
Automatically Evolving Rule Induction

Algorithms Tailored to the Prediction of

Postsynaptic Activity in Proteins

Gisele L. Pappa

A2SI - ESIEE - Université Paris-Est

Noisy-le-Grand, BP99, 93162

giselepappa@gmail.com

Alex A.Freitas∗

University of Kent,

Computing Laboratory,

Canterbury, UK, CT2 7NF,

Tel.: +44 (0)1227 82-7220

A.A.Freitas@kent.ac.uk

Abstract

It is well-known that no classification algorithm is the best in all appli-

cation domains. The conventional approach for coping with this problem

consists of trying to select the best classification algorithm for the tar-

get application domain. We propose a refreshing departure from this

∗Corresponding author

1

approach, consisting of automatically creating a rule induction algorithm

tailored to the target application domain. This work proposes a grammar-

based genetic programming (GGP) system to perform “algorithm con-

struction”. The GGP is used to build a complete rule induction algorithm

tailored to 5 well-known UCI data sets and a protein data set, where the

goal is to predict whether or not a protein presents postsynaptic activity.

The results show that the rule induction algorithms automatically con-

structed by the GGP are competitive with well-known human-designed

rule induction algorithms. Moreover, in the postsynaptic case study, the

GGP was more successful than the human-designed algorithms in dis-

covering accurate rules predicting the minority class – whose prediction

is more difficult and tends to be more important to the user than the

prediction of the majority class.

Keywords: rule induction algorithms, genetic programming, postsynap-

tic proteins, classification.

1 Introduction

Several decades of research in classification have shown that no classification

algorithm is the best in all application domains [15, 17]. The impact the choice

of a suitable algorithm has in the classification model generated from the data is

so big that meta-learning [30] emerged as a whole new research area dedicated

to study this problem.

In particular, the STATLOG [17] and METAL [25] projects put together

the efforts of many researchers to learn how to characterize data sets via “meta-

attributes”, i.e., attributes describing an entire data set, rather than describ-

ing an individual example. Then they used these meta-attributes to create a

classification “meta-model” capable of selecting the most suitable classification

2

algorithm for each data set.

Despite the progress obtained with these efforts, the choice of which classi-

fication algorithm to apply to a specific data set is still an open problem. This

is because there are two major limitations in almost all of the meta-learning

techniques. First, they have to identify the best meta-attributes which charac-

terize the data. Choosing the right set of meta-attributes can be an extremely

difficult task, given the huge diversity of classification data sets. Second, they

perform “algorithm selection”. They try to select the best algorithm out of a

small pre-defined set of algorithms.

In order to bypass these two limitations associated with meta-learning ap-

proaches, this work focuses on automated “algorithm construction”. We propose

the use of a grammar-based genetic programming (GGP) [31] system to auto-

matically construct rule induction algorithms tailored to a specific application

domain.

The proposed approach avoids the limitations of conventional meta-learning,

and presents two main advantages over the latter: (a) it can produce potentially

better algorithms than the available ones, and the system can be always updated

to produce more new rule induction algorithms by simply modifying the gram-

mar the GGP works with; (b) it presents a much cheaper alternative to the

manual design of rule induction algorithms, specially because it can produce a

rule induction algorithm tailored to a specific data set.

We chose to construct rule induction algorithms instead of any other type

of classification algorithms for two main reasons: first, because of the type of

human-comprehensible knowledge they generate. Knowledge comprehensibility

is in general important in data mining [8, 26, 32]. Secondly, because research

in the rule induction field has being carried out for more than 30 years and

certainly produced a large number of algorithms which share a lot of common

3

points (“building blocks”) [10], and these building blocks are relatively well un-

derstood and identified in the literature. In other words, we could say that

these algorithms are usually obtained from the combination of a basic rule in-

duction algorithm (typically following the sequential covering approach) with

new evaluation functions, pruning methods and stopping criteria for refining

or producing rules, generating many “new” and more sophisticated sequential

covering algorithms.

Hence, in some sense, we can say there was a “natural evolution” of rule

induction algorithms in the past decades. We want to take advantage of this

“natural evolution” and extend it to a new type of evolution, by automating the

design of new rule induction algorithms by means of an evolutionary algorithm

– more precisely, a grammar-based genetic programming (GGP) system.

GGP is a special type of genetic programming [14] that incorporates in its

search mechanism prior knowledge (expressed in the form of a grammar) about

the problem being solved. Intuitively, GGP is an appropriate tool for automat-

ically evolving rule induction algorithms for two main reasons. First, it makes

use of what we already know about the design of rule induction algorithms. In

other words, the grammar used by GGP is considered to be based on good-

quality prior knowledge because it is based on a lot of research experience in

the design of successful rule induction algorithms, accumulated during decades

of research. Second, it provides an automatic way of performing a global search

that evaluates, in parallel, many combinations of elements of rule induction

algorithms, which can find new, potentially more effective algorithms.

The GGP system described in this work was first proposed in [24]. How-

ever, this work has four important differences with respect to [24], as follows.

First, the work described in [24] involved a completely different framework: to

automatically evolve robust rule induction algorithms, which could be later ap-

4

plied to virtually any classification data set. We emphasize that, in this work,

although the basic GGP system is the same as in [24], we propose a very differ-

ent framework, where the GGP automatically evolves rule induction algorithms

tailored to a specific data set. Second, besides presenting results involving a set

of well-known UCI data sets [19], this paper addresses a case study in bioin-

formatics, namely the prediction of postsynaptic function in proteins. Third,

we study the impact that changing the fitness function of the GGP has on the

rule induction algorithms generated, which was not done in [24]. Fourthly, we

also investigate in detail the differences between the biases of the automatically

evolved and manually-created rule induction algorithms, which again was not

done in [24].

The remainder of this paper is organized as follows. Section 2 briefly dis-

cusses rule induction algorithms. Section 3 gives a brief overview of GGP.

Section 4 introduces the proposed GGP, while Section 5 describes some related

work. Sections 6 and 7 report the results of automatically constructing rule

induction algorithms for five well-known UCI data sets and for the postsynaptic

data set, respectively. Finally, Section 8 presents the conclusions and describes

future research directions.

