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A New Sequential Covering Strategy for Inducing

Classification Rules with Ant Colony Algorithms
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Abstract

Ant colony optimization (ACO) algorithms have been sucfidgsapplied to discover a list of classification rules. largeral,
these algorithms follow a sequential covering strategyenta single rule is discovered at each iteration of the dhgorin order
to build a list of rules. The sequential covering strategy tiee drawback of not coping with the problem of rule inteaet-i.e.,
the outcome of a rule affects the rules that can be discovarbgequently since the search space is modified due to tlwvaem
of examples covered by previous rules. This paper proposesvesequential covering strategy for ACO classificatioroatgms
to mitigate the problem of rule interaction, where the orafethe rules is implicitly encoded as pheromone values aads#arch
is guided by the quality of a candidate list of rules. Our ekpents using eighteen publicly available data sets shaw tine
predictive accuracy obtained by a new ACO classificatiomritlym implementing the proposed sequential coveringtesisais

statistically significantly higher than the predictive aacy of state-of-the-art rule induction classificatiogamithms.

Index Terms

ant colony optimization, data mining, classification, rirlduction, sequential covering.

I. INTRODUCTION

ATA mining is a research area concentrated on designing ammloging computational methods to discover (learn)
D a model (based on a given knowledge representation) frotrwedd structured data [1], [2]. Most of research is
concentrated on supervised classification. A classifingiimblem involves a set of examples, where each examplesigided
by predictor attributes’ values (features) and associati¢il a class value. The aim of a classification algorithm isind a
model that represents the relationships between prediatbclass attributes’ values. In general, the classificatisk involves
two phases. In the first phase, the data set being mined ismagdplit into training and test sets. Then, a classificativodel
that represents the relationships between predictor aasb @ttributes’ values is built by analysing the examplemfthe
training set. Note that the algorithm has access to thernmition of both predictor and class attributes from the tngjrset. In
the second phase, the classification model is used to glasisé., predict the value of the class attribute—the ex@®fitom
the test set. Considering that the classification model w#susing only the examples from the training set, the atpan has
no information about the class value of the examples frontakeset. The value of the class attribute of a test exampulelis

verified after the classification algorithm predicted itéuea in order to evaluate the created classification modedreiction
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is considered correct when the predicted value is the santheaactual value of the example; otherwise it is considered
incorrect. The more correct predictions on the test setptbee accurate the classification model.

One of the main goals of a classification algorithm is to baildnodel that maximises the predictive accuracy—i.e., the
number of correct predictions divided by the total numbepm@dictions—in the test set, although in some applicatiomains
(e.g. credit approval, medical diagnosis and protein fiongbrediction) the comprehensibility of the model playsimportant
role [3], [4]. For instance, both neural networks and suppector machines (SVMs) are successful methods in term of
predictive accuracy when applied to classification, but/theoduce classification models that are not easily intéabte.
Rule induction algorithms are widely used to produce com@nsible classification models in the form of a listIBf THEN
classification rules, which generally can be expressed taraklanguage.

Ant colony optimization (ACO) [5], [6], [7] algorithms havbeen successfully applied to discover a listIBFTHEN
classification rules. Ant colonies, despite the lack of wised control and the relative simplicity of their indivals’
behaviours, are self-organised systems which can accsimpbmplex tasks by having their individual ants interacthwi
one another and with their environment. The intelligentawvébur of the colony emerges from the indirect communiaatio
between the ants mediated by small modifications of the enmient. Many ant species, even with limited visual capiidslior
completely blind, are able to find the shortest path betwefeo@ source and the nest by using pheromone as a communmicatio
mechanism. Ants drop pheromone on the ground as they watk &dood source to the nest, thereby creating a pheromone
trail on the used path. The pheromone concentration of aip#ittences the choices ants make, and the more pheromone the
more attractive a path becomes. Given that shorter pathsamersed faster than longer ones, they have a strongeompbee
concentration after a period time, contributing to beintpcsted and reinforced more often. Ultimately the majorifyants
will be following the same path, most likely the shortestiphetween the food source and the nest.

ACO algorithms use a colony of artificial ants, where antdcboandidate solutions to optimization problems by iterlii
selecting solution components based on their associatwpione and heuristic information—where the latter cpoesls to
a measure of how good a solution component is for the probtdrarad. The colony cooperates by using pheromone to identify
prominent components of a solution and the components vigheln concentration of pheromone have a greater chance of
being selected by an ant. Components used to create goadibreelhave their pheromone increased, while components not
used will have their pheromone gradually decreased. At titead the iterative process of building candidate solutigngled
by pheromone, the colony converges to optimal or near-@btguolutions.

This paper presents a discussion of the strategy commordg by ACO classification algorithms to build a list of
classification rules and proposes a new strategy that nesgas potential disadvantages. We are particular intiedes
improving the search performed by the ACO algorithm usirgghality of a candidate list of rules as a feedback—reptesen
by pheromone values—for building other lists, instead ahgishe feedback for creating a single rule. We evaluate rigact
of the new strategy in terms of both predictive accuracy amed ef the classification model (discovered list of rules)da
compare the results against state-of-the-art rule indnaigorithms.

The remainder of this paper is organised as follows. Sedtignesents a discussion of the current strategy used in ACO

classification algorithms. Section Il presents the newusetjal covering strategy proposed in this paper. The caatijomal
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Input: training examples
Output: discovered list of rules
1. examples— all training examples
2. list + @,
3. while |examples> maximum uncoveredo

4. InitialisePheromones|)
5. ComputeHeuristicinformation(examples)
6. ruleg <+ O
7. m<+0;
8. whilem < maximum iterationsand not stagnatiordo
9. rule;, +— O,
10. for n « 1 to colony sizedo
11. rule,, < CreateRuléexamplel
12. Prune(rule,);
13. if Quality(ruley,) > Quality(rule;) then
14, rule;, <+ rule,;
15. end if
16. end for
17. Update Pheromones(rule);
18. if Quality(rules) > Quality(ruleg,) then
19. rulegy < ruleg,
20. end if
21. m <+ m+1;

22. end while

23. examples— examples- Coveredruley,, exampleg
24.  list < list +ruleg;

25. end while

26. return list;

Fig. 1. High-level pseudocode of the Ant-Miner algorithm.

results are presented in Section IV. Finally, Section V taahes this paper and presents future research directions.

II. ANT COLONY CLASSIFICATION ALGORITHMS

Research on ant colony optimization algorithms for thesifasition task initiated with the Ant-Miner algorithm, osed
by Parpinelli et al. [8], [9]. Ant-Miner aims at discoverirdist of classification rules by applying a sequential congestrategy,
which consists of creating one-rule-at-a-time until alining examples are covered by one of the rules in the disedvest.

In order to create a rule, Ant-Miner uses an ant colony optétidn (ACO) procedure to find the best rule given a set of
training examples. The high-level pseudocode of Ant-Miisepresented in Fig. 1.

