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Abstract — This paper presents a survey of evolutionary 

algorithms designed for clustering tasks. It tries to reflect the 

profile of this area by focusing more on those subjects that have 

been given more importance in the literature. In this context, 

most of the paper is devoted to partitional algorithms that look 

for hard clusterings of data, though overlapping (i.e., soft and 

fuzzy) approaches are also covered in the manuscript. The paper 

is original in what concerns two main aspects. First, it provides 

an up-to-date overview that is fully devoted to evolutionary 

algorithms for clustering, is not limited to any particular kind of 

evolutionary approach, and comprises advanced topics, like 

multi-objective and ensemble-based evolutionary clustering. 

Second, it provides a taxonomy that highlights some very 

important aspects in the context of evolutionary data clustering, 

namely, fixed or variable number of clusters, cluster-oriented or 

non-oriented operators, context-sensitive or context-insensitive 

operators, guided or unguided operators, binary, integer or real 

encodings, centroid-based, medoid-based, label-based, tree-based 

or graph-based representations, among others. A number of 

references is provided that describe applications of evolutionary 

algorithms for clustering in different domains, such as image 

processing, computer security, and bioinformatics. The paper 

ends by addressing some important issues and open questions that 

can be subject of future research. 
 
Index Terms — evolutionary algorithms, clustering, applications. 
 

I. INTRODUCTION 
 
Clustering is a task whose goal is to determine a finite set of 

categories (clusters) to describe a data set according to 
similarities among its objects [75][40]. The applicability of 
clustering is manifold, ranging from market segmentation [17] 
and image processing [72] through document categorization 
and web mining [102]. An application field that has shown to 
be particularly promising for clustering techniques is 
bioinformatics [7][13][129]. Indeed, the importance of 
clustering gene-expression data measured with the aid of 
microarray and other related technologies has grown fast and 
persistently over the past recent years [74][60].  

Clustering techniques can be broadly divided into three 
main types [72]: overlapping (so-called non-exclusive), 
partitional, and hierarchical. The last two are related to each 
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other in that a hierarchical clustering is a nested sequence of 
partitional clusterings, each of which represents a hard 
partition of the data set into a different number of mutually 
disjoint subsets. A hard partition of a data set X={x1,x2, ...,xN}, 
where xj (j = 1, ..., N) stands for an n-dimensional feature or 
attribute vector, is a collection C={C1,C2, ...,Ck} of k non-
overlapping data subsets Ci≠∅ (non-null clusters) such that C1 

∪ C2 ∪...∪ Ck = X and Ci ∩ Cj  = ∅ for i ≠j. If the condition of 
mutual disjunction (Ci ∩ Cj  = ∅ for i ≠ j) is relaxed, then the 
corresponding data partitions are said to be of overlapping 
type. Overlapping algorithms produce data partitions that can 
be soft (each object fully belongs to one or more clusters) [40] 
or fuzzy (each object belongs to one or more clusters to 
different degrees) [118][64]. 

In spite of the type of algorithm (partitional, hierarchical or 
overlapping), the main goal of clustering is maximizing both 
the homogeneity within each cluster and the heterogeneity 
among different clusters [72][3]. In other words, objects that 
belong to the same cluster should be more similar to each other 
than objects that belong to different clusters. The problem of 
measuring similarity is usually tackled indirectly, i.e., distance 
measures are used for quantifying the degree of dissimilarity 
among objects, in such a way that more similar objects have 
lower dissimilarity values [73]. Several dissimilarity measures 
can be employed for clustering tasks [72][132]. Each measure 
has its bias and comes with its own advantages and drawbacks. 
Therefore, each one may be more or less suitable to a given 
analysis or application scenario. Indeed, it is well-known that 
some measures are more suitable for gene clustering in 
bioinformatics [74], whereas other measures are more 
appropriate for text clustering and document categorization 
[114], for instance. 

Clustering is deemed one of the most difficult and 
challenging problems in machine learning, particularly due to 
its unsupervised nature. The unsupervised nature of the 
problem implies that its structural characteristics are not 
known, except if there is some sort of domain knowledge 
available in advance. Specifically, the spatial distribution of 
the data in terms of the number, volumes, densities, shapes, 
and orientations of clusters (if any), are unknown [47]. These 
adversities may be potentialized even further by an eventual 
need for dealing with data objects described by attributes of 
distinct natures (binary, discrete, continuous, and categorical), 
conditions (complete and partially missing) and scales (ordinal 
and nominal) [72][73]. 

From an optimization perspective, clustering can be 
formally considered as a particular kind of NP-hard grouping 
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problem [43]. This has stimulated the search for efficient 
approximation algorithms, including not only the use of ad hoc 

heuristics for particular classes or instances of problems, but 
also the use of general-purpose metaheuristics (e.g. see [116]). 
Particularly, evolutionary algorithms are metaheuristics widely 
believed to be effective on NP-hard problems, being able to 
provide near-optimal solutions to such problems in reasonable 
time. Under this assumption, a large number of evolutionary 
algorithms for solving clustering problems have been proposed 
in the literature. These algorithms are based on the 
optimization of some objective function (i.e., the so-called 
fitness function) that guides the evolutionary search. 

This paper presents a survey of evolutionary algorithms 
designed for clustering tasks. It tries to reflect the profile of 
this area by focusing more on those subjects that have been 
given more importance in the literature. In this context, most 
of the paper is devoted to partitional algorithms that look for 
hard data clusterings, though overlapping approaches are also 
covered in the manuscript. It is important to stress that 
comprehensive surveys on clustering have been previously 
published, such as the outstanding papers by Jain et al. [73], 
Jiang et al. [74], and Xu and Wunsch II [132], just to mention 
a few. Nevertheless, to the best of the authors’ knowledge, 
none has been fully devoted to evolutionary approaches. It is 
worth mentioning, however, that reviews on similar subjects 
have been previously published. The authors themselves have 
previously published overviews on related topics. For instance, 
in [109] the authors provide an overview of Genetic 
Algorithms (GAs) for clustering, but only a small subset of the 
existing evolutionary approaches (namely, GAs) is discussed 
in that reference. In [50], in its turn, the author provides an 
extensive review of evolutionary algorithms for data mining 
applications, but the work focuses on specific evolutionary 
approaches (GAs and Genetic Programming) and is mainly 
intended for classification tasks, clustering being just slightly 
touched in a peripheral section. Three previous monographs 
[23][43][119] have also partially approached some of the 
issues raised in the present manuscript. In particular, Cole [23] 
reviewed a number of genetic algorithms for clustering 
published until 1997, whereas [119] provided a review of 
evolutionary algorithms for clustering that is more recent, yet 
much more concise. In contrast, Falkenauer [43] describes in 
details a high-level paradigm (meta-heuristic) that can be 
adapted to deal with grouping problems broadly defined, thus 
being useful for several applications – e.g., bin packing, 
economies of scale, conceptual clustering, and equal piles. 
However, data partitioning problems like those examined in 
the present paper are not the primary focus of Falkenauer’s 
book [43], which has been published in 1998. 

Bearing the previous remarks in mind, it can be stated that 
the present paper is original in the following two main aspects: 
(i) It provides an up-to-date overview that is fully devoted to 
evolutionary algorithms for clustering, is not limited to any 
particular kind of evolutionary approach, and comprises 
advanced topics, like multi-objective and ensemble-based 

evolutionary clustering; and (ii) It provides a taxonomy that 
allows the reader to identify every work surveyed with respect 
to some very important aspects in the context of evolutionary 
data clustering, such as: 

 

• Fixed or variable number of clusters; 
• Cluster-oriented or non-oriented operators; 
• Context-sensitive or context-insensitive operators; 
• Guided or unguided operators; 
• Binary, integer or real encodings; 
• Centroid-based, medoid-based, label-based, tree-based 

or graph-based representations. 
 

By cluster-oriented operators, it is meant here operators that 
are task dependent, such as operators that copy, split, merge, 
and eliminate clusters of data objects, in contrast to 
conventional evolutionary operators that just exchange or 
switch bits without any regard to their task-dependent 
meaning. Guided operators are those operators that are guided 
by some kind of information about the quality of individual 
clusters, about the quality of the overall data partition, or about 
their performance on previous applications, such as operators 
that are more likely to be applied to poor quality clusters and 
operators whose probability of application is proportional to 
its success (or failure) in previous generations. Finally, 
context-sensitivity will hereafter refer to the original concept as 
defined by Falkenauer [43], which is limited to crossover 
operators. In brief, a crossover operator is context-sensitive if: 
(i) it is cluster-oriented; and (ii) two (possibly different) 
chromosomes encoding the same clustering solution do not 
generate a different offspring solution when they are crossed-
over. As a consequence, when the number of clusters, k, is 
fixed in advance, it can be asserted that two chromosomes 
encoding different clustering solutions with the same k must 
not produce solutions with a number of clusters other than k as 
a result of crossover. Of course, context-sensitivity is more 
stringent than cluster-orientation. 

The remainder of this paper is organized as follows. Section 
II presents a survey of evolutionary algorithms for hard 
partitional clustering, whereas Section III presents a review of 
evolutionary algorithms for overlapping clustering. Section IV 
discusses evolutionary algorithms for multi-objective 
clustering and clustering ensembles. A number of references 
that describe applications of evolutionary algorithms for 
clustering in different domains is provided in Section V. 
Finally, the material presented throughout the paper is 
summarized in Section VI, which also addresses some 
important issues for future research. 
 

II. HARD PARTITIONAL CLUSTERING 
 

As mentioned in the introduction, a hard partition of a data set 
X is a collection of k non-overlapping clusters of these data. 
The number of clusters, k, usually must be provided in 
advance by the user. In some cases, however, it can be 
estimated automatically by the clustering algorithm. Section 
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II.A describes evolutionary algorithms for which k is assumed 
to be fixed a priori, whereas Section II.B addresses algorithms 
capable of estimating k during the evolutionary search. 
 

A. Algorithms with Fixed Number of Clusters 
 

Several papers address evolutionary algorithms to solve 
clustering problems for which the number of clusters (k) is 
known or set up a priori (e.g., Bandyopadhyay and Maulik 
[10]; Estivill-Castro and Murray [39]; Fränti et al. [48]; 
Kivijärvi et al. [79]; Krishna and Murty [83]; Krovi [84]; 
Bezdek et al. [14]; Kuncheva and Bezdek [85]; Lu et al. 
[95][94]; Lucasius et al. [96]; Maulik and Bandyopadhyay 
[100]; Merz and Zell [103]; Murthy and Chowdhury [107]; 
Scheunders [121]; Sheng and Liu [122]). Cole [23] reviews 
and empirically assesses a number of such genetic algorithms 
for clustering published up to 1997. 

It is intuitive to think of algorithms that assume a fixed 
number of clusters (k) as being particularly suitable for 
applications in which there is information regarding the value 
of k. For instance, domain knowledge may be available that 
suggests a reasonable value – or a small interval of values – 
for k. Having such information in hand, algorithms described 
in this section can be potentially applied for tackling the 
corresponding clustering problem. Alternatively, the reader 
may think about using conventional clustering algorithms for 
fixed k, such as k-means [101][72], EM (Expectation 
Maximization) [34][61], and SOM (Self-Organized Maps) 
[17][62] algorithms. However, these prototype-based 
algorithms are quite sensitive to initialization of prototypes1 
and may get stuck at sub-optimal solutions. This is a well-
known problem, which becomes more evident for more 
complex data sets2. A common approach to alleviate this 
problem involves running the algorithm repeatedly for several 
different prototype initializations. Nevertheless, note that one 
can only guarantee that the best clustering solution for a fixed 
value of k would be found if all possible initial configurations 
of prototypes were evaluated. Of course, this approach is not 
computationally feasible in practice, especially for large data 
sets and large k. Running the algorithm only for a limited set of 
initial prototypes, in turn, may be either inefficient or not 
computationally attractive, depending on the number of 
prototype initializations to be performed. 

For this reason, other approaches have been investigated. 
Among them, evolutionary algorithms have shown to be 
promising alternatives. Evolutionary algorithms essentially 
evolve clustering solutions through operators that use 
probabilistic rules to process data partitions sampled from the 
search space [43]. Roughly speaking, more fitted partitions 
have higher probabilities of being sampled. Thus, the 
evolutionary search is biased towards more promising 
clustering solutions and tends to perform a more 

 
1 We here define a prototype as a particular feature vector that represents a 

given cluster. For instance, prototypes can be centroids, medoids, or any other 
vector computed from the data partition and that represents a cluster (as in the 
case of typical fuzzy clustering algorithms). 

2 Complexity here refers to the number of different local minima and the 
variance of their objective function values, which are usually strongly related 
to the number n of data attributes and the number k of clusters.   

computationally efficient exploration of the search space than 
traditional randomized approaches (e.g., multiple runs of k-
means). Besides, traditional randomized approaches do not 
make use of the information on the quality of previously 
assessed partitions to generate potentially better partitions. For 
this reason, these algorithms tend to be less efficient (in a 
probabilistic sense) than an evolutionary search. 

In spite of the theoretical advantages (in terms of 
computational efficiency) of evolving clustering solutions, 
much effort has also been undertaken towards showing that 
evolutionary algorithms can provide partitions of better quality 
than those found by traditional algorithms. In fact, this may be 
possible provided that the parallel nature of the evolutionary 
algorithms allows them to handle multiple solutions, possibly 
guided by different distance measures and different fitness 
evaluation functions. 

This section reviews a significant part of the literature on 
evolutionary algorithms for partitioning a data set into k 

clusters. Potential advantages and drawbacks of each 
algorithm are analyzed under the light of their corresponding 
encoding schemes, operators, fitness functions, and 
initialization procedures. 