2 Rule Induction Algorithms

This work focuses on classification models consisting of a set of IF-THEN rules,

produced by rule induction algorithms following the sequential covering strat-

egy. The sequential covering strategy (also known as separate and conquer) is

certainly the most explored and most used strategy to induce rules from data.

It was first employed by the algorithms of the AQ family [16] in the late sixties,

and over the last few decades was applied again and again as the basic strategy

in rule induction systems.

5

The separate and conquer strategy works as follows. It learns a rule from a

training set, removes from it the examples covered by the rule, and recursively

learns another rule which covers the remaining examples. A rule is said to cover

an example e when all the conditions in the antecedent of the rule are satisfied

by the example e.

The learning process goes on until a pre-defined criterion is satisfied. This

criterion usually requires that all or almost all examples in the training set are

covered by a rule. The methods based on this approach differ from each other

in four main points [10], although the last one can be absent:

1. The representation of the candidate rules, which can be done with propo-

sitional or first-order logic.

2. The search mechanisms used to explore the space of candidate rules (usu-

ally a bottom-up, top-down or bi-directional strategy combined with a

greedy, beam or best-first search).

3. The way the candidate rules are evaluated, using heuristics such as infor-

mation gain, information content, Laplace accuracy, confidence, etc.

4. The pruning method, which can be used during the production of the rules

(pre-pruning), in a post processing step (post-pruning) to help avoiding

over-fitting and handling noisy data, or even on an integrated fashion.

The overall structure of the grammar which the GGP is based on was con-

ceived by taking into account these four main elements and the way they can

be combined.

6

3 Overview of Genetic Programming

Evolutionary computation is a research area dedicated to the study of compu-

tational intelligence algorithms inspired by Darwin’s concepts of evolution and

survival of the fittest. Its application is being very successful because of its

global search and associated implicit parallelism and noise tolerance [1, 2]. Ge-

netic Programming (GP) [14, 2] is an area of evolutionary computation which

aims to automatically evolve computer programs. Its success is backed up by

a list of 36 human-competitive solutions, where two created patentable new

inventions [11].

Essentially, a GP algorithm evolves a population of individuals, where each

individual represents a candidate solution to the target problem. These individ-

uals are evaluated using a fitness function, and the fittest individuals are usually

selected to undergo reproduction, crossover and mutation operations. The re-

production operator simply copies the selected individual to next generation,

without any alteration. Crossover swaps genetic material (parts of candidate

solutions) between two individuals, whereas mutation replaces some part of the

genetic material of an individual with new randomly-generated genetic material.

The new individuals produced during these processes create a new popula-

tion, which replaces the old one. This evolution process is carried out until an

(near-) optimum solution is found, or a pre-established number of generations

is reached.

In this work, we are particularly interested in one type of GP: grammar-based

genetic programming (GGP) [31]. As the name suggests, the main difference

between a traditional GP and a grammar-based one is the definition and use of a

grammar. The motivation to combine grammars and GP is two-fold [21]. First,

it allows the user to incorporate prior knowledge about the problem domain in

7

the GP, to guide its search. Second, it guarantees the closure property1 through

the definition of grammar production rules.

Grammars are simple mechanisms capable of representing very complex

structures. Context Free Grammars (CFG), the focus of this work, can be

represented as a four-tuple {N, T, P, S}, where N is a set of non-terminals, T

is a set of terminals, P is a set of production rules, and S (a member of N) is

the start symbol. The production rules have the form x ::= y, where x ∈ N and

y ∈ {T ∪ N}.

Grammars are usually described using the Backus Naur Form (BNF) [18].

When using the BNF notation, production rules have the form <expr> ::=

<expr><op><expr>, and symbols wrapped in “<>” represent the non-terminals

of the grammar. Three special symbols might be used for writing the production

rules in BNF: “|”,“[]” and “()”. “|” represents a choice, like in <var> ::=x|y,

where <var> generates the symbol x or y. “[]” wraps an optional symbol which

may or may not be generated when applying the rule. “()”is used to group a

set of choices together, like in x ::= k(y|z), where x generates k followed by y

or z.

A derivation step is the application of a production rule from p ∈ P to some

non-terminal n ∈ N, and it is represented by the symbol =⇒. Consider the

production rules x ::= yz and y ::= 0|1. A derivation step starting in x would

be represented as x =⇒ yz and yz =⇒ 0z.

In the GGP algorithm used in this work, each individual of the population is

generated by applying a set of derivation steps from the grammar, guaranteeing

that only valid programs (individuals) are generated [31].

1In conventional GP, an individual consists of functions and terminals. The closure prop-
erty states that every function in the function set has to be able to handle all the values it
receives as input. For more details see [14].

8

4 Constructing Rule Induction Algorithms Tai-

lored to a Specific Application Domain

This works proposes the use of a GGP system to automatically construct rule

induction algorithms tailored to a specific application domain. In contrast with

projects that use GP to discover a set of rules for a specific data set, like [34], this

project aims to automatically invent a complete rule induction algorithm. Hence,

each individual in our population represents a new rule induction algorithm,

potentially more sophisticated than well-known algorithms like CN2 [3].

Figure 1 shows a scheme of the proposed GGP method. The first GGP

population is randomly generated by following a set of derivations steps from the

grammar. In the proposed system, the grammar contains background knowledge

about how humans designed sequential-covering rule induction algorithms so far,

and also other components that we thought might work in rule induction, but

were not tried before. The grammar is shown in Table 1, and is defined using

the BNF notation described in Section 3. For a complete description of the

grammar and its components the reader is referred to [24].

Each individual in the GGP population is represented by a grammar deriva-

tion tree, which can be “translated” to a new rule induction algorithm. Figure 2

shows an example of a GGP individual, whose pseudo-code is explained later

in Alg.1. The pseudo-code that a GGP individual represents can be extracted

from the GGP derivation tree by reading its leaf nodes from left to right.

In addition to the grammar and the individual representation, another im-

portant component of the system is the evaluation of the GGP individuals.

As observed in Figure 1, the system implements a GGP/Java interface, which

“translates” the GGP individual to Java code. After that, the GGP individuals

are evaluated by running the rule induction algorithm they represent. The clas-

9

sification model is built from a building set, and validated into a validation set.

Both the building and validation sets represent subsets of the targeted training

set. The test set is not accessed during the GGP run, since it is reserved for

measuring the generalization ability of the evolved rule induction algorithm.