In summary, Ant-Miner works as follows. It starts with an asnfist of rules and iteratively (outewhile loop) adds one
rule at a time to that list while the number of uncovered frainrexamples is greater than a maximum uncovered value in a
sequential covering fashion. At each iteration, a rule &ated by an ACO procedure (inn&hile loop). In order to create a
rule, ants probabilistically select terms to be added ta therent partial rule based on the values of the amount ef@mnone
and a problem-dependent heuristic information. Ants kedglingy a term to their partial rule until any term added to tthei
rule’s antecedent would make their rule cover fewer trginxamples than a minimum value in order to avoid too specific

and unreliable rules, or until all attributes have alreadgrbused.
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Once the rule construction process has finished, the rubteddy an ant is pruned to remove irrelevant terms from the
rule antecedent. The pruning procedure can be seen as as&arah operator that explores neighbour solutions by attem
to remove terms from the antecedent of a rule while the quefithe rule does not decrease. Then, the consequent of a rule
is chosen to be the class value most frequent amongst thd setirong examples covered by the rule in question. Finally
pheromone trails are updated using the best rule—based omaldygmeasure)—of the current iteration and the best-so-far
rule across all iterations is stored/updated. The prodessrstructing a rule is repeated until the maximum numbéetesétions
has been reached, or the best rule of the current iteratiexaistly the same as the best rule constructed by a specifradaru
of previous iterations, which works as a stagnation tese Bést rule found along this iterative process is added tdighef
rules and the covered training examples (training examplaissatisfy the antecedent of the best rule) are removed fhe
training set and the procedure of creating a rule is repeated

Following the introduction of Ant-Miner, several variati® were proposed in the literature, as recently reviewed ®. [
These variations include the evaluation of different measiprocedures of the algorithm—i.e., heuristic inforioat[11];
pheromone update and rule construction procedures [1@himpg procedure [13]. More elaborated variations are ableope
with both nominal and continuous attributes [14], [15], maming Ant-Miner’s limitation of being able to cope only thi
nominal attributes; provide a new construction graph etiplp the difference between nominal and ordinal attrisutghere
ants first select the class value predicted by the rule, allpwhe algorithm to use class-specific heuristic inforo@tj16];
and the use of both class-specific heuristic information pimefomone matrices [17], [18].

Overall, Ant-Miner and its variations share the same setiglerovering strategy in order to build a list of rules thawers
all training examples. The algorithm starts with an empsy &if rules and iteratively adds one-rule-at-a-time to theusing
an ACO procedure (lines 8-22 in Fig. 1) that aims at creatisingle rule that maximises a specified rule quality measure,
until there are no training cases to cover.

Drawing a comparison concerning the rule discovery styatdgth the broader area of evolutionary algorithms, the sedjal
covering strategy employed in Ant-Miner falls into the &8ve rule learning (IRL) approach [19], [20]. In the IRL appch,
each run of the evolutionary procedure—analogous to the p€@edure in Ant-Miner case—discovers a single rule (ths be
rule produced over all iterations) and the procedure isagmemultiple times in order to discover a list of rules. Twbey
approaches for rule discovery have been used in the evoarialgorithm literature: the Michigan [21], [22] and thi#t§burgh
[23], [24] approaches. In the Michigan approach, each idd& corresponds to a rule and a list of rules is represebyed
the entire population, using some mechanism to ensure tfiatetht rules cover different regions of the data spacendée
a single run of an evolutionary procedure following a Midmgapproach discovers a complete list of rules. Similanythie
Pittsburgh approach, each run of the evolutionary proadigcovers a complete list of rules (the best list of rulesdpced
over all iterations).

One of the main differences between IRL/Michigan and Rittgb approaches is that in the latter a complete list of rules
which constitutes an individual, is evaluated instead oingle rule, in order to guide the discovery process. As dised in
[25], evaluating the quality of a rule individually, insttaf the quality of a list of rules as a whole, has difficulty kvihe

problem of rule interaction—i.e., the list of best rules @ necessarily the best list of rules.
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I1l. AN EW SEQUENTIAL COVERING STRATEGY FORANT COLONY CLASSIFICATION ALGORITHMS

In Ant-Miner’s sequential covering strategy, the discgvef a rule can be seen as an independent search problem for the
best rule given the current set of training examples. In esghtion of the sequential covering, a rule is construdigdan
ACO procedure and the examples covered by the rule are rehfowe the data set. This iterative process of constructing a
rule is repeated until the training set is empty (or almospigin Although rules are discovered in an one-at-a-timaitas the
outcome of a rule (i.e., the examples covered by the rulectffthe rules that can be discovered subsequently sinceéneh
space is modified due to the removal of examples covered byou®rules. Therefore, the sequential covering performs a
greedy search for a list (sequence) of rules which is notajuaed to be the best list of rules that covers the trainihg se
since the interaction between them is not taken into accdurihg the search.

The proposed strategy incorporates ideas of the Pittshapghoach into Ant-Miner’'s sequential covering strategyider
to mitigate the problem of rule interaction. While it stiktlies on a sequential covering strategy to create a list lesrwan
ant creates a complete list of ruled each iteration of the algorithm instead of a single ruld #re search is guided by the
quality of a list of rules This is accomplished by using a sequential covering gyaite which a rule created at each iteration
of the covering process does not necessarily corresporitetbdst rule; and by having pheromone values, which are egdat
according to the quality of the best candidate list of rulesagst all lists built in an iteration, guiding the rule ctmostion
process.

Fig. 2 presents the high-level pseudocode of the new seiglistrategy proposed. In summary, the new strategy works as
follows. An ant in the colony (corresponding to an iteratiminthe for loop) starts with an empty list of rules and adds one
rule at a time to that list while the number of uncovered frainexamples is greater than a user-specified maximum value.
After a rule is created and pruned, the training examplegmal/by the rule are removed and the rule is added to the ¢urren
list of rules. Note that the heuristic information is reamahted at each iteration of the list creation processilg loop) in
order to reflect the potential changes in the predictive pavfehe terms due to the removal of training examples covered
by previous rules. When an ant finishes the list creation gsecthe iteration-best list is updated if the quality of tiesvly
created list is greater than the quality of the iteratiosthiist. After all ants create a candidate list of rules, pneone values
are updated using the iteration-best list of rules and tbéaitbest list of rules is updated, if the quality of the dtion-best
list is greater than the quality of the global-best list.

