
To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 1

Abstract — This paper presents a survey of evolutionary

algorithms designed for clustering tasks. It tries to reflect the

profile of this area by focusing more on those subjects that have

been given more importance in the literature. In this context,

most of the paper is devoted to partitional algorithms that look

for hard clusterings of data, though overlapping (i.e., soft and

fuzzy) approaches are also covered in the manuscript. The paper

is original in what concerns two main aspects. First, it provides

an up-to-date overview that is fully devoted to evolutionary

algorithms for clustering, is not limited to any particular kind of

evolutionary approach, and comprises advanced topics, like

multi-objective and ensemble-based evolutionary clustering.

Second, it provides a taxonomy that highlights some very

important aspects in the context of evolutionary data clustering,

namely, fixed or variable number of clusters, cluster-oriented or

non-oriented operators, context-sensitive or context-insensitive

operators, guided or unguided operators, binary, integer or real

encodings, centroid-based, medoid-based, label-based, tree-based

or graph-based representations, among others. A number of

references is provided that describe applications of evolutionary

algorithms for clustering in different domains, such as image

processing, computer security, and bioinformatics. The paper

ends by addressing some important issues and open questions that

can be subject of future research.

Index Terms — evolutionary algorithms, clustering, applications.

I. INTRODUCTION

Clustering is a task whose goal is to determine a finite set of

categories (clusters) to describe a data set according to
similarities among its objects [75][40]. The applicability of
clustering is manifold, ranging from market segmentation [17]
and image processing [72] through document categorization
and web mining [102]. An application field that has shown to
be particularly promising for clustering techniques is
bioinformatics [7][13][129]. Indeed, the importance of
clustering gene-expression data measured with the aid of
microarray and other related technologies has grown fast and
persistently over the past recent years [74][60].

Clustering techniques can be broadly divided into three
main types [72]: overlapping (so-called non-exclusive),
partitional, and hierarchical. The last two are related to each

E. R. Hruschka, R. J. G. B. Campello, and A. C. P. L. F. de Carvalho are

with the Department of Computer Sciences of the University of São Paulo
(USP) at São Carlos, SP, Brazil. E-mails: {erh;campello;andre}@icmc.usp.br.

A.A. Freitas is with the Computer Science Department of the University of
Kent at Canterbury, Kent, UK, E-mail: A.A.Freitas@kent.ac.uk.

The authors acknowledge the Brazilian Research Agencies CNPq and
FAPESP for their financial support to this work.

other in that a hierarchical clustering is a nested sequence of
partitional clusterings, each of which represents a hard
partition of the data set into a different number of mutually
disjoint subsets. A hard partition of a data set X={x1,x2, ...,xN},
where xj (j = 1, ..., N) stands for an n-dimensional feature or
attribute vector, is a collection C={C1,C2, ...,Ck} of k non-
overlapping data subsets Ci≠∅ (non-null clusters) such that C1

∪ C2 ∪...∪ Ck = X and Ci ∩ Cj = ∅ for i ≠j. If the condition of
mutual disjunction (Ci ∩ Cj = ∅ for i ≠ j) is relaxed, then the
corresponding data partitions are said to be of overlapping
type. Overlapping algorithms produce data partitions that can
be soft (each object fully belongs to one or more clusters) [40]
or fuzzy (each object belongs to one or more clusters to
different degrees) [118][64].

In spite of the type of algorithm (partitional, hierarchical or
overlapping), the main goal of clustering is maximizing both
the homogeneity within each cluster and the heterogeneity
among different clusters [72][3]. In other words, objects that
belong to the same cluster should be more similar to each other
than objects that belong to different clusters. The problem of
measuring similarity is usually tackled indirectly, i.e., distance
measures are used for quantifying the degree of dissimilarity
among objects, in such a way that more similar objects have
lower dissimilarity values [73]. Several dissimilarity measures
can be employed for clustering tasks [72][132]. Each measure
has its bias and comes with its own advantages and drawbacks.
Therefore, each one may be more or less suitable to a given
analysis or application scenario. Indeed, it is well-known that
some measures are more suitable for gene clustering in
bioinformatics [74], whereas other measures are more
appropriate for text clustering and document categorization
[114], for instance.

Clustering is deemed one of the most difficult and
challenging problems in machine learning, particularly due to
its unsupervised nature. The unsupervised nature of the
problem implies that its structural characteristics are not
known, except if there is some sort of domain knowledge
available in advance. Specifically, the spatial distribution of
the data in terms of the number, volumes, densities, shapes,
and orientations of clusters (if any), are unknown [47]. These
adversities may be potentialized even further by an eventual
need for dealing with data objects described by attributes of
distinct natures (binary, discrete, continuous, and categorical),
conditions (complete and partially missing) and scales (ordinal
and nominal) [72][73].

From an optimization perspective, clustering can be
formally considered as a particular kind of NP-hard grouping

A Survey of Evolutionary Algorithms for

Clustering
Eduardo R. Hruschka, Member, IEEE, Ricardo J. G. B. Campello, Member, IEEE, Alex A. Freitas,

Member, IEEE, André C. P. L. F. de Carvalho, Member, IEEE

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 2

problem [43]. This has stimulated the search for efficient
approximation algorithms, including not only the use of ad hoc

heuristics for particular classes or instances of problems, but
also the use of general-purpose metaheuristics (e.g. see [116]).
Particularly, evolutionary algorithms are metaheuristics widely
believed to be effective on NP-hard problems, being able to
provide near-optimal solutions to such problems in reasonable
time. Under this assumption, a large number of evolutionary
algorithms for solving clustering problems have been proposed
in the literature. These algorithms are based on the
optimization of some objective function (i.e., the so-called
fitness function) that guides the evolutionary search.

This paper presents a survey of evolutionary algorithms
designed for clustering tasks. It tries to reflect the profile of
this area by focusing more on those subjects that have been
given more importance in the literature. In this context, most
of the paper is devoted to partitional algorithms that look for
hard data clusterings, though overlapping approaches are also
covered in the manuscript. It is important to stress that
comprehensive surveys on clustering have been previously
published, such as the outstanding papers by Jain et al. [73],
Jiang et al. [74], and Xu and Wunsch II [132], just to mention
a few. Nevertheless, to the best of the authors’ knowledge,
none has been fully devoted to evolutionary approaches. It is
worth mentioning, however, that reviews on similar subjects
have been previously published. The authors themselves have
previously published overviews on related topics. For instance,
in [109] the authors provide an overview of Genetic
Algorithms (GAs) for clustering, but only a small subset of the
existing evolutionary approaches (namely, GAs) is discussed
in that reference. In [50], in its turn, the author provides an
extensive review of evolutionary algorithms for data mining
applications, but the work focuses on specific evolutionary
approaches (GAs and Genetic Programming) and is mainly
intended for classification tasks, clustering being just slightly
touched in a peripheral section. Three previous monographs
[23][43][119] have also partially approached some of the
issues raised in the present manuscript. In particular, Cole [23]
reviewed a number of genetic algorithms for clustering
published until 1997, whereas [119] provided a review of
evolutionary algorithms for clustering that is more recent, yet
much more concise. In contrast, Falkenauer [43] describes in
details a high-level paradigm (meta-heuristic) that can be
adapted to deal with grouping problems broadly defined, thus
being useful for several applications – e.g., bin packing,
economies of scale, conceptual clustering, and equal piles.
However, data partitioning problems like those examined in
the present paper are not the primary focus of Falkenauer’s
book [43], which has been published in 1998.

Bearing the previous remarks in mind, it can be stated that
the present paper is original in the following two main aspects:
(i) It provides an up-to-date overview that is fully devoted to
evolutionary algorithms for clustering, is not limited to any
particular kind of evolutionary approach, and comprises
advanced topics, like multi-objective and ensemble-based

evolutionary clustering; and (ii) It provides a taxonomy that
allows the reader to identify every work surveyed with respect
to some very important aspects in the context of evolutionary
data clustering, such as:

• Fixed or variable number of clusters;
• Cluster-oriented or non-oriented operators;
• Context-sensitive or context-insensitive operators;
• Guided or unguided operators;
• Binary, integer or real encodings;
• Centroid-based, medoid-based, label-based, tree-based

or graph-based representations.

By cluster-oriented operators, it is meant here operators that
are task dependent, such as operators that copy, split, merge,
and eliminate clusters of data objects, in contrast to
conventional evolutionary operators that just exchange or
switch bits without any regard to their task-dependent
meaning. Guided operators are those operators that are guided
by some kind of information about the quality of individual
clusters, about the quality of the overall data partition, or about
their performance on previous applications, such as operators
that are more likely to be applied to poor quality clusters and
operators whose probability of application is proportional to
its success (or failure) in previous generations. Finally,
context-sensitivity will hereafter refer to the original concept as
defined by Falkenauer [43], which is limited to crossover
operators. In brief, a crossover operator is context-sensitive if:
(i) it is cluster-oriented; and (ii) two (possibly different)
chromosomes encoding the same clustering solution do not
generate a different offspring solution when they are crossed-
over. As a consequence, when the number of clusters, k, is
fixed in advance, it can be asserted that two chromosomes
encoding different clustering solutions with the same k must
not produce solutions with a number of clusters other than k as
a result of crossover. Of course, context-sensitivity is more
stringent than cluster-orientation.

The remainder of this paper is organized as follows. Section
II presents a survey of evolutionary algorithms for hard
partitional clustering, whereas Section III presents a review of
evolutionary algorithms for overlapping clustering. Section IV
discusses evolutionary algorithms for multi-objective
clustering and clustering ensembles. A number of references
that describe applications of evolutionary algorithms for
clustering in different domains is provided in Section V.
Finally, the material presented throughout the paper is
summarized in Section VI, which also addresses some
important issues for future research.

II. HARD PARTITIONAL CLUSTERING

As mentioned in the introduction, a hard partition of a data set
X is a collection of k non-overlapping clusters of these data.
The number of clusters, k, usually must be provided in
advance by the user. In some cases, however, it can be
estimated automatically by the clustering algorithm. Section

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 3

II.A describes evolutionary algorithms for which k is assumed
to be fixed a priori, whereas Section II.B addresses algorithms
capable of estimating k during the evolutionary search.

A. Algorithms with Fixed Number of Clusters

Several papers address evolutionary algorithms to solve
clustering problems for which the number of clusters (k) is
known or set up a priori (e.g., Bandyopadhyay and Maulik
[10]; Estivill-Castro and Murray [39]; Fränti et al. [48];
Kivijärvi et al. [79]; Krishna and Murty [83]; Krovi [84];
Bezdek et al. [14]; Kuncheva and Bezdek [85]; Lu et al.
[95][94]; Lucasius et al. [96]; Maulik and Bandyopadhyay
[100]; Merz and Zell [103]; Murthy and Chowdhury [107];
Scheunders [121]; Sheng and Liu [122]). Cole [23] reviews
and empirically assesses a number of such genetic algorithms
for clustering published up to 1997.

It is intuitive to think of algorithms that assume a fixed
number of clusters (k) as being particularly suitable for
applications in which there is information regarding the value
of k. For instance, domain knowledge may be available that
suggests a reasonable value – or a small interval of values –
for k. Having such information in hand, algorithms described
in this section can be potentially applied for tackling the
corresponding clustering problem. Alternatively, the reader
may think about using conventional clustering algorithms for
fixed k, such as k-means [101][72], EM (Expectation
Maximization) [34][61], and SOM (Self-Organized Maps)
[17][62] algorithms. However, these prototype-based
algorithms are quite sensitive to initialization of prototypes1
and may get stuck at sub-optimal solutions. This is a well-
known problem, which becomes more evident for more
complex data sets2. A common approach to alleviate this
problem involves running the algorithm repeatedly for several
different prototype initializations. Nevertheless, note that one
can only guarantee that the best clustering solution for a fixed
value of k would be found if all possible initial configurations
of prototypes were evaluated. Of course, this approach is not
computationally feasible in practice, especially for large data
sets and large k. Running the algorithm only for a limited set of
initial prototypes, in turn, may be either inefficient or not
computationally attractive, depending on the number of
prototype initializations to be performed.

For this reason, other approaches have been investigated.
Among them, evolutionary algorithms have shown to be
promising alternatives. Evolutionary algorithms essentially
evolve clustering solutions through operators that use
probabilistic rules to process data partitions sampled from the
search space [43]. Roughly speaking, more fitted partitions
have higher probabilities of being sampled. Thus, the
evolutionary search is biased towards more promising
clustering solutions and tends to perform a more

1 We here define a prototype as a particular feature vector that represents a

given cluster. For instance, prototypes can be centroids, medoids, or any other
vector computed from the data partition and that represents a cluster (as in the
case of typical fuzzy clustering algorithms).

2 Complexity here refers to the number of different local minima and the
variance of their objective function values, which are usually strongly related
to the number n of data attributes and the number k of clusters.

computationally efficient exploration of the search space than
traditional randomized approaches (e.g., multiple runs of k-
means). Besides, traditional randomized approaches do not
make use of the information on the quality of previously
assessed partitions to generate potentially better partitions. For
this reason, these algorithms tend to be less efficient (in a
probabilistic sense) than an evolutionary search.

In spite of the theoretical advantages (in terms of
computational efficiency) of evolving clustering solutions,
much effort has also been undertaken towards showing that
evolutionary algorithms can provide partitions of better quality
than those found by traditional algorithms. In fact, this may be
possible provided that the parallel nature of the evolutionary
algorithms allows them to handle multiple solutions, possibly
guided by different distance measures and different fitness
evaluation functions.

This section reviews a significant part of the literature on
evolutionary algorithms for partitioning a data set into k

clusters. Potential advantages and drawbacks of each
algorithm are analyzed under the light of their corresponding
encoding schemes, operators, fitness functions, and
initialization procedures.

1) Encoding Schemes: Several encoding schemes have been
proposed in the literature. In order to explain them, let us
consider a simple pedagogical data set (Table I) formed by 10
objects xi (i = 1, 2,…,10) with two attributes each (n = 2),
denoted a1 and a2. Such objects have been arbitrarily grouped
into three clusters (C1, C2, and C3). These clusters are depicted
in Fig. 1 and are used to illustrate how partitions can be
encoded to be processed by an evolutionary search. Aiming at
summarizing common encodings found in the literature, we
first here categorize them into three types: binary, integer, and
real.

TABLE I. PEDAGOGICAL DATA SET.
Object (xi) a1 a2 Cluster - Cj

x1 1 1 Cluster 1 (C1)

x2 1 2 Cluster 1 (C1)

x3 2 1 Cluster 1 (C1)

x4 2 2 Cluster 1 (C1)

x5 10 1 Cluster 2 (C2)

x6 10 2 Cluster 2 (C2)

x7 11 1 Cluster 2 (C2)

x8 11 2 Cluster 2 (C2)

x9 5 5 Cluster 3 (C3)

x10 5 6 Cluster 3 (C3)

0

2

4

6

8

0 2 4 6 8 10 12

a 1

a 2

Cluster 1

Cluster 2

Cluster 3

Fig. 1. Pedagogical data set (see Table I).

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 4

a) Binary encoding: In a binary encoding, each clustering
solution (partition) is usually represented as a binary
string of length N, where N is the number of data set
objects. Each position of the binary string corresponds
to a particular object, i.e., the ith position (gene)
represents the ith object. The value of the ith gene is 1
if the ith object is a prototype and zero otherwise. For
example, the partition depicted in Fig. 1 can be
encoded by means of the string [1000100010], in which
objects 1, 5, and 9 are cluster prototypes. Clearly, such
an encoding scheme inexorably leads to a medoid-

based representation, i.e., a prototype-based
representation in which the cluster prototypes
necessarily coincide with objects from the data set. The
partition encoded into a given genotype3 can be derived
by the nearest prototype rule – taking into account the
proximities between objects and prototypes – in such a
way that the ith object is assigned to the cluster
represented by the closer (i.e. the most similar)
prototype. Kuncheva and Bezdek [85] make use of this
encoding approach, which allows the evolutionary
search to be performed by means of those classical GA
operators originally developed to manipulate binary
genotypes [54][105]. However, the use of such classical
operators usually suffers from serious drawbacks in the
specific context of evolutionary clustering, as will be
further discussed in Section II.A.2.a.
There is an alternative way to represent a given data
partition using a binary encoding. It is the use of a k ×
N matrix in which the rows represent clusters and the
columns represent objects. In this case, if the jth object
belongs to the ith cluster, then 1 is assigned to the ith
element of the jth column of the genotype, whereas the
other elements of the same column receive 0. For
example, using this representation, the partition
depicted in Fig. 1 would be encoded as [14]:

1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1

This matrix-based binary encoding scheme has the
clear disadvantage of requiring O(k⋅N) memory space,
against O(N) space of the usual string-based binary

encoding scheme formerly described. On the other
hand, the time it requires to recover the data partition
from a given genotype is O(k⋅N) – both in the average
and worst cases – against O(k⋅n⋅N) for the string-based
scheme (due to the nearest prototype rule
computations)4. This computational saving is relevant

3 The terms genotype, chromosome and individual usually have the same

meaning in the literature on evolutionary algorithms and will be freely
interchanged in this paper.