This GGP/Java interface is also responsible for reading the classification ac-

curacy obtained by a rule induction algorithm in the GGP validation set, and

generating a fitness value from it. The fitness function of each individual is

calculated by the formula described in Eq. 1, where Acc represents the accuracy

obtained by the rules discovered by the rule induction algorithm. DefAcc rep-

resents the default accuracy (the accuracy obtained when using the class of the

majority of the building set examples to classify new examples in the validation

set).

fit =

Acc−DefAcc
1−DefAcc

, if Acc > DefAcc

Acc−DefAcc
DefAcc

, otherwise
(1)

According to the definition of fit, if the accuracy obtained by the classifier is

better than the default accuracy, the improvement over the default accuracy is

normalized, by dividing the absolute value of the improvement by the maximum

possible improvement. In the case of a drop in the accuracy with respect to the

default accuracy, this difference is normalized by dividing the negative value of

the difference by the maximum possible drop (the value of DefAcc). Hence, fit

returns a value between -1 (when Acc = 0) and 1 (when Acc = 1).

After the population evaluation, a tournament selection scheme is used to

select the individuals which will produce the new population. The tournament

selection method works by randomly obtaining k individuals from the popula-

tion. These k individuals will compete against each other in a tournament. The

individual with the best fitness value defeats the other individuals. The GGP

10

proposed in this work uses k equals to 2. Following selection, the winners of the

tournaments undergo either reproduction, mutation, or crossover operations,

depending on user-defined rates (pr, pm and pc in Figure 1). The individuals

resulting from these operations also have to be valid according to the grammar.

The evolutionary process is conducted until a maximum number of gener-

ations is reached. At the end of the evolutionary process, the best individual

(highest fitness) produced along the run of the GGP system is returned as the

solution for the problem. The chosen rule induction algorithm is then evaluated

in a new set of data, which appears in Figure 1 as the test set. In order to

build the model to be applied to the test set, the entire GGP training data (i.e.

building set plus validation set) is used.

5 Related Work

Evolutionary algorithms were used before to construct some components of other

types of classification algorithms tailored to a specific application domain, such

as constructing components of neural networks [35, 27], but not, to the best of

our knowledge, to construct complete rule induction algorithms. However, both

Wong [33] and Suyama et al.[28] tried some related approaches before.

Wong [33] used a GGP to automatically evolve the evaluation function of

the FOIL algorithm (an inductive logic programming algorithm). The GGP

proposed by Wong creates a population of evaluation functions by following the

production rules of a logic grammar, which uses terminals like the current in-

formation gain of the rule being evaluated, the number of positive and negative

examples covered by the rule being evaluated, and random numbers. The indi-

viduals (evaluation functions) generated by the GGP are then incorporated into

a generic version of a top-down first-order learning algorithm based on FOIL,

and the learning algorithm as a whole is evaluated.

11

Our work goes considerably beyond that work, as follows. In [33] the GGP

was used to evolve only the evaluation function of a rule induction algorithm.

By contrast, in our work the GGP is used to evolve virtually all components of

a sequential covering rule induction algorithm. Hence, the search space for our

algorithm is the space of sequential covering rule induction algorithms, whilst

the search space for Wong’s GGP is just the space of evaluation functions for

FOIL. As a result, our grammar is much more elaborated than the grammar

used by Wong.

Suyama et al. [28] also used a hybrid of a GP and a local search method

to evolve a classification algorithm. CAMLET uses an ontology rather than a

grammar to guide its search. The ontology used in [28] has 15 coarse-grained

building blocks, where a leaf node of the ontology is a full classification algo-

rithm, like a decision tree, a genetic algorithm or a neural network. By contrast,

our grammar is much more fine-grained; its building blocks are programming

constructs (“while”,“if”, etc), search strategies and evaluation procedures not

used in [28].

6 Automatically Constructing Rule Induction Al-

gorithms Tailored to Specific UCI Data Sets

This section presents computational results obtained when applying the pro-

posed GGP to construct rule induction algorithms tailored to five well-known

UCI data sets [19], whose characteristics are described in Table 2. In that table,

in the column “Examples” the notation “X/Y” means that there are X examples

in the training set and Y examples in the training set.

For all the experiments reported in this section, the parameters of the GGP

were set as follows: 100 individuals, evolved in 30 generations, using crossover

12

rate of 0.7, mutation rate of 0.25 and reproduction rate of 0.05. For each data

set, the GGP was run 25 times: 5 runs with different random seeds × 5 fold

cross validation. Hence, the entire data set was divided in 5 partitions and, at

each GGP run, four data partitions were used for training the GGP (being three

of them used in the building set and one in the validation set), and one (unseen

during the GGP evolution) for testing the rule induction algorithm constructed

by the GGP.

Furthermore, at each generation of the GGP, the training and validation

data sets were changed. This was done after preliminary experiments showed

that keeping the same data during the training and validation steps over many

generations was leading to data overfiting. Experiments with this new set up

proved that varying the data helped the GGP to prevent overfiting [22].

The predictive accuracies (on the test set) obtained by the GGP were com-

pared to the predictive accuracy of four baseline human-designed rule induction

algorithms, namely the ordered and unordered versions of CN2 [3], Ripper [4]

and C4.5Rules [26]. Note that both versions of CN2 are included in the search

space of the GGP, while the only components present in Ripper and absent in

the GGP search space are the minimum description length heuristic [32] and

part of Ripper’s optimization phase. Although C4.5Rules is not a sequential

covering rule induction algorithm, since its rules are extracted from a decision

tree, it was included in the comparisons because it is frequently used as a base-

line comparison method in the machine learning literature.

Table 3 shows the predictive accuracies obtained by the GGP-RIs (Grammar-

based Genetic Programming-derived Rule Induction algorithms) followed by the

values of the predictive accuracies of the baseline methods, namely Ordered-CN2

and Unordered-CN2, Ripper and C4.5Rules. The numbers after the symbol “±”

are standard deviations. Results were compared using a two-tailed Student’s

13

t-test with significance level 0.05. Cells in dark gray represent statistically

significant wins of the GGP-RIs over the respective baseline method, while cells

in light gray represent statistically significant wins of the respective baseline

method against the GGP-RIs.