In order to use pheromone to create multiple rules coveriffgrdnt set of training examples, the pheromone matrix is
extended to include tour identification, which corresponds to the number of the ridag created (e.g., 1 for the first rule,

2 for the second rule and so forth). Each entry in the pher@moatrix corresponding to an edge of the construction graph i
represented not just by a paireftex, vertex)—wherevertey andvertex correspond to the vertices connectedeolge,—but
rather it is represented by a tripleoqr, vertex, vertex). This way, an ant will use the pheromone entries corresingnith
the number of the rule (tour) being created during the rulestraction process. The probability of an ant to follow thige

leading to a vertex; when creating the rulée and located at vertey; is given by
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Input: training examples

Output: best discovered list of rules
1. InitialisePheromones|)
2. listg, + O,

3. m <+ 0;

4. while m < maximum iterationsnd not stagnatiordo
5. list;, +— O;

6. for n « 1to colony sizedo

7. examples— all training examples

8. list,, < @,

9. while |examples> maximum uncoveredo

10. ComputeHeuristicinformation(examples)

11. rule « CreateRuléexamplek
12. Prune(rule);
13. examples— examples- Covered(rule, examples)
14. list,, < list, + rule;
15. end while
16. if Quality(list,) > Quality(list;) then
17. list;p < list,,;
18. end if
19. end for

20. UpdatePheromones(list;);
21, if Quality(listy) > Quality(listy,) then

22. listgb <« listp;
23. end if

24, m <+ m+1;

25. end while

26. return listg,;

Fig. 2. High-level pseudocode of the new sequential cogesimategy.

T(t,vi j) " 7771j

Py = ) (1)

Z T(t,vi,0k) * T
k=1

wherer; ., .,) is the amount of pheromone associated with the efitry;, v;) in the pheromone matrix;,; is the heuristic

vj)
information associated with vertex andF,, is the set of neighbour vertices of vertex Note that the exponents and j
commonly used to control the influence of the pheromone anddti information, respectively, are set to 1 as in thgiodl
Ant-Miner algorithm and therefore omitted from Eq. 1.

The pheromone update also takes into account the tour fidatibn and the update procedure is accomplished in twasstep
Firstly, pheromone evaporation is simulated by decreasiegamount of pheromone of each entry by a user-defined factor
p. Secondly, the amount of pheromone of the entries used iitaheion-best list of rules is increased based on the tyuali

of the list of rules, which corresponds to its predictive @acy measured on the training set. The pheromone updatasrul

given by

P T(t,wi,05) if (¢, v;,v5) & listp;
T(t,vi05) = (2
P T(t,wi,05) + Q(liStib)v if (t,v;,v;) € listy;
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where p is the evaporation factory, ,, .,y is the amount of pheromone associated with the efry;,v;)—t is the tour
identification (i.e., the number of the rule where the edgeveen verticesy; and v; was used)y; is the start vertex of
the edge and; is the end vertex of the edge—a(list;;) is the quality of the iteration-best list of rules, measuesd
the predictive accuracy (number of correct predictionsdeigt by the total number of predictions) in the training Sete
values given by Eq. 2 are limited to the interVghin, 7max, following the same approach as thé AX —MZN Ant System
(MMAS) [26], [27]. MMAS imposes explicit limitsrpin and 7max on the minimum and maximum pheromone values to
constrain all pheromone valuesg, ., .,) to the rangermin < 7(1,,,;,) < Tmax These limits are dynamically updated each
time a new best solution is found, as detailed in [27]. Aduditilly, therin and Tmax values are also used to determine the
stagnation of the search. When all edges followed by the laatt dreated the iteration-best list of rules are associaitd
Tmax and the remaining edges are associated wgifp, the search has become stagnant and the algorithm stops.

The proposed sequential covering strategy is implementeal new ACO classification algorithm, namednt-Minerpg
(cAnt-Miner based on the Pittsburgh approach). The otheraspa the cAnt-Minerpg algorithm—e.g., rule construction
process, pruning procedure and heuristic information—kmeed on theAnt-Miner2yp. algorithm, as discussed in [14],
[15]. Note that the proposedint-Minerpg algorithm—Iike thecAnt-Miner2yp, algorithm—can cope with both nominal and
continuous attributes, unlike the original Ant-Miner aligom, which can cope with nominal attributes only.

An important characteristic of the proposed sequentiakdag strategy is that there is no pre-defined number of rules
required to create a candidate list of rules and ants havdleRibility of creating lists of differences lengths. Themhber
of rules that an ant creates depends on the available tgagMamples at each iteration of the list creation processefin
while loop in Fig. 2), which varies according to examples covergdhe previous rules created by the ant. The use of a
different set of pheromone values for each rule they aretiagéndirectly encodes the order (sequence) that antdectba
rules, which represents the interaction between them. Rigislights the main difference of the proposed algorithhe &im
of the algorithm is to converge to the best list of rules, @ast of converge to the list of best rules as in previous Amevli

variations.

IV. COMPUTATIONAL RESULTS

In order to evaluate the propose@nt-Minerpg algorithm, we carried out experiments using eighteen plybéivailable data
sets from the UCI Machine Learning repository [28]. The dats involve binary (two class values) and multiclass (ntioae
two class values) classification problems, with both nofnamal continuous predictor attributes. Table | presentsransary
of the data sets used in the experiments.

To compare with the results obtained éAnt-Minerpg, we have selected commonly used state-of-the-art and @sevausly

proposed ACO-based rule induction classification algorgh

o cAnt-Miner2yp. [14], [15] — a variation of the Ant-Miner algorithm that capwith both nominal and continuous attributes
directly by using a minimum description length (MDL) pripté [29] to dynamically create thresholds on continuous
attributes’ domain values during the rule constructioncpss. This is also the base algorithm from which the proposed

algorithm is built on;
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TABLE |
SUMMARY OF THE DATA SETS USED IN THE EXPERIMENTS

data set attributes classes size
nominal continuous

annealing 29 9 6 898
balance-scale 4 0 3 625
breast-| 9 0 2 286
breast-tissue 0 9 6 106
breast-w 0 30 2 569
credit-a 8 6 2 690
credit-g 13 7 2 1000
cylinder-bands 16 19 2 540
dermatology 33 1 6 366
glass 0 9 7 214
heart-c 6 7 5 303
heart-h 6 7 5 294
ionosphere 0 34 2 351
iris 0 4 3 150
liver-disorders 0 6 2 345
parkinsons 0 22 2 195
pima 0 8 2 768
wine 0 13 3 178

o PSO/ACO2 [30] — a hybrid particle swarm optimisation/aniboy optimisation (PSO/ACQO) algorithm for the discovery
of classification rules. The PSO/ACO2 algorithm follows ajsential covering strategy and directly deals with both
continuous and nominal attribute values by dividing thee rabnstruction process into two steps: in the first step, only
nominal attributes are considered to create the antecedemtrule; then, in the second step, continuous attributes ar
considered to extend the antecedent of a rule;

o CN2 [31] — a well-known rule induction algorithm following sequential covering strategy, which uses a beam search
at each iteration to create a rule to build a list of rules.r&f@re, CN2 uses the same strategy than Ant-Miner, with the
difference that the latter uses a ACO procedure to creatdea ru

o C4.5rules [32] — a rule induction algorithm that extractetdf classification rules from an unpruned decision treateik
by the well-known C4.5 algorithm [32], [33]. The algorithmsfi converts every path of the tree from a leaf node towards
the root node to a rule and then applies a rule post-pruningegiure. Finally, the rules are sorted according to their
confidence (predictive accuracy on the training set) toterdze final set of rules;