4 Actually, the nearest neighbor search can be performed in asymptotic
logarithmic time by exploiting the Delaunay triangulation [81], which is the
dual of the Voronoi diagram – e.g., see [98]. However, to the best of our

only for data sets with many attributes. When the
number of attributes n is not large, the advantage of the
matrix-based scheme reduces to the possibility of
extending it to handle soft partitions, by allowing
multiple elements of a given column to be non-null.
Soft partitional clustering is discussed in Section III.

b) Integer encoding: There are two ways of representing
clustering solutions by means of integer encoding. In
the first one, a genotype is an integer vector of N
positions, where N is the number of data set objects.
Each position corresponds to a particular object, i.e.,
the ith position (gene) represents the ith data set object.
Provided that a genotype represents a partition formed
by k clusters, each gene has a value over the alphabet
{1, 2, 3, …, k}. These values define the cluster labels,
thus leading to a label-based representation. For
example, the integer vector [1111222233] represents
the clusters depicted in Fig. 1. This encoding scheme is
adopted in [84][107][83][95][94]. In particular, only
partitions formed by two clusters are addressed in [84],
thus allowing the use of a binary representation for
which each gene has a value over the alphabet {0, 1}.
This integer encoding scheme is naturally redundant,
i.e., the encoding is one-to-many. In fact, there are k!
different genotypes that represent the same solution.
For example, there are 3! different genotypes that
correspond to the same clustering solution represented
in Fig. 1, namely: [1111222233], [1111333322],
[2222111133], [2222333311], [3333111122], and
[3333222211]. Thus, the size of the search space to be
explored by the genetic algorithm is much larger than
the original space of solutions. Depending on the
employed operators, this augmented space may reduce
the efficiency of the genetic algorithm. An alternative to
solve this problem is the use of a renumbering

procedure [43].
Another way of representing a partition by means of an
integer encoding scheme involves using an array of k
elements to provide a medoid-based representation of
the data set. In this case, each array element represents
the index of the object xi, i = 1, 2, …, N (with respect
to the order the objects appear in the data set)
corresponding to the prototype of a given cluster. As an
example, the array [1 5 9] can represent a partition in
which objects 1, 5, and 9 are the cluster prototypes
(medoids) of the data given in Table I. Taking into
account these prototypes and assuming a nearest
prototype rule for assigning objects to clusters, the
partition depicted in Fig. 1 can be recovered. Lucasius
et al. [96], for instance, make use of this approach. This
representation scheme is also adopted, for instance, in
[39] and [122].
Conceptually speaking, representing medoids by means
of an integer array of k elements, as previously
discussed, is usually more computationally efficient
than using the string-based binary encoding scheme

knowledge this idea has not been explored in the context of evolutionary
algorithms for clustering.

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 5

described in Section II.A.1.a. However, it must be
noticed that such an integer encoding scheme may be
redundant if unordered genotypes are allowed, in which
case the solutions [1 5 9], [1 9 5], [5 1 9], [5 9 1], [9 1
5], and [9 5 1] encode the same partition depicted in
Fig. 1. In such a case, a renumbering procedure should
be used in order to avoid potential redundancy
problems.
When comparing the two different integer encoding
schemes discussed in this section, one has to take into
account some different aspects that may be of interest.
Considering space complexity issues, the integer
encoding is O(N) when a label-based representation is
used, whereas it is O(k) when a medoid-based

representation is adopted. Thus, in principle, one may
conclude that the latter is more advantageous than the
former (since k is typically much lower than N).
However, this is not necessarily true. Actually, the
suitability of each of the aforementioned encoding
schemes is highly dependent upon the fitness function
used to guide the evolutionary search, as well as upon
the evolutionary operators that manipulate the
clustering solutions being evolved – as it will become
evident in the following sections. In brief, the label-

based encoding does not require any additional
processing to make available the information on the
membership of each object to its corresponding cluster.
Such information may be necessary for computing
cluster statistics, which, by their turn, can be needed for
computing the fitness function and/or for guiding the
application of evolutionary operators. It is easy to see
that, contrarily to the label-based encoding, the
medoid-based encoding requires further processing in
order to recover the clusters encoded into the genotype.
Consequently, depending on the computational cost
involved in cluster recovering, a particular encoding
may become more (or less) suitable for a given
clustering problem.

c) Real encoding: In real encoding the genotypes are
made up of real numbers that represent the coordinates
of the cluster prototypes. This means that, unlike the
integer encoding scheme discussed in Section II.A.1.b,
real encoding is necessarily associated with a
prototype-based representation of partitions. However,
unlike the string-based binary encoding scheme
discussed in Section II.A.1.a, real encoding does not
necessarily leads to a medoid-based representation.
Instead, it may also be (and in fact usually is)
associated with a centroid-based representation of the
partitions, as discussed in the sequel.
If genotype i encodes k clusters in an n dimensional
space, ℜn, then its length is n⋅k. Thus, the first n
positions represent the n coordinates of the first cluster
prototype, the next n positions represent the coordinates
of the second cluster prototype, and so forth. To
illustrate this, the genotype [1.5 1.5 10.5 1.5 5.0 5.5]
encodes the prototypes (1.5, 1.5), (10.5, 1.5), and (5.0,
5.5) of clusters C1, C2, and C3 in Table I, respectively.

Given the genotype, the corresponding clusters can be
recovered by the nearest prototype rule, in such a way
that the ith object is assigned to the cluster represented
by the most similar prototype.
The genotype representation adopted in references
[121][100][103][10] follows a real encoding scheme in
which the prototype locations are not restricted to the
positions of the objects. This representation, named
centroid-based representation, is also adopted by
Fränti et al. [48] and Kivijärvi et al. [79]. These
authors, however, additionally encode into the genotype
a partitioning table that describes, for each object, the
index of the cluster to which the object belongs.
Alternatively, one could encode the real-valued
coordinates of a set of k medoids. In order to do so, it is
only necessary to enforce the constraint that the
prototype locations coincide with positions of objects in
the data set. In the pedagogical example of Table I, the
coordinates of a set of objects – e.g. {x1, x5, x9} – can
be represented by the genotype [1 1 10 1 5 5]. These
medoids allow recovering the clusters depicted in Fig. 1
by using by the nearest prototype rule as well.
The potential advantages and drawbacks of the real
encoding schemes are fundamentally the same as the
integer medoid-based encoding scheme discussed in
Section II.A.1.b, with the caveat that the former
demands O(n⋅k) memory space in order to represent a
given genotype, whereas the latter demands only O(k)
space. Possibly for this reason, the use of a real
medoid-based encoding scheme has not been reported
in any work surveyed in the present paper.

2) Operators: A number of crossover and mutation
operators for clustering problems have been investigated. In
order to aid the perception of common features shared by
these operators, we address them according to the encoding
schemes for which they have been designed.

a) Crossover: Falkenauer [43] addresses several
drawbacks of traditional genetic algorithms when they
are applied to tackle grouping tasks. As far as crossover
operators are concerned, an important problem to be
considered involves the context-insensitivity concept.
Formally, context-insensitivity means that [43] “the
schemata defined on the genes of the simple
chromosome do not convey useful information that
could be exploited by the implicit sampling process
carried out by a clustering genetic algorithm”. In the
following we illustrate, by means of pedagogical
examples, the context-insensitivity problem. Then,
having such examples in mind, we analyze crossover
operators frequently described in the literature.
Let us assume that genotypes [1111222233] and
[1111333322] – encoded under the label-based integer

encoding discussed in Section II.A.1.b – are
recombined under the standard one-point crossover, as
depicted in Fig. 2 (bold type refers to the exchanged
genetic information).

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 6

1 1 1 1 2 2 2 2 3 3

1 1 1 1 3 3 3 3 2 2

↓
1 1 1 1 2 2 2 2 2 2

1 1 1 1 3 3 3 3 3 3

Fig. 2. Example 1 – standard one-point crossover: equal

parents generating different offspring.

In this case, the resulting genotypes (offspring)
should be equal to their parents, since the parents
represent the same solution to the clustering problem –
depicted in Fig. 1. However, one can observe that the
offspring represent clustering solutions different from
the ones encoded into their parents. Moreover,
assuming that the number of clusters has been fixed in
advance as k=3, invalid solutions formed by two
clusters have been derived from the application of
crossover. In this particular case, the context-
insensitivity problem could have been avoided by
using a renumbering procedure before crossover (with
the caveat that such a procedure would incorporate an
additional computational burden to the algorithm).
However, although the use of a renumbering procedure
can ameliorate a clustering genetic algorithm based on
traditional operators, it does not offer any guarantees
that invalid clustering solutions will not be produced
by the application of crossover. To illustrate this point,
let us apply the standard one-point crossover to the
genotypes [1122223333] and [1111111123], as
displayed in Fig. 3 (bold type refers to the exchanged
genetic information).

1 1 2 2 2 2 3 3 3 3

1 1 1 1 1 1 1 1 2 3

↓
1 1 2 2 2 2 3 3 2 3

1 1 1 1 1 1 1 1 3 3

Fig. 3. Example 2 – invalid solution (for fixed k) under

standard one-point crossover.

Note that the second child (from top to botton)
represents an invalid partition – formed by two clusters. It
is not hard to see that similar problems may also occur
under the standard two-point crossover.

The application of traditional recombination operators
under a real encoding scheme may also originate
problems similar to those just described. For instance, let
us consider the genotypes [1.5 1.5 10.5 1.5 5.0 5.5]
and [10.5 1.5 5.0 5.5 1.5 1.5] in which the first two
positions represent the two dimensions of the first cluster
center, the next two positions represent those of the
second cluster center, and so forth. These genotypes
represent the same clustering solution (depicted in Fig.
1), the only difference relying on the order in which the

clusters are encoded. Accordingly, the offspring resulting
from crossing over such genotypes should ideally encode
the partition depicted in Fig. 1 as well. However, this may
not happen. For the sake of illustration, let us consider
that the previous genotypes are recombined under the
standard one-point crossover, as illustrated in Fig. 4 (bold
type refers to the exchanged genetic information).

1.5 1.5 10.5 1.5 5.0 5.5

10.5 1.5 5.0 5.5 1.5 1.5

↓
1.5 1.5 10.5 1.5 1.5 1.5

10.5 1.5 5.0 5.5 5.0 5.5

Fig. 4. Example 3 – standard one-point crossover under a

real encoding scheme.

In this case, both children represent partitions formed
by two clusters. Assuming that the genetic search should
ideally provide partitions formed by three clusters (as
encoded into their parents), invalid solutions would have
been found. Although it is easy to see that similar
problems may be faced when the binary encoding is
employed, context-insensitivity is not so readily detected
when using the integer medoid-based encoding scheme
discussed in Section II.A.1.b, particularly when it is
assumed that the k indexes of the selected objects are kept
ordered in the array (e.g., by using a renumbering
procedure). For illustration purposes, consider the
following two medoid-based representation individuals:
[1 2 3] and [3 4 5] - each representing three clusters.
After doing a single-point crossover between the second
and the third genes, the resulting offspring are [1 2 5] and
[3 4 3]. This second child has a repeated medoid, thus
encoding just two clusters. Context-insensitivity can also
conceptually take place under the integer medoid-based

encoding scheme if the classic definition of a data set
X={x1, x2, ..., xN} is relaxed, allowing the presence of
equal objects, i.e., if it is assumed that X is a multiset. As
an example, let us consider two genotypes, [3 17 25] and
[7 13 19], encoding three clusters each. Also, let us
consider that objects 13 and 25 in the data set are equal to
each other. A single point crossover of these genotypes
could produce the offspring [3 17 19] and [7 13 25]. Note
that, since objects 13 and 25 are equal to one another, the
second child has only two different medoids, which result
in a partition with one empty cluster. Of course, empty
clusters could be avoided by enforcing the objects closer
to multiple identical medoids to be shared among the
corresponding clusters. Note, however, that such a
procedure is rather unnatural from a conceptual
viewpoint, since equal objects are conceptually supposed
to belong to the same cluster. It is rather evident that this
empty cluster situation becomes more frequent if a
centroid-based real encoding is used, since different
centroids do not necessarily represent different partitions.
This situation is not unrealistic for real-world scenarios

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 7

and designing procedures to circumvent it is not a trivial
task.

To summarize, when traditional genetic operators are
employed in clustering problems, they usually just
manipulate gene values without taking into account their
connections with other genes. It is important to notice that
the interconnections among gene values should constitute
the genuine optimization goal in clustering problems. For
this reason, it is worth giving particular attention to the
development of genetic operators specially designed for
clustering problems, that is, genetic operators that are
cluster-oriented. Nevertheless, a word of caution is in
order. Alternatively to the use of cluster-oriented
operators, one could claim that there are simple ways of
dealing with invalid solutions such as those illustrated in
previous examples. Simply putting, invalid solutions
found during the evolutionary search could be simply
discarded and substituted by valid ones. For instance, the
crossover operator could be repeatedly applied until a
valid solution has been found, or the invalid child can be
set to one of the parents at random. Besides, an invalid
solution could be replaced by the best genotype found so
far in the evolutionary search. Despite the simplicity
involved in these and other related approaches, plenty of
computational resources may be wasted to figure out
and/or fix invalid solutions. The real impact of such
computational burden into the efficiency of the
evolutionary search relies on several factors that are hard
to theoretically assess, such as the overall design of the
evolutionary algorithm and the application in hand.
Therefore, it is more conservative not to make any sharp
claims concerning the generalization of the efficacy
provided by cluster-oriented operators for any algorithm
and/or application. Instead, we here focus on conceptual
features shared by several operators frequently found in
the literature. Aimed at facilitating the visualization of
those features, we address them according to the
encoding schemes for which they have been designed, as
detailed next.

Considering the string-based binary encoding
described in Section II.A.1.a, Kuncheva and Bezdek [85]
adopted a uniform crossover in which the parent
genotypes swap their ith bits. Under the framework of a
variable number of clusters, this operator would be
context-sensitive. However, this operator may generate
invalid offspring for fixed k, which is a presumed
condition of Kuncheva and Bezdek’s work, thus being
technically context-insensitive in this specific application
scenario5. Even so, the operator can be deemed cluster-
oriented, inasmuch as any exchange of medoids can be
interpreted as an exchange of clusters. An object-oriented
operator that randomly moves objects among clusters was
used in [14].

Several crossover operators based on integer encoding
have been proposed for evolutionary algorithms. In

5 Note that an operator may be context-insensitive in a fixed number of

clusters scenario yet context-sensitive in a variable number of clusters
scenario.

[84][107], a single-point crossover that is not cluster-
oriented (and, accordingly, is context-insensitive) is used.
Figures 2 and 3 illustrate potential problems faced by
such an operator. The cluster-oriented crossover operator
adopted in [96][122] modifies genotypes in such a way
that new genotypes are generated by randomly
scrambling the medoids encoded into their parents. Flip
mutation, in which a medoid is replaced with another
randomly chosen medoid, takes place both during and
after crossover. Similarly, Estivill-Castro and Murray
[39] proposed a context-sensitive crossover operator that
is based on exchanging medoids from the parents. The set
of medoids encoded into the offspring is built iteratively,
adding one medoid at a time, until k different medoids
have been represented. In [39][96][122], invalid solutions
may be generated if X is assumed to be a multiset. In
other words, the crossover operators adopted in these
papers may be context-insensitive depending on the data
set, though they are cluster-oriented. Krishna and Murty
[83] addressed the use of an evolutionary algorithm for
clustering that does not make use of any crossover
operator, although the authors call their approach a
genetic algorithm. Strictly speaking, such algorithm is
better categorized as an evolutionary algorithm, in which
the k-means algorithm is used as a search operator in lieu
of crossover. Lu et al. [95][94] also proposed a related
algorithm inspired by the work of Krishna and Murty
[83].

Let us now consider operators developed for real
encoding schemes. In [121], a single-point crossover that
allows exchanging the clusters centers (centroids) of a
pair of genotypes is used. This operator is not context-
sensitive, as already illustrated in Fig. 4, though it can be
considered to be cluster-oriented if an exchange of
centroids is interpreted as an exchange of clusters. The
operator used in [100][10] is also based on exchanging
information contained in the centroids. More precisely,
for genotypes of length l, where l = n·k, a crossover point
is randomly drawn within the range [1, l−1]. Then, the
portions lying to the right of the genotypes under
consideration are exchanged to produce offspring. By
doing so, not only centroids are exchanged, but also parts
of them can be modified, thus making the operator to be
neither context-sensitive nor cluster-oriented. For
instance, let us consider that the single-point crossover
proposed by Bandyopadhyay and Maulik [10][100] is
applied to the genotypes displayed in Fig. 5 (bold type
refers to the exchanged genetic information).

1.5 1.4 10.5 1.5 5.0 5.5

10.5 1.6 5.0 5.5 1.5 1.5

↓
1.5 1.4 10.5 5.5 1.5 1.5

10.5 1.6 5.0 1.5 5.0 5.5

Fig. 5. Example 4 – One-point crossover used by

Bandyopadhyay and Maulik [10][100].

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 8

Although the parent genotypes in Fig. 5 are not equal to

one another, they represent the same data partition (Fig. 1).
In spite of this, the first genotype of the offspring has two
“cluster centers” – (1.5, 1.4) and (1.5, 1.5) – positioned in
the data density region of Cluster 1 and one “cluster center”
positioned in a region of low data density not represented in
the parent-genotypes, i.e., in (10.5, 5.5). Similarly, the
second offspring encodes the “cluster center” (5.0, 1.5),
which lies in a low density data region not represented in
either of the parent genotypes. This example suggests that
such a crossover operator may generate clustering solutions
significantly different from those encoded into their parents,
thus having an evolutionary role more closely related to
mutation than to crossover.