The results in Table 3 show that the GGP-RIs obtain predictive accuracies

significantly better than the baseline methods in 4 out of 20 cases, and accuracies

significantly worse than the baseline methods in 2 cases. In the remaining 14

cases, the GGP-RIs’ accuracies are considered statistically competitive with the

ones generated by the baseline human-designed rule induction algorithms.

In the case of the data set monks-2, the GGP-RIs obtained significantly

better results than all the human-designed algorithms except CN2-Ordered,

which presents predictive accuracies competitive with the ones obtained by the

GGP-RIs. In contrast, for the data set hepatitis, the GGP-RIs turned out not

to be competitive with the results obtained by Ripper and C4.5Rules. At this

point, it is important to recall that not all the components present in the Ripper

algorithms are part of the grammar used to generate the GGP-RIs. Moreover,

the C4.5Rules algorithm is not a separate and conquer rule induction algorithm

per se, since its rules are extracted from a decision tree.

7 Automatically Construction Rule Induction Al-

gorithms Tailored to the Postsynaptic Data

Set

The previous section showed that the proposed GGP presents results which are

competitive with the ones obtained by human-designed algorithms in a set of

UCI data sets. This section, in contrast, presents a case study involving the

classification of postsynaptic proteins. The problem of postsynaptic protein

14

classification and its importance will be briefly described in Subsection 7.1.

Subsection 7.2 will describe the experimental results obtained when running

the GGP with the postsynaptic data set. Finally, Subsection 7.3 will show two

examples of GGP-RIs, discusses its main components and how they relate to

human-designed algorithms.

7.1 Postsynaptic Protein Classification

Postsynaptic sites represent points where one nerve cell receives signals from

another. Multiple types of proteins are expected to be found at these sites for

reception and propagation of signals, and for joining the two nerve cells to each

other. In this section, we address the problem of predicting whether or not

a protein has postsynaptic activity. This problem is of great intrinsic interest

because proteins with postsynaptic activities are connected with functioning of

the nervous system.

Indeed, many proteins having postsynaptic activity have been functionally

characterized by biochemical, immunological and proteomic exercises (see e.g.

[13]), and are now extensively catalogued and annotated in the Uniprot/SwissProt

database [29]. They represent a wide variety of proteins with functions in ex-

tracellular signal reception and propagation through intracellular apparatuses,

cell adhesion molecules and scaffolding proteins that link them in a web.

The challenge which this problem presents is how to automatically discover

features of proteins’ primary sequences (a sequence of amino acids) that typi-

cally occur in proteins with postsynaptic activity but rarely (or never) occur in

proteins without postsynaptic activity, and vice-versa. In addition, and most

important, the knowledge discovered should be expressed in a comprehensible

form, which represents a potentially valuable knowledge by itself, and could

potentially give new insights to biologists about which sequence features are

15

predictive of postsynaptic activity.

7.2 Computational Results

This section presents computational results obtained when applying the pro-

posed GGP to construct rule induction algorithms tailored to a postsynaptic

data set [23]. Each of the 4303 examples in this data set represents a protein,

which is characterized by a set of binary attributes. Each attribute indicates

the presence or absence of a motif (a pattern or “signature” typically found in

some proteins) in the protein sequence.

The postsynaptic data set originally had 444 attributes [23]. However, it

was pre-processed by using an attribute selection method. This pre-processing

step was executed for two reasons. First, due to the large number of predictive

attributes in the original data set, intuitively there are many attributes that are

(at least to some extent) irrelevant or redundant. Second, attribute selection

usually reduces significantly the size of the data sets. This makes the application

of the GGP algorithm much more efficient.

There is some evidence that feature selection in the postsynaptic data set

improves its predictive accuracy [5]. As it is not the purpose of this work to per-

form an optimal attribute selection pre-process, we borrowed the 10 attributes

selected by [5] to perform experiments with the GGP. However, in order to show

that the attribute selection process does not reduce the predictive accuracy of

either the GGP-derived rule induction algorithms (GGP-RIs) or the baseline

rule induction algorithms, we report results comparing the GGP-RIs tailored to

the postsynaptic data set with selected attributes against the baseline methods

applied to both the complete data set and the data set with selected attributes.

Table 4 shows the predictive accuracies obtained by the GGP-RIs in the

postsynaptic data set with the selected attributes, followed by the accuracies

16

obtained by the baseline methods when using all the attributes or just the 10

selected attributes. Note that the experiments reported in this section have all

the same GGP parameters and set up as described in Section 6.

Two kinds of comparisons can be made in Table 4. First, we can compare

the accuracy of the GGP-RIs evolved using only the selected attributes against

the accuracy of the baseline methods using the complete set of attributes (last

four rows in the second column of the table). Secondly, we can compare the

accuracy of the GGP-RIs constructed using only the selected attributes against

the accuracy of the baseline methods using the same selected attributes (last four

rows in the third column of the table). All the reported results are statistically

the same according to a 2-tailed Student’s t-test with 0.01 significance level.

These results based on accuracy are reported for the sake of completeness,

but there is another characteristic of the postsynaptic data set which is worth

noticing. The class distribution in the postsynaptic data set is very unbalanced,

with only 6.04% of the examples having the positive class. This means that, as a

baseline solution for this classification problem, the “majority classifier” - which

predicts the majority (negative) class for all examples - would trivially obtain

an accuracy rate of 93.96%. This value could be obtained without providing any

insight about the relationship between the predictor attributes and the classes.

For data sets in which the class distribution is very unbalanced, an analysis

based on the true positive rate (sensitivity) and true negative rate (specificity)

is more effective [12]. Another alternative would be to use a measure based on

ROC curves, such as the area under the curve. We preferred a measure based

on sensitivity and specificity to be consistent with the results for this data set

reported in [23]. The sensitivity × specificity measure calculates the product of

the true positive and true negative rates. We used this measure to reevaluate

the results obtained by the GGP-RIs for the postsynaptic data set.

17

Table 5 shows the sensitivity, specificity and the product sensitivity × speci-

ficity obtained by the GGP-RIs and the other baseline methods for the postsy-

naptic data set. All the results in this table were produced by using the data set

with the selected attributes. All the results showed in Table 5 present no sig-

nificant difference according to a 2-tailed Student’s t-test with 0.01 significance

level.