« PART [34], [35] — a rule induction algorithm that combinesexsential covering strategy with a decision tree induction
procedure to create a rule. At each iteration of the seqalesdivering, PART builds a decision tree—using the wellskno
C4.5 algorithm—for the current set of training examples #meh selects the leaf with the largest coverage to create a
rule, discarding the rest of the tree;

« JRip [35] (Weka's implementation of RIPPER [36]) — a rule uistion algorithm that employs a global optimisation step
in order to produce a set of rules, which takes into accoutit bee quality and length of the rules. It starts by creating
a set of rules for each class value using a sequential caystiategy. Then, each rule is reconsidered and variants are

produced using a reduced-error pruning. If one of the vésignoduces a smaller length, it replaces the rule.
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Note that C4.5rules and PART are not ‘pure’ rule inductiogoathms, and are in fact hybrid decision tree/rule inducti
algorithms. They have been included in the experimentalpaosison because both are strong, well-known algorithms tha
eventually produce a list of rules in the same represemad® the list of rules produced by the proposémt-Minerpg
algorithm.

We have performed a ten-fold cross-validation procedureichiv consists of dividing the data set into ten partitions,
maintaining a similar number of examples and class didiohuacross all partitions. For each partition, the clasaifon
algorithm is run using the remaining nine partitions as tlening set and its performance is evaluated using the ansee
(hold-out) partition. SinceAnt-Miner2yp., PSO/ACO2 andAnt-Minerpg are stochastic algorithms, they are run fifteen times
using a different random seed to initialise the search fahegzartition of the cross-validation; the remaining altfuris are

deterministic and they are run just once for each partitibthe cross-validation.

A. Parameter Settings

To determine suitable values for the user-defined parameteAnt-Minerpg, we have used the F-Race [37] racing procedure
to find a good configuration of parameteef\nt-Minerpg has five parameters: threaximum number of iterationthe colony
size (number of ants), the\l AX —MZN evaporation factor the minimum number of examplesvered by a rule and the
maximum uncoveretlaining examples. Since the valuesminimum number of examplasadmaximum uncoveregarameters
are related—i.e., thenaximum uncoveredhould be at least the same as thsnimum number of examplesve have use
the same value for both, specified by thenimum number of examplgmrameter. Additionally, we have set theaximum
number of iterationgo 500, given that the convergence test is able to stop thetsbafore reaching the maximum value. The
values of the remaining three parametearsigny size evaporation factorand minimum number of examp)eare determined
by the F-Race procedure. We have considered the valueslarfiy sizec {5, 10, 50, 100, 20p evaporation factore {0.85,
0.90, 0.9 and minimum number of examples {2, 6, 10, 14. Each possible combination of values represents a differen
configuration, leading to & 3 x 4 = 60 configurations that are subjected to the racing procedure

We have selected additional eight tuning data sets from teNlachine Learning repositotyto evaluate the set of candidate
configurations using the F-Race. Note that the aim of thengaprocedure is not to optimise the parameters for a paaticul
data set, but to find robust values that work well across thsngudata sets. We then use the robust parameter settingd fou
by the racing procedure in the eight tuning data sets as tremmder settings for the different set of eighteen data ssdsl
in the our experiment. This evaluates the generalizatidlityabf the parameter settings found by the racing procedagross
new data sets, unused for parameter tuning, as usual invisgemachine learning — the standard approach in thetlitera
to evaluate a new classification algorithm is to run it witle ftame parameter settings across a number of data sets, rathe
than optimizing the parameters for each data set in turn.

In summary, the racing procedure in F-Race evaluates catedibnfigurations in a subset of the data sets available and
eliminates the poor ones as soon as it detects that they aististlly inferio—according to the non-parametricdeiman
test [38]—than the best one. The configurations that suraiveevaluation step are re-evaluated in an extended subdet an

Lautomobile, blood-transfusion, ecoli, statlog heart,atiéip, horse-colic, voting-records, zoo.
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undergo another elimination step. The racing procedureeiated until only one configuration is left or when all dag¢tssare
used. In the case that more than one configuration survieepribcedure, the configuration with the highest rank is sedec
In our case, each configuration evaluation correspondset@rédictive performance @fAnt-Minerpg using the configuration
parameters over a ten-fold cross-validation. At the endhefR-Race procedure, we ended up with 11 (out of the 60 algjlab
configurations and the configurationlony size= 5, evaporation factor= 0.90 andminimum number of examples 10 was
the one with the higest rank, and therefore, the one usedriexperiments.

The other algorithms were used with the default values megdyy their correspondent authors, which typically remmes
robust values that work well across different data sets.eNainthe algorithms, includingAnt-Minerpg, had their parameter
values optimised to individual data sets, since the goa isvaluate a parameter settings’ generalisation abilitpsaca wide

range of data sets as usual in the classification (supermsathine learning) literature.

B. Comparison with state-of-the-art algorithms

Table Il presents the results concerning the predictiveiraoy, Table Il presents the results concerning the sizéhef
classification model, measured as the total number of terais ¢onditions) in the discovered list—where the smaller t
number of terms the simpler is the classification model—aablel IV presents the average number of rules (indicated by
rows starting with a symbol(f)’) and average number of terms per rule (indicated by rowdistawith a symbol (t)") of
the discovered list in the eighteen data sets used in ourriexpiets. A value in these tables represents the average valu
obtained by the cross-validation procedure followed by stendard error (average standard error) for the corresponding
algorithm and data set pair. Table V presents the resultseo$tatistical tests for predictive accuracy, size of tlassification
model and total number of discovered rules, according tontreparametric Friedman test with the Holm’s post-hoc [t88},
[40]—the first column shows the average rank, where the Idiverrank the better the algorithm’s performance; the second
column shows the-value of the statistical test when the average rank is coaapto the average rank of the algorithm with
the best rank (control algorithm); the third shows the Haleritical value. The values in a row are shown in bold whemethe
is a statistically significant difference at the 5% levelvbetn the average ranks of an algorithm and the control afgori
determined by the fact that thevalue is lower than the critical value, and it shows thatdbatrol algorithm is significantly
better than the algorithm in that row. The non-parametriedfman test was chosen as it does not make assumptions about
the distribution of the underlying data (e.g., it does nauase the data is normally distributed, a requirement folivedgnt
parametric tests) and it is a more suitable test to compae¢ ef €lassifiers over multiple data sets, according to thdedimes
presented in [39], [40].