Fränti et al. [48] assessed five crossover operators that
fundamentally select k centroids from two parents. The
random crossover operator randomly chooses k/2 centroids
from each of the two parents. Duplicate centroids are
replaced by means of repeated draws. In the operator named
centroid distance, the clusters are initially sorted according
to their distances from the grand mean (overall centroid) of
the data set. Then, they are divided into two subsets,
namely: central clusters and remote clusters. The central

clusters are those closer to the centroid of the data set,
whereas the remote clusters are the remaining ones. An
offspring is created by taking the central clusters from
parent A and the remote clusters from parent B. In pairwise

crossover, clusters encoded into different parents are paired
according to the similarities of their centroids. An offspring
is then generated by randomly taking one centroid from
each pair of clusters. In the largest partitions operator, M

centroids are selected by a greedy heuristic based on the
assumption that larger clusters are more important than
smaller ones. Finally, the authors evaluate the pairwise

nearest neighbor crossover operator that considers that the
2k centroids from parents A and B can be clustered into k
clusters that will form the offspring. The crossover
operators just described have been designed to manipulate
clusters, thus being cluster-oriented. Nonetheless, the
centroid distance operator may be viewed as a variant of the
single point crossover, which is not context-sensitive. Based
upon an experimental evaluation, the authors argue that the
pairwise nearest neighbor operator is the best choice among
the assessed variants. Kivijärvi et al. [79] have used the
same crossover operators described by Fränti et al. [48], but
these authors also employed an additional single point
crossover operator. Merz and Zell [103] used two
recombination operators. The first one is uniform crossover,
which randomly copies centroids from the parents. The
second crossover operator basically replaces some centroids
in parent A with centroids from parent B using the nearest
neighbor concept. Even though they are cluster-oriented,
these operators are affected by context-insensitivity
problems similar to those already discussed.

b) Mutation: Following Falkenauer´s typology [43],
mutation operators can be categorized as being object-

oriented or group-oriented. The latter class is

particularly interesting for clustering problems, since it
encompasses operators designed to work with clusters
rather than with objects. Kuncheva and Bezdek [85]
mutate genotypes by alternating bits of the string-based

binary encoding. This corresponds to either deleting
existing prototypes or inserting new prototypes. Since
each prototype allows recovering a cluster, the operator
is conceptually cluster-oriented, with the caveat that
invalid solutions may be generated when k is fixed a

priori. The object-oriented mutation operator described
in [14] randomly assigns an object to a different cluster.
Considering integer encoding, Murthy and Chowdhury
[107] used a mutation operator that randomly changes
the gene value (cluster label) of some randomly
selected objects. This object-oriented operator may
generate invalid solutions when the number of clusters
is fixed. Krishna and Murty [83] applied a mutation
operator that changes a gene value depending on the
distances of the cluster centroids from the
corresponding object. In particular, the probability of
changing a gene value to a given cluster label is higher
if the centroid of the corresponding cluster is closer to
the object. This object-oriented mutation can be
considered a guided operator, but it may yield empty
clusters. Lu et al. [95][94] adopted an object-oriented
mutation operator similar to the one developed by
Krishna and Murty [83]. The genetic algorithm
developed by Lucasius et al. [96] randomly selects a
medoid that can be replaced with an object from the
data set – according to a predetermined probability.
Similar approaches are adopted in [122][39]. The
mutation approaches described in [96][122][39] can be
considered as cluster-oriented inasmuch as medoids
allow recovering clusters. The application of such
approaches, however, may result in invalid solutions if
X is assumed to be a multiset and k is fixed.
For real encoding schemes, some papers
[10][100][121] describe mutation operators aimed at
slightly modifying the centroids encoded into a given
genotype. As a consequence, these mutations tend to
change the membership of some objects in relation to
the clusters represented by the genotype. In other
words, the underlying philosophy of these operators is
not constrained to create new clusters or to eliminate
existing ones. Hence, conceptually speaking, such
operators are better categorized as object-oriented, for
it is expected that the result of the mutation will be
changing the membership of a subset of objects from
some particular clusters. More precisely, Scheunders
[121] proposed to randomly add a value equal to either
-1 or +1 to a randomly chosen component of the
centroid of a given cluster. Maulik and Bandyopadhyay
[100], in turn, proposed to mutate clusters centers by
the following procedure: a number δ in the range [0, 1]
is drawn with uniform distribution. This number is then
used to change the value v of a given gene to (1 ± 2δ)v
when v≠0, and ±2δ when v=0. Signs “+” and “−” occur
with equal probability. In [10], the authors adopted a

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 9

conceptually similar mutation scheme. However,
differently from the approach proposed in [100], the
mutation operator in [10] provides perturbation in a
maximum range to genotypes either when they are less
fitted in the population or when all the genotypes have
the same fitness value. Alternatively to slightly
changing cluster prototypes by some perturbation in
their component values, some papers [48][79][103]
describe mutation operators that replace prototypes
with objects from the data set. Such operators are more
likely to create or eliminate clusters. From this point of
view, they can be considered as cluster-oriented. More
specifically, in the work by Fränti et al. [48] a prototype
is replaced with a randomly chosen object from the data
set. The same mutation operator is used by Kivijärvi et
al. [79]. Two mutation operators are used by Merz and
Zell [103]. The first operator assigns a selected object
from the data set to substitute a randomly chosen
prototype. The second operator randomly selects two
clusters Ci and Cj. Next, the object belonging to Ci with
the maximum distance from its prototype is chosen to
replace the prototype of Cj, such that this can be
considered a guided operator. Krovi [84] does not
report the mutation operator used.

3) Fitness Function: Many clustering validity criteria can
be used for assessing partitions containing a given number (k)
of clusters (e.g., see [72], [40], [75]). Several of these criteria
can be adapted to be used as fitness functions to evolve data
partitions. Thus, the fitness functions used by the evolutionary
algorithms described in the literature, and here surveyed,
represent only a subset of the possible fitness functions that
can be used in practice.

Krovi [84] proposes a fitness function to assess partitions
formed by only two clusters. This function is based both on the
average distance from the objects to their respective cluster
centroids and on the distance between cluster centroids. In
particular, the ratio of the distance between centroids and
average intra-cluster distances is used to evaluate the fitness of
a genotype.

Lucasius et al. [96] suggest minimizing the distances from
the k medoids encoded into the genotype to the objects of the
corresponding clusters. More precisely, the authors propose to
minimize the sum of distances between the objects of the data
set X = {x1, x2, …, xN} and the medoids from the set {m1, m2,
…, mk} ⊂ {x1, x2, …, xN}. To this end, they define the
criterion F:

),(
1

mx∑=
=

N

i
idF

(1)

where m represents the closest medoid to object xi, i.e.,
d(xi,m) = minj∈{1,…,k}d(xi,mj), and d denotes a distance
measure. This criterion is essentially the well-known sum of
within-cluster distances applied to a medoid-based

representation. The genetic algorithms developed by Estivill-
Castro and Murray [39] and Sheng and Liu [122] are also
aimed at minimizing F in Equation (1).

Some authors (Murthy and Chowdhury [107]; Maulik and
Bandyopadhyay [100]; Bandyopadhyay and Maulik [10];
Merz and Zell [103]) propose to minimize the sum of squared

Euclidean distances of the objects from their respective cluster
means. Formally, the fitness function f(C1,C2,…,Ck) adopted
by these authors is:

2

1
21),...,,(∑ ∑

= ∈

=
k

j

jik

ji

-f
Cx

zxCCC
(2)

where {C1, C2,…, Ck} is the set of k clusters encoded into the
genotype, xi is a data set object, and zj is the mean vector of
cluster Cj. This criterion is essentially a centroid-based version
of (1). The fitness functions used in the genetic algorithms
described by Fränti et al. [48], Kivijärvi et al. [79], Krishna
and Murty [83], and Lu et al. [95][94] are aimed at minimizing
some measure of the distortion of the clusters, which is
equivalent to minimize f(C1,C2,…,Ck) in (2). For instance, the
distortion d can be a measure of the intra-cluster diversity
defined as:

nN

f
d k

⋅
=

),...,,(21 CCC

(3)

where N and n are the numbers of objects and attributes of the
data set, respectively.

The fitness function adopted by Scheunders [121] also
relates to f(C1,C2,…,Ck) defined in (2), as follows:

),...,,(
),...,,('

21

21

k

k
f

N
f

CCC
CCC =

(4)

Kuncheva and Bezdek [85] use a genetic algorithm for
minimizing the well-known Jm criterion:

2

1 1
∑
=

∑
=

−=
k

i

N

j
ij

m
ijmJ vxµ

(5)

where xj is the jth data set object, vi is the prototype of the ith
cluster Ci, µij denotes the membership of object xj to cluster Ci,
and m (m≥1) is a user-defined parameter. Clearly, Jm reduces
to the sum of within-cluster distances in (2) when dealing with
hard partitions, in which case µij is such that µij ∈ {0, 1}. A
fitness function based on Jm – equation (5) – has also been
used in [14].
 It is important to stress that these previous criteria all make
sense if and only if the number of clusters k is fixed, since, for
fixed k, minimizing the intra-cluster distances implies
maximizing the inter-cluster distances as well. However, that
does not hold when k is variable. Indeed, it is straightforward
to see that one can arbitrarily minimize the sum of intra-cluster
distances by increasing the number k of clusters, making it
equal to zero in the limit by assigning each object to an
individual cluster (k = N singletons).
 In general, the previous projects used fitness functions
based on the distance between objects and either clusters'
centroids or medoids. Although these types of functions are
still widely used, they usually have some clear disadvantages.
E.g., trying to minimize the Euclidean distance between
objects and its nearest cluster's centroid usually is biased
towards the discovery of spherical clusters, which clearly will
be inappropriate in many applications where the natural
clusters for the data are not spherical. In other words, many
clustering algorithms impose a specific type of structure (like

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 10

spherical clusters) to the data, rather than discovering clusters
of arbitrary shape in a more data-driven way.
 In the last decade or so, an alternative to such distance-
based clustering validity measures, consisting of density-based
clustering validity criteria, has been increasingly used in data
mining. In such criteria, a cluster is essentially a group of
objects in the same dense region in the data space, and the goal
of a density-based clustering algorithm is to find high-density
regions (each region corresponding to a cluster) that are
separated by low-density regions. Density-based clustering
methods usually have the advantage of being flexible enough
to discover clusters of arbitrary shape [38].

An evolutionary algorithm – more precisely, an Estimation
of Distribution Algorithm – using a density-based fitness
function is described in [31]. In this algorithm, the fitness
function is essentially computed as the average density over
the clusters represented by an individual, where the density of
a cluster is simply the number of objects in the cluster divided
by the size of the region defining that cluster.

4) Selection: Proportional selection [6] has been used by
several authors (e.g., Krovi [84]; Lucasius et al. [96]; Murthy
and Chowdhury [107]; Estivill-Castro and Murray [39]; Fränti
et al. [48]; Maulik and Bandyopadhyay [100]; Kivijärvi et al.
[79]; Bandyopadhyay and Maulik [10]; Krishna and Murty
[83]; Lu et al. [95][94]). Additionally to proportional
selection, elitist variants [105] for selecting genotypes are also
investigated in the papers by Murthy and Chowdhury [107],
Fränti et al.[48], and Kivijärvi et al. [79].

Not much is said about the selection procedure used by
Scheunders [121]. The author only reports that all genotypes
are pairwise compared and the most fitted genotype of each
pair is copied into the other. This description suggests that
Scheunders [121] uses a variant of the so-called deterministic
tournament selection [6]. Sheng and Liu [122] use two-fold
tournament selection to choose P/2 parent pairs for
reproduction, where P is the population size.

Kuncheva and Bezdek [85] adopt an elitist strategy in which
the parents and the children are pooled and the best genotypes
survive, standing as the new parents. Similarly, Merz and Zell
[103] derive a new population by selecting the best genotypes
out of the pool of parents and children. These selection
methods can be viewed as variants of the so-called (µ+λ)
selection procedure used in evolution strategies [6][30].

The advantages and disadvantages of the existing selection
mechanisms are well-known in the evolutionary computation
literature. As far as we know, there is no strong evidence that
the relative behavior of these mechanisms is much different
when assessed in the particular context of evolutionary
clustering.

5) Initial Population: In the papers by Krovi [84], Murthy
and Chowdhury [107], Krishna and Murty [83], Bezdek et al.
[14], and Lu et al. [95][94], the initial population of the
genetic algorithm is generated from random assignments of
objects to clusters. Such an initialization strategy usually
results in unfavorable initial partitions, since the initial clusters
are likely to be mixed up to a high degree. It constitutes,
however, an effective approach to test the algorithms against
hard evaluation scenarios.

Lucasius et al. [96] suggest randomly selecting a subset of
objects to be the medoids of the initial population, when prior
knowledge is not available. Similarly, in the papers by
Kuncheva and Bezdek [85], Estivill-Castro and Murray [39],
Maulik and Bandyopadhyay [100], Merz and Zell [103],
Sheng and Liu [122], and Bandyopadhyay and Maulik [10], an
initialization strategy is adopted that randomly chooses data
set objects to be initial prototypes of the clusters. In the papers
by Scheunders [121], Fränti et al. [48], and Kivijärvi et al.
[79], the initial prototypes of the clusters are also randomly
generated, but not restricted to the data positions.

The random initialization of prototypes represents a good
trade-off between simplicity, computational demand, and
effectiveness. For this reason, this sort of strategy is very
popular in practice, both in evolutionary and non-evolutionary
clustering applications.

6) Local Search by k-means: Algorithms endowed with
mechanisms that both globally explore and locally exploit the
search space are well-known under the heading of hybrid or
memetic evolutionary algorithms. The combination of
evolutionary search with the k-means algorithm has led to a
variety of hybrid evolutionary algorithms for clustering that
can be considered to belong to this class. For instance, in the
approach by Krishna and Murty [83], a one step k-means
operator is used in substitution of crossover. The authors
suggest that the resulting algorithm can avoid expensive
computations required by the usual crossover operators. A
similar approach is followed by Lu et al. [95].

Kivijärvi et al. [79], Fränti et al. [48], and Badyopadhyay
and Maulik [10] apply the k-means algorithm for fine-tuning
partitions found by genetic operators. Scheunders [121]
applies k-means to all genotypes of each generation, aiming at
leading the corresponding partitions into local optima. Sheng
and Liu [122] adapted k-means to work as a local search
heuristic for the problem of finding k medoids.

In contrast to hybrid evolutionary algorithms that employ k-
means as an additional operator for a fine-tuning of the
evolving partitions, the memetic algorithm proposed by Merz
and Zell [103] has been designed for searching in the space of
locally optimal solutions - instead of searching in the space of
all candidate solutions.

B. Algorithms with Variable Number of Clusters

The evolutionary algorithms addressed in Section II.A

were designed to optimize partitions for fixed (user-defined)
values of k. As discussed in that section, evolutionary
algorithms that search for k clusters (k defined beforehand) can
be particularly suitable for applications in which there is
information available (e.g., domain knowledge) regarding k.
The evolutionary algorithms for clustering described in this
section go even further by searching for both the best number
of clusters (k*) and their corresponding partitions in regions of
the space where they are more likely to be found. These
algorithms have been designed with the underlying assumption
that the best number of clusters, k

*, is unknown a priori. In
other words, it is presumed that the number of clusters is
inherent to the data set and that estimates for k

* are not

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 11

available. One may hypothesize that evolutionary algorithms
for fixed k (addressed in Section II.A) could be potentially
used for tackling such a problem. In order to do so, repeated
runs of the evolutionary algorithm might be performed for
different values of k, and the obtained clustering solutions
could be comparatively assessed by some measure that reflects
the partition quality6. This approach may eventually provide
good results in applications for which the cardinality of the set
formed by the possible values of k is low. In practice, this
situation may take place when there is a strong suspect that a
small interval of values contains k

*. In other situations,
clustering algorithms that explore partitions with different
numbers of clusters are often preferred.

 Evolutionary algorithms aimed at optimizing the number of
clusters (k) and the corresponding partitions are described in
the works by Cole [23], Cowgill et al. [26], Bandyopadhyay
and Maulik [12][11], Hruschka and Ebecken [65], Casillas et
al. [21], Hruschka et al. [69][70][68], Ma et al. [97], Alves et
al. [2], Tseng and Yang [128], Naldi and de Carvalho [108],
Handl and Knowles [59], and Pan and Cheng [113].
Falkenauer [43] describes a high-level paradigm
(metaheuristic) that can be adapted to deal with grouping
problems broadly defined, showing that it is useful for several
applications – e.g., bin packing, economies of scale,
conceptual clustering, and equal piles. Data partitioning
problems like those examined in this paper are not the primary
focus of Falkenauer’s book [43]. Nevertheless, it is worth
mentioning that, in order to pave the way for the proposed
paradigm, the author investigates, among other issues, key
aspects of some genetic algorithms designed for data
partitioning problems until 1998. Most importantly, the
concepts underlying such a paradigm allow delving into
important features of evolutionary algorithms for data
partitioning problems. Therefore, Falkenauer’s work
permeates several discussions hereafter performed.