The analysis of the GGP-RIs results for the data set postsynaptic using a

sensitivity × specificity approach confirmed that the GGP-RIs produced are

competitive with the other baseline methods. Both the GGP-RIs and the base-

line methods not only obtain a high accuracy, but also have a good ability to

separate objects from the positive and negative classes – rather than simply pre-

dicting the majority class for all the test examples – as shown by the relatively

high values of sensitivity. After this new analysis, a new question came up.

For data sets like postsynaptic, where the class distribution is very unbalanced,

would it be worth to actually evolve the GGP with a different fitness function?

That is, would it be worth to consider the sensitivity × specificity measure,

for instance, as the GGP evaluation function during the evolution? This would

make sense, once we know that, in the context of very unbalanced class dis-

tributions, predictive accuracy is not a very effective measure to evaluate the

predictive power of classification models.

During preliminary results executed when designing the GGP, a fitness func-

tion based on the sensitivity × specificity measure was tried in other data sets,

and shown to be not as effective as the fitness function defined in Eq. 1 – based

on the normalized value of accuracy. But would a GGP constructing a rule

induction algorithm tailored to the postsynaptic data set, and a fitness function

based on sensitivity × specificity, generate better results than the GGP with

the normalized accuracy fitness shown in Eq.(1)?

18

In order to find answers for this question, we ran a set of experiments al-

most identical to the ones described so far in this section. However, we replaced

the current fitness of the GGP by the sensitivity × specificity measure. Surpris-

ingly, the average predictive accuracy obtained over the 25 runs of the GGP was

92.85±0.03. This predictive accuracy value is slightly smaller than the default

accuracy provided by the classification model using the class of the majority

of the examples (93.96%), and it is significantly worse than the values of accu-

racy obtained by any of the baseline methods (and the GGP-RIs) presented in

Table 4.

However, as explained before, in the case of the postsynaptic data set, an

analysis based on the sensitivity × specificity measure is more appropriated than

one based on predictive accuracy. The sensitivity × specificity value (measured

on the test set) obtained for these experiments using sensitivity × specificity

as the fitness function of the GGP was 0.789±0.04. This value is statistically

the same as all the values in the last column of Table 5. On the other hand, a

more detailed analysis of the sensitivity and specificity values separately showed

a specificity (the proportion of negative (majority class) examples that are cor-

rectly predicted as negative) of 0.93±0.026 and a sensitivity (the proportion of

positive (minority class) examples that are correctly predicted as positive) of

0.84±0.008. If we compare these values to the ones presented at Table 5, we no-

tice that the specificity dropped from 0.99 to 0.93 and the sensitivity increased

from 0.75 to 0.84. According to a 2 tailed Student’s t-test with 0.05 significance

level, the sensitivity of the GGP-RIs is significantly better than the sensitivity

of all the baseline methods presented in Table 5, while the specificity of the

GGP-RIs is significantly worse than the specificity of all the baseline methods.

From this we conclude that the GGP-RIs found with the sensitivity × speci-

ficity fitness produced algorithms which are better when predicting the class of

19

the minority of the examples, which is more difficult to predict and tends to

be a prediction more useful to the user, by comparison with a prediction of the

majority class [6, 20]. At the same time, these GGP-RIs are not able to preserve

a high specificity – true negative rate for the majority class.

This last experiment also confirmed that the fitness of the current GGP

is robust enough to produce robust algorithms even for data sets with very

unbalanced classes. But what was so different in the GGP-RIs produced by

these two versions of the GGP using different fitness functions? This topic is

explored in the next section.

7.3 Analyzing the constructed GGP-RIs

In this section, we show that an analysis of the rule induction algorithms pro-

duced by the GGP when using the normalized accuracy or the sensitivity ×

specificity measure as the fitness function revealed algorithms following two

completely different approaches.

On one hand, the majority of the GGP-RIs produced with the normalized

accuracy fitness follows one of the following two main approaches: (1) they

create an initial empty rule and add conditions to it, or (2) they build an

initial rule using 3 or 4 of the most frequent attribute/value pairs found in

the training data, and remove conditions from it. Algorithms following any of

these two approaches produce very compact and general rules, usually with a

maximum of 3 or 4 conditions each. Alg. 1 shows an example of one of these

algorithms produced by the GGP (which pseudo-code was extracted from the

individual represented in Fig. 2). It creates the first rule with the 3 most frequent

attribute/values pairs in the data, and starts by removing one condition-at-a-

time from it. As soon as the number of examples covered by the rule list is

greater than 95%, it changes its refinement strategy by removing 2 conditions-

20

Algorithm 1: Example of a decision list algorithm created by the GGP
– with a normalized accuracy fitness function – tailored to the data set
postsynaptic

RuleList = ∅
repeat

bestRule = rule created using the 3 most frequent attribute/values in
the training data
candidateRules = bestRule
while candidateRules 6= ∅ do

for each candidateRule CR do
newCandidateRules = ∅
if number of covered examples in RuleList > 95% then

Remove 2 conditions-at-a-time from CR
else

Remove 1 condition-at-a-time from CR
Evaluate CR using confidence
if accuracy(CR) > 60% then

newCandidateRules = newCandidateRules ∪ CR

bestRule = best rule selected from newCandidateRules
candidateRules = bestRule

RuleList = RuleList ∪ bestRule
Remove the examples covered by bestRule from the training set

until all examples in the training set are covered

at-a-time from the candidate rules. Rules are evaluated using the rule confidence

measure, which is required to be at least equal to 60% to enable the candidate

rule to undergo further refinements (recall that in this context rule confidence

and rule accuracy are synonyms). Only the best rule is selected to be refined.

Rules are produced until all the examples in the training set are covered. The

output of the algorithm is an ordered list of rules, called a decision list.

In contrast with the types of GGP-RIs produced when using the normalized

accuracy measure as the fitness function, most of the GGP-RIs produced when

using the sensitivity × specificity measure as fitness followed a bottom-up ap-

proach. Rules were initialized using a random example or a typical example of

a class, and most of the actual rule models had very specific rules (rules with

many conditions). The selection of a typical example [36] is based on some

21

principles used in instance-based learning algorithms, an innovative feature of

the grammar that is not found in any manually-designed rule induction algo-

rithm, to the best of our knowledge. An example is said to be typical if it is

very similar to the other examples belonging to the same class it belongs to,

and not similar to the other examples belonging to other classes. Looking at

the predictive accuracies obtained by these algorithms we notice that most of

them seemed to be over-fitting the training data. Regardless of that, as reflected

by the sensitivity (true positive rate) obtained by these algorithms, they were

able to generate significantly better rules to predict the minority class. Alg. 2

shows an example of a GGP-RI produced by the GGP using the sensitivity ×

specificity fitness function.