1) Encoding Schemes: Several encoding schemes have been 
proposed in the literature. In order to explain them, let us 
consider a simple pedagogical data set (Table I) formed by 10 
objects xi (i = 1, 2,…,10) with two attributes each (n = 2), 
denoted a1 and a2. Such objects have been arbitrarily grouped 
into three clusters (C1, C2, and C3). These clusters are depicted 
in Fig. 1 and are used to illustrate how partitions can be 
encoded to be processed by an evolutionary search. Aiming at 
summarizing common encodings found in the literature, we 
first here categorize them into three types: binary, integer, and 
real.  

TABLE I. PEDAGOGICAL DATA SET. 
Object (xi) a1 a2 Cluster - Cj 

x1 1 1 Cluster 1 (C1) 

x2 1 2 Cluster 1 (C1) 

x3 2 1 Cluster 1 (C1) 

x4 2 2 Cluster 1 (C1) 

x5 10 1 Cluster 2 (C2) 

x6 10 2 Cluster 2 (C2) 

x7 11 1 Cluster 2 (C2) 

x8 11 2 Cluster 2 (C2) 

x9 5 5 Cluster 3 (C3) 

x10 5 6 Cluster 3 (C3) 
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Fig. 1. Pedagogical data set (see Table I). 
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a) Binary encoding: In a binary encoding, each clustering 
solution (partition) is usually represented as a binary 
string of length N, where N is the number of data set 
objects. Each position of the binary string corresponds 
to a particular object, i.e., the ith position (gene) 
represents the ith object. The value of the ith gene is 1 
if the ith object is a prototype and zero otherwise. For 
example, the partition depicted in Fig. 1 can be 
encoded by means of the string [1000100010], in which 
objects 1, 5, and 9 are cluster prototypes. Clearly, such 
an encoding scheme inexorably leads to a medoid-

based representation, i.e., a prototype-based 
representation in which the cluster prototypes 
necessarily coincide with objects from the data set. The 
partition encoded into a given genotype3 can be derived 
by the nearest prototype rule – taking into account the 
proximities between objects and prototypes – in such a 
way that the ith object is assigned to the cluster 
represented by the closer (i.e. the most similar) 
prototype. Kuncheva and Bezdek [85] make use of this 
encoding approach, which allows the evolutionary 
search to be performed by means of those classical GA 
operators originally developed to manipulate binary 
genotypes [54][105]. However, the use of such classical 
operators usually suffers from serious drawbacks in the 
specific context of evolutionary clustering, as will be 
further discussed in Section II.A.2.a.  
There is an alternative way to represent a given data 
partition using a binary encoding. It is the use of a k × 
N matrix in which the rows represent clusters and the 
columns represent objects. In this case, if the jth object 
belongs to the ith cluster, then 1 is assigned to the ith 
element of the jth column of the genotype, whereas the 
other elements of the same column receive 0. For 
example, using this representation, the partition 
depicted in Fig. 1 would be encoded as [14]: 

 
1 1 1 1 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 
0 0 0 0 0 0 0 0 1 1 

 
This matrix-based binary encoding scheme has the 
clear disadvantage of requiring O(k⋅N) memory space, 
against O(N) space of the usual string-based binary 

encoding scheme formerly described. On the other 
hand, the time it requires to recover the data partition 
from a given genotype is O(k⋅N) – both in the average 
and worst cases – against O(k⋅n⋅N) for the string-based 
scheme (due to the nearest prototype rule 
computations)4. This computational saving is relevant 

 
3 The terms genotype, chromosome and individual usually have the same 

meaning in the literature on evolutionary algorithms and will be freely 
interchanged in this paper. 

4 Actually, the nearest neighbor search can be performed in asymptotic 
logarithmic time by exploiting the Delaunay triangulation [81], which is the 
dual of the Voronoi diagram – e.g., see [98]. However, to the best of our 

only for data sets with many attributes. When the 
number of attributes n is not large, the advantage of the 
matrix-based scheme reduces to the possibility of 
extending it to handle soft partitions, by allowing 
multiple elements of a given column to be non-null. 
Soft partitional clustering is discussed in Section III. 

b) Integer encoding: There are two ways of representing 
clustering solutions by means of integer encoding. In 
the first one, a genotype is an integer vector of N 
positions, where N is the number of data set objects. 
Each position corresponds to a particular object, i.e., 
the ith position (gene) represents the ith data set object. 
Provided that a genotype represents a partition formed 
by k clusters, each gene has a value over the alphabet 
{1, 2, 3, …, k}. These values define the cluster labels, 
thus leading to a label-based representation. For 
example, the integer vector [1111222233] represents 
the clusters depicted in Fig. 1. This encoding scheme is 
adopted in [84][107][83][95][94]. In particular, only 
partitions formed by two clusters are addressed in [84], 
thus allowing the use of a binary representation for 
which each gene has a value over the alphabet {0, 1}. 
This integer encoding scheme is naturally redundant, 
i.e., the encoding is one-to-many. In fact, there are k! 
different genotypes that represent the same solution. 
For example, there are 3! different genotypes that 
correspond to the same clustering solution represented 
in Fig. 1, namely: [1111222233], [1111333322], 
[2222111133], [2222333311], [3333111122], and 
[3333222211]. Thus, the size of the search space to be 
explored by the genetic algorithm is much larger than 
the original space of solutions. Depending on the 
employed operators, this augmented space may reduce 
the efficiency of the genetic algorithm. An alternative to 
solve this problem is the use of a renumbering 

procedure [43]. 
Another way of representing a partition by means of an 
integer encoding scheme involves using an array of k 
elements to provide a medoid-based representation of 
the data set. In this case, each array element represents 
the index of the object xi,  i = 1, 2, …, N (with respect 
to the order the objects appear in the data set) 
corresponding to the prototype of a given cluster. As an 
example, the array [1 5 9] can represent a partition in 
which objects 1, 5, and 9 are the cluster prototypes 
(medoids) of the data given in Table I. Taking into 
account these prototypes and assuming a nearest 
prototype rule for assigning objects to clusters, the 
partition depicted in Fig. 1 can be recovered. Lucasius 
et al. [96], for instance, make use of this approach. This 
representation scheme is also adopted, for instance, in 
[39] and [122]. 
Conceptually speaking, representing medoids by means 
of an integer array of k elements, as previously 
discussed, is usually more computationally efficient 
than using the string-based binary encoding scheme 

                                                                                                     
knowledge this idea has not been explored in the context of evolutionary 
algorithms for clustering. 
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described in Section II.A.1.a. However, it must be 
noticed that such an integer encoding scheme may be 
redundant if unordered genotypes are allowed, in which 
case the solutions [1 5 9], [1 9 5], [5 1 9], [5 9 1], [9 1 
5], and [9 5 1] encode the same partition depicted in 
Fig. 1. In such a case, a renumbering procedure should 
be used in order to avoid potential redundancy 
problems. 
When comparing the two different integer encoding 
schemes discussed in this section, one has to take into 
account some different aspects that may be of interest. 
Considering space complexity issues, the integer 
encoding is O(N) when a label-based representation is 
used, whereas it is O(k) when a medoid-based 

representation is adopted. Thus, in principle, one may 
conclude that the latter is more advantageous than the 
former (since k is typically much lower than N). 
However, this is not necessarily true. Actually, the 
suitability of each of the aforementioned encoding 
schemes is highly dependent upon the fitness function 
used to guide the evolutionary search, as well as upon 
the evolutionary operators that manipulate the 
clustering solutions being evolved – as it will become 
evident in the following sections. In brief, the label-

based encoding does not require any additional 
processing to make available the information on the 
membership of each object to its corresponding cluster. 
Such information may be necessary for computing 
cluster statistics, which, by their turn, can be needed for 
computing the fitness function and/or for guiding the 
application of evolutionary operators. It is easy to see 
that, contrarily to the label-based encoding, the 
medoid-based encoding requires further processing in 
order to recover the clusters encoded into the genotype. 
Consequently, depending on the computational cost 
involved in cluster recovering, a particular encoding 
may become more (or less) suitable for a given 
clustering problem. 

c) Real encoding: In real encoding the genotypes are 
made up of real numbers that represent the coordinates 
of the cluster prototypes. This means that, unlike the 
integer encoding scheme discussed in Section II.A.1.b, 
real encoding is necessarily associated with a 
prototype-based representation of partitions. However, 
unlike the string-based binary encoding scheme 
discussed in Section II.A.1.a, real encoding does not 
necessarily leads to a medoid-based representation. 
Instead, it may also be (and in fact usually is) 
associated with a centroid-based representation of the 
partitions, as discussed in the sequel.  
If genotype i encodes k clusters in an n dimensional 
space, ℜn, then its length is n⋅k. Thus, the first n 
positions represent the n coordinates of the first cluster 
prototype, the next n positions represent the coordinates 
of the second cluster prototype, and so forth. To 
illustrate this, the genotype [1.5  1.5  10.5  1.5  5.0  5.5] 
encodes the prototypes (1.5, 1.5), (10.5, 1.5), and (5.0, 
5.5) of clusters C1, C2, and C3 in Table I, respectively. 

Given the genotype, the corresponding clusters can be 
recovered by the nearest prototype rule, in such a way 
that the ith object is assigned to the cluster represented 
by the most similar prototype. 
The genotype representation adopted in references 
[121][100][103][10] follows a real encoding scheme in 
which the prototype locations are not restricted to the 
positions of the objects. This representation, named 
centroid-based representation, is also adopted by 
Fränti et al. [48] and Kivijärvi et al. [79]. These 
authors, however, additionally encode into the genotype 
a partitioning table that describes, for each object, the 
index of the cluster to which the object belongs. 
Alternatively, one could encode the real-valued 
coordinates of a set of k medoids. In order to do so, it is 
only necessary to enforce the constraint that the 
prototype locations coincide with positions of objects in 
the data set. In the pedagogical example of Table I, the 
coordinates of a set of objects – e.g. {x1, x5, x9} – can 
be represented by the genotype [1 1 10 1 5 5]. These 
medoids allow recovering the clusters depicted in Fig. 1 
by using by the nearest prototype rule as well. 
The potential advantages and drawbacks of the real 
encoding schemes are fundamentally the same as the 
integer medoid-based encoding scheme discussed in 
Section II.A.1.b, with the caveat that the former 
demands O(n⋅k) memory space in order to represent a 
given genotype, whereas the latter demands only O(k) 
space. Possibly for this reason, the use of a real 
medoid-based encoding scheme has not been reported 
in any work surveyed in the present paper. 

2) Operators: A number of crossover and mutation 
operators for clustering problems have been investigated. In 
order to aid the perception of common features shared by 
these operators, we address them according to the encoding 
schemes for which they have been designed. 

a) Crossover: Falkenauer [43] addresses several 
drawbacks of traditional genetic algorithms when they 
are applied to tackle grouping tasks. As far as crossover 
operators are concerned, an important problem to be 
considered involves the context-insensitivity concept. 
Formally, context-insensitivity means that [43] “the 
schemata defined on the genes of the simple 
chromosome do not convey useful information that 
could be exploited by the implicit sampling process 
carried out by a clustering genetic algorithm”. In the 
following we illustrate, by means of pedagogical 
examples, the context-insensitivity problem. Then, 
having such examples in mind, we analyze crossover 
operators frequently described in the literature. 
Let us assume that genotypes [1111222233] and 
[1111333322] – encoded under the label-based integer 

encoding discussed in Section II.A.1.b – are 
recombined under the standard one-point crossover, as 
depicted in Fig. 2 (bold type refers to the exchanged 
genetic information). 
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1 1 1 1 2 2 2 2 3 3 

1 1 1 1 3 3 3 3 2 2 

↓ 
1 1 1 1 2 2 2 2 2 2 

1 1 1 1 3 3 3 3 3 3 
   
Fig. 2. Example 1 – standard one-point crossover: equal 

parents generating different offspring. 
 

In this case, the resulting genotypes (offspring) 
should be equal to their parents, since the parents 
represent the same solution to the clustering problem – 
depicted in Fig. 1. However, one can observe that the 
offspring represent clustering solutions different from 
the ones encoded into their parents. Moreover, 
assuming that the number of clusters has been fixed in 
advance as k=3, invalid solutions formed by two 
clusters have been derived from the application of 
crossover. In this particular case, the context-
insensitivity problem could have been avoided by 
using a renumbering procedure before crossover (with 
the caveat that such a procedure would incorporate an 
additional computational burden to the algorithm). 
However, although the use of a renumbering procedure 
can ameliorate a clustering genetic algorithm based on 
traditional operators, it does not offer any guarantees 
that invalid clustering solutions will not be produced 
by the application of crossover. To illustrate this point, 
let us apply the standard one-point crossover to the 
genotypes [1122223333] and [1111111123], as 
displayed in Fig. 3 (bold type refers to the exchanged 
genetic information). 

 
 

1 1 2 2 2 2 3 3 3 3 

1 1 1 1 1 1 1 1 2 3 

↓ 
1 1 2 2 2 2 3 3 2 3 

1 1 1 1 1 1 1 1 3 3 
   
Fig. 3. Example 2 – invalid solution (for fixed k) under 

standard one-point crossover. 
 

Note that the second child (from top to botton) 
represents an invalid partition – formed by two clusters. It 
is not hard to see that similar problems may also occur 
under the standard two-point crossover. 

The application of traditional recombination operators 
under a real encoding scheme may also originate 
problems similar to those just described. For instance, let 
us consider the genotypes [1.5  1.5  10.5  1.5  5.0  5.5] 
and [10.5  1.5  5.0  5.5  1.5  1.5] in which the first two 
positions represent the two dimensions of the first cluster 
center, the next two positions represent those of the 
second cluster center, and so forth. These genotypes 
represent the same clustering solution (depicted in Fig. 
1), the only difference relying on the order in which the 

clusters are encoded. Accordingly, the offspring resulting 
from crossing over such genotypes should ideally encode 
the partition depicted in Fig. 1 as well. However, this may 
not happen. For the sake of illustration, let us consider 
that the previous genotypes are recombined under the 
standard one-point crossover, as illustrated in Fig. 4 (bold 
type refers to the exchanged genetic information). 