1) Encoding Schemes: Most of the encoding schemes used
in evolutionary algorithms capable of estimating the number of
clusters (k) are similar to the encoding schemes employed in
evolutionary algorithms for which k is assumed to be known or
set a priori. Thus, in this section, we complement the material
already explored in Section II.A.1, trying to avoid unnecessary
redundancies as much as possible.

Cole [23] adopts the label-based integer encoding
described in Section II.A.1.b, in which a genotype is an integer
vector of N positions, each of which is associated with a data
object and takes a value (cluster label) over the alphabet
{1,2,3,…,k} In this case, k can be interpreted as the maximum
number of clusters represented in each individual. This
encoding scheme has also been used by Cowgill et al. [26],
Hruschka and Ebecken [65], Hruschka et al. [69][70][68],
Naldi and de Carvalho [108], and Alves et al. [2], but some of
these authors additionally suggest storing the number of
clusters (k) in the genotype. In this case, k represents the fixed
number of clusters of the individual, but different individuals
can have different values of k, so that the population as a
whole represents candidate solutions with different numbers of

6 Indexes for measuring quality of data partitions with variable k will be

further discussed in Section II.B.3.

clusters. A discussion on the potential advantages and
drawbacks of such an integer encoding scheme can be found
in Section II.A.1.b.
 Ma et al. [97] proposed an evolutionary algorithm for
clustering, named EvoCluster, which encodes a partition in
such a way that each gene represents one cluster and contains
the labels of the objects grouped into it. Thus, a genotype
encoding k clusters (C1, C2, …, Ck) of a data set with N objects
is formed by k genes, each of which stores ni labels (n1 + n2 +
… + nk = N). Ma et al. [97] claim that this encoding scheme
represents an advantageous alternative over other different
approaches. In particular, they argue that the label-based

integer encoding is not very scalable, since the length of each
genotype is exactly the number of objects of the data set.
Although this assertion is persuasive at a first glance, it is
worth noticing that the amount of information that must be
stored (and handled) in both encoding schemes described
above is essentially the same, that is, N object labels
(EvoCluster’s encoding) or N cluster labels (label-based

encoding). Then, the scalability of EvoCluster in terms of
memory requirement does not really benefit from its encoding
scheme. Actually, the encoding scheme does not seem to be a
crucial aspect regarding the practical usefulness of an
algorithm when handling large data sets. In the end, the data
set itself must be handled somehow (e.g. using efficient data
structures for external memory management) and its
dimensionality is necessarily larger than that of any encoding
scheme.
 A very different kind of integer encoding is used in
[119][120]. In this work an individual represents a set of axis-
aligned hyper-rectangular rules, each rule consisting of n genes
– where n is the number of attributes in the data being mined.
In each rule, the ith gene, i = 1,…,n, encodes two fields,
namely, the lower (li) and upper (ui) bounds defining the
boundary of the rule in the ith dimension (attribute). For
instance, in a 2-dimensional problem, a 2-rule individual
would look like:

Rule 1 (Cluster 1) Rule 2 (Cluster 2)

2 5 3 9 1 6 2 4
l1 u1 l2 u2 l1 u1 l2 u2

 The integer numbers encoded in the fields li and ui represent
indices of intervals produced during a previous quantization
stage (before the evolutionary algorithm is run). Hence, this
encoding is both integer-based and grid-based. Note that there
is an implicit conjunction operator linking the boundaries of
all the dimensions of a rule. Hence, in this particular example,
the first rule can be read as:

 IF (interval_2 ≤ attribute_1 ≤ interval_5)
 AND (interval_3 ≤ attribute_2 ≤ interval_9)
 THEN (object belongs to Cluster 1) .

One advantage of this kind of representation is that axis-
aligned hyper-rectangular rules can usually be easily
interpreted by the user. The algorithm ensures that the rules
represented in an individual are disjoint, which arguably

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 12

further facilitates the rules' interpretation. The grid-based
representation also helps to reduce the size of the search space
– by comparison with a real-valued representation based on
original (not quantized) attribute values. In addition, the
quantization is performed by an elaborated statistical
procedure, which aggregates together objects mapping into the
same grid cell. Note that, although each rule has a fixed length
(d genes), different individuals can contain different number of
rules, so that the algorithm considers a variable number of
clusters along its search.
 In the work by Bandyopadhyay and Maulik [12], genotypes
are made up of real numbers that represent the coordinates of
the cluster centers. If genotype i encodes k clusters in n
dimensional space ℜn, then its length is n⋅k. This encoding
scheme has been examined in Section II.A.1.c under the term
real encoding. An important difference in the present context
is that this encoding scheme leads to variable length
genotypes, once k is no longer assumed to be constant. In [11],
the authors use a slightly different encoding scheme that
allows working with constant length genotypes. Basically, the
number of clusters encoded by a given genotype is assumed to
lie in the range [kmin, kmax] – where kmin and kmax are the
minimum and maximum number of clusters, respectively – and
a “don’t care” symbol (#) is used to fill in genotypes whose k
is less than kmax. An evident disadvantage of this scheme is that
it demands estimates of kmin and kmax. On the one hand, a too
wide interval [kmin, kmax] causes a waste of memory and
processing time. On the other hand, a too narrow interval
increases the probability of leaving k

* out, thus becoming
unreachable. Tseng and Yang [128] propose to generate a set
of m small clusters to be used as building blocks for the
genetic search. Such initial clusters are obtained using a
nearest neighbor based strategy. Partitions are encoded into m-

length binary strings (genotypes) that represent subsets of the
clusters initially generated. In particular, if cluster i is encoded
into a given genotype, then the value of the ith position of the
corresponding string (the ith gene) will be 1; otherwise, it will
be 0. This is a particular kind of binary encoding that has the
disadvantage of limiting the genetic search to combinations of
the building blocks initially generated. Pan and Cheng [113]
also adopt a binary encoding scheme based on a maximum
number of clusters that is determined a priori. Each position of
the string corresponds to an initial cluster center. Thus, the
total number of 1s in the string corresponds to the number of
clusters encoded into the genotype.
 Casillas et al. [21] adopt as encoding scheme a binary vector
with (N−1) elements. These elements represent the (N−1)
edges of a Minimum Spanning Tree (MST) [24] in which the

nodes represent the N data set objects and the edges
correspond to proximity indexes between objects. In this
representation, the value 0 means that the corresponding edge
remains, whereas the value 1 means that the corresponding
edge is eliminated. The number of elements with value 1 is
equal to (k−1), where k is the number of clusters. This is an
example of a tree-based representation. Specifically, it
corresponds to a tree-based binary encoding scheme. A
disadvantage of this scheme is that it demands the highly

intensive computation of an MST for a complete graph with N

vertices, which may become prohibitive for large N.
 Handl and Knowles [59] employ a graph-based

representation in which a genotype is an integer vector of N
positions, that is, a graph-based integer encoding scheme.
Each position of the genotype corresponds to an object, i.e.,
the ith position (gene) represents the ith data set object. Genes
can take values from the set {1, 2,…, N}. A value j assigned to
a gene i means that there is a link between objects i and j and
that these are placed into the same cluster. The partition
encoded into the genotype is recovered by identifying all
connected components of the graph. This encoding scheme is
particularly suitable in the context of the evolutionary
algorithm for multi-objective clustering proposed by the
authors.

2) Operators: Several crossover and mutation operators
have been proposed for clustering problems in which the
number of clusters is unknown in advance. In this section, we
elaborate on the main properties of crossover and mutation
operators commonly found in the corresponding literature.
Analogously to what we have done in Section II.A.2, we
discriminate the operators according to the encoding schemes
for which they have been designed.

a) Crossover: Considering integer encoding, Cole [23]
uses edge-based crossover operators. Two objects are
considered to be connected by an edge if they are in the
same cluster. These crossover operators construct
children by combining the edges of their parents,
considering the set of intersections of the clusters. They
manipulate clusters encoded in the parent genotypes, in
such a way that context-sensitivity is kept. Cowgill et
al. [26] adopt uniform crossover in the early
generations and two-point crossover in later
generations. These operators are not cluster-oriented
(see Section II.A.2.a). The context-sensitive crossover
operator proposed in [65] is inspired by Falkenauer’s
work [43]. It combines clustering solutions coming
from different genotypes. More precisely, the operator
works in the following way. First, two genotypes (G1
and G2) are selected. Then, assuming that G1 represents
k1 clusters, c ∈ {1, 2,…, k1} clusters randomly chosen
are copied into G2. The unchanged clusters of G2 are
maintained and the changed ones have their unaffected
objects allocated to the corresponding nearest clusters
(according to their centroids). In this way, an offspring
G3 is obtained. The same procedure is employed to get
an offspring G4, but now considering that the changed
clusters of G2 are copied into G1. This crossover
operator is also used in the genetic algorithms for
clustering described in [69][70][68]. A similar
crossover operator is also used by the EvoCluster
algorithm [97]. Such a crossover operator, however,
can be probabilistically guided by information
concerning the quality of the individual clusters in a
given partition.
Tseng and Yang [128] use two-point crossover for
their binary encoding scheme based on building blocks,

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 13

discussed in Section II.B.1. In such an encoding
scheme, a two-point crossover exchanges sets of
clusters (i.e., it is cluster-oriented) and can be context-
sensitive in a variable number of clusters scenario.
Similarly, Pan and Cheng [113] adopt a one-point
crossover that manipulates cluster centers.
Bandyopadhyay and Maulik [12] use a two-point
crossover that allows exchanging real-valued cluster
prototypes from a pair of genotypes. In [11], a single-
point crossover is used. As discussed in Section
II.A.2.a, single-point and two-point crossover operators
are not context-sensitive when applied to genotypes
under real encoding.
Casillas et al. [21] use a one-point crossover that
manipulates the edges of a Minimum Spanning Tree
(MST), in which the nodes represent the data set
objects and the edges correspond to proximity indexes
between them. The adopted operator can split and
merge clusters and it is context-sensitive.
Handl and Knowles [59] use the standard uniform
crossover operator. Under the graph-based

representation employed by the authors, uniform
crossover implements merging and splitting operations
on individual clusters, while maintaining the remainder
of the partition, thus being cluster-oriented.
The evolutionary algorithms for clustering presented in
[70][68][2] do not make use of crossover operators.

b) Mutation: Cole [23] uses three mutation operators
designed for integer encoding. The split cluster-
oriented operator probabilistically selects a cluster from
a particular partition and moves objects from that
cluster into a new cluster. The merge cluster-oriented
operator moves all the objects from one cluster to
another pre-existing cluster. Finally, the move object-
oriented operator shifts objects between clusters
already encoded on a genotype. These operators are
inspired by Falkenauer’s work [43]. In the algorithm
described in [26], the mutation process is applied to
each genotype resulting from the application of the
crossover operator. Elements of each genotype are
randomly altered according to low probabilities. A
single mutation randomly changes the gene value
(cluster label) of a randomly selected object, thus being
object-oriented. Two cluster-oriented operators for
mutation inspired by Falkenauer’s work [43] are used
in [65][69]. The first operator works only on genotypes
that encode more than two clusters. It eliminates a
randomly chosen cluster, placing its objects into the
nearest remaining clusters (according to their
centroids). The second mutation operator splits a
randomly selected cluster, which must be formed by at
least two objects to be eligible for this operator, into
two new ones. The first cluster is formed by the objects
closer to the original centroid, whereas the other cluster
is formed by those objects closer to the farthest object
from the centroid. Similar mutation operators are
adopted in [70][68]. The main difference from the

approach used in [65][69] is that the slightly modified
mutation operators described in [70][68] are allowed to
act on more than one cluster encoded into the genotype.
The EvoCluster algorithm [97] has six mutation
operators that also split, merge, and eliminate groups.
These operators can be viewed essentially as modified
versions of those in [65][69][70][68]. Differently from
the operators found in [65][69] and analogously to their
modified versions in [70][68], EvoCluster’s mutation
operators can be simultaneously applied to multiple
clusters of the same partition. In addition, they can be
probabilistically guided by information concerning the
quality of the individual clusters in a given partition
(guided operators). In fact, the guided application of
evolutionary operators has been shown − from a
statistical perspective − to be able to significantly speed
up convergence of the evolutionary search for
clustering [2]7. The same holds with respect to the
simultaneous application of the mutation operators to
multiple clusters of the same partition, as shown in
[70][68]. The guided mutation operators described in
[2] go even further by including an additional
mechanism that also helps improving mutation
performance. It consists of the use of a self-adjusting
procedure that automatically controls the rates of
application of the individual mutation operators based
upon their relative success/failure averaged over past
generations.
Bandyopadhyay and Maulik [12][11] propose to
mutate clusters centers by the following procedure: A
number δ in the range [0,1] is generated with uniform
distribution. This number is then used to change the
value v of a given gene to (1 ± 2δ)v when v≠0, and ±2δ
when v=0. Signs “+” and “−” occur with equal
probability. Since the genes encode coordinates of
cluster prototypes, these operators are conceptually
neither cluster-oriented nor object-oriented.
In [128], loci of the binary genotype are chosen
according to a given probability and their values are
changed either from 0 to 1 or vice-versa. Conceptually
speaking, the initial building clusters encoded into the
genotypes may be inserted or not inserted into the
offspring, thus making the mutation operator be cluster-
oriented. Analogously, the number of clusters and,
consequently, the cluster centers, are randomly changed
by the mutation operator reported in [113].
Casillas et al. [21] change bits using a low mutation
probability. Under the representation adopted, this
operator can split and merge clusters, thus being
cluster-oriented.
Handl and Knowles [59] use a nearest-neighbor based

7 In [2], however, all the operators are guided in the sense that bad clusters

are more likely to be modified, whereas in Evocluster [97] the crossover
operator is more likely to affect good clusters.

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 14

mutation operator. In particular, each object can be
probabilistically linked to one of its L nearest
neighbors. Such a procedure may affect clusters,
objects only, or neither. For this reason, this mutation
operator cannot be conceptually and strictly categorized
as cluster-oriented or object-oriented.

3) Fitness Function: In principle, any relative clustering
validity criterion (e.g. see Jain and Dubes [72]; Milligan and
Cooper [104]; Halkidi et al. [55]; Handl et al. [60]) that is non-
monotonic with the number of clusters can be potentially used
as a fitness function for an evolutionary algorithm designed to
optimize the number of clusters. Such criteria have been
extensively investigated and, despite the well-known fact that
their particular features make their performance problem
dependent [112], some of them have shown satisfactory results
in several different application scenarios. In the sequel, a
number of relative validity criteria that have been used as
fitness functions for evolutionary clustering algorithms are
reviewed.

Cole [23], Cowgill et al. [26], and Casillas et al. [21] use as
fitness function the Calinski and Harabasz Variance Ratio
Criterion (VRC) [18], which is defined as:

k)/(N

1)/(k
VRC

−

−
=

W

B

 trace

 trace

(6)

where B and W are the between-cluster and the pooled within-
cluster sums of squares (covariance) matrices, respectively.
The terms N and k are the total number of objects and the
number of clusters in the partition, respectively.

Tseng and Yang [128] define the fitness function of a given
genotype G as:

∑ −⋅=
=

k

i
ii CDwCDGFitness

1
intrainter)()()(

(7)

where Dintra(Ci) is the intra-distance of cluster Ci, Dinter(Ci) is
the inter-distance between Ci and the set of all other clusters,
and w is a user-defined parameter.

Bandyopadhyay and Maulik [12] propose the following
validity index I(k) for computing the fitness of a genotype that
represents k clusters:

p

j

j

D
E

E

k
kI














⋅⋅= 11

)(

(8)

where p is any real number larger than or equal to 1. Terms Ej

and Dj are given by equations (9) and (10), respectively:

∑
=

∑
=

−=
k

j

N

i
jijijE

1 1
zxµ

(9)

ml

k

m,l
maxjD zz −

=
=

1

(10)

where N is the total number of objects in the data set, [µji]k x N
is a partition matrix for the data set X = {x1, …, xN}, and zm is
the center of the mth cluster. The authors report some
experiments in which I(k) provides better results than the
Davis-Bouldin [28] and Dunn’s [36] indexes commonly used
as relative validity criteria for clustering. Nevertheless, in a
later work [11], the authors turn to use a fitness function based

on the Davis-Bouldin (DB) index. A variant of the I(k) defined
in (8) is also adopted as the fitness function in [113]. Besides
using the Calinski and Harabasz’s VRC [18] defined in (6),
Cole [23] also evaluates the minimization of the DB index as a
fitness function. The DB index for the partitioning of N objects
into k clusters is defined as [28]:

∑=
=

k

c
cR

k
DB

1

1

(11)

in which the index for the cth cluster, Rc, is given by:
}{max cj,R

cj
cR

≠
= (12)

with Rj,c denoting the measure of within-to-between cluster
spread for all pairs of clusters (j, c), that is:

c,jm

ceje

c,jR
+

=
(13)

where ej is the within cluster variation for the jth cluster and
mj,c is the distance between the centers of the jth and cth
clusters.