Alg. 2 creates a set of rules for each class in turn. It chooses a typical ex-

ample of a class from the training set and removes one condition-at-a-time from

it. When 95% of the examples belonging to the current class are covered, the

algorithm starts to remove 2 conditions-at-a-time from the candidate rules. The

4 best rules in the current iteration are selected to undergo further refinements,

which are carried out until the best rule found so far covers no negative exam-

ples. Candidate rules are evaluated using the information content, and are also

required to have an accuracy of at least 80% to be considered as candidate rules.

In Alg. 2, rules are pre-pruned before being inserted into the rule set by

removing a final list of conditions from them. Conditions are removed from

the best produced rule until the Laplace-corrected accuracy value of the new

pruned rule is worse than the Laplace-corrected accuracy value of the best rule

in the prune set. Rules are produced until at least 97% of the examples in the

current class are covered. The output of the algorithm is an unordered set of

rules, unlike the ordered list of rules produced by Alg. 1.

Note that both pseudo-codes described in Algs. 1 and 2 represent innovative

22

Algorithm 2: Example of a rule set algorithm created by the GGP –
with a sensitivity × specificity fitness function – tailored to the data set
postsynaptic

RuleSet = ∅
for each class C in the training set do

repeat
Divide the training data in Grow and Prune
bestRule = rule created from a typical example
candidateRules = bestRule
while negative examples covered by bestRule 6= ∅ do

for each candidateRule CR do
newCandidateRules = ∅
if number of covered examples in class C > 95% then

Remove 2 conditions-at-a-time from CR
else

Remove 1 condition-at-a-time from CR
Evaluate CR using information content in Grow
if accuracy(CR) > 80% then

newCandidateRules = newCandidateRules ∪ CR

candidateRules = 4 best rules in newCandidateRules
bestRule = the best rule in newCandidateRules

notImproving = false
repeat

bestRule’ = Rule obtained by removing the last condition from
bestRule

if laplace(bestRule’) ≥ laplace(bestRule) in Prune then
bestRule = bestRule’

else notImproving = true
until notImproving
RuleSet = RuleSet ∪ bestRule

until at least 97% of the examples of class C in the training set are
covered

Class clashes when classifying new examples are solved using the
ls-content criterion

algorithms, which use different approaches from the well-known human-designed

rule induction algorithms to start searching for rules (i.e., the 3 most-frequent

attribute/value pairs in the training set or the typical example of a class) and

later refine them (rules can be refined according to the number of examples cov-

ered by the rules produced so far). These two examples show that the proposed

GGP system can potentially construct customized rule induction algorithms

23

quite different from the ones available in the literature.

8 Conclusions and Future Work

This paper presented a grammar-based genetic programming (GGP) system

which automatically constructs rule induction algorithms tailored to a specific

application domain. The GGP system works with a grammar, which contains

previous knowledge about how humans design rule induction algorithms and

some other interesting components that, to the best of our knowledge, were not

used by rule induction algorithms so far.

In summary, the results showed that the GGP can produce GGP-RIs tailored

to a specific real world data set which are competitive with well-known human

designed rule induction algorithms. It also showed that the system coped well

with the problem of unbalanced classes, in particular when using the sensitivity

× specificity fitness function, which led to a better prediction of the minority

class (whose prediction is more difficult and tends to be more important to

the user than the prediction of the majority class). This new method is an

interesting and promising alternative to the traditional meta-learning approach

of trying to select the best classification algorithm to the target application

domain.

An analysis of the evolved GGP-RIs showed that, besides being competitive

with human-designed algorithms, many of them present some innovative way of

refining rules and/or integrating pre and post-pruning techniques.

One research direction to be considered is how to apply the described GGP

system to construct rule induction algorithms tailored to a set of data sets

with similar characteristics where all data sets come from similar application

domains, instead of tailored to a single application domain. In this approach,

data sets would be grouped according to some common properties, and only

24

data sets belonging to this group would be used for training the GGP. For

instance, in the bioinformatics field, there are a lot of data sets which contain a

huge number of binary attributes, very sparse data and very unbalanced classes

(the postsynaptic data set used in our case study is one of such data sets). This

data sets would be used together to train and test the GGP, aiming to obtain

rule induction algorithms tailored to that type of data sets.

Another research direction would be to use the GGP to create ensembles

of rule induction classifiers, i.e., a set of classifiers whose individual predictions

are combined to classify new examples. At each generation, 100 individual

are evaluated by the GGP. At the last generation, one single rule induction

algorithm is chosen out of 100 to be returned by the used. But isn’t it a waste

of time to evolve 100 different algorithms and ignore 99 of them?

Research in the area of ensembles of classifiers has demonstrated that com-

bining classifiers can really obtain better prediction accuracies than using a

single one [7]. We could combine the GGP-RIs produced in the last GGP’s gen-

eration into a voting or a stacking framework, and check if the results obtained

would be superior to the ones obtained by the single best GGP-RI.

However, it is important to mention that one of the motivations to use rule

induction algorithms instead of any other classification model in this work was

the comprehensibility of the knowledge generated, which is very important in

application domains such as the postsynaptic one. The use of ensembles would

reduce significantly the interpretability of the discovered knowledge, as not one

but many rule models would be generated and have their predictions combined.

This combination of the predictions of many different classification models is

often done by selecting the class to be predicted via a kind of “majority vote”

among the classes predicted by different classification models, or using another

related technique. As a result, the user does not have a single classification

25

model - a kind of “scientific hypothesis” about the application domain - to be

interpreted. It is not realistic to expect a biologist to try to understand or

interpret an entire ensemble of many different classification models.

Yet another research direction would be to modify the fitness of the current

GGP system. In particular, we are interested in evaluating the GGP-RIs using

the area under the ROC curve (AUC) [9]. This measure has being widely

disseminated in the past years, and a comparison of the results of the GGP

with the current fitness function and with the AUC would be interesting.