 
 

1.5 1.5 10.5 1.5 5.0 5.5 

10.5 1.5 5.0 5.5 1.5 1.5 

↓ 
1.5 1.5 10.5 1.5 1.5 1.5 

10.5 1.5 5.0 5.5 5.0 5.5 
     
Fig. 4. Example 3 – standard one-point crossover under a 

real encoding scheme. 
   

In this case, both children represent partitions formed 
by two clusters. Assuming that the genetic search should 
ideally provide partitions formed by three clusters (as 
encoded into their parents), invalid solutions would have 
been found. Although it is easy to see that similar 
problems may be faced when the binary encoding is 
employed, context-insensitivity is not so readily detected 
when using the integer medoid-based encoding scheme 
discussed in Section II.A.1.b, particularly when it is 
assumed that the k indexes of the selected objects are kept 
ordered in the array (e.g., by using a renumbering 
procedure). For illustration purposes, consider the 
following two medoid-based representation individuals: 
[1 2 3] and [3 4 5] - each representing three clusters. 
After doing a single-point crossover between the second 
and the third genes, the resulting offspring are [1 2 5] and 
[3 4 3]. This second child has a repeated medoid, thus 
encoding just two clusters. Context-insensitivity can also 
conceptually take place under the integer medoid-based 

encoding scheme if the classic definition of a data set 
X={x1, x2, ..., xN} is relaxed, allowing the presence of 
equal objects, i.e., if it is assumed that X is a multiset. As 
an example, let us consider two genotypes, [3 17 25] and 
[7 13 19], encoding three clusters each. Also, let us 
consider that objects 13 and 25 in the data set are equal to 
each other. A single point crossover of these genotypes 
could produce the offspring [3 17 19] and [7 13 25]. Note 
that, since objects 13 and 25 are equal to one another, the 
second child has only two different medoids, which result 
in a partition with one empty cluster. Of course, empty 
clusters could be avoided by enforcing the objects closer 
to multiple identical medoids to be shared among the 
corresponding clusters. Note, however, that such a 
procedure is rather unnatural from a conceptual 
viewpoint, since equal objects are conceptually supposed 
to belong to the same cluster.  It is rather evident that this 
empty cluster situation becomes more frequent if a 
centroid-based real encoding is used, since different 
centroids do not necessarily represent different partitions. 
This situation is not unrealistic for real-world scenarios 
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and designing procedures to circumvent it is not a trivial 
task. 

To summarize, when traditional genetic operators are 
employed in clustering problems, they usually just 
manipulate gene values without taking into account their 
connections with other genes. It is important to notice that 
the interconnections among gene values should constitute 
the genuine optimization goal in clustering problems. For 
this reason, it is worth giving particular attention to the 
development of genetic operators specially designed for 
clustering problems, that is, genetic operators that are 
cluster-oriented. Nevertheless, a word of caution is in 
order. Alternatively to the use of cluster-oriented 
operators, one could claim that there are simple ways of 
dealing with invalid solutions such as those illustrated in 
previous examples. Simply putting, invalid solutions 
found during the evolutionary search could be simply 
discarded and substituted by valid ones. For instance, the 
crossover operator could be repeatedly applied until a 
valid solution has been found, or the invalid child can be 
set to one of the parents at random. Besides, an invalid 
solution could be replaced by the best genotype found so 
far in the evolutionary search. Despite the simplicity 
involved in these and other related approaches, plenty of 
computational resources may be wasted to figure out 
and/or fix invalid solutions. The real impact of such 
computational burden into the efficiency of the 
evolutionary search relies on several factors that are hard 
to theoretically assess, such as the overall design of the 
evolutionary algorithm and the application in hand. 
Therefore, it is more conservative not to make any sharp 
claims concerning the generalization of the efficacy 
provided by cluster-oriented operators for any algorithm 
and/or application. Instead, we here focus on conceptual 
features shared by several operators frequently found in 
the literature. Aimed at facilitating the visualization of 
those features, we address them according to the 
encoding schemes for which they have been designed, as 
detailed next. 

Considering the string-based binary encoding 
described in Section II.A.1.a, Kuncheva and Bezdek [85] 
adopted a uniform crossover in which the parent 
genotypes swap their ith bits. Under the framework of a 
variable number of clusters, this operator would be 
context-sensitive. However, this operator may generate 
invalid offspring for fixed k, which is a presumed 
condition of Kuncheva and Bezdek’s work, thus being 
technically context-insensitive in this specific application 
scenario5. Even so, the operator can be deemed cluster-
oriented, inasmuch as any exchange of medoids can be 
interpreted as an exchange of clusters. An object-oriented 
operator that randomly moves objects among clusters was 
used in [14]. 

Several crossover operators based on integer encoding  
have been proposed for evolutionary algorithms. In 

 
5 Note that an operator may be context-insensitive in a fixed number of 

clusters scenario yet context-sensitive in a variable number of clusters 
scenario. 

[84][107], a single-point crossover that is not cluster-
oriented (and, accordingly, is context-insensitive) is used. 
Figures 2 and 3 illustrate potential problems faced by 
such an operator. The cluster-oriented crossover operator 
adopted in [96][122] modifies genotypes in such a way 
that new genotypes are generated by randomly 
scrambling the medoids encoded into their parents. Flip 
mutation, in which a medoid is replaced with another 
randomly chosen medoid, takes place both during and 
after crossover. Similarly, Estivill-Castro and Murray 
[39] proposed a context-sensitive crossover operator that 
is based on exchanging medoids from the parents. The set 
of medoids encoded into the offspring is built iteratively, 
adding one medoid at a time, until k different medoids 
have been represented. In [39][96][122], invalid solutions 
may be generated if X is assumed to be a multiset. In 
other words, the crossover operators adopted in these 
papers may be context-insensitive depending on the data 
set, though they are cluster-oriented. Krishna and Murty 
[83] addressed the use of an evolutionary algorithm for 
clustering that does not make use of any crossover 
operator, although the authors call their approach a 
genetic algorithm. Strictly speaking, such algorithm is 
better categorized as an evolutionary algorithm, in which 
the k-means algorithm is used as a search operator in lieu 
of crossover. Lu et al. [95][94] also proposed a related 
algorithm inspired by the work of Krishna and Murty 
[83]. 

Let us now consider operators developed for real 
encoding schemes. In [121], a single-point crossover that 
allows exchanging the clusters centers (centroids) of a 
pair of genotypes is used. This operator is not context-
sensitive, as already illustrated in Fig. 4, though it can be 
considered to be cluster-oriented if an exchange of 
centroids is interpreted as an exchange of clusters. The 
operator used in [100][10] is also based on exchanging 
information contained in the centroids. More precisely, 
for genotypes of length l, where l = n·k, a crossover point 
is randomly drawn within the range [1, l−1]. Then, the 
portions lying to the right of the genotypes under 
consideration are exchanged to produce offspring. By 
doing so, not only centroids are exchanged, but also parts 
of them can be modified, thus making the operator to be 
neither context-sensitive nor cluster-oriented. For 
instance, let us consider that the single-point crossover 
proposed by Bandyopadhyay and Maulik [10][100] is 
applied to the genotypes displayed in Fig. 5 (bold type 
refers to the exchanged genetic information). 

 
 

1.5 1.4 10.5 1.5 5.0 5.5 

10.5 1.6 5.0 5.5 1.5 1.5 

↓ 
1.5 1.4 10.5 5.5 1.5 1.5 

10.5 1.6 5.0 1.5 5.0 5.5 
     
Fig. 5. Example 4 – One-point crossover used by 

Bandyopadhyay and Maulik [10][100].  
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Although the parent genotypes in Fig. 5 are not equal to 

one another, they represent the same data partition (Fig. 1).  
In spite of this, the first genotype of the offspring has two 
“cluster centers” – (1.5, 1.4) and (1.5, 1.5) – positioned in 
the data density region of Cluster 1  and one “cluster center” 
positioned in a region of low data density not represented in 
the parent-genotypes, i.e., in (10.5, 5.5). Similarly, the 
second offspring encodes the “cluster center” (5.0, 1.5), 
which lies in a low density data region not represented in 
either of the parent genotypes. This example suggests that 
such a crossover operator may generate clustering solutions 
significantly different from those encoded into their parents, 
thus having an evolutionary role more closely related to 
mutation than to crossover. 

Fränti et al. [48] assessed five crossover operators that 
fundamentally select k centroids from two parents. The 
random crossover operator randomly chooses k/2 centroids 
from each of the two parents. Duplicate centroids are 
replaced by means of repeated draws. In the operator named 
centroid distance, the clusters are initially sorted according 
to their distances from the grand mean (overall centroid) of 
the data set. Then, they are divided into two subsets, 
namely: central clusters and remote clusters. The central 

clusters are those closer to the centroid of the data set, 
whereas the remote clusters are the remaining ones. An 
offspring is created by taking the central clusters from 
parent A and the remote clusters from parent B. In pairwise 

crossover, clusters encoded into different parents are paired 
according to the similarities of their centroids. An offspring 
is then generated by randomly taking one centroid from 
each pair of clusters. In the largest partitions operator, M 

centroids are selected by a greedy heuristic based on the 
assumption that larger clusters are more important than 
smaller ones. Finally, the authors evaluate the pairwise 

nearest neighbor crossover operator that considers that the 
2k centroids from parents A and B can be clustered into k 
clusters that will form the offspring. The crossover 
operators just described have been designed to manipulate 
clusters, thus being cluster-oriented. Nonetheless, the 
centroid distance operator may be viewed as a variant of the 
single point crossover, which is not context-sensitive. Based 
upon an experimental evaluation, the authors argue that the 
pairwise nearest neighbor operator is the best choice among 
the assessed variants. Kivijärvi et al. [79] have used the 
same crossover operators described by Fränti et al. [48], but 
these authors also employed an additional single point 
crossover operator. Merz and Zell [103] used two 
recombination operators. The first one is uniform crossover, 
which randomly copies centroids from the parents. The 
second crossover operator basically replaces some centroids 
in parent A with centroids from parent B using the nearest 
neighbor concept. Even though they are cluster-oriented, 
these operators are affected by context-insensitivity 
problems similar to those already discussed.  

b) Mutation: Following Falkenauer´s typology [43], 
mutation operators can be categorized as being object-

oriented or group-oriented. The latter class is 

particularly interesting for clustering problems, since it 
encompasses operators designed to work with clusters 
rather than with objects. Kuncheva and Bezdek [85] 
mutate genotypes by alternating bits of the string-based 

binary encoding. This corresponds to either deleting 
existing prototypes or inserting new prototypes. Since 
each prototype allows recovering a cluster, the operator 
is conceptually cluster-oriented, with the caveat that 
invalid solutions may be generated when k is fixed a 

priori. The object-oriented mutation operator described 
in [14] randomly assigns an object to a different cluster. 
Considering integer encoding, Murthy and Chowdhury 
[107] used a mutation operator that randomly changes 
the gene value (cluster label) of some randomly 
selected objects. This object-oriented operator may 
generate invalid solutions when the number of clusters 
is fixed. Krishna and Murty [83] applied a mutation 
operator that changes a gene value depending on the 
distances of the cluster centroids from the 
corresponding object. In particular, the probability of 
changing a gene value to a given cluster label is higher 
if the centroid of the corresponding cluster is closer to 
the object. This object-oriented mutation can be 
considered a guided operator, but it may yield empty 
clusters. Lu et al. [95][94] adopted an object-oriented 
mutation operator similar to the one developed by 
Krishna and Murty [83]. The genetic algorithm 
developed by Lucasius et al. [96] randomly selects a 
medoid that can be replaced with an object from the 
data set – according to a predetermined probability. 
Similar approaches are adopted in [122][39]. The 
mutation approaches described in [96][122][39] can be 
considered as cluster-oriented inasmuch as medoids 
allow recovering clusters. The application of such 
approaches, however, may result in invalid solutions if 
X is assumed to be a multiset and k is fixed. 
For real encoding schemes, some papers 
[10][100][121] describe mutation operators aimed at 
slightly modifying the centroids encoded into a given 
genotype. As a consequence, these mutations tend to 
change the membership of some objects in relation to 
the clusters represented by the genotype. In other 
words, the underlying philosophy of these operators is 
not constrained to create new clusters or to eliminate 
existing ones. Hence, conceptually speaking, such 
operators are better categorized as object-oriented, for 
it is expected that the result of the mutation will be 
changing the membership of a subset of objects from 
some particular clusters. More precisely, Scheunders 
[121] proposed to randomly add a value equal to either 
-1 or +1 to a randomly chosen component of the 
centroid of a given cluster. Maulik and Bandyopadhyay 
[100], in turn, proposed to mutate clusters centers by 
the following procedure: a number δ in the range [0, 1] 
is drawn with uniform distribution. This number is then 
used to change the value v of a given gene to (1 ± 2δ)v 
when v≠0, and ±2δ when v=0. Signs “+” and “−” occur 
with equal probability. In [10], the authors adopted a 
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conceptually similar mutation scheme. However, 
differently from the approach proposed in [100], the 
mutation operator in [10] provides perturbation in a 
maximum range to genotypes either when they are less 
fitted in the population or when all the genotypes have 
the same fitness value. Alternatively to slightly 
changing cluster prototypes by some perturbation in 
their component values, some papers [48][79][103] 
describe mutation operators that replace prototypes 
with objects from the data set. Such operators are more 
likely to create or eliminate clusters. From this point of 
view, they can be considered as cluster-oriented. More 
specifically, in the work by Fränti et al. [48] a prototype 
is replaced with a randomly chosen object from the data 
set. The same mutation operator is used by Kivijärvi et 
al. [79]. Two mutation operators are used by Merz and 
Zell [103]. The first operator assigns a selected object 
from the data set to substitute a randomly chosen 
prototype. The second operator randomly selects two 
clusters Ci and Cj. Next, the object belonging to Ci with 
the maximum distance from its prototype is chosen to 
replace the prototype of Cj, such that this can be 
considered a guided operator. Krovi [84] does not 
report the mutation operator used. 