In [65][69], the silhouette proposed by Kaufman and
Rousseeuw [75] is employed for computing the fitness of a
given genotype. In order to define the silhouette, let us
consider an object xi belonging to cluster A. So, the average
dissimilarity of xi to all other objects of A is denoted by a(xi).
Now let us take into account cluster C. The average
dissimilarity of xi to all objects of C will be named d(xi,C).
After computing d(xi,C) for all clusters C ≠ A, the smallest
one is selected, i.e., b(xi) = min d(xi,C), C ≠ A. This value
represents the dissimilarity of xi to its neighbor cluster, and the
silhouette s(xi) is given by:

})(),(max{

)()(
)(

ii

ii
i

ba

ab
s

xx

xx
x

−
=

(14)

It is easy to verify that −1 ≤ s(xi) ≤ 1. Thus, the higher s(xi),
the better the assignment of object xi to a given cluster. In
addition, if s(xi) is equal to 0, then it is not clear whether the
object should have been assigned to its current cluster or to a
neighboring one [40]. Finally, if cluster A is a singleton, then
s(xi) is not defined and the most neutral choice is to set
s(xi) = 0 [75]. The silhouette criterion is given by the average
of s(xi) over i = 1,2,...,N. Besides assessing the silhouette
developed by Kaufman and Rousseeuw [75] as a fitness
function, Hruschka et al. [69][70][68] also proposed additional
validity indexes to guide the genetic search. One of them is a
simplified version of the silhouette [69][70][68], which is also
used by Alves et al. [2]. This criterion is based on the
computation of distances between objects and the mean
vectors of the clusters. More specifically, the term a(xi) of
Equation (14) becomes the dissimilarity of object xi to the
centroid of its cluster (A). Similarly, instead of computing
d(xi,C) as the average dissimilarity of xi to all objects of C,
C≠A, only the distance between xi and the centroid of C must
be computed, thus reducing the computational complexity of
the index from O(N2) to O(N). Alternatively to the original and
simplified versions of the silhouette, Hruschka et al. [69]
showed that the fitness function can also be taken as the
average of b(xi)/(a(xi)+ε) over i = 1,2,...,N. The term ε is

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 15

necessary to compute s(xi) when a(xi) is 0, i.e., when all
objects from cluster A are equal to one another. This modified
objective function seems to be more sensitive to slight changes
in a(xi) and b(xi), which in turn might correspond to significant
changes in the clustering solution, with the price that the
criterion is no longer bounded within the interval [−1, +1].

In the recent paper by Ma et al. [97], the authors propose to
assess the fitness of each genotype by means of an algorithm
with two main steps8. In brief, the first step is aimed at
discovering statistically significant association patterns in the
partition encoded into the genotype. To this end, some objects
from different clusters are randomly selected to form a training
set for pattern discovery. In the step 2 of the fitness
computation, the reclassification accuracy of the objects not
selected in step 1 is evaluated and the final fitness value is
calculated based on this accuracy. Ma et al. [97] claim that this
fitness function works for both fixed and variable number of
clusters, though only experiments involving a set of user-
defined interesting values for k were reported. An interesting
characteristic of this function is that, the larger the number of
clusters, the smaller the accuracy tends to be (because the
classification problem becomes harder), and so this fitness
function implicitly tends to favor the discovery of smaller
numbers of clusters. Ma et al. [97] claim that their fitness
function has been conceived to deal with noisy and missing
data as well as to distinguish between relevant and irrelevant
features for the clustering process. In this sense, it is worth
taking the opportunity to make the following important
remarks:

(i) Evolutionary clustering algorithms that are not capable of
automatically handling incomplete data sets can benefit from a
number of imputation techniques (e.g., [127][110][77]), as a
preprocessing procedure. In addition, if the proportion of
missing values is low, just the known values may be enough
for computing unbiased pairwise (dis)similarity measures.

(ii) Evolutionary clustering algorithms that are not capable
of automatically distinguishing between relevant and irrelevant
features for the clustering process can benefit from a number
of feature selection techniques (e.g. see [78], [90] and
references therein), as a preprocessing procedure. Some of
those techniques are additionally endowed with the ability to
remove redundant features (which may still impact the
clustering process even after removal of the irrelevant
features).

4) Selection: Proportional selection has been used by several
authors (e.g., Cole [23]; Cowgill et al. [26]; Tseng and Yang
[128]; Bandyopadhyay and Maulik [12][11]; Casillas et al.
[21], Hruschka and Ebecken [65]; Hruschka et al.
[69][70][68]; Ma et al. [97]; Alves et al. [2]; Naldi and de
Carvalho [108]). Alves et al. [2] also mention the use of a
(µ+λ)-like deterministic/elitist selection. The evolutionary
algorithm for multi-objective clustering proposed by Handl
and Knowles [59] is based on the PESA-II algorithm [25],

8 The intermediate sub-steps and the corresponding formulae have been

omitted here for the sake of compactness. Please, refer to [97] for further
details.

whose selection principles rely on the interface between two
populations: an internal population that explores new solutions
by standard processes of reproduction and variation, and an
external population that exploits good solutions by elitism. Pan
and Cheng [113] adopt a selection procedure based on Tabu
search [53].

As previously mentioned in Section II.A.4, the advantages
and disadvantages of traditional selection mechanisms are
well-known in the evolutionary computation literature and, as
far as we know, there is no strong evidence that the relative
behavior of these mechanisms is much different when assessed
in the particular context of evolutionary clustering.

5) Initial Population: In the papers by Cole [23], Cowgill et
al. [26], Hruschka and Ebecken [65], Hruschka et al.
[69][70][68], Ma et al. [97], Naldi and de Carvalho [108], and
Alves et al. [2], the initial population for the algorithm is
generated from random assignments of objects to clusters. As
previously noticed in Section II.A.5, such an initialization
strategy usually results in unfavorable initial partitions, since
the initial clusters are likely to be mixed up to a high degree. It
constitutes, however, an effective approach to test the
algorithms against tough evaluation scenarios.

In Tseng and Yang [128], the population of binary
genotypes is randomly generated in such a way that the
number of 1’s in each individual is uniformly distributed
within [1, m], where m is the number of clusters initially
generated. Initial data partitions are randomly generated in the
algorithm proposed by Pan and Cheng [113]. Bandyopadhyay
and Maulik [12][11] randomly select objects from the data set
to be the initial prototypes of the clusters to be evolved by
their genetic algorithm. Handl and Knowles [59] employ
minimum spanning trees and the k-means algorithm to
generate initial clustering solutions. Casillas et al. [21] do not
describe the procedure they used to generate the initial
population.

6) Local Search by k-means: Some evolutionary algorithms
designed for estimating the number of clusters make use of the
k-means clustering algorithm as a local search procedure (e.g.
[69][70][2][68][108]). From this particular viewpoint, k-means
fundamentally performs a fine-tuning of some rough partitions
obtained by the evolutionary search, thus speeding up its
convergence. In a broader view, a synergy between k-means
and evolutionary operators can be achieved. On the one hand,
k-means minimizes the variances of the clusters achieved by
the evolutionary algorithm operators, thus yielding to more
compact clusters. On the other hand, evolutionary algorithms
can lessen the two main drawbacks of k-means, namely: (i) it
may get stuck at sub-optimal centroids; and (ii) the user has to
specify the number of clusters (k). Since the evolutionary
operators can eliminate, split, and merge clusters through an
evolutionary search, they are able to evolve better partitions in
terms of both the number of clusters and centroids. These
partitions may provide better initial centroids for k-means, thus
reducing the probability of getting stuck at sub-optimal
solutions.

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 16

III. OVERLAPPING CLUSTERING

Recall from the introductory section that a hard partition of a
data set X={x1,x2, ...,xN} is a collection C={C1,C2, ...,Ck} of k
non-overlapping data subsets (clusters) such that C1 ∪ C2

∪...∪ Ck = X and Ci ∩ Cj = ∅ for i ≠ j. If the condition of
mutual disjunction (Ci ∩ Cj = ∅ for i ≠ j) is relaxed, then the
partitions and the corresponding algorithms are said to be of
overlapping type. Overlapping algorithms produce data
partitions that can be soft (each object fully belongs to one or
more clusters – partial membership is not allowed) [40] or
fuzzy (each object belongs to one or more clusters to different
degrees) [118][64].

There are only a few works in the literature devoted to
evolutionary algorithms that search for soft partitions. At a
high level of abstraction, it can be asserted that these
algorithms use the same kind of encoding scheme, which has
been termed cluster description-based representation in [50].
Following the lines of [50], a genotype under cluster

description-based representation explicitly represents the
parameters necessary to precisely specify each cluster. The
exact nature of these parameters depends on the shape of
clusters to be produced, which could be, e.g., boxes, spheres,
ellipsoids, etc. In any case, each genotype contains k sets of
parameters, where k is the number of clusters, and each set of
parameters determines the position, shape and size of its
corresponding cluster. This way, different clusters may cover
common areas of the data space and, in such a case, any object
relying on these areas will be considered to belong non-
exclusively to the corresponding overlapping clusters. Besides,
the cluster description is non-exhaustive in the sense that some
objects may not be within any cluster. This kind of
representation is used, e.g., in [123][52][45][46].

A. Fuzzy Clustering

When a fuzzy clustering algorithm is applied to a data set

with N objects, the final result is a partition of the data into a
certain number k of fuzzy clusters, such that:

[]
[]





∈

=
×

1,0ij

NkijP

µ

µ
 (15)

where P is a k × N fuzzy partition matrix whose element µ ij
represents the fuzzy membership of the jth object to the ith
fuzzy cluster. When µ ij is limited to the extreme values of its
feasibility interval, i.e., µ ij ∈ {0,1}, then P degenerates to a
soft partition. Besides, if the additional constraint Σi µ ij = 1 is
imposed to every column j of the matrix, then P degenerates to
a standard hard partition. The representation of a data partition
in terms of a hard partition matrix corresponds precisely to the
matrix-based binary encoding scheme described in Section
II.A.1.a.

A fuzzy partition matrix provides additional information
about the data that is not available in its soft or hard
counterparts. In fact, the fuzzy membership values µ ij can help
discover more sophisticated relations between the
corresponding data objects and disclosed clusters [132]. In
addition, in contrast to their Boolean relatives, the continuous
membership values of fuzzy partitions are particularly
appropriate to describe boundaries between ambiguous or
blurred clusters that are not clearly separated from each other.
Owing to these desired properties, the applicability of fuzzy
clustering is broad in scope and includes areas such as pattern
classification, image segmentation, document categorization,
data visualization, and dynamic systems identification, just to
mention a few [16][64][5][32].

Most of the research on evolutionary algorithms for
overlapping clustering has focused on algorithms that evolve
fuzzy partitions of data. In this context, many authors have
proposed evolutionary algorithms to solve fuzzy clustering
problems for which the number of clusters is known or set in
advance by the user [56][57][80][15][134][130][37][58][91].
However, as previously discussed in the introductory section,
the optimal number of clusters is usually unknown in advance.
For this reason, more recent papers have proposed to optimize
both the number of clusters and the corresponding fuzzy
partitions by some form of evolutionary search
[115][89][99][111][67][1][19][44].

Regardless of the fixed or variable nature of the number of
clusters, the evolutionary algorithms for fuzzy clustering are
mostly based on extensions – to the fuzzy domain – of the
fundamental ideas discussed in Section II for hard partitional
clustering. This is in conformity with the fact that most fuzzy
clustering algorithms are based on generalizations of
traditional algorithms for hard clustering, as it is the case of
the well-known Fuzzy C-Means (FCM) algorithm and its
variants [16][64][5], which are essentially generalizations of
the classic k-means algorithm. Only a few exceptions (e.g. see
[125]) try to develop operators that could act directly on fuzzy
partitions of data. Contrarily, most authors have chosen to
adapt the existing evolutionary clustering techniques to the
fuzzy domain, not only for convenience, but mainly because,
to date, there is no strong evidence that the more complex fully
fuzzy formulation of the problem can be counterbalanced by
efficiency and/or efficacy gains. This is an interesting open
question still to be tackled.

Roughly speaking, the evolutionary algorithms for fuzzy
clustering that are somehow based upon adaptations of existing
approaches developed for hard evolutionary clustering (see
Section II) can be broadly divided into two main categories.
The first (and most representative) one is composed of
algorithms that encode and evolve prototypes for the FCM
algorithm or for one of its variants
[37][4][91][115][80][15][56][57][58][99][111][89]. In this
case, the prototypes are encoded and manipulated using
essentially the same techniques already discussed in Section II.
Essentially, the only differences between these algorithms and
their hard counterparts discussed in Section II are: (i) they

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 17

have to compute the fuzzy partition corresponding to every
genotype; and (ii) they use as fitness functions clustering
validity criteria that are capable of assessing fuzzy partitions.
In what concerns fuzzy validity criteria, we refer the interested
reader to [64][20][112] and references therein. The fuzzy
partition corresponding to every genotype, by its turn, is
computed as a function of the prototypes using the standard
FCM-like formulae.

The second category of evolutionary fuzzy clustering
algorithms is composed of algorithms that use some variant of
FCM as a local search operator to speed up their convergence
by refining rough partitions explored by the evolutionary
search, while providing the necessary computations to get the
fuzzy partition [1][19][67]. In [19] it is shown that an
evolutionary algorithm is able to outperform, in terms of
computational efficiency, traditional approaches to determine
satisfactory estimates of the unknown number of fuzzy
clusters, under both the theoretical (asymptotic time
complexity analyses) and experimental (statistical analyses)
perspectives.

IV. ENSEMBLES AND MULTI-OBJECTIVE

CLUSTERING

As previously mentioned, there is no single definition of

clustering and each clustering algorithm, or even different runs
of the same algorithm, may produce different partitions for the
same data set. The partitions produced are also influenced by
the validity criterion adopted. Two approaches have been
proposed in the literature to reduce these limitations: multi-
objective clustering and ensembles. In this section we will
discuss the use of these two approaches combined with
evolutionary algorithms.

A. Multi-Objective Evolutionary Clustering

Unlike supervised learning tasks, such as classification,

clustering is an unsupervised learning task, so that there is no
"ground truth" to tell us what the "correct" or "optimal"
solution is. This suggests that the quality of a clustering
solution should be evaluated by a diverse set of validity
criteria, rather than a single criterion, in order to mitigate the
strong bias imposed by any particular validity criterion.

In practice, multiple criteria, considering different aspects of
the quality of a clustering solution, often represent conflicting
goals for an optimization method. Consider, for instance, the
well-known and previously mentioned criterion of minimizing
the sum of intra-cluster distances. In a general scenario where
the number of clusters is variable, optimizing only this
criterion is not enough, because it can be trivially minimized
by assigning each object to a distinct singleton cluster. In this
scenario, clearly, we also need to penalize a candidate solution
for having a large number of clusters, i.e., we also want to
favor solutions with a small number of large clusters.
Unfortunately these two objectives – minimizing intra-cluster

distances and minimizing the number of clusters – are
conflicting with each other.

This raises the question of how an evolutionary algorithm
should cope with such conflicting objectives – assuming we
have decided that the algorithm will use two or more
conflicting validity criteria, which is often desirable in
practice. The conventional and simplest approach would be to
convert the corresponding multi-objective clustering problem
into a single-objective one, by defining the fitness function as
a weighted formula where different weights are assigned to
different objectives. However, this approach has several
drawbacks, such as (in a nutshell): mixing non-
commensurable objectives (e.g. distance and number of
clusters) into the same formula; requiring an ad-hoc
assignment of weight values to different objectives, which
often requires many runs of the algorithm to try to "optimize"
the weight values, etc. These drawbacks are extensively
discussed in the literature – see e.g. [22] and [33].

A more principled solution consists of developing a truly
multi-objective evolutionary algorithm for clustering, i.e. an
algorithm with the main characteristic of using a multi-
objective function following the principle of Pareto
dominance. According to the definition of this type of
dominance relation between two candidate solutions, a
candidate clustering solution c1 dominates another candidate
clustering solution c2 if and only if: (a) c1 is strictly better than
c2 in at least one of all the objectives considered in the fitness
function; and (b) c1 is not worse than c2 in any of the
objectives considered in the fitness function.

When using this type of Pareto dominance-based, multi-
objective fitness function, the goal of the evolutionary
algorithm is to find the "Pareto front", i.e. the set of all non-
dominated solutions. Note that, since the goal is to return to
the user a set of non-dominated solutions, rather than a single
solution as it is typically the case in single-objective
optimization, a multi-objective evolutionary algorithm
necessarily needs special mechanisms, such as elitism
procedures that preserve non-dominated solutions, selection
methods adapted to cope with the Pareto dominance concept,
genetic operators that promote diversity in the population (to
favor the discovery of non-dominated solutions as spread as
possible across the Pareto front), etc. Such special mechanisms
are well documented in the literature – again, see [22] and [33]
– and they are normally generic mechanisms that can be
applied regardless of whether the evolutionary algorithm is
solving a clustering problem or another kind of problem.
Therefore, in this section, we focus only on the crucial aspect
of multi-objective evolutionary algorithms that is very specific
to the clustering task, namely, the definition of the multi-
objective fitness function. Hence, let us now briefly review the
multi-objective fitness function of some evolutionary
algorithms for clustering reported in the literature.