9 Acknowledgments

The first author was financially supported by CAPES, a Brazilian government’s

research support agency, process 165002-5.

References

[1] T. Baeck, D. B. Fogel, and Z. Michalewicz. Evolutionary Computation 1

Basic Algorithms and Operators. Institute of Physics Publishing, 2000.

[2] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Pro-

gramming – An Introduction; On the Automatic Evolution of Computer

Programs and its Applications. Morgan Kaufmann, Jan. 1998.

[3] P. Clark and R. Boswell. Rule induction with cn2: some recent improve-

ments. In Y. Kodratoff, editor, EWSL-91: Proc. of the European Working

Session on Learning on Machine Learning, pages 151–163, New York, NY,

USA, 1991. Springer-Verlag.

26

[4] W. W. Cohen. Fast effective rule induction. In A. Prieditis and S. Russell,

editors, Proc. of the 12th Int. Conf. on Machine Learning, pages 115–123,

Tahoe City, CA, jul 1995. Morgan Kaufmann.

[5] E. Correa, A. Freitas, and C. Johnson. A new discrete particle swarm

algorithm applied to attribute selection in a bioinformatics data set. In

M. K. et al. (Eds.), editor, Proc. Genetic and Evolutionary Computation

Conference (GECCO-2006), pages 35–42. ACM Press, July 2006.

[6] B. de la Iglesia, J. C. W. Debuse, and V. J. Rayward-Smith. Discovering

knowledge in commercial databases using modern heuristic techniques. In

Proc. of the 2nd ACM SIGKDD Int. Conf. on Knowledge Discovery and

Data Mining, pages 44–49, 1996.

[7] S. Dẑeroski and B. Zenko. Is combining classifiers better than selecting

the best one. In Proc. of the 19th Int. Conf. on Machine Learning, pages

123–130, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

[8] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, ed-

itors. Advances in Knowledge Discovery and Data Mining. AAAI/MIT

Press, 1996.

[9] P. Flach. The geometry of ROC space: understanding machine learning

metrics through ROC isometrics. In Proc. 20th Int. Conf. on Machine

Learning, pages 194–201. AAAI Press, January 2003.

[10] J. Fürnkranz. Separate-and-conquer rule learning. Artificial Intelligence

Review, 13(1):3–54, 1999.

[11] Genetic Programming. http://www.genetic-programming.org/, Visited in

May, 2007.

27

[12] D. J. Hand. Construction and Assessment of Classification Rules. Wiley,

1997.

[13] H. Husi, M. Ward, J. Choudhary, W. Blackstock, and S. G.Grant. Pro-

teomic analysis of nmda receptor-adhesion protein signaling complexes. Nat

Neurosci, 3:661–669, 2000.

[14] J. R. Koza. Genetic Programming: On the Programming of Computers by

the means of natural selection. The MIT Press, Massachusetts, 1992.

[15] T. Lim, W. Loh, and Y. Shih. A comparison of prediction accuracy, com-

plexity, and training time of thirty-three old and new classification algo-

rithms. Machine Learning, 40(3):203–228, 2000.

[16] R. S. Michalski. On the quasi-minimal solution of the general covering

problem. In Proc. of 5th Int. Symposium on Information Processing, pages

125–128, Bled, Yugoslavia, 1969.

[17] D. Michie, D. J. Spiegelhalter, C. C. Taylor, and J. Campbell, editors. Ma-

chine learning, neural and statistical classification. Ellis Horwood, Upper

Saddle River, NJ, USA, 1994.

[18] P. Naur. Revised report on the algorithmic language algol-60. Communi-

cations ACM, 6(1):1–17, 1963.

[19] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI Repos-

itory of machine learning databases. University of California, Irvine,

http://www.ics.uci.edu/∼mlearn/MLRepository.html, 1998.

[20] C. Nguyen and T. B. Ho. An imbalanced data rule learner. In Proc. of the

9th European Conf. on Principles and Practice of Knowledge Discovery in

Databases (PKDD-05), pages 617–624, 2005.

28

[21] M. O’Neill and C. Ryan. Grammatical Evolution : Evolutionary Automatic

Programming in an Arbitrary Language. Morgan Kaufmann, 2003.

[22] G. L. Pappa. Automatically Evolving Rule Induction Algorithms with

Grammar-based Genetic Programming. PhD thesis, Computing Labora-

tory, University of Kent, Canterbury, UK, 2007.

[23] G. L. Pappa, A. J. Baines, and A. A. Freitas. Predicting post-synaptic

activity in proteins with data mining. Bioinformatics, 21(Suppl. 2):ii19–

ii25, September 2005.

[24] G. L. Pappa and A. A. Freitas. Automatically evolving rule induction al-

gorithms. In J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, editors, Proc.

of the 17th European Conf. on Machine Learning, volume 4212 of Lecture

Notes in Artificial Intelligence, pages 341–352, Berlin, 2006. Springer Ver-

lag.

[25] Y. H. Peng, P. A. Flach, C. Soares, and P. Brazdil. Improved dataset

characterization for meta-learning. In The 5th Int. Conf. on Discovery

Science, pages 141–152. Springer-Verlag, January 2002.

[26] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann

Publishers Inc., 1993.

[27] D. Rivero, J. Dorado, J. R. Rabuñal, A. Pazos, and J. Pereira. Artifi-

cial neural network development by means of genetic programming with

graph codification. Transactions on Engineering, Computing and Technol-

ogy, 16:209–214, 2006.

[28] A. Suyama, N. Negishi, and T. Yamaguchi. CAMLET: A platform for

automatic composition of inductive learning systems using ontologies. In

29

Pacific Rim Int. Conf. on Artificial Intelligence, pages 205–215. Springer-

Verlag, 1998.

[29] Uniprot: The Universal Protein Resource.

http://www.ebi.uniprot.org/index.shtml, Visited in May, 2007.

[30] R. Vilalta and Y. Drissi. A perspective view and survey of meta-learning.

Artificial Intelligence Review, 18(2):77–95, 2002.

[31] P. A. Whigham. Grammatically-based genetic programming. In J. P. Rosca,

editor, Proc. of the Workshop on Genetic Programming: From Theory to

Real-World Applications, pages 33–41, 1995.