3) Fitness Function:  Many clustering validity criteria can 
be used for assessing partitions containing a given number (k) 
of clusters (e.g., see [72], [40], [75]). Several of these criteria 
can be adapted to be used as fitness functions to evolve data 
partitions. Thus, the fitness functions used by the evolutionary 
algorithms described in the literature, and here surveyed, 
represent only a subset of the possible fitness functions that 
can be used in practice.  

Krovi [84] proposes a fitness function to assess partitions 
formed by only two clusters. This function is based both on the 
average distance from the objects to their respective cluster 
centroids and on the distance between cluster centroids. In 
particular, the ratio of the distance between centroids and 
average intra-cluster distances is used to evaluate the fitness of 
a genotype. 

Lucasius et al. [96] suggest minimizing the distances from 
the k medoids encoded into the genotype to the objects of the 
corresponding clusters. More precisely, the authors propose to 
minimize the sum of distances between the objects of the data 
set X = {x1, x2, …, xN} and the medoids from the set {m1, m2, 
…, mk} ⊂ {x1, x2, …, xN}. To this end, they define the 
criterion F: 

 ),(
1
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where m represents the closest medoid to object xi, i.e., 
d(xi,m) = minj∈{1,…,k}d(xi,mj), and d denotes a distance 
measure. This criterion is essentially the well-known sum of 
within-cluster distances applied to a medoid-based 

representation. The genetic algorithms developed by Estivill-
Castro and Murray [39] and Sheng and Liu [122] are also 
aimed at minimizing F in Equation (1). 

Some authors (Murthy and Chowdhury [107]; Maulik and 
Bandyopadhyay [100]; Bandyopadhyay and Maulik [10]; 
Merz and Zell [103]) propose to minimize the sum of squared 

Euclidean distances of the objects from their respective cluster 
means. Formally, the fitness function f(C1,C2,…,Ck) adopted 
by these authors is: 
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where {C1, C2,…, Ck} is the set of k clusters encoded into the 
genotype, xi is a data set object, and zj is the mean vector of 
cluster Cj. This criterion is essentially a centroid-based version 
of (1). The fitness functions used in the genetic algorithms 
described by Fränti et al. [48], Kivijärvi et al. [79], Krishna 
and Murty [83], and Lu et al. [95][94] are aimed at minimizing 
some measure of the distortion of the clusters, which is 
equivalent to minimize f(C1,C2,…,Ck) in (2). For instance, the 
distortion d can be a measure of the intra-cluster diversity 
defined as: 
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where N and n are the numbers of objects and attributes of the 
data set, respectively. 

The fitness function adopted by Scheunders [121] also 
relates to f(C1,C2,…,Ck) defined in (2), as follows: 
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Kuncheva and Bezdek [85] use a genetic algorithm for 
minimizing the well-known Jm criterion: 
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where xj is the jth data set object, vi is the prototype of the ith 
cluster Ci, µij denotes the membership of object xj to cluster Ci, 
and m (m≥1) is a user-defined parameter. Clearly, Jm reduces 
to the sum of within-cluster distances in (2) when dealing with 
hard partitions, in which case µij is such that µij ∈ {0, 1}. A 
fitness function based on Jm – equation (5) – has also been 
used in [14]. 
 It is important to stress that these previous criteria all make 
sense if and only if the number of clusters k is fixed, since, for 
fixed k, minimizing the intra-cluster distances implies 
maximizing the inter-cluster distances as well. However, that 
does not hold when k is variable. Indeed, it is straightforward 
to see that one can arbitrarily minimize the sum of intra-cluster 
distances by increasing the number k of clusters, making it 
equal to zero in the limit by assigning each object to an 
individual cluster (k = N singletons).  
 In general, the previous projects used fitness functions 
based on the distance between objects and either clusters' 
centroids or medoids. Although these types of functions are 
still widely used, they usually have some clear disadvantages. 
E.g., trying to minimize the Euclidean distance between 
objects and its nearest cluster's centroid usually is biased 
towards the discovery of spherical clusters, which clearly will 
be inappropriate in many applications where the natural 
clusters for the data are not spherical. In other words, many 
clustering algorithms impose a specific type of structure (like 
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spherical clusters) to the data, rather than discovering clusters 
of arbitrary shape in a more data-driven way. 
 In the last decade or so, an alternative to such distance-
based clustering validity measures, consisting of density-based 
clustering validity criteria, has been increasingly used in data 
mining. In such criteria, a cluster is essentially a group of 
objects in the same dense region in the data space, and the goal 
of a density-based clustering algorithm is to find high-density 
regions (each region corresponding to a cluster) that are 
separated by low-density regions. Density-based clustering 
methods usually have the advantage of being flexible enough 
to discover clusters of arbitrary shape [38].  

An evolutionary algorithm – more precisely, an Estimation 
of Distribution Algorithm – using a density-based fitness 
function is described in [31]. In this algorithm, the fitness 
function is essentially computed as the average density over 
the clusters represented by an individual, where the density of 
a cluster is simply the number of objects in the cluster divided 
by the size of the region defining that cluster. 

4) Selection: Proportional selection [6] has been used by 
several authors (e.g., Krovi [84]; Lucasius et al. [96]; Murthy 
and Chowdhury [107]; Estivill-Castro and Murray [39]; Fränti 
et al. [48]; Maulik and Bandyopadhyay [100]; Kivijärvi et al. 
[79]; Bandyopadhyay and Maulik [10]; Krishna and Murty 
[83]; Lu et al. [95][94]). Additionally to proportional 
selection, elitist variants [105] for selecting genotypes are also 
investigated in the papers by Murthy and Chowdhury [107], 
Fränti et al.[48], and Kivijärvi et al. [79]. 

Not much is said about the selection procedure used by 
Scheunders [121]. The author only reports that all genotypes 
are pairwise compared and the most fitted genotype of each 
pair is copied into the other. This description suggests that 
Scheunders [121] uses a variant of the so-called deterministic 
tournament selection [6]. Sheng and Liu [122] use two-fold 
tournament selection to choose P/2 parent pairs for 
reproduction, where P is the population size. 

Kuncheva and Bezdek [85] adopt an elitist strategy in which 
the parents and the children are pooled and the best genotypes 
survive, standing as the new parents. Similarly, Merz and Zell 
[103] derive a new population by selecting the best genotypes 
out of the pool of parents and children. These selection 
methods can be viewed as variants of the so-called (µ+λ) 
selection procedure used in evolution strategies [6][30]. 

The advantages and disadvantages of the existing selection 
mechanisms are well-known in the evolutionary computation 
literature. As far as we know, there is no strong evidence that 
the relative behavior of these mechanisms is much different 
when assessed in the particular context of evolutionary 
clustering. 

5) Initial Population: In the papers by Krovi [84], Murthy 
and Chowdhury [107], Krishna and Murty [83], Bezdek et al. 
[14], and Lu et al. [95][94], the initial population of the 
genetic algorithm is generated from random assignments of 
objects to clusters. Such an initialization strategy usually 
results in unfavorable initial partitions, since the initial clusters 
are likely to be mixed up to a high degree. It constitutes, 
however, an effective approach to test the algorithms against 
hard evaluation scenarios. 

Lucasius et al. [96] suggest randomly selecting a subset of 
objects to be the medoids of the initial population, when prior 
knowledge is not available. Similarly, in the papers by 
Kuncheva and Bezdek [85], Estivill-Castro and Murray [39], 
Maulik and Bandyopadhyay [100], Merz and Zell [103], 
Sheng and Liu [122], and Bandyopadhyay and Maulik [10], an 
initialization strategy is adopted that randomly chooses data 
set objects to be initial prototypes of the clusters. In the papers 
by Scheunders [121], Fränti et al. [48], and Kivijärvi et al. 
[79], the initial prototypes of the clusters are also randomly 
generated, but not restricted to the data positions. 

The random initialization of prototypes represents a good 
trade-off between simplicity, computational demand, and 
effectiveness. For this reason, this sort of strategy is very 
popular in practice, both in evolutionary and non-evolutionary 
clustering applications. 

6) Local Search by k-means: Algorithms endowed with 
mechanisms that both globally explore and locally exploit the 
search space are well-known under the heading of hybrid or 
memetic evolutionary algorithms. The combination of 
evolutionary search with the k-means algorithm has led to a 
variety of hybrid evolutionary algorithms for clustering that 
can be considered to belong to this class. For instance, in the 
approach by Krishna and Murty [83], a one step k-means 
operator is used in substitution of crossover. The authors 
suggest that the resulting algorithm can avoid expensive 
computations required by the usual crossover operators. A 
similar approach is followed by Lu et al. [95]. 

Kivijärvi et al. [79], Fränti et al. [48],  and Badyopadhyay 
and Maulik [10] apply the k-means algorithm for fine-tuning 
partitions found by genetic operators. Scheunders [121] 
applies k-means to all genotypes of each generation, aiming at 
leading the corresponding partitions into local optima. Sheng 
and Liu [122] adapted k-means to work as a local search 
heuristic for the problem of finding k medoids. 

In contrast to hybrid evolutionary algorithms that employ k-
means as an additional operator for a fine-tuning of the 
evolving partitions, the memetic algorithm proposed by Merz 
and Zell [103] has been designed for searching in the space of 
locally optimal solutions - instead of searching in the space of 
all candidate solutions. 
 
B. Algorithms with Variable Number of Clusters 

 
The evolutionary algorithms addressed in Section II.A 

were designed to optimize partitions for fixed (user-defined) 
values of k. As discussed in that section, evolutionary 
algorithms that search for k clusters (k defined beforehand) can 
be particularly suitable for applications in which there is 
information available (e.g., domain knowledge) regarding k. 
The evolutionary algorithms for clustering described in this 
section go even further by searching for both the best number 
of clusters (k*) and their corresponding partitions in regions of 
the space where they are more likely to be found. These 
algorithms have been designed with the underlying assumption 
that the best number of clusters, k

*, is unknown a priori. In 
other words, it is presumed that the number of clusters is 
inherent to the data set and that estimates for k

* are not 
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available. One may hypothesize that evolutionary algorithms 
for fixed k (addressed in Section II.A) could be potentially 
used for tackling such a problem. In order to do so, repeated 
runs of the evolutionary algorithm might be performed for 
different values of k, and the obtained clustering solutions 
could be comparatively assessed by some measure that reflects 
the partition quality6. This approach may eventually provide 
good results in applications for which the cardinality of the set 
formed by the possible values of k is low. In practice, this 
situation may take place when there is a strong suspect that a 
small interval of values contains k

*. In other situations, 
clustering algorithms that explore partitions with different 
numbers of clusters are often preferred. 

 Evolutionary algorithms aimed at optimizing the number of 
clusters (k) and the corresponding partitions are described in 
the works by Cole [23], Cowgill et al. [26], Bandyopadhyay 
and Maulik [12][11], Hruschka and Ebecken [65], Casillas et 
al. [21], Hruschka et al. [69][70][68], Ma et al. [97], Alves et 
al. [2], Tseng and Yang [128], Naldi and de Carvalho [108], 
Handl and Knowles [59], and Pan and Cheng [113]. 
Falkenauer [43] describes a high-level paradigm 
(metaheuristic) that can be adapted to deal with grouping 
problems broadly defined, showing that it is useful for several 
applications – e.g., bin packing, economies of scale, 
conceptual clustering, and equal piles. Data partitioning 
problems like those examined in this paper are not the primary 
focus of Falkenauer’s book [43]. Nevertheless, it is worth 
mentioning that, in order to pave the way for the proposed 
paradigm, the author investigates, among other issues, key 
aspects of some genetic algorithms designed for data 
partitioning problems until 1998. Most importantly, the 
concepts underlying such a paradigm allow delving into 
important features of evolutionary algorithms for data 
partitioning problems. Therefore, Falkenauer’s work 
permeates several discussions hereafter performed. 

1) Encoding Schemes: Most of the encoding schemes used 
in evolutionary algorithms capable of estimating the number of 
clusters (k) are similar to the encoding schemes employed in 
evolutionary algorithms for which k is assumed to be known or 
set a priori. Thus, in this section, we complement the material 
already explored in Section II.A.1, trying to avoid unnecessary 
redundancies as much as possible. 