In an evolutionary approach for multi-objective clustering,
Handl and Knowles [59] use a fitness function based on both
compactness and connectedness of clusters. Cluster

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 18

compactness is expressed by means of the overall deviation of
a partitioning – Equation (2). Connectedness is measured by
the degree to which neighboring objects have been placed in
the same cluster:

∑ ∑=
= =

N

i

L

j
i ij

z
1 1

,)Conn(nC (16)

where nij is jth nearest neighbor of object xi, L is the number of
neighbors that contribute to the measure, and z(.) is given by:







∈∧∈∃/

=

otherwise. 0

 ; : if
1

,
kijkik

i jz
ij

CnCxC
n

(17)

The authors [59] remark that while the objective value
associated with the overall deviation – Equation (2) –
necessarily improves with an increasing number of clusters,
the opposite is the case for the connectivity – Equation (16).
The interaction of these two objective functions allows
keeping the number of clusters stable, thus avoiding
convergence to trivial solutions whilst allowing exploration of
interesting regions of the search space.
 Another evolutionary algorithm for multi-objective
clustering is described in [82]. The two objectives used in this
work are the total intra-cluster variation (computed over all
clusters) and the number of clusters. Both objectives should be
minimized, but they are conflicting with each other, as
previously explained. Hence, by using the concept of Pareto
dominance, the algorithm manages to discover a diverse set of
non-dominated clustering solutions, where, for each different
number of clusters, the algorithm can find the smallest possible
total intra-cluster variance. This allows us to present a set of
solutions with different trade-offs between the two objectives
to the user, who can then make a more informed choice about
the solution to be used in practice.

Bandyopadhyay et al. [8] proposed a multi-objective
evolutionary algorithm that performs fuzzy clustering. There
are two objectives being simultaneously optimized. One of
them is Jm defined in (5). The other is the well-known Xie-
Beni index [131], which is essentially a ratio of a global
measure of intra-cluster variation divided by a local measure
of cluster separation – namely, the distance between the two
closest clusters. Note that the numerator of this ratio is similar
to the first objective, but the denominator is measuring an
aspect of clustering quality not captured by the first objective.
Hence, the value of this second objective will be optimized
(minimized) when all clusters have an intra-cluster variation as
small as possible and when the two closest clusters are as far
away from each other as possible.

In a variation of this work, Mukhopadhyay et al. [106] use
two objectives where the first one is also a measure of total
intra-cluster variation, but they simplify the second measure to
be a direct global measure of the clusters' separation
(essentially the total summation of distances between all pairs
of clusters).

Ripon et al. [117] also propose a multi-objective

evolutionary clustering algorithm with two objectives. The
first one is essentially, as usual, a kind of measure of average
intra-cluster variation computed over all clusters. The
measure's average value across clusters was used – rather than
the measure's total summation across clusters – in order to
produce a normalized value of the measure taking into account
the number of clusters, which varies for different individuals in
the evolutionary algorithm's population. The second objective
is a measure of inter-cluster distance, which measures the
average distance separating a pair of clusters – computed over
all pairs of clusters.

Another relevant work is the multi-objective evolutionary
algorithm described in [78]. In this work, the algorithm is not
used for solving a clustering problem, and so it is not strictly
within the scope of this paper. However, the algorithm is used
to select attributes for a clustering algorithm (k-means), and
this is considered relevant enough to be mentioned here, since
most of the objectives in the fitness function used in this work
could equally well be used in an evolutionary algorithm for
clustering. This is because the evolutionary algorithm is used
as a wrapper around a clustering algorithm, so that the fitness
of an individual (i.e., a candidate set of selected attributes) is
computed by running a clustering algorithm with the selected
attributes and measuring the corresponding clustering validity
criteria. More precisely, this work used a fitness function with
four different objectives (clustering validity criteria), namely:
(a) cluster cohesiveness – related to intra-cluster distance; (b)
separation between clusters – related to inter-cluster distance;
(c) number of clusters; and (d) number of selected attributes.
Note how these objectives cover different aspects of the
quality of a clustering solution and are seamlessly integrated in
a Pareto-based multi-objective fitness function.

To summarize, out of the six works mentioned above, five
use two objectives and one uses four objectives. Hence,
researchers have focused mainly on just two objectives,
probably for the sake of simplicity. In addition, in all the six
works previously mentioned, one of the objectives used was a
kind of total intra-cluster distance measure (to be minimized),
and five of those works used an objective related to a kind of
inter-cluster distance measure (to be maximized). In principle,
a larger number of objectives could be considered, to try to
discover better clusters, and it would be interesting to
investigate the use of a larger diversity of types of objective
functions for measuring clustering quality.

B. Ensemble-Based Evolutionary Clustering

The combination of techniques in a group or ensemble is
easily found in many classification and regression applications.
In these applications, the outputs provided by different
techniques are combined by one of several strategies in order
to provide a consensus output value. The main goal is the
improvement of the overall performance in terms of accuracy
or precision by trying to use the best features of each
individual technique [86]. For such, these approaches use

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 19

either the label of the class (classification) or the desired value
(regression).

A formal definition of cluster ensemble is given by Topchy
et al. [126]. Given a set of P partitions ∏ = {π1, π2,… ,πP} of a
data set resulting from several applications of one or more
clustering algorithms, the goal is to look for a final partition
(consensus partition), πF, of better quality than the initial
partitions (partitions basis). The best quality depends on the
clustering validity criterion adopted.

More informally, Handl and Knowles [59][60] say that
clustering ensembles occur by the combination of a set of
partitions previously produced by several runs of a single
algorithm or by a set of algorithms. The use of ensemble is not
so straightforward for clustering techniques. To begin with,
there is no label associated with each object. Therefore, more
sophisticated strategies are needed in order to combine
partitions found by different algorithms or different runs of the
same algorithm in a consensus partition.
 According with Fred and Jain [49], the partition obtained by
the combination of the initial partitions should be consistent or
agree in some way with them, be robust to small variations in
these partitions, and be consistent with external information
regarding the structure of the data (if that information is
available).

The main steps for the combination of multiple partitions
are the induction of the partitions to be combined and the
definition of a consensus function to combine these partitions
[126]. Next, the main approaches followed in the literature for
each step are briefly presented.
 The initial partitions can be produced by different clustering
algorithms, several runs of the same clustering algorithm (with
different initial seeds), several runs of a weak clustering
algorithm (clustering algorithms simpler than the conventional
algorithms) and by several sub-samplings of the same original
data set by the same clustering algorithm.

Regarding the consensus function, the most usual functions
are based on co-association, graph, mutual information, and
voting. A function based on co-association tries to keep
together objects found together in most of the individual
partitions [49]. The graph-based functions look for a
consensus partition using partitioning techniques employed for
graphs [124]. The functions based on mutual information
maximize the mutual information between the labels of the
initial partitions and the labels of the consensus partition. The
voting function, after labeling the clusters, defines how many
times each object belonged to each cluster. Each object can be
assigned to its most frequent cluster. The definition of the
correspondence of labels for different partitions is not simple.

 In spite of the difficulty associated with this issue, there are
several works investigating the ensemble of partitions
[49][86][124][51][76][133][42]. However, only the last two
works use a genetic algorithm for producing a clustering
ensemble. Another of these works [76] uses genetic
algorithms as one of the individual clustering algorithms of an
ensemble.

Yoon et al. [133] use multiple crossover repetitions to
combine partitions created by different clustering algorithms.
Each pair selected for a crossover operation should present a
high overlap in the cluster objects. The initial population
comprises all clusters created by the clustering algorithms used
in the ensemble. The authors argue that their method, named
heterogeneous clustering ensemble (HCE), differ from other
ensemble approaches by taking characteristics from the
individual algorithms and the data set into account during the
ensemble procedure. This method was compared with
individual clustering algorithms using a gene-expression data
set.

Handl and Knowles [59][60] agree with other authors in that
ensembles tend to be more robust and produce higher quality
solutions than a single partition produced by an individual
clustering algorithm. However, they point out that ensembles
do not explore the full potential of multi-objective clustering,
since clusters that cannot be detected by one of the ensemble
components probably will not be present in the final
population.

Of course, it is also possible to combine multi-objective
clustering with clustering ensemble, as is the case of the work
of Faceli et al. [42][41], which proposes a Multi-Objective
Clustering Ensemble method, named MOCLE. This method
combines an ensemble of data partitions with multi-objective
clustering. The initial population used by MOCLE is a set
∏={π1,π2,…,πP} of P partitions, where πi={Ci

1,C
i
2,...,C

i
k(i)} is

a partition of the data set X={x1, x2, ..., xN} into k(i) clusters,
such that Ci

1 ∪ Ci
2 ∪ ... ∪ Ci

k(i) = X. The initial partitions are
of varying quality and are induced by different clustering
algorithms with different values for their free parameters.
These partitions usually represent a large variety of clusters
types. MOCLE evolves towards a concise, stable and robust
set of alternative structures, which should represent different
views of the data set.

V. APPLICATIONS

The application fields for evolutionary clustering

algorithms are essentially the same as those for non-
evolutionary algorithms, though, in practice, the use of
evolutionary approaches is seemingly more appropriate when
no domain knowledge (e.g. about the approximate number of
clusters) is available.

Next, we will briefly comment on some applications found
in the literature of evolutionary clustering. These applications
will be divided into five groups: image processing,
bioinformatics, computational finance, RBF neural network
design and others.

In image processing applications, evolutionary clustering
algorithms are mainly used to identify regions with particular
interest in an image. Bandyopadhyay and her co-authors, for
example, applied evolutionary clustering [10][11] and fuzzy
clustering [100][111] algorithms to distinguish landscape
regions like rivers, habitations and vegetation areas in satellite
images. In [8] the authors applied multi-objective clustering

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 20

genetic algorithms to pixel classification in remote sensing
imagery. In a similar application by Liu and Chapman [89],
evolutionary clustering is employed for automated road
extraction from satellite imagery. In a third image processing
application, Scheunders [121] dealt with quantization of color
images. Hall et al. [58] applied a genetically guided fuzzy
clustering strategy to brain tissue MRI (Magnetic Resonance
Image) quantization. Das et al. [27] applied a differential
evolution algorithm to automatic segmentation of images.

Several authors have reported the application of
evolutionary clustering algorithms to bioinformatics,
particularly to gene-expression analysis. Such applications are
important due to the growing amounts of gene-expression data
quickly becoming available and the need for more
sophisticated analysis tools for medical diagnosis. There are
two main groups of gene-expression analysis applications:
identification of groups of genes that have closely related
expression levels (in order, for instance, to better understand
and diagnose some diseases using tissues as input attributes) –
see [115], [97], [103], [95], [70], [68], [66], and [9] – and the
discovery of new sub-groups of pathologies, using the gene-
expression levels as input attributes – by looking for different
structures in a gene-expression data set [42][108][35].

For finance applications, evolutionary clustering
algorithms have been used to group either customer or
company profiles, as in the works from Lacerda et al. [87], for
credit risk assessment, and Krovi [84], for cluster analysis of
bankrupt and non-bankrupt companies.

Another application is the evolutionary design of other
machine learning techniques. Different approaches for the
hybrid training of RBF networks using evolutionary clustering
to select the number and location of basis functions were
investigated in [88][29].

There are many other applications where evolutionary
clustering has been successfully used. They include, for
example, the work from Sarafis et al. [120], who applied an
evolutionary algorithm to the problem of clustering
earthquakes, using data from an earthquake catalog; the work
from Casillas et al. [21], applying genetic algorithm to
document clustering; the use of genetic clustering for intrusion
detection in computer networks, by Liu et al. [92]; and the use
of a clustering genetic algorithm to extract rules from
multilayer perceptrons [71].

VI. CONCLUSIONS

A. Summary

This paper presents an up-to-date survey on evolutionary

algorithms for clustering. It tries to reflect the profile of this
area by focusing more on those subjects that have been given
more importance in the literature. Particularly, the paper has
focused mainly on hard partitional algorithms, though
overlapping (soft/fuzzy) approaches have also been covered.

An original contribution of the present paper is that it
discusses key issues on the design of evolutionary algorithms
for data partitioning problems, such as usually adopted
representations, evolutionary operators, and fitness functions,

just to mention a few. In particular, mutation and crossover
operators commonly described in the literature are
conceptually analyzed, giving especial emphasis to those
genetic operators specifically designed for clustering problems
(i.e., cluster-oriented and context-sensitive operators). In
addition, advantages and disadvantages of the most common
representation schemes are discussed, and asymptotic
comparative analyses in terms of running time and memory
space requirements are reported. Finally, several references are
provided that describe applications of evolutionary algorithms
for clustering in different domains, such as image processing,
computer security, and bioinformatics.

For the sake of clarity, algorithms designed for fixed and
variable number of clusters have been reviewed separately. In
brief, algorithms that assume a fixed number of clusters (k) –
e.g., Bandyopadhyay and Maulik [10]; Estivill-Castro and
Murray [39]; Fränti et al. [48]; Kivijärvi et al. [79]; Krishna
and Murty [83]; Krovi [84]; Bezdek et al. [14]; Kuncheva and
Bezdek [85]; Lu et al. [95][94]; Lucasius et al. [96]; Maulik
and Bandyopadhyay [100]; Merz and Zell [103]; Murthy and
Chowdhury [107]; Scheunders [121]; Sheng and Liu [122] –
are particularly suitable for applications in which there is
information regarding k, notably when domain knowledge is
available that suggests a reasonable value for the number of
clusters. In practice, this situation may take place when there is
good reason to believe that a small interval of values for k may
contain the “best” number of clusters, k*. In other situations,
clustering algorithms that explore partitions with different
numbers of clusters are often preferred (e.g., Cole [23];
Cowgill et al. [26]; Bandyopadhyay and Maulik [12][11];
Hruschka and Ebecken [65]; Casillas et al. [21]; Hruschka et
al. [69][70][68]; Ma et al. [97]; Alves et al. [2]; Tseng and
Yang [128]; Pan and Cheng [113]; and Handl and Knowles
[59]). Such evolutionary algorithms search for both k* and the
corresponding optimal partition in regions of the space where
they are more likely to be found.

Table II provides a summary of evolutionary algorithms
designed for optimizing fixed and variable numbers of
clusters. Additionally, this table also allows a unified view of
the algorithms for the reader particularly interested in the
nature of the data structure used for manipulating the clusters
during the evolutionary search. Such data structures have been
categorized into three main types, namely: centroid-based,
medoid-based, and label-based. Algorithms whose main data
structures do not strictly adhere to those just mentioned (e.g.
tree-based and graph-based) are listed in the last row of the
table.

The next section closes the paper by suggesting some topics
for future research that, in the authors' opinion, should deserve
special attention from the scientific community interested in
evolutionary algorithms for clustering.

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 21

TABLE II. SUMMARY OF EVOLUTIONARY
ALGORITHMS FOR HARD PARTITIONAL

CLUSTERING.
 Fixed k Variable k

Label-

Based

Krovi [84]
Murthy/Chowdhury [107]
Krishna/Murty [83]
Lu et al. [95][94]

Cole [23]
Cowgill et al. [26]
Hruschka et al. [65][69]
Hruschka et al. [70][68]
Alves et al. [2]
Ma et al. [97]

Centroid-

Based

Scheunders [121]
Fränti et al. [48]
Merz/Zell [103]
Kivijärvi et al. [79]
Bandyopadhyay/Maulik

 [10][100]

Bandyopadhyay/Maulik
[12][11]

Medoid-

Based

Kuncheva/Bezdek [85]
Lucasius et al. [96]
Estivill-Castro/Murray [39]
Sheng /Liu [122]

Others
Bezdek et al. [14]

Casillas et al. [21]
Tseng/Yang [128]
Handl/Knowles [59]
Pan and Cheng [113]

B. Future Trends

In most of the references on evolutionary algorithms for

clustering, only the quality of the partitions is of concern,
whereas little attention has been given to computational
efficiency, which is a critical issue when one thinks of serious
large-scale data clustering problems. We shall note that
traditional randomized approaches9 can possibly find solutions
as good as those found by evolutionary algorithms (mainly if
these are based on local search engines, such as k-means or
FCM). From this standpoint, an important question to be
answered is: What are the scenarios in which evolutionary
algorithms are more computationally efficient than traditional
randomized approaches? More generally, one may want to
know the relative computational efficiency of evolutionary
algorithms when compared with other (probabilistic)
algorithms designed for a given clustering task. Since
efficiency issues are almost untouched in the literature that
addresses evolutionary algorithms for clustering, one might
have the impression that there is an implicit claim suggesting
that these algorithms are in general efficient. It is likely that
such an implicit claim is mostly based on the fact that
evolutionary algorithms are widely believed to be effective on
(any) NP-hard global optimization problems, being able to
provide near-optimal solutions in reasonable time. However, it
is important to bear in mind that, in practice, the success of an
evolutionary algorithm to “solve” a given problem is highly
dependent upon how it has been designed (in terms of
encoding scheme, operators, set of parameters, etc.).
According to the conventional wisdom of good science, ideally

9 Systematically executing a partitional clustering algorithm multiple
times, possibly for different numbers of clusters, and then selecting the
particular partition that provides the best result according to a specific relative
validity criterion [72][64].

such design choices should be carefully analyzed (theoretically
and/or empirically). However, due to the probabilistic nature
of the search process performed by evolutionary algorithms,
such analyses are usually hard to be accomplished. In the
authors' opinion, that is why this issue is still almost untouched
in the related literature [19]. Particularly, most of the literature
on evolutionary clustering does not provide detailed
theoretical analyses in terms of time complexity. We believe
that this issue is an important research area for future work. In
addition, research efforts aimed at investigating the
computational efficiency of evolutionary and non-evolutionary
approaches in a systematic, empirical fashion, making use of
rigorous statistical analyses, are in order.