Considering the predictive accura@pnt-Minerpg achieves the highest performance with an average rank 8fézss all
data sets, which is statistically significantly better tttaemaverage ranks obtained by all the other six algorithrosraing to the
non-parametric Friedman test with the Holm’s post-hoc; t€dt5rules,cAnt-Miner2yp , PSO/ACO2 and PART have similar
performances, with an average rank of 4.00, 4.05, 411 arld de&pectively; JRip and CN2 have the worst performanciis, w
an average rank of 4.67 and 4.78, respectivéint-Minerpg is also the most accurate algorithm in eight of the eightesta d

sets, followed by CN2 in three data sets, C4.5rules and JRiwo data sets eackhAnt-Miner2yp., PSO/ACO2 and PART
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TABLE Il
AVERAGE PREDICTIVE ACCURACY(average+ standard erro) IN %, MEASURED BY 10-FOLD CROSSVALIDATION . THE VALUE OF MOST ACCURATE
ALGORITHM FOR A GIVEN DATA SET IS SHOWN IN BOLD.

11

data set cAnt-Miner2ypL PSO/ACO2 CN2 C4.5rules PART JRip cAnt-Minerpg
annealing 95.95+ 0.20 97.25+ 0.08 94.99+ 0.62 94.22+ 0.62 94.88+ 0.98 94.43+ 0.81 97.60 + 0.10
balance-scale 67.92 0.10 79.16+ 0.19 88.47 + 1.81 74.874+ 1.16 77.12+ 1.40 72.95+ 1.92 76.83+ 0.24
breast-| 76.03 + 0.08 71.294+ 0.31 66.77+ 1.69 68.56+ 1.93 68.94+ 1.80 69.26+ 2.04 72.32+ 0.31
breast-tissue 69.5% 0.26 62.13+ 0.71 75.35 + 3.08 66.16 4+ 2.97 64.36+ 3.63 60.18+ 3.35 67.13+ 0.55
breast-w 93.69t 0.20 94.14+ 0.15 93.84+ 1.21 94.18+ 1.14 94.19+ 1.12 93.66+ 1.42 94.29 + 0.16
credit-a 86.37+ 0.12 84.66+ 0.24 81.31+ 1.36 85.53+ 1.53 83.33+ 1.04 86.52 + 1.10 85.68+ 0.15
credit-g 71.47+ 0.19 69.99+ 0.23 69.50+ 1.33 71.60+ 0.92 70.60+ 1.49 72.20+ 1.07 73.63 + 0.23
cylinder-bands 72.4% 0.28 69.75+ 0.54 75.93+ 2.19 76.48 + 2.56 7241+ 2.23 68.70+ 2.33 72.07+ 0.39
dermatology 89.59+ 0.41 91.80+ 0.22 91.79+ 1.37 93.45+ 1.22 94.26 + 1.17 88.01+ 2.25 92.46+ 0.31
glass 67.58+ 0.36 70.24+ 0.51 68.14+ 2.39 68.63+ 1.70 72.81+ 3.42 65.71+ 3.74 73.94 £+ 0.49
heart-c 54.66+ 0.24 55.20+ 0.51 48.85+ 3.14 53.12+ 1.92 53.83+ 1.33 53.50+ 1.52 55.50 + 0.37
heart-h 63.714+ 0.30 63.18+ 0.45 52.81+ 3.38 63.31+ 1.40 63.64+ 1.58 63.93+ 1.29 64.75 + 0.27
ionosphere 88.3% 0.21 86.55+ 0.43 88.03+ 2.68 90.85 + 2.59 90.59+ 2.00 87.45+ 2.64 89.65+ 0.31
iris 92.674+ 0.18 94.84+ 0.20 94.66+ 1.66 95.324+ 1.42 93.33+ 1.99 96.00 + 1.09 93.24+ 0.20
liver-disorders 65.46+ 0.03 68.78 + 0.44 62.27+ 2.84 64.90+ 3.21 62.70+ 3.40 66.34+ 2.80 66.72+ 0.40
parkinsons 86.19% 0.33 86.77+ 0.50 85.08+ 2.62 83.49+ 2.23 86.05+ 2.47 84.53+ 2.55 86.98 + 0.65
pima 73.99+ 0.19 73.10+ 0.33 72.37+ 1.26 74.32+ 1.73 71.73+ 1.71 73.55+ 1.63 74.81 £+ 0.18
wine 90.82+ 0.39 88.14+ 0.52 94.96 + 1.94 91.03+ 2.05 91.54+ 1.52 92.68+ 2.09 93.57+ 0.32
TABLE Il

AVERAGE NUMBER OF TERMS(RULE CONDITIONS) IN THE DISCOVERED LIST(average+ standard erro) MEASURED BY 10-FOLD CROSSVALIDATION .
THE VALUE OF THE ALGORITHM WITH THE LOWEST AVERAGE FOR A GIVEN DATA SET IS SHOWN IN BOLD.

data set cAnt-Miner2ypL PSO/ACO2 CN2 C4.5rules PART JRip cAnt-Minerpg
annealing 16.35 + 0.15 28.60+ 0.91 52.10+ 2.72 43.00+ 3.05 85.90+ 3.10 26.50+ 1.81 22.11+ 0.33
balance-scale 12.7# 0.08 39.87+ 0.53 90.20+ 3.51 72.60+ 3.27 45.90+ 3.00 22.60+ 1.99 12.64 + 0.03
breast-| 7.42+ 0.03 23.20+ 1.80 141.60+ 1.98 16.50+ 2.60 35.30+ 3.70 4.10 + 0.82 19.15+ 0.40
breast-tissue 8.74 0.05 12.73+ 0.46 23.60+ 0.79 19.40+ 1.05 21.80+ 0.85 7.50+ 0.73 6.55 + 0.05
breast-w 12.79+ 0.13 13.87+ 0.70 19.40+ 0.75 18.70+ 0.98 11.70+ 0.73 9.70+ 0.30 855 + 0.12
credit-a 13.31+ 0.12 80.27+ 2.10 96.30+ 2.57 37.10+ 3.06 75.50+ 8.79 7.30 + 1.77 17.54+ 0.32
credit-g 16.91+ 0.20 227.73+ 3.51 222.50+ 2.19 76.90+ 4.99 219.60+ 10.82 6.80 + 0.83 64.75+ 1.50
cylinder-bands 16.34 + 0.18 56.67+ 1.99 135.20+ 2.81 95.30+ 3.36 94.90+ 2.66 18.00+ 2.95 63.37+ 1.03
dermatology 20.43 + 0.37 30.80+ 0.31 48.60+ 0.93 45.00+ 1.89 25.00+ 1.12 24.50+ 1.57 44.47+ 0.63
glass 16.34+ 0.13 60.87+ 1.12 43.90+ 1.08 48.30+ 2.05 41.20+ 2.15 12.90+ 1.69 10.73 + 0.14
heart-c 20.66+ 0.22 62.20+ 1.16 110.10+ 2.48 50.80+ 4.61 136.30+ 4.76 6.80 + 1.50 27.65+ 0.58
heart-h 15.7%- 0.28 48.67+ 2.43 108.30+ 2.00 47.80+ 2.80 73.50+ 3.84 5.80 + 1.00 21.49+ 0.41
ionosphere 14.06- 0.19 11.73+ 1.34 23.30+ 0.87 19.50+ 1.74 19.80+ 1.46 8.00 + 1.12 11.04+ 0.17
iris 3.93+ 0.01 2.00 + 0.00 9.50+ 0.62 6.20+ 0.20 3.80+ 0.42 3.00+ 0.00 4.92+ 0.08
liver-disorders 8.77 0.06 67.73+ 1.07 76.50+ 1.37 33.50+ 3.42 20.10+ 2.33 8.50 + 0.82 11.78+ 0.08
parkinsons 9.19 0.07 10.33+ 0.45 15.30+ 0.33 18.90+ 1.29 11.10+ 0.50 6.30 + 0.67 7.02+ 0.11
pima 13.17+ 0.17 126.93+ 2.56 135.50+ 2.05 36.60+ 4.09 14.60+ 0.60 6.80 + 0.71 15.93+ 0.14
wine 7.21+ 0.05 6.27+ 0.43 7.90+ 0.31 8.90+ 0.48 5.20+ 0.47 5.40+ 0.37 4.75 + 0.08
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TABLE IV