Cole [23] adopts the label-based integer encoding 
described in Section II.A.1.b, in which a genotype is an integer 
vector of N positions, each of which is associated with a data 
object and takes a value (cluster label) over the alphabet 
{1,2,3,…,k} In this case, k can be interpreted as the maximum 
number of clusters represented in each individual. This 
encoding scheme has also been used by Cowgill et al. [26], 
Hruschka and Ebecken [65], Hruschka et al. [69][70][68], 
Naldi and de Carvalho [108], and Alves et al. [2], but some of 
these authors additionally suggest storing the number of 
clusters (k) in the genotype. In this case, k represents the fixed 
number of clusters of the individual, but different individuals 
can have different values of k, so that the population as a 
whole represents candidate solutions with different numbers of 

 
6 Indexes for measuring quality of data partitions with variable k will be 

further discussed in Section II.B.3. 

clusters. A discussion on the potential advantages and 
drawbacks of such an integer encoding scheme can be found 
in Section II.A.1.b. 
 Ma et al. [97] proposed an evolutionary algorithm for 
clustering, named EvoCluster, which encodes a partition in 
such a way that each gene represents one cluster and contains 
the labels of the objects grouped into it. Thus, a genotype 
encoding k clusters (C1, C2, …, Ck) of a data set with N objects 
is formed by k genes, each of which stores ni labels (n1 + n2 + 
… + nk = N). Ma et al. [97] claim that this encoding scheme 
represents an advantageous alternative over other different 
approaches. In particular, they argue that the label-based 

integer encoding is not very scalable, since the length of each 
genotype is exactly the number of objects of the data set. 
Although this assertion is persuasive at a first glance, it is 
worth noticing that the amount of information that must be 
stored (and handled) in both encoding schemes described 
above is essentially the same, that is, N object labels 
(EvoCluster’s encoding) or N cluster labels (label-based 

encoding). Then, the scalability of EvoCluster in terms of 
memory requirement does not really benefit from its encoding 
scheme. Actually, the encoding scheme does not seem to be a 
crucial aspect regarding the practical usefulness of an 
algorithm when handling large data sets. In the end, the data 
set itself must be handled somehow (e.g. using efficient data 
structures for external memory management) and its 
dimensionality is necessarily larger than that of any encoding 
scheme. 
 A very different kind of integer encoding is used in 
[119][120]. In this work an individual represents a set of axis-
aligned hyper-rectangular rules, each rule consisting of n genes 
– where n is the number of attributes in the data being mined. 
In each rule, the ith gene, i = 1,…,n, encodes two fields, 
namely, the lower (li) and upper (ui) bounds defining the 
boundary of the rule in the ith dimension (attribute). For 
instance, in a 2-dimensional problem, a 2-rule individual 
would look like:  
 

Rule 1 (Cluster 1) Rule 2 (Cluster 2) 

2 5 3 9 1 6 2 4 
l1 u1 l2 u2 l1 u1 l2 u2 

 
 The integer numbers encoded in the fields li and ui represent 
indices of intervals produced during a previous quantization 
stage (before the evolutionary algorithm is run). Hence, this 
encoding is both integer-based and grid-based. Note that there 
is an implicit conjunction operator linking the boundaries of 
all the dimensions of a rule. Hence, in this particular example, 
the first rule can be read as:  
 
  IF (interval_2 ≤ attribute_1 ≤ interval_5)  
  AND (interval_3 ≤ attribute_2 ≤ interval_9)  
  THEN (object belongs to Cluster 1) .  
  
One advantage of this kind of representation is that axis-
aligned hyper-rectangular rules can usually be easily 
interpreted by the user. The algorithm ensures that the rules 
represented in an individual are disjoint, which arguably 
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further facilitates the rules' interpretation. The grid-based 
representation also helps to reduce the size of the search space 
– by comparison with a real-valued representation based on 
original (not quantized) attribute values. In addition, the 
quantization is performed by an elaborated statistical 
procedure, which aggregates together objects mapping into the 
same grid cell. Note that, although each rule has a fixed length 
(d genes), different individuals can contain different number of 
rules, so that the algorithm considers a variable number of 
clusters along its search.  
 In the work by Bandyopadhyay and Maulik [12], genotypes 
are made up of real numbers that represent the coordinates of 
the cluster centers. If genotype i encodes k clusters in n 
dimensional space ℜn, then its length is n⋅k. This encoding 
scheme has been examined in Section II.A.1.c under the term 
real encoding. An important difference in the present context 
is that this encoding scheme leads to variable length 
genotypes, once k is no longer assumed to be constant. In [11], 
the authors use a slightly different encoding scheme that 
allows working with constant length genotypes. Basically, the 
number of clusters encoded by a given genotype is assumed to 
lie in the range [kmin, kmax] – where kmin and kmax are the 
minimum and maximum number of clusters, respectively – and 
a “don’t care” symbol (#) is used to fill in genotypes whose k 
is less than kmax. An evident disadvantage of this scheme is that 
it demands estimates of kmin and kmax. On the one hand, a too 
wide interval [kmin, kmax] causes a waste of memory and 
processing time. On the other hand, a too narrow interval 
increases the probability of leaving k

* out, thus becoming 
unreachable. Tseng and Yang [128] propose to generate a set 
of m small clusters to be used as building blocks for the 
genetic search. Such initial clusters are obtained using a 
nearest neighbor based strategy. Partitions are encoded into m-

length binary strings (genotypes) that represent subsets of the 
clusters initially generated. In particular, if cluster i is encoded 
into a given genotype, then the value of the ith position of the 
corresponding string (the ith gene) will be 1; otherwise, it will 
be 0. This is a particular kind of binary encoding that has the 
disadvantage of limiting the genetic search to combinations of 
the building blocks initially generated. Pan and Cheng [113] 
also adopt a binary encoding scheme based on a maximum 
number of clusters that is determined a priori. Each position of 
the string corresponds to an initial cluster center. Thus, the 
total number of 1s in the string corresponds to the number of 
clusters encoded into the genotype.  
 Casillas et al. [21] adopt as encoding scheme a binary vector 
with (N−1) elements. These elements represent the (N−1) 
edges of a Minimum Spanning Tree (MST) [24] in which the 

nodes represent the N data set objects and the edges 
correspond to proximity indexes between objects. In this 
representation, the value 0 means that the corresponding edge 
remains, whereas the value 1 means that the corresponding 
edge is eliminated. The number of elements with value 1 is 
equal to (k−1), where k is the number of clusters. This is an 
example of a tree-based representation. Specifically, it 
corresponds to a tree-based binary encoding scheme. A 
disadvantage of this scheme is that it demands the highly 

intensive computation of an MST for a complete graph with N 

vertices, which may become prohibitive for large N. 
 Handl and Knowles [59] employ a graph-based 

representation in which a genotype is an integer vector of N 
positions, that is, a graph-based integer encoding scheme. 
Each position of the genotype corresponds to an object, i.e., 
the ith position (gene) represents the ith data set object. Genes 
can take values from the set {1, 2,…, N}. A value j assigned to 
a gene i means that there is a link between objects i and j and 
that these are placed into the same cluster. The partition 
encoded into the genotype is recovered by identifying all 
connected components of the graph. This encoding scheme is 
particularly suitable in the context of the evolutionary 
algorithm for multi-objective clustering proposed by the 
authors. 

2) Operators: Several crossover and mutation operators 
have been proposed for clustering problems in which the 
number of clusters is unknown in advance. In this section, we 
elaborate on the main properties of crossover and mutation 
operators commonly found in the corresponding literature. 
Analogously to what we have done in Section II.A.2, we 
discriminate the operators according to the encoding schemes 
for which they have been designed. 
 

a) Crossover: Considering integer encoding, Cole [23] 
uses edge-based crossover operators. Two objects are 
considered to be connected by an edge if they are in the 
same cluster. These crossover operators construct 
children by combining the edges of their parents, 
considering the set of intersections of the clusters. They 
manipulate clusters encoded in the parent genotypes, in 
such a way that context-sensitivity is kept. Cowgill et 
al. [26] adopt uniform crossover in the early 
generations and two-point crossover in later 
generations. These operators are not cluster-oriented 
(see Section II.A.2.a). The context-sensitive crossover 
operator proposed in [65] is inspired by Falkenauer’s 
work [43]. It combines clustering solutions coming 
from different genotypes. More precisely, the operator 
works in the following way. First, two genotypes (G1 
and G2) are selected. Then, assuming that G1 represents 
k1 clusters, c ∈ {1, 2,…, k1} clusters randomly chosen 
are copied into G2. The unchanged clusters of G2 are 
maintained and the changed ones have their unaffected 
objects allocated to the corresponding nearest clusters 
(according to their centroids). In this way, an offspring 
G3 is obtained. The same procedure is employed to get 
an offspring G4, but now considering that the changed 
clusters of G2 are copied into G1. This crossover 
operator is also used in the genetic algorithms for 
clustering described in [69][70][68]. A similar 
crossover operator is also used by the EvoCluster 
algorithm [97]. Such a crossover operator, however, 
can be probabilistically guided by information 
concerning the quality of the individual clusters in a 
given partition. 
Tseng and Yang [128] use two-point crossover for 
their binary encoding scheme based on building blocks, 
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discussed in Section II.B.1. In such an encoding 
scheme, a two-point crossover exchanges sets of 
clusters (i.e., it is cluster-oriented) and can be context-
sensitive in a variable number of clusters scenario. 
Similarly, Pan and Cheng [113] adopt a one-point 
crossover that manipulates cluster centers. 
Bandyopadhyay and Maulik [12] use a two-point 
crossover that allows exchanging real-valued cluster 
prototypes from a pair of genotypes. In [11], a single-
point crossover is used. As discussed in Section 
II.A.2.a, single-point and two-point crossover operators 
are not context-sensitive when applied to genotypes 
under real encoding. 
Casillas et al. [21] use a one-point crossover that 
manipulates the edges of a Minimum Spanning Tree 
(MST), in which the nodes represent the data set 
objects and the edges correspond to proximity indexes 
between them. The adopted operator can split and 
merge clusters and it is context-sensitive. 
Handl and Knowles [59] use the standard uniform 
crossover operator. Under the graph-based 

representation employed by the authors, uniform 
crossover implements merging and splitting operations 
on individual clusters, while maintaining the remainder 
of the partition, thus being cluster-oriented. 
The evolutionary algorithms for clustering presented in 
[70][68][2] do not make use of crossover operators. 

b) Mutation: Cole [23] uses three mutation operators 
designed for integer encoding. The split cluster-
oriented operator probabilistically selects a cluster from 
a particular partition and moves objects from that 
cluster into a new cluster. The merge cluster-oriented 
operator moves all the objects from one cluster to 
another pre-existing cluster. Finally, the move object-
oriented operator shifts objects between clusters 
already encoded on a genotype. These operators are 
inspired by Falkenauer’s work [43]. In the algorithm 
described in [26], the mutation process is applied to 
each genotype resulting from the application of the 
crossover operator. Elements of each genotype are 
randomly altered according to low probabilities. A 
single mutation randomly changes the gene value 
(cluster label) of a randomly selected object, thus being 
object-oriented. Two cluster-oriented operators for 
mutation inspired by Falkenauer’s work [43] are used 
in [65][69]. The first operator works only on genotypes 
that encode more than two clusters. It eliminates a 
randomly chosen cluster, placing its objects into the 
nearest remaining clusters (according to their 
centroids). The second mutation operator splits a 
randomly selected cluster, which must be formed by at 
least two objects to be eligible for this operator, into 
two new ones. The first cluster is formed by the objects 
closer to the original centroid, whereas the other cluster 
is formed by those objects closer to the farthest object 
from the centroid. Similar mutation operators are 
adopted in [70][68]. The main difference from the 

approach used in [65][69] is that the slightly modified 
mutation operators described in [70][68] are allowed to 
act on more than one cluster encoded into the genotype. 
The EvoCluster algorithm [97] has six mutation 
operators that also split, merge, and eliminate groups. 
These operators can be viewed essentially as modified 
versions of those in [65][69][70][68]. Differently from 
the operators found in [65][69] and analogously to their 
modified versions in [70][68], EvoCluster’s mutation 
operators can be simultaneously applied to multiple 
clusters of the same partition. In addition, they can be 
probabilistically guided by information concerning the 
quality of the individual clusters in a given partition 
(guided operators). In fact, the guided application of 
evolutionary operators has been shown − from a 
statistical perspective − to be able to significantly speed 
up convergence of the evolutionary search for 
clustering [2]7. The same holds with respect to the 
simultaneous application of the mutation operators to 
multiple clusters of the same partition, as shown in 
[70][68]. The guided mutation operators described in 
[2] go even further by including an additional 
mechanism that also helps improving mutation 
performance. It consists of the use of a self-adjusting 
procedure that automatically controls the rates of 
application of the individual mutation operators based 
upon their relative success/failure averaged over past 
generations. 
Bandyopadhyay and Maulik [12][11] propose to 
mutate clusters centers by the following procedure: A 
number δ in the range [0,1] is generated with uniform 
distribution. This number is then used to change the 
value v of a given gene to (1 ± 2δ)v when v≠0, and ±2δ 
when v=0. Signs “+” and “−” occur with equal 
probability. Since the genes encode coordinates of 
cluster prototypes, these operators are conceptually 
neither cluster-oriented nor object-oriented. 
In [128], loci of the binary genotype are chosen 
according to a given probability and their values are 
changed either from 0 to 1 or vice-versa. Conceptually 
speaking, the initial building clusters encoded into the 
genotypes may be inserted or not inserted into the 
offspring, thus making the mutation operator be cluster-
oriented. Analogously, the number of clusters and, 
consequently, the cluster centers, are randomly changed 
by the mutation operator reported in [113]. 
Casillas et al. [21] change bits using a low mutation 
probability. Under the representation adopted, this 
operator can split and merge clusters, thus being 
cluster-oriented. 
Handl and Knowles [59] use a nearest-neighbor based 

 
7 In [2], however, all the operators are guided in the sense that bad clusters 

are more likely to be modified, whereas in Evocluster [97] the crossover 
operator is more likely to affect good clusters. 
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mutation operator. In particular, each object can be 
probabilistically linked to one of its L nearest 
neighbors. Such a procedure may affect clusters, 
objects only, or neither. For this reason, this mutation 
operator cannot be conceptually and strictly categorized 
as cluster-oriented or object-oriented. 