There is also much work to be done on investigating the
theoretical underpinnings of evolutionary algorithms for
clustering. The book by Falkenauer [43] can be considered as
a pioneering work in this research direction. In brief, the
author seriously questioned the applicability of the schema
theorem [63][54] for the particular context of grouping
problems (broadly defined) being solved by standard genetic
algorithms. Although such a book carefully elaborates on this
subject, as well as it provides deep insights on how genetic
algorithms for clustering problems should be designed, formal
justifications are not given. Instead, the author emphasizes the
need of meticulously choosing both the encoding scheme and
the operators in such a way that they make sense with respect
to the structure of grouping problems. Doing so, the author
argues that the premises of the schema theorem can be
satisfied, and valid approaches can be derived to tackle
grouping problems by using genetic algorithms. Since the
remarkable book of Falkenauer was published, in 1998,
several evolutionary algorithms specifically designed for
particular data partitioning problems have been proposed, and
good results have been reported in many applications.
However, formal analyses concerning the theoretical
soundness of such algorithms are still largely untouched in the
literature and are worth of investigation.

Another research direction that deserves more investigation
is multi-objective clustering. Recall that there is no "ground
truth" in clustering, and so it is important to consider multiple
objectives (different clustering validity criteria) when
evaluating the fitness of an individual representing a candidate
clustering solution. Although multi-objective evolutionary
algorithms for clustering have already been proposed, this
research topic is currently under-explored in the literature.

Finally, a topic that is almost untouched in the literature is
the combination of evolutionary approaches with traditional
hierarchical clustering algorithms, especially those derived
from the Lance-Williams scheme. This is probably due to the
fact that it is not straightforward to define a fitness function
capable of guiding the evolution of dendrograms. To the best
of our knowledge, only Lozano and Larrañaga [93] address
this topic, which is a possible venue for future research.

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 22

ACKNOWLEDGEMENTS

We would like to express our appreciation to the anonymous
referees of the original manuscript for the constructive
comments they made.

REFERENCES

[1] V. S. Alves, R. J. G. B. Campello, E. R. Hruschka, “A

Fuzzy Variant of an Evolutionary Algorithm for
Clustering”, In Proc. IEEE Int. Conference on Fuzzy

Systems, pp. 375-380, 2007.
[2] V. S. Alves, R. J. G. B. Campello, E. R. Hruschka,

“Towards a Fast Evolutionary Algorithm for Clustering”,
In Proc. IEEE Congress on Evolutionary Computation,
pp. 6240-6247, 2006.

[3] L. J. Arabie, G. Hubert, P. DeSoete, Clustering and

Classification, World Scientific, 1999.
[4] G. P. Babu, M. N. Murty, “Clustering with Evolution

Strategies”, Pattern Recognition, vol. 27, pp. 321-329,
1994.

[5] R. Babuška, Fuzzy Modeling for Control, Kluwer, 1998.
[6] T. Bäck, D. B. Fogel, Z. Michalewicz, Evolutionary

Computation 1: Basic Algorithms and Operators,
Institute of Physiscs Publishing (IOP), Bristol and
Philadelphia, 2000.

[7] P. Baldi, S. Brunak, Bioinformatics - The Machine

Learning Approach, 2nd Ed., MIT Press, 2001.
[8] S. Bandyopadhyay, U. Maulik, A. Mukhopadhyay,

Multiobjective genetic clustering for pixel classification
in remote sensing imagery. IEEE Transactions on
Geoscience and Remote Sensing, v. 45, n. 5, pp. 1506-
1511, 2007.

[9] S. Bandyopadhyay, A. Mukhopadhyay, U. Maulik, An
improved algorithm for clustering gene expression data,
Bioinformatics, v. 23, n. 21, pp. 2859-2865, 2007.

[10] S. Bandyopadhyay, U. Maulik, “An Evolutionary
Technique based on k-Means Algorithm for Optimal
Clustering in RN”, Information Sciences, Vol. 146, pp.
221-237, 2002.

[11] S. Bandyopadhyay, U. Maulik, “Genetic Clustering for
Automatic Evolution of Clusters and Application to
Image Classification”, Pattern Recognition, Vol. 35, pp.
1197-1208, 2002.

[12] S. Bandyopadhyay, U. Maulik, “Nonparametric Genetic
Clustering: Comparison of Validity Indices”, IEEE Trans.

on Systems, Man, and Cybernetics – Pt. C, Vol. 31, pp.
120-125, 2001.

[13] P. M. BertoneGerstein, “Integrative Data Mining: The
New Direction in Bioinformatics – Machine Learning for
Analyzing Genome-Wide Expression Profiles”, IEEE

Engineering in Medicine and Biology, Vol. 20, pp. 33-40,
2001.

[14] J. C. Bezdek, S. Boggavaparu, L. O. Hall, A. Bensaid,
“Genetic Algorithm Guided Clustering”, In Proc. IEEE

Congress on Evolutionary Computation, pp. 34-40, 1994.
[15] J. C. Bezdek, R. J. Hathaway, “Optimization of Fuzzy

Clustering Criteria using Genetic Algorithms”, In Proc.

IEEE World Congress on Computational Intelligence, pp.
589-594, 1994.

[16] J. C. Bezdek, Pattern Recognition with Fuzzy Objective

Function Algorithm, Plenum Press, 1981.
[17] J. P. Bigus, Data Mining with Neural Networks,

McGraw-Hill, 1996.
[18] R. B. Calinski, J. Harabasz, “A Dendrite Method for

Cluster Analysis”, Communications in Statistics, Vol. 3,
pp. 1-27, 1974.

[19] R. J. G. B Campello, V. S. Alves, E. R. Hruschka, “On
the Efficiency of Evolutionary Fuzzy Clustering”, Journal

of Heuristics, DOI: 10.1007/s10732-007-9059-6.
[20] R. J. G. B. Campello, E. R. Hruschka, “A Fuzzy

Extension of the Silhouette Width Criterion for Cluster
Analysis” Fuzzy Sets and Systems, vol. 157, n. 21, pp.
2858-2875, 2006.

[21] A. Casillas, M. Y. González de Lena, R. Martínez,
“Document Clustering into an Unknown Number of
Clusters Using a Genetic Algorithm”, In. Proc. Int.

Conference on Text Speech and Dialogue, LNCS 2807,
pp. 43-49, 2003.

[22] C. A. Coello Coello, D. A. Van Veldhuizen, G. B.
Lamont, Evolutionary Algorithms for Solving Multi-

Objective Problems. Kluwer, 2002.
[23] R. M. Cole, Clustering with Genetic Algorithms, MSc

Thesis, University of Western Australia, Australia, 1998.
[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein,

Introduction to Algorithms, MIT Press, 2nd Ed., 2001.
[25] D. W. Corne, N. R. Jerram, J. D. Knowles, M. J. Oates,

“PESA-II: Region-Based Selection in Evolutionary
Multiobjective Optimization”, In Proc. Genetic and

Evolutionary Computation Conference, pp. 283–290,
2001.

[26] M. C. Cowgill, R. J. Harvey, L. T. Watson, A Genetic
Algorithm Approach to Cluster Analysis, Computational

Mathematics and its Applications, Vol. 37, pp. 99-108,
1999.

[27] S. Das, A. Abraham, A. Konar, “Automatic Clustering
Using an Improved Differential Evolution Algorithm”,
IEEE Transactions on Systems, Man, and Cybernetics –
Part A: Systems and Humans, vol. 38, n.1, January, 2008.

[28] D. L. Davies, D. W. Bouldin, “A Cluster Separation
Measure”, IEEE Trans. on Pattern Analysis and Machine

Intelligence, Vol.1, pp. 224-227, 1979.
[29] L. N. de Castro, E. R. Hruschka, R. J. G. B. Campello,

“An Evolutionary Clustering Technique with Local
Search to Design RBF Neural Network Classifiers”, In
Proc. of the IEEE Int. Conference on Neural Networks,
pp. 2083-2088, 2004.

[30] K. A. de Jong, Evolutionary Computation: A Unified

Approach, MIT Press, 2006.
[31] C. S. de Oliveira, A. S. G. Meiguins, B.S. Meiguins, P.I.

Godinho, A.A. Freitas, An evolutionary density and grid-
based clustering algorithm. In Proc. XXIII Brazilian

Symposium on Databases (SBBD-2007), pp. 175-189,
2007.

[32] J.V. de Oliveira, W. Pedrycz, Advances in Fuzzy
Clustering and its Applications, Wiley, 2007.

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 23

[33] K. Deb, Multi-objective Optimization Using Evolutionary

Algorithms. Wiley, 2001.
[34] A. P. Dempster, N. Laird, D. B. Rubin, “Maximum

Likelihood from Incomplete Data via the EM Algorithm”,
Journal of the Royal Statistical Society, Vol. B39, pp. 1-
38, 1977.

[35] M. Dolled-Filhart, L. Ryden, M. Cregger, K. Jirstrom, M.
Harigopal, R. L. Camp, D. L. Rimm, Classification of
breast cancer using genetic algorithms and tissue
microarrays. Clin Cancer Res 12: 6459-6468, 2006.

[36] J. C. Dunn, “A Fuzzy Relative of the ISODATA Process
and its use in Detecting Compact Well-Separated
Clusters”, Journal of Cybernetics, Vol. 3, pp. 32-57,
1973.

[37] M. A. Egan, M. Krishnamoorthy, K. Rajan, “Comparative
Study of a Genetic Fuzzy C-Means Algorithm and a
Validity Guided Fuzzy C-Means Algorithm for Locating
Clusters in Noisy Data”, In Proc. IEEE World Congress

on Computational Intelligence, pp. 440-445, 1998.
[38] M. Ester, H.-P. Kriegel, J. Xu, W. Sander, A density-

based algorithm for discovering clusters in large spatial
databases with noise. In Proc. 2nd Int. Conf. on

Knowledge Discovery and Data Mining (KDD-06), pp.
226-231. AAAI Press, 1996.

[39] V. Estivill-Castro, A. T. Murray, “Spatial Clustering for
Data Mining with Genetic Algorithms”, In Proc. Int.

ICSC Symposium on Engineering of Intelligent Systems,
pp. 317-323, 1997.

[40] B. S. Everitt, S. Landau, M. Leese, Cluster Analysis,
Arnold Publishers, 2001.

[41] K. Faceli, A. C. P. L. F. de Carvalho, M. C. P. Souto,
“Cluster Ensemble and Multi-objective Clustering
Methods, In: “Pattern Recognition Technologies and

Applications: Recent Advances, Brijesh Verma; Michael
Blumenstein. (Editors.). Hershey, Idea Group (to appear).

[42] K. Faceli, A. C. P. L. F. de Carvalho, M. C. P. Souto,
“Multi-objective Clustering Ensemble”, International

Journal of Hybrid Intelligent Systems, Vol. 4(3), pp. 145-
156, 2007.

[43] E. Falkenauer, Genetic Algorithms and Grouping

Problems, John Wiley & Sons, 1998.
[44] P. Fazendeiro, J. Valente de Oliveira, “A Semantic

Driven Evolutive Fuzzy Clustering Algorithm”, In Proc.

IEEE Int. Conference on Fuzzy Systems, pp. 1-6, 2007.
[45] D. B. Fogel, Evolutionary Computation: Principles and

Practice for Signal Processing, SPIE (Society of Photo-
Optical Instrumentation Engineers) Press, 2000.

[46] D. B. Fogel, P. K. Simpson, “Evolving Fuzzy Clusters”,
In Proc. IEEE Int. Conference on Neural Networks, pp.
1829-1834, 1993.

[47] C. Fralley, A. E. Raftery, “How Many Clusters? Which
Clustering Method? Answer via Model-Based Cluster
Analysis”, The Computer Journal, Vol. 41, pp. 578-588,
1998.

[48] P. Fränti, J. Kivijärvi, T. Kaukoranta, O. Nevalainen,
“Genetic Algorithms for Large-Scale Clustering
Problems”, The Computer Journal, Vol. 40, pp. 547-554,
1997.

[49] A. L. N. Fred, A. K. Jain, “Combining multiple
clusterings using evidence accumulation”, IEEE

Transactions on Pattern Analysis and Machine

Intelligence, Vol. 27 (6), pp. 835-850, 2005.
[50] A. A. Freitas, A Review of Evolutionary Algorithms for

Data Mining, In: Soft Computing for Knowledge

Discovery and Data Mining, pp. 61-93, O. Maimon; L.
Rokach (Editors), Springer, 2007.

[51] J. Ghosh, A. Strehl, S. Merugu, A Consensus Framework
for Integrating Distributed Clusterings Under Limited
Knowledge Sharing, Proc. of NSF Workshop on Next
Generation Data Mining, pp. 99-108, Baltimore, MD,
November, 2002.

[52] A. Ghozeil, D. B. Fogel, “Discovering Patterns in Spatial
Data using Evolutionary Programming”, In Proc. 1

st

Annual Conference on Genetic Programming, pp. 521-
527, 1996.

[53] F. Glover, Tabu Search: Part II, ORSA J. Comput., v.2,
n.1, pp.4-32, 1990.

[54] D. E. Goldberg, Genetic Algorithms in Search,

Optimization, and Machine Learning, Addison-Wesley,
1989.

[55] M. Halkidi, Y. Batistakis, M. Vazirgiannis, “On
Clustering Validation Techniques”, Journal of Intelligent

Information Systems, Vol. 17, pp. 107-145, 2001.
[56] L. O. Hall, J. C. Bezdek, S. Boggavarpu, A. Bensaid,

“Genetic Fuzzy Clustering”, In Proc. Annual Conference

of the North American Fuzzy Information Processing

Society (NAFIPS), pp. 411-415, 1994.
[57] L. O. Hall, B. Özyurt, “Scaling Genetically Guided Fuzzy

Clustering”, In Proc. Int. Symposium on Uncertainty

Modeling and Analysis & Annual Conference of the

North American Fuzzy Information Processing Society

(ISUMA-NAFIPS), pp. 328-332, 1995.
[58] L. O. Hall, I. B. Özyurt, J. C. Bezdek, “Clustering with a

Genetically Optimized Approach”, IEEE Trans. on

Evolutionary Computation, Vol. 3, pp. 103-112, 1999.
[59] J. Handl, J. Knowles, “An Evolutionary Approach to

Multiobjective Clustering”, IEEE Trans. on Evolutionary

Computation, Vol. 11, pp. 56-76, 2007.
[60] J. Handl, J. Knowles, D. B. Kell, “Computational Cluster

Validation in Post-Genomic Data Analysis”,
Bioinformatics, Vol. 21, pp. 3201–3212, 2005.

[61] T. Hastie, R. Tibshirani, J. Friedman, The Elements of

Statistical Learning: Data Mining, Inference, and

Prediction, Springer, 2001.
[62] S. Haykin, Neural Networks – A Comprehensive

Foundation, Prentice Hall, 2nd Ed., 1999.
[63] J. H. Holland, Adaptation in Natural and Artificial

Systems, University of Michigan Press, 1975.
[64] F. Höppner, F. Klawonn, R. Kruse, T. Runkler, Fuzzy

Cluster Analysis: Methods for Classification, Data

Analysis and Image Recognition, Wiley, 1999.
[65] E. R. Hruschka, N. F. F. Ebecken, “A Genetic Algorithm

for Cluster Analysis”, Intelligent Data Analysis, Vol. 7,
pp. 15-25, 2003.

[66] E. R. Hruschka, R. J. G. B. Campello, L. N. de Castro,
“Clustering Gene-Expression Data: A Hybrid Approach

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 24

that Iterates between k-Means and Evolutionary Search”,
In: Hybrid Evolutionary Algorithms, C. Grosan, A.
Abraham, H. Ishibuchi (Editors), Springer, pp. 313-335,
2007.

[67] E. R. Hruschka, R. J. G. B Campello, L. N. de Castro,
“Evolutionary Search for Optimal Fuzzy C-Means
Clustering”, In Proc. Int. Conference on Fuzzy Systems,
pp. 685-690, 2004.

[68] E. R. Hruschka, R. J. G. B. Campello, L. N. de Castro,
“Evolving Clusters in Gene-Expression Data”,
Information Sciences, Vol. 176, pp. 1898-1927, 2006.

[69] E. R. Hruschka, R. J. G. B. Campello, L. N. de Castro,
“Improving the Efficiency of a Clustering Genetic
Algorithm”, In Proc. 9th Ibero-American Conference on

Artificial Intelligence, LNCS 3315, pp. 861-870, 2004.
[70] E. R. Hruschka, L. N. de Castro, R. J. G. B. Campello,

“Evolutionary Algorithms for Clustering Gene-
Expression Data”, In Proc. 4th IEEE Int. Conference on

Data Mining, pp. 403-406, 2004.
[71] E. R. Hruschka, N. F. F. Ebecken, “Extracting Rules from

Multilayer Perceptrons in Classification Problems: A
Clustering-Based Approach”, Neurocomputing, Vol. 70,
pp. 384-397, 2006.

[72] A. K. Jain, R. C. Dubes, Algorithms for Clustering Data,
Prentice Hall, 1988.

[73] A. K. Jain, M. N. Murty, P. J. Flynn, “Data Clustering: A
Review”, ACM Computing Surveys, Vol. 31, pp. 264-
323, 1999.

