables) respectively. TPR in the tables is defined as true
positives over total number of positives and FPR is defined as false positives
over total number of negatives in the data. Sensitivity is the same as TPR while
Specificity is defined as 1−FPR. The performance of both methods is reported



in terms of accuracy of prediction on test data, their corresponding true and
false positive rates as well as the number of domain pairs predicted interacting
(column ”No. of 1’s” in the tables). Protein pairs in test data which do not
contain any domain pair from the training data were removed.

Table 1. Results for prediction of protein-protein interactions on test data, data1

Method No. of 1’s Accuracy TPR FPR Sensitivity*Specifity

PSO 1875 ± 11.06 0.826 ± 0.02 0.889 ± 0.015 0.289 ± 0.038 0.63±0.039

LP 1985 ± 9.68 0.81 ± 0.016 0.95 ± 0.01 0.45 ± 0.04 0.52±0.039

Table 2. Results for prediction of protein-protein interactions on test data, data2

Method No. of 1’s Accuracy TPR FPR Sensitivity*Specifity

PSO 1823 ± 13.32 0.81 ± 0.012 0.859 ± 0.017 0.253 ± 0.017 0.64±0.18

LP 1956 ± 13.42 0.78 ± 0.013 0.938 ± 0.014 0.437 ± 0.015 0.53±0.02

We can see from the Tables 1 and 2 that PSO produced better and more
balanced results with a much lower rate of false positives. Results with two data
sets, i.e., when we increase the proportion of negative examples from data1 to
data2, are not much different in the case of PSO, while they are significantly
different in the case of the linear programming method. A statistical signifi-
cance test (more precisely, a two-tailed student’s t-test ) was performed using
the accuracy of both methods, and we obtained P-values for the paired t-test as
0.00073 and 0.0000026 at 95% confidence level corresponding to data1 and data2

respectively. The most probable explanation for these differences lies in the def-
inition of the linear program in equation 3, which relaxes the constraint which
eventually favours the positive interactions, hence much more false positive pre-
dictions. Fig. 1 shows the comparison between the two methods according to
the true positive rate over false positive rate (TPR/FPR) for different folds (for
data1). A qualitatively similar situation occurs for data2, and those results are
not shown here for the sake of simplicity.

5 Conclusions

In this work, we have addressed an important bioinformatics problem, namely,
the prediction of protein-protein interactions using information on their domain
assignments. Particle swarm optimization is a relatively recent but very sucessful
method in different optimization problems, but so far it has never been evaluated
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Fig. 1. Ratio of true positive rate and false positive rate for different folds of data1

in the type of bionformatics problem addressed here. The problem has been cast
as a combinatorial optimization problem, which allowed us to propose a novel
use for a binary PSO algorithm. We have compared results with a known method
which solve the same problem using linear programming techniques. Compara-
tive results in terms of predictive accuracy on test data (unseen during training)
show that PSO is a competitive optimizer in an application domain involving
binary variables as well. We show that PSO not just achieves significantly better
predictive accuracy overall but also reduces the false positive predictions.

As far as the prediction of protein-protein interaction in general is concerned,
domain information might not be enough to determine completely the protein
interactions, due to other possible factors. As a future research direction, it will
be worth integrating this information with other features like RNA co-expression,
etc., and to use data mining techniques for finding some associations between
them which can be helpful in further understanding the mechanisms of protein
and domain interactions.
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