12

AVERAGE NUMBER OF RULES INDICATED BY ROWS STARTING WITH A SYMBOL ‘(r)’, AND AVERAGE NUMBER OF TERMS PER RULEINDICATED BY
ROWS STARTING WITH A SYMBOL'(t)’. EACH VALUE REPRESENTS THE AVERAGHaverage+ standard erro) MEASURED BY 10-FOLD
CROSSVALIDATION . THE VALUE OF THE ALGORITHM WITH THE LOWEST AVERAGE NUMBER OF RWES FOR A GIVEN DATA SET IS SHOWN IN BOLD

data set cAnt-Miner2yp PSO/ACO2 CN2 C4.5rules PART JRip cAnt-Minerpg
annealing 0] 1131 +£ 006  15.51+ 0.09 19.80+ 0.47 20.30+ 0.89 27.80+ 0.83 11.80+ 0.39 16.12+ 0.13
(® 1.45+ 0.01 1.91+ 0.01 2.67+ 0.10 2.10+ 0.07 3.09+ 0.05 2.23+ 0.09 1.37+ 0.01

balance-scale 0] 12.82+ 0.05 25.23+ 0.16  50.80+ 1.57  35.70+ 1.43 29.90+ 146 1210 + 0.78 13.64+ 0.03
(¥ 0.99+ 0.00 1.54+ 0.00 1.79+ 0.01 2.03+ 0.01 1.52+ 0.03 1.84+ 0.04 0.93+ 0.00

breast-| 0] 5.89+ 0.01 12.97+ 0.13  60.20+ 0.77 8.60+ 1.08 18.40+ 1.65 3.10 + 0.35 10.36+ 0.11
(¥ 1.26+ 0.00 1.75+ 0.02 2.37+ 0.03 1.83+ 0.10 1.90+ 0.06 1.20+ 0.16 1.80+ 0.02

breast-tissue 0] 6.41+ 0.01 591 + 003  12.20+ 0.36 9.00+ 0.36 10.90+ 0.31 6.00+ 0.30 6.73+ 0.03
(® 137+ 0.01 1.96+ 0.03 2.02+ 0.05 2.15+ 0.04 2.00+ 0.06 1.24+ 0.10 0.97+ 0.00

breast-w 0] 6.01+ 0.03 6.29+ 0.03 9.90+ 0.31 8.90+ 0.28 6.70+ 0.30 5.40 + 0.16 8.33+ 0.10
(® 2.13+ 0.02 2.24+ 0.03 2.06+ 0.04 2.09+ 0.05 1.74+ 0.07 1.81+ 0.08 1.02+ 0.01

credit-a 0] 7.97+0.04 2530+ 0.11  35.50+ 0.70 14.00+ 0.89 31.10+ 2.63 4.20 £ 0.57 12.31+ 0.10
) 1.68 £ 0.02 3.194 0.02 2.74+ 0.05 2.63£ 0.09 2.38+ 0.09 1.444 0.24 1.41+ 0.02

credit-g 0] 8.79+ 0.05 54.15+ 0.12  74.40+ 0.93 27.50+ 1.27 71.70+ 2.88 3.60 £ 0.22 28.57+ 0.27
() 1.92+ 0.02 4.244 0.01 3.01+ 0.02 2.78+ 0.07 3.06+ 0.05 1.844+ 0.12 2.23+ 0.04

cylinder-bands 0] 7.61+ 0.03 13.11+ 0.10  37.30+ 0.62 29.90+ 0.81 33.80+ 0.76 7.30 + 0.84 27.63+ 0.25
) 2.14+ 0.02 4.32+ 0.05 3.65+ 0.06 3.19+ 0.06 2.81+ 0.08 2.26+ 0.22 2.28+ 0.02

dermatology ) 9.24 £+ 0.10 10.29+£ 0.08 18.80+ 0.44 19.60+ 0.34 9.60+ 0.34 13.10+ 0.62 19.17+ 0.11
) 2.20+ 0.03 2.57+£ 0.01 2.65+ 0.05 2.294 0.08 2.60+£ 0.07 1.86+ 0.06 2.31+ 0.02

glass )] 8.74+ 0.03 20.34+ 0.08 16.70+ 0.26 14.90+ 0.50 15.20+ 0.47 7.20 = 0.57 9.41+ 0.08
) 1.87+ 0.01 2.98+ 0.02 2.69+ 0.08 3.24+ 0.06 2.70+ 0.08 1.73+ 0.09 1.14+ 0.01

heart-c )] 9.21+ 0.04 15.87+ 0.05 34.40+ 0.40 14.90+ 1.08 41.30+ 1.28 3.30 + 047 12.85+ 0.14
) 2.24+ 0.02 3.96+ 0.03 3.23£ 0.06 3.37£ 0.10 3.31+ 0.01 1.944+ 0.15 2.13+ 0.03

heart-h ) 7.41+ 0.06 14.75+ 0.08 35.10+ 0.75 12.90+ 0.59 25.10+ 1.02 3.30 £+ 0.33 10.96+£ 0.12
) 2.12+ 0.038 3.50+ 0.02 3.12+ 0.05 3.69+ 0.06 2.93+ 0.09 1.59+ 0.21 1.94+ 0.02

ionosphere ) 7.07 £ 0.07 3.36 + 0.07 10.40+£ 0.31 10.00+ 0.36 8.20+ 0.42 5.80+ 0.44 9.18+ 0.09
) 1.98+ 0.01 3.08+ 0.07 2.34+ 0.07 1.92+ 0.12 2.41+ 0.12 1.31+ 0.10 1.20+ 0.01