[74] D. Jiang, C. Tang, A. Zhang, “Cluster Analysis for Gene
Expression Data: A Survey”, IEEE Trans. on Knowledge

and Data Engineering, Vol. 16, pp. 1370-1386, 2004.
[75] L. Kaufman, P. J. Rousseeuw, Finding Groups in Data –

An Introduction to Cluster Analysis, Wiley Series in
Probability and Mathematical Statistics, 1990.

[76] P. Kellam, X. Liu, N. J. Martin, C. Orengo, S. Swift, A.
Tucker, “Comparing, contrasting and combining clusters
in viral gene expression data”, In Proc. 6th Workshop on

Intelligent Data Analysis in Medicine and Pharmacology,
pp. 56–62, 2001.

[77] H. Kim, G. H. Golub, H. Park, “Missing Value
Estimation for DNA Microarray Gene Expression Data:
Local Least Squares Imputation”, Bioinformatics, Vol.
21, pp. 187-198, 2005.

[78] Y. Kim, W. N. Street, F. Menczer, Feature selection in
unsupervised learning via evolutionary searching. In Proc.
6th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2000), pp.
365-369. ACM Press, 2000.

[79] J. Kivijärvi, P. Fränti, O. Nevalainen, “Self-Adaptive
Genetic Algorithm for Clustering”, Journal of Heuristics,
Vol. 9, pp. 113-129, 2003.

[80] F. Klawonn, “Fuzzy Clustering with Evolutionary
Algorithms”, In Proc. of 7

th
 Int. Fuzzy Systems

Association (IFSA) World Congress, pp. 312-323, 1997.
[81] D. E. Knuth, The Art of Computing Programming, vol.

III: Sorting and Searching, Addison-Wesley, Reading,
MA, 1973.

[82] E. E. Korkmaz, J. Du, R. Alhajj, K. Barker, Combining
advantages of new chromosome representation scheme
and multi-objective genetic algorithms for better
clustering. Intelligent Data Analysis, Vol. 10, No. 2, pp,
163-182, 2006.

[83] K. Krishna, N. Murty, “Genetic K-means Algorithm”,
IEEE Trans. on Systems, Man and Cybernetics – Pt. B,
Vol. 29, pp. 433-439, 1999.

[84] R. Krovi, “Genetic Algorithms for Clustering: A
Preliminary Investigation”, In Proc. of the 25th Hawaii

Int. Conference on System Sciences, Vol. 4, pp. 540-544,
1992.

[85] L. I. Kuncheva, J. C. Bezdek, “Selection of Cluster
Prototypes from Data by a Genetic Algorithm”, In Proc.

5th European Congress on Intelligent Techniques and

Soft Computing, pp. 1683-1688, 1997.
[86] L. I. Kuncheva, S. T. Hadjitodorov, L. P. Todorova,

“Experimental comparison of cluster ensemble methods”,
In Proc. FUSION, pp. 105-115, 2006.

[87] E. G. Lacerda, A. C. P. F. de Carvalho, A. P. Braga, T. B.
Ludermir, “Evolutionary Radial Basis Functions for
Credit Assessment”, Applied Intelligence, pp. 167-181,
Vol. 22 (3), Springer, May 2005.

[88] E. G. Lacerda, A. C. P. F. de Carvalho, T. B. Ludermir,
“Evolutionary Optimization of RBF networks, Radial
basis function neural networks: design and applications”,
pp. 282-310, In Radial Basis Function Networks 1:

Recent Developments in Theory and Application, R. J.
Howlett, L Jain (Editors), Physica-Verlag, 2001.

[89] H. Liu, J. Li, M. A. Chapman, “Automated Road
Extraction from Satellite Imagery using Hybrid Genetic
Algorithms and Cluster Analysis”, Journal of

Environmental Informatics, Vol. 1, no. 2, pp. 40-47,
2003.

[90] H. Liu, L. Yu, “Toward Integrating Feature
Selection Algorithms for Classification and Clustering”,
IEEE Trans. on Knowledge and Data Engineering, Vol.
17, pp. 1-12, 2005.

[91] J. Liu, W. Xie, “A Genetics-Based Approach to Fuzzy
Clustering”, In Proc. Int. Conference on Fuzzy Systems,
pp. 2233-2240, 1995.

[92] Y. Liu, K. Chen, X. Liao, W. Zhang, “A Genetic
Clustering Method for Intrusion Detection”, Pattern

Recognition, Vol. 37, pp. 927-942, 2004.
[93] J. A. Lozano, P. Larrañaga, Applying genetic algorithms

to search for the best hierarchical clustering of a dataset,
Pattern Recognition Letters, n. 20, pp. 911-918, 1999.

[94] Y. Lu, S. Lu, F. Fotouhi, Y. Deng, S. J. Brown, “FGKA:
A Fast Genetic K-means Clustering Algorithm”, In Proc.

ACM Symposium on Applied Computing, pp. 622-623,
2004.

[95] Y. Lu, S. Lu, F. Fotouhi, Y. Deng, S. J. Brown,
“Incremental Genetic k-Means Algorithm and its
Application in Gene Expression Data Analysis”, BMC

Bioinformatics, Vol. 28, 172, 2004.
[96] C. B. Lucasius, A. D. Dane, G. Kateman, “On k-Medoid

Clustering of Large Data Sets with the Aid of a Genetic

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 25

Algorithm: Background, Feasibility and Comparison”,
Analytica Chimica Acta, Vol. 282, pp. 647-669, 1993.

[97] P. C. H. Ma, K. C. C. Chan, X. Yao, D. K. Y. Chiu, “An
Evolutionary Clustering Algorithm for Gene Expression
Microarray Data Analysis”, IEEE Trans. on Evolutionary

Computation, Vol. 10, pp. 296-314, 2006.
[98] T. Martinez, K. Schulten, Topology Representing

Networks, Neural Networks, v.7, n. 3, pp. 507-522,
Elsevier, 1994.

[99] U. Maulik, S. Bandyopadhyay, “Fuzzy Partitioning Using
Real Coded Variable Length Genetic Algorithm for Pixel
Cassification”, IEEE Trans. on Geosciences and Remote

Sensing, Vol. 41, no. 5, pp. 1075–1081, 2003.
[100] U. Maulik, S. Bandyopadhyay, “Genetic Algorithm-

based Clustering Technique”, Pattern Recognition, Vol.
33, pp. 1455-1465, 2000.

[101] J. B. McQueen, “Some Methods of Classification and
Analysis of Multivariate Observations”, In: Proc. 5th

Berkeley Symposium on Mathematical Statistics and

Probability, pp. 281-297, 1967.
[102] G. Mecca, S. Raunich, A. Pappalardo, “A New

Algorithm for Clustering Search Results”, Data and

Knowledge Engineering, Vol. 62, pp. 504-522, 2007.
[103] P. Merz, A. Zell, “Clustering Gene Expression Profiles

with Memetic Algorithms”, In Proc. Parallel Problem

Solving from Nature, LNCS 2439, pp. 811-820, 2002.
[104] G. W. Milligan, M. C. Cooper, “An Examination of

Procedures for Determining the Number of Clusters in a
Data Set”, Psychometrika, Vol. 50, pp. 159-179, 1985.

[105] M. Mitchell, An Introduction to Genetic Algorithms,
MIT Press, 1998.

[106] A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay,
Multiobjective genetic fuzzy clustering of categorical
attributes. Proc. 10th Int. Conf. on Information

Technology, pp. 74-79. IEEE Computer Society, 2007.
[107] C. A. Murthy, N. Chowdhury, “In Search of Optimal

Clusters using Genetic Algorithms”, Pattern Recognition

Letters, Vol. 17, pp. 825-832, 1996.
[108] M. C. Naldi, A. C. P. L. F. de Carvalho, “Clustering

Using Genetic Algorithm Combining Validation
Criteria”, In Proc. 15th European Symposium on

Artificial Neural Networks, pp. 139-147, Bruges,
Belgium, 2007.

[109] Naldi, M. C., de Carvalho, A. C. P. L. F., Campello, R.
J. G. B., Hruschka, E. R., Genetic Clustering for Data

Mining. In: Soft Computing for Knowledge Discovery

and Data Mining, O. Maimon; L. Rokach (Editors),
Springer, pp. 113-132, 2007.

[110] M. Ouyang, W. J. Welsh, P. Georgopoulos, “Gaussian
Mixture Clustering and Imputation of Microarray Data”,
Bioinformatics, Vol. 20, pp. 917-923, 2004.

[111] M. K. Pakhira, S. Bandyopadhyay, U. Maulik, “A
Study of some Fuzzy Cluster Validity Indices, Genetic
Clustering and Application to Pixel Classification”, Fuzzy

Sets and Systems, Vol. 155, pp. 191-214, 2005.
[112] N. R. Pal, J. C. Bezdek, “On Cluster Validity for the

Fuzzy c-Means Model”, IEEE Trans. on Fuzzy Systems,
Vol. 3, pp. 370-379, 1995.

[113] S. Pan, K. Cheng, Evolution-Based Tabu Search
Approach to Automatic Clustering, IEEE Transactions on
Systems, Man, and Cybernetics, Part C – Applications
and Reviews, v. 37, n. 5, pp. 827-838, 2007.

[114] P. A. Pantel, Clustering by Commitee, PhD Thesis,
Department of Computer Sciences of the University of
Alberta, Canada, 2003.

[115] H.-S. Park, S.-H. Yoo, S.-B. Cho, “Evolutionary Fuzzy
Clustering Algorithm with Knowledge-Based Evaluation
and Applications for Gene Expression Profiling”, Journal

of Computational and Theoretical Nanoscience, Vol. 2,
pp. 1-10, 2005.

[116] V. J. Rayward-Smith, “Metaheuristics for Clustering in
KDD”, In Proc. IEEE Congress on Evolutionary

Computation, pp. 2380-2387, 2005.
[117] K.S.N. Ripon, C.-H. Tsang, S. Kwong, M.-K. Ip,

Multi-objective evolutionary clustering using variable-
length real jumping genes genetic algorithm. Proc. of the

18th Int. Conf. on Pattern Recognition (ICPR'06). IEEE
Computer Society, 2006.

[118] E. Ruspini, “Numerical Methods for Fuzzy
Clustering”, Information Sciences, Vol. 2, pp. 319-350,
1970.

[119] I. Sarafis, Data Mining Clustering of High

Dimensional DataBases with Evolutionary Algorithms,
PhD Thesis, Heriot-Watt University, UK, 2005.

[120] L. Sarafis, P. W. Trinder, A. M. S. Zalzala, NOCEA: a
rule-based evolutionary algorithm for efficient and
effective clustering of massive high-dimensional
databases. Applied Soft Computing, Vol. 7, No. 3, pp.
668-710, June 2007.

[121] P. Scheunders, “A Genetic c-Means Clustering
Algorithm Applied to Color Image Quantization”, Pattern

Recognition, Vol. 30, pp. 859-866, 1997.
[122] W. Sheng, X. Liu, “A Hybrid Algorithm for K-Medoid

Clustering of Large Data Sets”, In Proc. IEEE Congress

on Evolutionary Computation, pp. 77-82, 2004.
[123] R. Srikanth, R. George, N. Warsi, D. Prabhu, F. E.

Petry, B. P. Buckles, “A Variable-Length Genetic
Algorithm for Clustering and Classification”, Pattern

Recognition Letters, Vol. 16, pp. 789-800, 1995.
[124] A. Strehl, J. Ghosh, “Cluster ensembles - a knowledge

reuse framework for combining partitions”, Journal of

Machine Learning Research, Vol. 3, pp. 583-617, 2002.
[125] H. Sun, S. Wang, Q. Jiang, “FCM-Based Model

Selection Algorithms for Determining the Number of
Clusters”, Pattern Recognition Letters, Vol. 37, pp. 2027-
2037, 2004.

[126] A. Topchy, A. Jain, W. Punch, “A mixture model for
clustering ensembles”, In Proceedings of the SIAM

International Conference on Data Mining, pp. 331–338,
2004..

[127] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T.
Hastie, R. Tibshirani, D. Botstein, R. B. Altman,
“Missing Value Estimation Methods for DNA
Microarray”, Bioinformatics, Vol. 17, pp. 520-525, 2001.

To appear in IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

 26

[128] L. Y. Tseng, S. B. Yang, “A Genetic Approach to the
Automatic Clustering Problem”, Pattern Recognition,
Vol. 34, pp. 415-424, 2001.

[129] F. Valafar, “Pattern Recognition Techniques in
Microarray Data Analysis: A Survey”, Annals of New

York Academy of Sciences, Vol. 980, pp. 41-64, 2002.
[130] T. Van Le, “Evolutionary Fuzzy Clustering”, In Proc.

IEEE Congress on Evolutionary Computation, pp. 753-
758, 1995.

[131] X. L. Xie, G. Beni, “A validity measure for fuzzy
clustering,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, v. 13, n. 8, pp. 841–847, 1991.

[132] R. Xu, D. Wunsch II, “Survey of Clustering
Algorithms”, IEEE Trans. on Neural Networks, Vol. 16,
pp. 645-678, 2005.

[133] H.-S. Yoon, S.-Y. Ahn, S.-H. Lee, S.-B. Cho, J. H.
Kim, "Heterogeneous Clustering Ensemble Method for
Combining Different Cluster Results", Proc. BioDM

2006, pp. 82-92, Lecture Notes in Computer Science,
Vol. 3916, 2006.

[134] B. Yuan, G. J. Klir, J. F. Swan-Stone, “Evolutionary
Fuzzy C-Means Clustering Algorithm”, In Proc. Int.

Conference on Fuzzy Systems, pp. 2221-2226, 1995.

Eduardo Raul Hruschka received his
B.Sc. degree in Civil Engineering from
Federal University of Paraná, Brazil, in
1995, and his M.Sc. and Ph.D. degrees in
Computational Systems from Federal
University of Rio de Janeiro, Brazil, in
1998 and 2001, respectively. He is
currently assistant professor of the
Department of Computer Sciences of the
University of São Paulo (USP) at São
Carlos, Brazil. His primary research
interests are in data mining, with particular
emphasis on clustering algorithms,
evolutionary computation, feature
selection, missing values imputation, and
artificial neural networks. He has authored
or coauthored more than 50 research
publications in peer-reviewed reputed
journals, book chapters, and conference
proceedings. Dr. Hruschka has been a
reviewer for several journals such as IEEE
Transactions on Systems, Man and
Cybernetics, IEEE Transactions on
Knowledge and Data Engineering, IEEE
Transactions on Evolutionary
Computation, Information Sciences,
Journal of Heuristics, and Bioinformatics.
He has also been a member of the Program
Committee of several international
conferences, including the IEEE
International Conference on Data Mining.

Ricardo J. G. B. Campello was born in
Recife - PE, Brazil. He received the BSc
degree in Electronics Engineering from
State University of São Paulo (Unesp), Ilha
Solteira - SP, in 1994, and the MSc and
Ph.D. degrees in Electrical Engineering
from the School of Electrical and
Computer Engineering of the State
University of Campinas (Unicamp),
Campinas - SP, in 1997 and 2002,

respectively. In 2002 he was a visiting
scholar at the Laboratoire D’Informatique,
Signaux et Systèmes de Sophia Antipolis,
Université de Nice - Sophia Antipolis
(UNSA), France. Since 2007 he is with the
Department of Computer Sciences of the
University of São Paulo (USP) at São
Carlos. His current research interests fall
primarily into the areas of Soft Computing,
Machine Learning, Data Mining and
Dynamic Systems Identification/Control.

Alex A. Freitas obtained his BSc in
Computer Science from FATEC-SP,
Brazil, in 1989; his MSc in Computer
Science from UFSCar, Brazil, in 1993; and
his PhD in Computer Science from the
University of Essex, UK, in 1997. He
worked as a visiting Lecturer at CEFETP-
PR, Brazil, in 1998; and as an Associate
Professor at PUC-PR, Brazil, from 1999 to
June 2002. In July 2002 he moved to the
University of Kent, UK, where he is now a
Reader in Computational Intelligence and
the Director of Research of the Computing
Laboratory. He is a member of the editorial
board of three international journals,
namely: Intelligent Data Analysis, The
International Journal of Data Warehousing
and Mining, and the International Journal
of Computational Intelligence and
Applications. He has authored two
research-oriented books (both in the area of
data mining), and has published more than
10 invited book chapters and more than
100 refereed papers in journals and
conference proceedings. His current
research interests are data mining and
knowledge discovery, biologically-inspired
computational intelligence algorithms and
bioinformatics. He is a member of IEEE,
AAAI (Association for Advancement of
Artificial Intelligence), BCS-SGAI (British
Computer Society's Specialist Group on
Artificial Intelligence), and ACM SIGKDD
(Special Interest Group on Knowledge
Discovery and Data Mining).

André C. Ponce de Leon F. de Carvalho
received his B.Sc. and M.Sc. degrees in
Computer Science from the Universidade
Federal de Pernambuco, Brazil. He
received his Ph.D. degree in Electronic
Engineering from the University of Kent,
UK. Prof. André de Carvalho is Full
Professor at the Department of Computer
Science, Universidade de São Paulo,
Brazil. He has published around 60 Journal
and 200 Conference refereed papers. He
has been involved in the organization of
several conferences and journal special
issues. His main interests are Machine
Learning, Data Mining, Bioinformatics,
Evolutionary Computation, Bioinspired
Computing and Hybrid Intelligent Systems.