3) Fitness Function: In principle, any relative clustering 
validity criterion (e.g. see Jain and Dubes [72]; Milligan and 
Cooper [104]; Halkidi et al. [55]; Handl et al. [60]) that is non-
monotonic with the number of clusters can be potentially used 
as a fitness function for an evolutionary algorithm designed to 
optimize the number of clusters. Such criteria have been 
extensively investigated and, despite the well-known fact that 
their particular features make their performance problem 
dependent [112], some of them have shown satisfactory results 
in several different application scenarios. In the sequel, a 
number of relative validity criteria that have been used as 
fitness functions for evolutionary clustering algorithms are 
reviewed.  

Cole [23], Cowgill et al. [26], and Casillas et al. [21] use as 
fitness function the Calinski and Harabasz Variance Ratio 
Criterion (VRC) [18], which is defined as: 
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where B and W are the between-cluster and the pooled within-
cluster sums of squares (covariance) matrices, respectively. 
The terms N and k are the total number of objects and the 
number of clusters in the partition, respectively. 

Tseng and Yang [128] define the fitness function of a given 
genotype G as: 
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where Dintra(Ci) is the intra-distance of cluster Ci, Dinter(Ci) is 
the inter-distance between Ci and the set of all other clusters, 
and w is a user-defined parameter. 

Bandyopadhyay and Maulik [12] propose the following 
validity index I(k) for computing the fitness of a genotype that 
represents k clusters:    
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where p is any real number larger than or equal to 1. Terms Ej 

and Dj are given by equations (9) and (10), respectively: 
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where N is the total number of objects in the data set, [µji]k x N 
is a partition matrix for the data set X = {x1, …, xN}, and zm is 
the center of the mth cluster. The authors report some 
experiments in which I(k) provides better results than the 
Davis-Bouldin [28] and Dunn’s [36] indexes commonly used 
as relative validity criteria for clustering. Nevertheless, in a 
later work [11], the authors turn to use a fitness function based 

on the Davis-Bouldin (DB) index. A variant of the I(k) defined 
in (8) is also adopted as the fitness function in [113]. Besides 
using the Calinski and Harabasz’s VRC [18] defined in (6), 
Cole [23] also evaluates the minimization of the DB index as a 
fitness function. The DB index for the partitioning of N objects 
into k clusters is defined as [28]: 
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in which the index for the cth cluster, Rc, is given by: 
}{max cj,R
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with Rj,c denoting the measure of within-to-between cluster 
spread for all pairs of clusters (j, c), that is: 
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where ej is the within cluster variation for the jth cluster and 
mj,c is the distance between the centers of the jth and cth 
clusters. 

In [65][69], the silhouette proposed by Kaufman and 
Rousseeuw [75] is employed for computing the fitness of a 
given genotype. In order to define the silhouette, let us 
consider an object xi belonging to cluster A. So, the average 
dissimilarity of xi to all other objects of A is denoted by a(xi). 
Now let us take into account cluster C. The average 
dissimilarity of xi to all objects of C will be named d(xi,C). 
After computing d(xi,C) for all clusters C ≠ A, the smallest 
one is selected, i.e., b(xi) = min d(xi,C), C ≠ A. This value 
represents the dissimilarity of xi to its neighbor cluster, and the 
silhouette s(xi) is given by: 
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It is easy to verify that −1 ≤ s(xi) ≤ 1. Thus, the higher s(xi), 
the better the assignment of object xi to a given cluster. In 
addition, if s(xi) is equal to 0, then it is not clear whether the 
object should have been assigned to its current cluster or to a 
neighboring one [40]. Finally, if cluster A is a singleton, then 
s(xi) is not defined and the most neutral choice is to set 
s(xi) = 0 [75]. The silhouette criterion is given by the average 
of s(xi) over i = 1,2,...,N. Besides assessing the silhouette 
developed by Kaufman and Rousseeuw [75] as a fitness 
function, Hruschka et al. [69][70][68] also proposed additional 
validity indexes to guide the genetic search. One of them is a 
simplified version of the silhouette [69][70][68], which is also 
used by Alves et al. [2]. This criterion is based on the 
computation of distances between objects and the mean 
vectors of the clusters. More specifically, the term a(xi) of 
Equation (14) becomes the dissimilarity of object xi to the 
centroid of its cluster (A). Similarly, instead of computing 
d(xi,C) as the average dissimilarity of xi to all objects of C, 
C≠A, only the distance between xi and the centroid of C must 
be computed, thus reducing the computational complexity of 
the index from O(N2) to O(N). Alternatively to the original and 
simplified versions of the silhouette, Hruschka et al. [69] 
showed that the fitness function can also be taken as the 
average of b(xi)/(a(xi)+ε) over i = 1,2,...,N. The term ε is 



To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews 

 

 15

necessary to compute s(xi) when a(xi) is 0, i.e., when all 
objects from cluster A are equal to one another. This modified 
objective function seems to be more sensitive to slight changes 
in a(xi) and b(xi), which in turn might correspond to significant 
changes in the clustering solution, with the price that the 
criterion is no longer bounded within the interval [−1, +1]. 

In the recent paper by Ma et al. [97], the authors propose to 
assess the fitness of each genotype by means of an algorithm 
with two main steps8. In brief, the first step is aimed at 
discovering statistically significant association patterns in the 
partition encoded into the genotype. To this end, some objects 
from different clusters are randomly selected to form a training 
set for pattern discovery. In the step 2 of the fitness 
computation, the reclassification accuracy of the objects not 
selected in step 1 is evaluated and the final fitness value is 
calculated based on this accuracy. Ma et al. [97] claim that this 
fitness function works for both fixed and variable number of 
clusters, though only experiments involving a set of user-
defined interesting values for k were reported. An interesting 
characteristic of this function is that, the larger the number of 
clusters, the smaller the accuracy tends to be (because the 
classification problem becomes harder), and so this fitness 
function implicitly tends to favor the discovery of smaller 
numbers of clusters. Ma et al. [97] claim that their fitness 
function has been conceived to deal with noisy and missing 
data as well as to distinguish between relevant and irrelevant 
features for the clustering process.  In this sense, it is worth 
taking the opportunity to make the following important 
remarks: 

(i) Evolutionary clustering algorithms that are not capable of 
automatically handling incomplete data sets can benefit from a 
number of imputation techniques (e.g., [127][110][77]), as a 
preprocessing procedure. In addition, if the proportion of 
missing values is low, just the known values may be enough 
for computing unbiased pairwise (dis)similarity measures. 

(ii) Evolutionary clustering algorithms that are not capable 
of automatically distinguishing between relevant and irrelevant 
features for the clustering process can benefit from a number 
of feature selection techniques (e.g. see [78], [90] and 
references therein), as a preprocessing procedure. Some of 
those techniques are additionally endowed with the ability to 
remove redundant features (which may still impact the 
clustering process even after removal of the irrelevant 
features). 

4) Selection: Proportional selection has been used by several 
authors (e.g., Cole [23]; Cowgill et al. [26]; Tseng and Yang 
[128]; Bandyopadhyay and Maulik [12][11]; Casillas et al. 
[21], Hruschka and Ebecken [65]; Hruschka et al. 
[69][70][68]; Ma et al. [97]; Alves et al. [2]; Naldi and de 
Carvalho [108]). Alves et al. [2] also mention the use of a 
(µ+λ)-like deterministic/elitist selection. The evolutionary 
algorithm for multi-objective clustering proposed by Handl 
and Knowles [59] is based on the PESA-II algorithm [25], 

 
8 The intermediate sub-steps and the corresponding formulae have been 

omitted here for the sake of compactness. Please, refer to [97] for further 
details. 

whose selection principles rely on the interface between two 
populations: an internal population that explores new solutions 
by standard processes of reproduction and variation, and an 
external population that exploits good solutions by elitism. Pan 
and Cheng [113] adopt a selection procedure based on Tabu 
search [53]. 

As previously mentioned in Section II.A.4, the advantages 
and disadvantages of traditional selection mechanisms are 
well-known in the evolutionary computation literature and, as 
far as we know, there is no strong evidence that the relative 
behavior of these mechanisms is much different when assessed 
in the particular context of evolutionary clustering. 

5) Initial Population: In  the papers by Cole [23], Cowgill et 
al. [26], Hruschka and Ebecken [65], Hruschka et al. 
[69][70][68], Ma et al. [97], Naldi and de Carvalho [108], and 
Alves et al. [2], the initial population for the algorithm is 
generated from random assignments of objects to clusters. As 
previously noticed in Section II.A.5, such an initialization 
strategy usually results in unfavorable initial partitions, since 
the initial clusters are likely to be mixed up to a high degree. It 
constitutes, however, an effective approach to test the 
algorithms against tough evaluation scenarios. 

In Tseng and Yang [128], the population of binary 
genotypes is randomly generated in such a way that the 
number of 1’s in each individual is uniformly distributed 
within [1, m], where m is the number of clusters initially 
generated. Initial data partitions are randomly generated in the 
algorithm proposed by Pan and Cheng [113]. Bandyopadhyay 
and Maulik [12][11] randomly select objects from the data set 
to be the initial prototypes of the clusters to be evolved by 
their genetic algorithm. Handl and Knowles [59] employ 
minimum spanning trees and the k-means algorithm to 
generate initial clustering solutions.  Casillas et al. [21] do not 
describe the procedure they used to generate the initial 
population. 

6) Local Search by k-means: Some evolutionary algorithms 
designed for estimating the number of clusters make use of the 
k-means clustering algorithm as a local search procedure (e.g. 
[69][70][2][68][108]). From this particular viewpoint, k-means 
fundamentally performs a fine-tuning of some rough partitions 
obtained by the evolutionary search, thus speeding up its 
convergence. In a broader view, a synergy between k-means 
and evolutionary operators can be achieved. On the one hand, 
k-means minimizes the variances of the clusters achieved by 
the evolutionary algorithm operators, thus yielding to more 
compact clusters. On the other hand, evolutionary algorithms 
can lessen the two main drawbacks of k-means, namely: (i) it 
may get stuck at sub-optimal centroids; and (ii) the user has to 
specify the number of clusters (k). Since the evolutionary 
operators can eliminate, split, and merge clusters through an 
evolutionary search, they are able to evolve better partitions in 
terms of both the number of clusters and centroids. These 
partitions may provide better initial centroids for k-means, thus 
reducing the probability of getting stuck at sub-optimal 
solutions. 
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III. OVERLAPPING CLUSTERING 
 
Recall from the introductory section that a hard partition of a 
data set X={x1,x2, ...,xN} is a collection C={C1,C2, ...,Ck} of k 
non-overlapping data subsets (clusters) such that C1 ∪ C2 

∪...∪ Ck = X and Ci ∩ Cj  = ∅ for i ≠ j. If the condition of 
mutual disjunction (Ci ∩ Cj  = ∅ for i ≠ j) is relaxed, then the 
partitions and the corresponding algorithms are said to be of 
overlapping type. Overlapping algorithms produce data 
partitions that can be soft (each object fully belongs to one or 
more clusters – partial membership is not allowed) [40] or 
fuzzy (each object belongs to one or more clusters to different 
degrees) [118][64]. 

There are only a few works in the literature devoted to 
evolutionary algorithms that search for soft partitions. At a 
high level of abstraction, it can be asserted that these 
algorithms use the same kind of encoding scheme, which has 
been termed cluster description-based representation in [50]. 
Following the lines of [50], a genotype under cluster 

description-based representation explicitly represents the 
parameters necessary to precisely specify each cluster. The 
exact nature of these parameters depends on the shape of 
clusters to be produced, which could be, e.g., boxes, spheres, 
ellipsoids, etc. In any case, each genotype contains k sets of 
parameters, where k is the number of clusters, and each set of 
parameters determines the position, shape and size of its 
corresponding cluster. This way, different clusters may cover 
common areas of the data space and, in such a case, any object 
relying on these areas will be considered to belong non-
exclusively to the corresponding overlapping clusters. Besides, 
the cluster description is non-exhaustive in the sense that some 
objects may not be within any cluster.  This kind of 
representation is used, e.g., in [123][52][45][46]. 

 

A. Fuzzy Clustering 
 
When a fuzzy clustering algorithm is applied to a data set 

with N objects, the final result is a partition of the data into a 
certain number k of fuzzy clusters, such that:  
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where P is a k × N fuzzy partition matrix whose element µ ij 
represents the fuzzy membership of the jth object to the ith 
fuzzy cluster. When µ ij is limited to the extreme values of its 
feasibility interval, i.e., µ ij ∈ {0,1}, then P degenerates to a 
soft partition. Besides, if the additional constraint  Σi µ ij = 1 is 
imposed to every column j of the matrix, then P degenerates to 
a standard hard partition. The representation of a data partition 
in terms of a hard partition matrix corresponds precisely to the 
matrix-based binary encoding scheme described in Section 
II.A.1.a. 

A fuzzy partition matrix provides additional information 
about the data that is not available in its soft or hard 
counterparts. In fact, the fuzzy membership values µ ij can help 
discover more sophisticated relations between the 
corresponding data objects and disclosed clusters [132]. In 
addition, in contrast to their Boolean relatives, the continuous 
membership values of fuzzy partitions are particularly 
appropriate to describe boundaries between ambiguous or 
blurred clusters that are not clearly separated from each other. 
Owing to these desired properties, the applicability of fuzzy 
clustering is broad in scope and includes areas such as pattern 
classification, image segmentation, document categorization, 
data visualization, and dynamic systems identification, just to 
mention a few [16][64][5][32]. 

Most of the research on evolutionary algorithms for 
overlapping clustering has focused on algorithms that evolve 
fuzzy partitions of data. In this context, many authors have 
proposed evolutionary algorithms to solve fuzzy clustering 
problems for which the number of clusters is known or set in 
advance by the user [56][57][80][15][134][130][37][58][91]. 
However, as previously discussed in the introductory section, 
the optimal number of clusters is usually unknown in advance. 
For this reason, more recent papers have proposed to optimize 
both the number of clusters and the corresponding fuzzy 
partitions by some form of evolutionary search 
[115][89][99][111][67][1][19][44]. 