[32] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools

and Techniques with Java Implementations. Morgan Kaufmann, second

edition, 2005.

[33] M. L. Wong. An adaptive knowledge-acquisition system using generic ge-

netic programming. Expert Systems with Applications, 15(1):47–58, 1998.

[34] M. L. Wong and K. S. Leung. Data Mining Using Grammar-Based Genetic

Programming and Applications. Kluwer, Norwell, MA, USA, 2000.

[35] X. Yao. Evolving artificial neural networks. Proc. of the IEEE, 87(9):1423–

1447, 1999.

[36] J. Zhang. Selecting typical instances in instance-based learning. In Proc. of

the 9th Int. Workshop on Machine Learning, pages 470–479, San Francisco,

CA, USA, 1992. Morgan Kaufmann Publishers Inc.

30

Table 1: The grammar used by the GGP, adapted from [24]

<Start> ::= (<CreateRuleSet>|<CreateRuleList>) [<PostProcess>].

<CreateRuleSet> ::= forEachClass <whileLoop> endFor <RuleSetTest>.

<CreateRuleList> ::= <whileLoop> <RuleListTest>.

<whileLoop>::= while <condWhile> <CreateOneRule> endWhile.

<condWhile>::= uncoveredNotEmpty |

uncoveredGreater (10| 20| 90%| 95%| 97%| 99%) trainEx.

<RuleSetTest> ::= lsContent |confidenceLaplace.

<RuleListTest>::= appendRule | prependRule.

<CreateOneRule>::= <InitializeRule> <innerWhile> [<PrePruneRule>]

[<RuleStopCriterion>].

<InitializeRule> ::= emptyRule| randomExample| typicalExample|

<MakeFirstRule>.

<MakeFirstRule> ::= NumCond1| NumCond2| NumCond3| NumCond4.

<innerWhile> ::= while (candNotEmpty| negNotCovered) <FindRule> endWhile.

<FindRule> ::= (<RefineRule>|<innerIf>)<EvaluateRule>

[<StopCriterion>]<SelectCandRules>.

<innerIf> ::= if <condIf> then <RefineRule> else <RefineRule>.

<condIf> ::= <condIfExamples> | <condIfRule>.

<condIfRule> ::= ruleSizeSmaller (2| 3| 5| 7).

<condIfExamples> ::= numCovExp (>| <)(90%| 95%| 99%).

<RefineRule> ::= <AddCond>| <RemoveCond>.

<AddCond> ::= Add1| Add2.

<RemoveCond>::= Remove1| Remove2.

<EvaluateRule>::= confidence | Laplace| infoContent| infoGain.

<StopCriterion> ::= MinAccuracy (0.6|0.7|0.8)|

SignificanceTest (0.1|0.05|0.025|0.01).

<SelectCandRules> ::= 1CR| 2CR| 3CR| 4CR| 5CR| 8CR| 10CR.

<PrePruneRule> ::= (1Cond| LastCond| FinalSeqCond) <EvaluateRule>.

<RuleStopCriterion> ::= accuracyStop (0.5| 0.6| 0.7).

<PostProcess> ::= RemoveRule EvaluateModel| <RemoveCondRule>.

<RemoveCondRule> ::= (1Cond| 2Cond| FinalSeq) <EvaluateRule>.

31

Table 2: UCI data sets used by the GGP

Data set Examples # Attributes # Classes Def.Acc.(%)
monks-1 124/432 6 2 50
monks-2 169/432 6 2 67
monks-3 122/432 6 2 52
hepatitis 104/51 14 8 78
segment 1540/770 19 7 14.3

32

Table 3: Predictive accuracy rates (%) for GGP-RIs tailored to a specific data
set

Data Set GGP-RIs OrdCN2 UnordCN2 Ripper C45Rules
monks-1 100±0 100 ± 0 100 ± 0 93.84 ± 2.93 100 ± 0
monks-2 89.67±1.22 87.26 ± 1.09 76.5 ± 0.83 64.1 ± 0.8 73.78 ± 2.25
monks-3 98.38±0.6 97.46 ± 0.74 99.1 ± 0.4 98.54 ± 0.46 94 ± 4.89
hepatitis 80.02±1.07 81.94 ± 5.02 83.34 ± 1.83 86.03 ± 1.14 83.36 ± 0.9
segment 95.55±0.25 95.38 ± 0.28 85.26 ± 0.87 95.44 ± 0.32 88.16 ± 7.72

33

Table 4: Comparing the predictive accuracies (%) obtained by the GGP-RIs in
the postsynaptic data set with selected attributes against the predictive accu-
racies (%) obtained by the baseline methods when using all attributes or just
the 10 selected attributes

Algorithm
Postsynaptic data set

All Attr. Selec. Attr.
GGP-RI NA 98.32±0.24
CN2Ord 98.7±0.22 98.4 ± 0.2
CN2Unord 98.42±0.12 98.4 ± 0.2
Ripper 98.3±0.22 98.21 ± 0.22
C45Rules 97.82±0.32 98.4 ± 0.2

34

Table 5: Sensitivity x Specificity for the postsynaptic data set using the 10
selected attributes

Algorithm Sensitivity Specificity Sensit×specif
GGP-RIs 0.74±0.004 0.99±0.0001 0.736±0.004
Ordered-Cn2 0.76±0.02 0.99±0.001 0.758±0.02
Unordered-Cn2 0.76±0.02 0.99±0.001 0.758±0.02
C45Rules 0.75±0.03 0.99±0.001 0.748±0.03
Ripper 0.7±0.04 0.99±0.001 0.702±0.04

35

Figure 1: Scheme of the proposed GGP method

36

CreateRule
List

whileLoop
RuleList

Test

Start

while condWhile
CreateOne

Rule
endWhile appendRule

uncovered
NotEmpty

Initialize
Rule

innerWhile

3 most freq
 attrib/value pairs

whileCand
NotEmpty

FindRule endWhile

if

innerIf

condIf then RefineRule else RefineRule

Evaluate
Rule

StopCriterion
SelectCandidate

Rule

examplesCovered > 95%

Remove2

RemoveCond RemoveCond

Remove1

Confidence
Min Accuracy

60%
1CR

Figure 2: Example of a GGP individual

37