iris )] 4.10+ 0.00 3.00 £+ 0.00 6.80+ 0.29 5.00+ 0.00 3.80+ 0.42 4.00+ 0.00 4.82+ 0.05
(® 0.95+ 0.00 0.67+ 0.00 1.54+ 0.06 1.24+ 0.04 1.00+ 0.00 0.75+ 0.00 1.01+ 0.01

liver-disorders )] 5.85+ 0.02 21.53+ 0.07 29.10+ 0.46 12.20+ 0.93 7.50+ 0.65 430 + 0.21 10.39+ 0.07
(® 1.51+ 0.00 3.16+ 0.02 2.66+ 0.04 2.69+ 0.12 2.66+ 0.17 1.94+ 0.12 1.13+ 0.07

parkinsons ) 5.01+ 0.03 4.794 0.03 8.60+ 0.22 8.80+ 0.42 6.40+ 0.34 3.80 + 0.20 7.11+ 0.07
(® 1.83+ 0.02 2.18+ 0.02 1.90+ 0.03 2.13+ 0.06 1.75+ 0.07 1.62+ 0.12 0.98+ 0.01

pima 0] 8.43+ 0.06 33.55+ 0.13  49.50+ 0.48 12.50+ 0.92 7.50+ 0.34 3.50 £ 0.22 14.89+ 0.09
(® 155+ 0.01 3.84+ 0.02 2.76+ 0.02 2.86+ 0.13 1.97+ 0.08 1.90+ 0.08 1.07+ 0.01

wine 0] 4.33+ 0.01 3.08 + 0.02 490+ 0.18 5.40+ 0.22 4.30+ 0.21 3.90+ 0.23 5.44+ 0.07
(¥ 1.67+ 0.01 1.96+ 0.03 1.83+ 0.07 1.64+ 0.04 1.19+ 0.05 1.38+ 0.03 0.87+ 0.01
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in one data set each.

In order to evaluate simplicity we focus here on the analgkite results in Table Ill, about the total size of the clisation
model (total number of terms in all rules), since it is simle analyse this single measure of simplicity than to arealye
two measures of simplicity in Table IV (number of rules an@&rage number of terms per rule) simultaneously. In terms of
size of the classification model, JRip is the algorithm thatalvers the lowest number of terms, with an average rank&f 1
across all data setgAnt-Miner2yp. is second, with an average rank of 2.5@&nt-Minerpg is third, with an average rank
of 2.67; PSO/ACO2 and PART have similar results, with an agerrank of 4.61 and 4.72, respectively; C4.5rules is sixth,
with an average rank of 5.22; CN2 is the algorithm that cdestty discovered the greatest number of terms and performs
last, with an average rank of 6.61. There are no statisficinificant differences between the average ranks of thahee
algorithms, namely JRig;Ant-Miner2yp. andcAnt-Minerpg. The average rank of JRip is statistically significantlytbethan
the average ranks of PSO/ACO2, PART, C4.5rules and CN2. i3Rle algorithm that discovered the simplest list in nine of
the eighteen data sets, followed bgnt-Minerpg in five data setsgAnt-Miner2yp. in three data sets and PSO/ACO2 in one
data set; both PART and CN2 have consistently discoveresivigh a greater number of terms than the other algorithms.

We have also performed a comparison with respect to the matalber of discovered rules (presented in Table 1V), as it
can be considered a measure related to the end-users’ doemgikility of the classification model [41]. JRip is the @lighm
that discovers the lowest number of rules, with an averagk o& 1.50 across all data setsAnt-Miner2yp, is second, with
an average rank of 2.33; PSO/ACO?2 is third, with an averagk o 3.67;cAnt-Minerpg is fourth, with an average rank of
4.28; PART is fifth, with an average rank of 4.67; C4.5rulesiigh, with an average rank of 5.06; CN2 is the algorithm that
consistently discovered the greatest number of rules arfdrpes last, with an average rank of 6.50. The average rardRugs
is statistically significantly better than the average eaakPSO/ACO2 cAnt-Minerpg, PART, C4.5rules and CN2. JRip is the
algorithm that discovers the lowest number of rules, in t&ealf the eighteen data sets, followed by PSO/ACO2 in foua dat
sets andcAnt-Miner2yp. in two data setsgAnt-Minerpg, PART, C4.5rules and CN2 have consistently discoveres listh a
greater number of rules than the other algorithms.

Overall, the results obtained yAnt-Minerpg are very positive. It achieved the best average rank in terirzredictive
accuracy and outperformed all the other algorithms withistieally significant differences. HenceAnt-Minerpg is the most
accurate algorithm in our experiments. In terms of size ef ¢lassification model, it is amongst the ones with the lowest
total number of terms in the discovered lists, achievingtttied best average rank (out of seven algorithms) and trer®i
statistically significant difference between its averagekrand the best average rank. Althougint-Minerpg is competitive
considering the size of the classification model, measusetha total number of terms in the discovered list, it discede
lists with a greater number of rules on average that is §tatlly significant different than JRip. This differenceghlights the
characteristics of the discovered lists: while JRip digged lists with a smaller number of longer rules (rules witgreater
number of terms)¢Ant-Minerpg discovered lists with a greater number of shorter ruleeguith a smaller number of terms).

Fig. 3 illustrates the average predictive accuracy rankugthe average model size rank (left graph in Fig. 3) andageer
predictive accuracy rank versus the average number of malek (right graph in Fig. 3) of the algorithms used in our

experiments. In each graph, the Pareto front is indicated liye connecting the non-dominated algorithms. Accordmthe
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TABLE V
STATISTICAL TEST RESULTS ACCORDING TO THE NONPARAMETRIC FRIEDMAN TEST WITH THEHOLM' S POSFHOC TEST FORx = 0.05.

algorithm average rank P Holm

(i) Predictive Accuracy

cAnt-Minerpg (control) 2.28 - -
C4.5rules 4.00 0.017 0.0500
cAnt-Miner2ypL 4.05 0.013 0.0250
PSO/ACO2 411 0.011 0.0167
PART 411 0.011 0.0125
JRip 4.67 9.08E-4 0.0100
CN2 4.78 5.17E-4 0.0083
(ii) Model Size

JRip (control) 1.67 - -
cAnt-Miner2ypL 2.50 0.247 0.0500
cAnt-Minerpg 2.67 0.165 0.0250
PSO/ACO2 461 4.33E-5 0.0167
PART 4.72 2.20E-5 0.0125
C4.5rules 5.22 7.90E-7 0.0100
CN2 6.61 6.6E-12 0.0083
(iiiy Number of Rules

JRip (control) 1.50 - -
cAnt-Miner2ypL 2.33 0.247 0.0500
PSO/ACO2 3.67 0.003 0.0250
cAnt-Minerpg 4.28 1.14E-4 0.0167
PART 4.67 1.09e-5 0.0125
C4.5rules 5.06 7.90E-7 0.0100
CN2 6.50 3.8E-12 0.0083

concept of Pareto dominance in multi-objective optimizatian algorithmA; dominates another algorithm, if and only

if the following two conditions are true: (11; is not worse thand, with respect to both objectives—i.e., both accuracy
and model size (left graph) or number of rules (right graphpd-(2) A; is strictly better thand, according to at least one
objective. An algorithm is included in the Pareto front iigtnot dominated by any other algorithm. As can be seen inJig.
in both the left and the right graphs, the Pareto front ineithree non-dominated algorithms, namely JRAnt-Miner2yp.
and cAnt-Minerpg.