Regardless of the fixed or variable nature of the number of 
clusters, the evolutionary algorithms for fuzzy clustering are 
mostly based on extensions – to the fuzzy domain – of the 
fundamental ideas discussed in Section II for hard partitional 
clustering. This is in conformity with the fact that most fuzzy 
clustering algorithms are based on generalizations of 
traditional algorithms for hard clustering, as it is the case of 
the well-known Fuzzy C-Means (FCM) algorithm and its 
variants [16][64][5], which are essentially generalizations of 
the classic k-means algorithm. Only a few exceptions (e.g. see 
[125]) try to develop operators that could act directly on fuzzy 
partitions of data. Contrarily, most authors have chosen to 
adapt the existing evolutionary clustering techniques to the 
fuzzy domain, not only for convenience, but mainly because, 
to date, there is no strong evidence that the more complex fully 
fuzzy formulation of the problem can be counterbalanced by 
efficiency and/or efficacy gains. This is an interesting open 
question still to be tackled. 

Roughly speaking, the evolutionary algorithms for fuzzy 
clustering that are somehow based upon adaptations of existing 
approaches developed for hard evolutionary clustering (see 
Section II) can be broadly divided into two main categories. 
The first (and most representative) one is composed of 
algorithms that encode and evolve prototypes for the FCM 
algorithm or for one of its variants 
[37][4][91][115][80][15][56][57][58][99][111][89]. In this 
case, the prototypes are encoded and manipulated using 
essentially the same techniques already discussed in Section II. 
Essentially, the only differences between these algorithms and 
their hard counterparts discussed in Section II are: (i) they 



To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews 

 

 17

have to compute the fuzzy partition corresponding to every 
genotype; and (ii) they use as fitness functions clustering 
validity criteria that are capable of assessing fuzzy partitions. 
In what concerns fuzzy validity criteria, we refer the interested 
reader to [64][20][112] and references therein. The fuzzy 
partition corresponding to every genotype, by its turn, is 
computed as a function of the prototypes using the standard 
FCM-like formulae.  

The second category of evolutionary fuzzy clustering 
algorithms is composed of algorithms that use some variant of 
FCM as a local search operator to speed up their convergence 
by refining rough partitions explored by the evolutionary 
search, while providing the necessary computations to get the 
fuzzy partition [1][19][67]. In [19] it is shown that an 
evolutionary algorithm is able to outperform, in terms of 
computational efficiency, traditional approaches to determine 
satisfactory estimates of the unknown number of fuzzy 
clusters, under both the theoretical (asymptotic time 
complexity analyses) and experimental (statistical analyses) 
perspectives. 

 

IV. ENSEMBLES AND MULTI-OBJECTIVE 

CLUSTERING 

 
As previously mentioned, there is no single definition of 

clustering and each clustering algorithm, or even different runs 
of the same algorithm, may produce different partitions for the 
same data set. The partitions produced are also influenced by 
the validity criterion adopted. Two approaches have been 
proposed in the literature to reduce these limitations: multi-
objective clustering and ensembles. In this section we will 
discuss the use of these two approaches combined with 
evolutionary algorithms. 

 
A. Multi-Objective Evolutionary Clustering 

 
Unlike supervised learning tasks, such as classification, 

clustering is an unsupervised learning task, so that there is no 
"ground truth" to tell us what the "correct" or "optimal" 
solution is. This suggests that the quality of a clustering 
solution should be evaluated by a diverse set of validity 
criteria, rather than a single criterion, in order to mitigate the 
strong bias imposed by any particular validity criterion.  

In practice, multiple criteria, considering different aspects of 
the quality of a clustering solution, often represent conflicting 
goals for an optimization method. Consider, for instance, the 
well-known and previously mentioned criterion of minimizing 
the sum of intra-cluster distances. In a general scenario where 
the number of clusters is variable, optimizing only this 
criterion is not enough, because it can be trivially minimized 
by assigning each object to a distinct singleton cluster. In this 
scenario, clearly, we also need to penalize a candidate solution 
for having a large number of clusters, i.e., we also want to 
favor solutions with a small number of large clusters. 
Unfortunately these two objectives – minimizing intra-cluster 

distances and minimizing the number of clusters – are 
conflicting with each other.  

This raises the question of how an evolutionary algorithm 
should cope with such conflicting objectives – assuming we 
have decided that the algorithm will use two or more 
conflicting validity criteria, which is often desirable in 
practice. The conventional and simplest approach would be to 
convert the corresponding multi-objective clustering problem 
into a single-objective one, by defining the fitness function as 
a weighted formula where different weights are assigned to 
different objectives. However, this approach has several 
drawbacks, such as (in a nutshell):  mixing non-
commensurable objectives (e.g. distance and number of 
clusters) into the same formula; requiring an ad-hoc 
assignment of weight values to different objectives, which 
often requires many runs of the algorithm to try to "optimize" 
the weight values, etc. These drawbacks are extensively 
discussed in the literature – see e.g. [22] and [33]. 

A more principled solution consists of developing a truly 
multi-objective evolutionary algorithm for clustering, i.e. an 
algorithm with the main characteristic of using a multi-
objective function following the principle of Pareto 
dominance. According to the definition of this type of 
dominance relation between two candidate solutions, a 
candidate clustering solution c1 dominates another candidate 
clustering solution c2 if and only if: (a) c1 is strictly better than 
c2 in at least one of all the objectives considered in the fitness 
function; and (b) c1 is not worse than c2 in any of the 
objectives considered in the fitness function.  

When using this type of Pareto dominance-based, multi-
objective fitness function, the goal of the evolutionary 
algorithm is to find the "Pareto front", i.e. the set of all non-
dominated solutions. Note that, since the goal is to return to 
the user a set of non-dominated solutions, rather than a single 
solution as it is typically the case in single-objective 
optimization, a multi-objective evolutionary algorithm 
necessarily needs special mechanisms, such as elitism 
procedures that preserve non-dominated solutions, selection 
methods adapted to cope with the Pareto dominance concept, 
genetic operators that promote diversity in the population (to 
favor the discovery of non-dominated solutions as spread as 
possible across the Pareto front), etc. Such special mechanisms 
are well documented in the literature – again, see [22] and [33] 
– and they are normally generic mechanisms that can be 
applied regardless of whether the evolutionary algorithm is 
solving a clustering problem or another kind of problem. 
Therefore, in this section, we focus only on the crucial aspect 
of multi-objective evolutionary algorithms that is very specific 
to the clustering task, namely, the definition of the multi-
objective fitness function. Hence, let us now briefly review the 
multi-objective fitness function of some evolutionary 
algorithms for clustering reported in the literature. 

In an evolutionary approach for multi-objective clustering, 
Handl and Knowles [59] use a fitness function based on both 
compactness and connectedness of clusters. Cluster 
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compactness is expressed by means of the overall deviation of 
a partitioning – Equation (2). Connectedness is measured by 
the degree to which neighboring objects have been placed in 
the same cluster: 
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where nij is jth nearest neighbor of object xi, L is the number of 
neighbors that contribute to the measure, and z(.) is given by: 
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The authors [59] remark that while the objective value 
associated with the overall deviation – Equation (2) – 
necessarily improves with an increasing number of clusters, 
the opposite is the case for the connectivity – Equation (16). 
The interaction of these two objective functions allows 
keeping the number of clusters stable, thus avoiding 
convergence to trivial solutions whilst allowing exploration of 
interesting regions of the search space. 
 Another evolutionary algorithm for multi-objective 
clustering is described in [82]. The two objectives used in this 
work are the total intra-cluster variation (computed over all 
clusters) and the number of clusters. Both objectives should be 
minimized, but they are conflicting with each other, as 
previously explained. Hence, by using the concept of Pareto 
dominance, the algorithm manages to discover a diverse set of 
non-dominated clustering solutions, where, for each different 
number of clusters, the algorithm can find the smallest possible 
total intra-cluster variance. This allows us to present a set of 
solutions with different trade-offs between the two objectives 
to the user, who can then make a more informed choice about 
the solution to be used in practice. 

Bandyopadhyay et al. [8] proposed a multi-objective 
evolutionary algorithm that performs fuzzy clustering. There 
are two objectives being simultaneously optimized. One of 
them is Jm defined in (5). The other is the well-known Xie-
Beni index [131], which is essentially a ratio of a global 
measure of intra-cluster variation divided by a local measure 
of cluster separation – namely, the distance between the two 
closest clusters. Note that the numerator of this ratio is similar 
to the first objective, but the denominator is measuring an 
aspect of clustering quality not captured by the first objective. 
Hence, the value of this second objective will be optimized 
(minimized) when all clusters have an intra-cluster variation as 
small as possible and when the two closest clusters are as far 
away from each other as possible. 

In a variation of this work, Mukhopadhyay et al. [106] use 
two objectives where the first one is also a measure of total 
intra-cluster variation, but they simplify the second measure to 
be a direct global measure of the clusters' separation 
(essentially the total summation of distances between all pairs 
of clusters). 

Ripon et al. [117] also propose a multi-objective 

evolutionary clustering algorithm with two objectives. The 
first one is essentially, as usual, a kind of measure of average 
intra-cluster variation computed over all clusters. The 
measure's average value across clusters was used – rather than 
the measure's total summation across clusters – in order to 
produce a normalized value of the measure taking into account 
the number of clusters, which varies for different individuals in 
the evolutionary algorithm's population. The second objective 
is a measure of inter-cluster distance, which measures the 
average distance separating a pair of clusters – computed over 
all pairs of clusters.  

Another relevant work is the multi-objective evolutionary 
algorithm described in [78]. In this work, the algorithm is not 
used for solving a clustering problem, and so it is not strictly 
within the scope of this paper. However, the algorithm is used 
to select attributes for a clustering algorithm (k-means), and 
this is considered relevant enough to be mentioned here, since 
most of the objectives in the fitness function used in this work 
could equally well be used in an evolutionary algorithm for 
clustering. This is because the evolutionary algorithm is used 
as a wrapper around a clustering algorithm, so that the fitness 
of an individual (i.e., a candidate set of selected attributes) is 
computed by running a clustering algorithm with the selected 
attributes and measuring the corresponding clustering validity 
criteria. More precisely, this work used a fitness function with 
four different objectives (clustering validity criteria), namely: 
(a) cluster cohesiveness – related to intra-cluster distance; (b) 
separation between clusters – related to inter-cluster distance; 
(c) number of clusters; and (d) number of selected attributes. 
Note how these objectives cover different aspects of the 
quality of a clustering solution and are seamlessly integrated in 
a Pareto-based multi-objective fitness function. 

To summarize, out of the six works mentioned above, five 
use two objectives and one uses four objectives. Hence, 
researchers have focused mainly on just two objectives, 
probably for the sake of simplicity. In addition, in all the six 
works previously mentioned, one of the objectives used was a 
kind of total intra-cluster distance measure (to be minimized), 
and five of those works used an objective related to a kind of 
inter-cluster distance measure (to be maximized). In principle, 
a larger number of objectives could be considered, to try to 
discover better clusters, and it would be interesting to 
investigate the use of a larger diversity of types of objective 
functions for measuring clustering quality. 

 

B. Ensemble-Based Evolutionary Clustering 
 

The combination of techniques in a group or ensemble is 
easily found in many classification and regression applications. 
In these applications, the outputs provided by different 
techniques are combined by one of several strategies in order 
to provide a consensus output value. The main goal is the 
improvement of the overall performance in terms of accuracy 
or precision by trying to use the best features of each 
individual technique [86]. For such, these approaches use 
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either the label of the class (classification) or the desired value 
(regression). 

A formal definition of cluster ensemble is given by Topchy 
et al. [126]. Given a set of P partitions ∏ = {π1, π2,… ,πP} of a 
data set resulting from several applications of one or more 
clustering algorithms, the goal is to look for a final partition 
(consensus partition), πF, of better quality than the initial 
partitions (partitions basis). The best quality depends on the 
clustering validity criterion adopted. 

More informally, Handl and Knowles [59][60] say that 
clustering ensembles occur by the combination of a set of 
partitions previously produced by several runs of a single 
algorithm or by a set of algorithms. The use of ensemble is not 
so straightforward for clustering techniques. To begin with, 
there is no label associated with each object. Therefore, more 
sophisticated strategies are needed in order to combine 
partitions found by different algorithms or different runs of the 
same algorithm in a consensus partition. 
 According with Fred and Jain [49], the partition obtained by 
the combination of the initial partitions should be consistent or 
agree in some way with them, be robust to small variations in 
these partitions, and be consistent with external information 
regarding the structure of the data (if that information is 
available). 

The main steps for the combination of multiple partitions 
are the induction of the partitions to be combined and the 
definition of a consensus function to combine these partitions 
[126]. Next, the main approaches followed in the literature for 
each step are briefly presented. 
 The initial partitions can be produced by different clustering 
algorithms, several runs of the same clustering algorithm (with 
different initial seeds), several runs of a weak clustering 
algorithm (clustering algorithms simpler than the conventional 
algorithms) and by several sub-samplings of the same original 
data set by the same clustering algorithm. 

Regarding the consensus function, the most usual functions 
are based on co-association, graph, mutual information, and 
voting. A function based on co-association tries to keep 
together objects found together in most of the individual 
partitions [49]. The graph-based functions look for a 
consensus partition using partitioning techniques employed for 
graphs [124]. The functions based on mutual information 
maximize the mutual information between the labels of the 
initial partitions and the labels of the consensus partition. The 
voting function, after labeling the clusters, defines how many 
times each object belonged to each cluster. Each object can be 
assigned to its most frequent cluster. The definition of the 
correspondence of labels for different partitions is not simple. 

 In spite of the difficulty associated with this issue, there are 
several works investigating the ensemble of partitions 
[49][86][124][51][76][133][42]. However, only the last two 
works use a genetic algorithm for producing a clustering 
ensemble.  Another of these works [76] uses genetic 
algorithms as one of the individual clustering algorithms of an 
ensemble.  

Yoon et al. [133] use multiple crossover repetitions to 
combine partitions created by different clustering algorithms. 
Each pair selected for a crossover operation should present a 
high overlap in the cluster objects. The initial population 
comprises all clusters created by the clustering algorithms used 
in the ensemble. The authors argue that their method, named 
heterogeneous clustering ensemble (HCE), differ from other 
ensemble approaches by taking characteristics from the 
individual algorithms and the data set into account during the 
ensemble procedure. This method was compared with 
individual clustering algorithms using a gene-expression data 
set. 

Handl and Knowles [59][60] agree with other authors in that 
ensembles tend to be more robust and produce higher quality 
solutions than a single partition produced by an individual 
clustering algorithm. However, they point out that ensembles 
do not explore the full potential of multi-objective clustering, 
since clusters that cannot be detected by one of the ensemble 
components probably will not be present in the final 
population.  

Of course, it is also possible to combine multi-objective 
clustering with clustering ensemble, as is the case of the work 
of Faceli et al. [42][41], which proposes a Multi-Objective 
Clustering Ensemble method, named MOCLE. This method 
combines an ensemble of data partitions with multi-objective 
clustering. The initial population used by MOCLE is a set 
∏={π1,π2,…,πP} of P partitions, where πi={Ci

1,C
i
2,...,C

i
k(i)} is 

a partition of the data set X={x1, x2, ..., xN} into k(i) clusters, 
such that Ci

1 ∪ Ci
2 ∪ ... ∪ Ci

k(i) = X. The initial partitions are 
of varying quality and are induced by different clustering 
algorithms with different values for their free parameters. 
These partitions usually represent a large variety of clusters 
types. MOCLE evolves towards a concise, stable and robust 
set of alternative structures, which should represent different 
views of the data set.  

 

V. APPLICATIONS 

 
The application fields for evolutionary clustering 

algorithms are essentially the same as those for non-
evolutionary algorithms, though, in practice, the use of 
evolutionary approaches is seemingly more appropriate when 
no domain knowledge (e.g. about the approximate number of 
clusters) is available.  

Next, we will briefly comment on some applications found 
in the literature of evolutionary clustering. These applications 
will be divided into five groups: image processing, 
bioinformatics, computational finance, RBF neural network 
design and others. 

In image processing applications, evolutionary clustering 
algorithms are mainly used to identify regions with particular 
interest in an image. Bandyopadhyay and her co-authors, for 
example, applied evolutionary clustering [10][11] and fuzzy 
clustering [100][111] algorithms to distinguish landscape 
regions like rivers, habitations and vegetation areas in satellite 
images. In [8] the authors applied multi-objective clustering 



To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews 

 

 20

genetic algorithms to pixel classification in remote sensing 
imagery. In a similar application by Liu and Chapman [89], 
evolutionary clustering is employed for automated road 
extraction from satellite imagery. In a third image processing 
application, Scheunders [121] dealt with quantization of color 
images. Hall et al. [58] applied a genetically guided fuzzy 
clustering strategy to brain tissue MRI (Magnetic Resonance 
Image) quantization. Das et al. [27] applied a differential 
evolution algorithm to automatic segmentation of images. 

Several authors have reported the application of 
evolutionary clustering algorithms to bioinformatics, 
particularly to gene-expression analysis. Such applications are 
important due to the growing amounts of gene-expression data 
quickly becoming available and the need for more 
sophisticated analysis tools for medical diagnosis. There are 
two main groups of gene-expression analysis applications:  
identification of groups of genes that have closely related 
expression levels (in order, for instance, to better understand 
and diagnose some diseases using tissues as input attributes) – 
see [115], [97], [103], [95], [70], [68], [66], and [9] – and the 
discovery of new sub-groups of pathologies, using the gene-
expression levels as input attributes – by looking for different 
structures in a gene-expression data set  [42][108][35]. 

For finance applications, evolutionary clustering 
algorithms have been used to group either customer or 
company profiles, as in the works from Lacerda et al. [87], for 
credit risk assessment, and Krovi [84], for cluster analysis of 
bankrupt and non-bankrupt companies.  

Another application is the evolutionary design of other 
machine learning techniques. Different approaches for the 
hybrid training of RBF networks using evolutionary clustering 
to select the number and location of basis functions were 
investigated in [88][29]. 

There are many other applications where evolutionary 
clustering has been successfully used. They include, for 
example, the work from Sarafis et al. [120], who applied an 
evolutionary algorithm to the problem of clustering 
earthquakes, using data from an earthquake catalog; the work 
from Casillas et al. [21], applying genetic algorithm to 
document clustering; the use of genetic clustering for intrusion 
detection in computer networks, by  Liu et al. [92]; and the use 
of a clustering genetic algorithm to extract rules from 
multilayer perceptrons [71]. 
 

VI. CONCLUSIONS 
 
A. Summary 

 
This paper presents an up-to-date survey on evolutionary 

algorithms for clustering. It tries to reflect the profile of this 
area by focusing more on those subjects that have been given 
more importance in the literature. Particularly, the paper has 
focused mainly on hard partitional algorithms, though 
overlapping (soft/fuzzy) approaches have also been covered.  

An original contribution of the present paper is that it 
discusses key issues on the design of evolutionary algorithms 
for data partitioning problems, such as usually adopted 
representations, evolutionary operators, and fitness functions, 

just to mention a few. In particular, mutation and crossover 
operators commonly described in the literature are 
conceptually analyzed, giving especial emphasis to those 
genetic operators specifically designed for clustering problems 
(i.e., cluster-oriented and context-sensitive operators). In 
addition, advantages and disadvantages of the most common 
representation schemes are discussed, and asymptotic 
comparative analyses in terms of running time and memory 
space requirements are reported. Finally, several references are 
provided that describe applications of evolutionary algorithms 
for clustering in different domains, such as image processing, 
computer security, and bioinformatics. 

For the sake of clarity, algorithms designed for fixed and 
variable number of clusters have been reviewed separately. In 
brief, algorithms that assume a fixed number of clusters (k) – 
e.g., Bandyopadhyay and Maulik [10]; Estivill-Castro and 
Murray [39]; Fränti et al. [48]; Kivijärvi et al. [79]; Krishna 
and Murty [83]; Krovi [84]; Bezdek et al. [14]; Kuncheva and 
Bezdek [85]; Lu et al. [95][94]; Lucasius et al. [96]; Maulik 
and Bandyopadhyay [100]; Merz and Zell [103]; Murthy and 
Chowdhury [107]; Scheunders [121]; Sheng and Liu [122] – 
are particularly suitable for applications in which there is 
information regarding k, notably when domain knowledge is 
available that suggests a reasonable value for the number of 
clusters. In practice, this situation may take place when there is 
good reason to believe that a small interval of values for k may 
contain the “best” number of clusters, k*. In other situations, 
clustering algorithms that explore partitions with different 
numbers of clusters are often preferred (e.g., Cole [23]; 
Cowgill et al. [26]; Bandyopadhyay and Maulik [12][11]; 
Hruschka and Ebecken [65]; Casillas et al. [21]; Hruschka et 
al. [69][70][68]; Ma et al. [97]; Alves et al. [2]; Tseng and 
Yang [128]; Pan and Cheng [113]; and Handl and Knowles 
[59]). Such evolutionary algorithms search for both k* and the 
corresponding optimal partition in regions of the space where 
they are more likely to be found.  

Table II provides a summary of evolutionary algorithms 
designed for optimizing fixed and variable numbers of 
clusters. Additionally, this table also allows a unified view of 
the algorithms for the reader particularly interested in the 
nature of the data structure used for manipulating the clusters 
during the evolutionary search. Such data structures have been 
categorized into three main types, namely: centroid-based, 
medoid-based, and label-based. Algorithms whose main data 
structures do not strictly adhere to those just mentioned (e.g. 
tree-based and graph-based) are listed in the last row of the 
table.  

The next section closes the paper by suggesting some topics 
for future research that, in the authors' opinion, should deserve 
special attention from the scientific community interested in 
evolutionary algorithms for clustering. 
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TABLE II. SUMMARY OF EVOLUTIONARY 
ALGORITHMS FOR HARD PARTITIONAL 

CLUSTERING. 
 Fixed k Variable k 

Label-

Based 

Krovi [84] 
Murthy/Chowdhury [107] 
Krishna/Murty [83]  
Lu et al. [95][94] 

Cole [23] 
Cowgill et al. [26] 
Hruschka et al.  [65][69]  
Hruschka et al. [70][68] 
Alves et al. [2] 
Ma et al. [97] 

Centroid-

Based 

Scheunders [121] 
Fränti et al.  [48] 
Merz/Zell [103] 
Kivijärvi et al.  [79] 
Bandyopadhyay/Maulik 

 [10][100] 

Bandyopadhyay/Maulik 
[12][11] 

Medoid-

Based 

Kuncheva/Bezdek  [85] 
Lucasius et al. [96] 
Estivill-Castro/Murray  [39] 
Sheng /Liu [122]  

 

Others 
Bezdek et al. [14] 
 

Casillas et al.  [21]  
Tseng/Yang [128] 
Handl/Knowles  [59] 
Pan and Cheng [113] 

 

 
 
B. Future Trends 

 
In most of the references on evolutionary algorithms for 

clustering, only the quality of the partitions is of concern, 
whereas little attention has been given to computational 
efficiency, which is a critical issue when one thinks of serious 
large-scale data clustering problems. We shall note that 
traditional randomized approaches9 can possibly find solutions 
as good as those found by evolutionary algorithms (mainly if 
these are based on local search engines, such as k-means or 
FCM). From this standpoint, an important question to be 
answered is: What are the scenarios in which evolutionary 
algorithms are more computationally efficient than traditional 
randomized approaches? More generally, one may want to 
know the relative computational efficiency of evolutionary 
algorithms when compared with other (probabilistic) 
algorithms designed for a given clustering task. Since 
efficiency issues are almost untouched in the literature that 
addresses evolutionary algorithms for clustering, one might 
have the impression that there is an implicit claim suggesting 
that these algorithms are in general efficient. It is likely that 
such an implicit claim is mostly based on the fact that 
evolutionary algorithms are widely believed to be effective on 
(any) NP-hard global optimization problems, being able to 
provide near-optimal solutions in reasonable time. However, it 
is important to bear in mind that, in practice, the success of an 
evolutionary algorithm to “solve” a given problem is highly 
dependent upon how it has been designed (in terms of 
encoding scheme, operators, set of parameters, etc.). 
According to the conventional wisdom of good science, ideally 
 

9 Systematically executing a partitional clustering algorithm multiple 
times, possibly for different numbers of clusters, and then selecting the 
particular partition that provides the best result according to a specific relative 
validity criterion [72][64]. 

such design choices should be carefully analyzed (theoretically 
and/or empirically). However, due to the probabilistic nature 
of the search process performed by evolutionary algorithms, 
such analyses are usually hard to be accomplished. In the 
authors' opinion, that is why this issue is still almost untouched 
in the related literature [19]. Particularly, most of the literature 
on evolutionary clustering does not provide detailed 
theoretical analyses in terms of time complexity. We believe 
that this issue is an important research area for future work. In 
addition, research efforts aimed at investigating the 
computational efficiency of evolutionary and non-evolutionary 
approaches in a systematic, empirical fashion, making use of 
rigorous statistical analyses, are in order. 

There is also much work to be done on investigating the 
theoretical underpinnings of evolutionary algorithms for 
clustering. The book by Falkenauer [43] can be considered as 
a pioneering work in this research direction. In brief, the 
author seriously questioned the applicability of the schema 
theorem [63][54] for the particular context of grouping 
problems (broadly defined) being solved by standard genetic 
algorithms. Although such a book carefully elaborates on this 
subject, as well as it provides deep insights on how genetic 
algorithms for clustering problems should be designed, formal 
justifications are not given. Instead, the author emphasizes the 
need of meticulously choosing both the encoding scheme and 
the operators in such a way that they make sense with respect 
to the structure of grouping problems. Doing so, the author 
argues that the premises of the schema theorem can be 
satisfied, and valid approaches can be derived to tackle 
grouping problems by using genetic algorithms. Since the 
remarkable book of Falkenauer was published, in 1998, 
several evolutionary algorithms specifically designed for 
particular data partitioning problems have been proposed, and 
good results have been reported in many applications. 
However, formal analyses concerning the theoretical 
soundness of such algorithms are still largely untouched in the 
literature and are worth of investigation. 

Another research direction that deserves more investigation 
is multi-objective clustering. Recall that there is no "ground 
truth" in clustering, and so it is important to consider multiple 
objectives (different clustering validity criteria) when 
evaluating the fitness of an individual representing a candidate 
clustering solution. Although multi-objective evolutionary 
algorithms for clustering have already been proposed, this 
research topic is currently under-explored in the literature. 

Finally, a topic that is almost untouched in the literature is 
the combination of evolutionary approaches with traditional 
hierarchical clustering algorithms, especially those derived 
from the Lance-Williams scheme. This is probably due to the 
fact that it is not straightforward to define a fitness function 
capable of guiding the evolution of dendrograms. To the best 
of our knowledge, only Lozano and Larrañaga [93] address 
this topic, which is a possible venue for future research. 
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