A closer look at the results obtained Ant-Minerpg and cAnt-Miner2yp. is particularly interesting, since the main
difference between them is the strategy used to build a fistiles. cAnt-Minerpg is consistently more accurate thaAnt-
Miner2yp.—Wwith the exception in only 4 (out of 18) data sets, namgilyast-| breast-tissugcredit-a and cylinder-bands—
highlighting the effectiveness of the new sequential conestrategy in improving predictive accuracy. The incesi@saccuracy
is achieved by discovering lists of rules with a greaterltotanber of terms thanAnt-Miner2yp. in 13 (out of 18) data sets—
with large differences in theredit-g cylinder-bandsand dermatology—although there is no statistically significant difference
between their average ranks. It is also observed that ttsedfgules discovered byAnt-Minerpg contain a greater number of
shorter rules on average compared:£nt-Miner2yp., which discovered lists of rules with a smaller number ofgenrules.

In this paper we focused on classification models repreddnyea list of IF-THEN rules, which is an intuitively compre-

hensible type of representation for users in general, babofse that is not the only type of comprehensible repratientfor
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Fig. 3. Plot illustrating the average predictive accuraaykrversus the average model size rank (left graph) and gevgnadictive accuracy rank versus the
average number of rules rank (right graph) of the algoritlused in our experiments—the lower the average rank, thertiég algorithm’s performance. The
Pareto front (shown as a connected line) is composed by dRifi;Miner2y,p. andcAnt-Minerpg algorithms—the algorithms that are not outperformed by
any algorithm with respect to both predictive accuracy amdleh size or both predictive accuracy and number of rules.

classification models. Some users might prefer to use, fdamnte, logistic regression models, which tend to presaod gesults
in terms of accuracy in applications such as credit scodi2y aind also produce models that can be considered comgibleen
with the proper mathematical interpretation [43]. Anothpproach to discover comprehensible models consists biifitsg an
SVM (support vector machines) algorithm—uwhich tends to p@aerful method in terms of predictive accuracy—to disgove
a very accurate model and then to use a method that extrdetsfram the SVM model in a post-processing step, in order
to improve the comprehensibility of the model [44], [45]. this case the extracted rules will tend to explain a large pfar
(but typically not all) the decisions of the original SVM neid

Although cAnt-Minerpg is competitive in terms of size of the classification modekewltompared to all other algorithms
used in the experiments, the evaluation of a global pruniegeziure—which takes advantage that an ant creates a demple
list of rules and prunes each rule in the context of the whisteristead of a single rule at a time—could potentially i
the number of discovered rules by preferring more genetakr(i.e., rules covering more training examples), redudhe
total number of rules required to cover all training exarsp&d, consequently, the total number of terms in the disedve

lists. The implementation of such pruning procedure is derésting direction for future research.

C. Time Complexity Analysis

In this section we discuss the computational time compleaft the proposed:Ant-Minerpg algorithm. The analysis is
divided into two parts: 1) the innexhile-loop of the algorithm presented in Fig. 2, which corresponds tophocedure of
creating a complete candidate list of rules; 2) the owtkile-loop of the algorithm presented in Fig. 2, which corresponds

to an entire execution ofAnt-Minerpg. Let e be the number of training examples,the number of attributes representing
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the choices available to create a Fjlen the number of ants (colony size) ahdhe number of iterations, we can define the

computational complexity of each of the aforementionedspas:

1) Computational time complexity of creating a list of ruléslist of rules is created by an iterative sequential cavgri
procedure that builds a single rule. In order to create a thieheuristic information for every vertex of the constiaie
graph is computed. This step tak@¢a). Then, an ant will choosk out of thea available terms. Note thatis a highly
variable number, depending on the current number of trgieikamples, but in the worse cdswill be equal toa. When
an ant selects a continuous attribute vertex, there is tee e select a threshold value, which consists of evaluating
e different values. Hence, this step tak&¢a?- e). After a rule is created, a pruning procedure is applied toowe
irrelevant terms. At each step of the pruning procedure amiésvis created by removing the last term of its antecedent
and evaluated over theexamples, therefore the pruning involve evaluating at raest rules overe training examples,
taking O(a - e). The process of creating a rule is repeatdiines in the worst case of the sequential covering, assuming
that the algorithm creates a rule for each training exanthkrefore the upper-bound estimation for time complexfty o
the creation of a list of rules i©(a?- €?).

2) Computational time complexity of an entire executiém entire execution of the algorithm involvesterations of a
procedure where a colony af ants creates candidates list of rules and the best candistaté rules is used to update
the pheromone values. The pheromone update consists ebsing/decreasing pheromone values & vertices—i.e.,
the pheromone values of each vertex is increase/decreasadb rule in the candidate list of rules. Therefore, anrenti
execution take®(t - m- a2- &) + O(t - a - e), whereO(t - m - a?- €?) represents the upper-bound estimation for time
complexity.

Note that the above analysis corresponds to the worst céiseaéien and it does not take into account that the number of
training example® decreases at each iteration of the sequential coveringtoseate a list of rules and that the algorithm
is able to converge before reaching the maximum number oftitmst. It also uses two pessimistic assumptions. First, it
considers thak is equal toa, where in the average cakdéends to be much smaller thanSecond, it considers that the number
of discovered rules by the sequential covering is equal tehere in practice the number of discovered rules is mucHlema
than the number of examples. As a result, the quadratic xtplin terms of the number of examplesX® in the above
equation) is too pessimistic, and the time complexity tetedse in general approximately linear in the number of exasipl
Table IV provides evidence for both claims, showing that #iverage number of terms in a rule is much smaller than the

number of attributes and that the number of discovered tisl@such smaller that the number of examples.

D. Computational Time

Table VI presents the average computational time (in sexdtmcomplete a fold of the cross-validation fgknt-Miner2yp,,
PSO/ACO2 anaAnt-Minerpg algorithms over fifteen runs. The deterministic CN2, C4&suPART and JRip algorithms take

2The number of attributes will correspond to the number ofiees of the construction graph when dealing with data setgaining only continuous
attributes; in the case of nominal attributes, there willabeertex for each value of a particular attribute. Assumimat the number of values per nominal
attributes is relatively small, we can simplify the anadyby considering that the number of vertices is the same aautrber of attributes.

SMeasured on a 3.33GHz Intel Xeon-based computer with 8GB RAM
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AVERAGE COMPUTATIONAL TIME IN SECONDS(average+ standard erro) TAKEN BY cANT-MINER2ppL, PSO/ACO2aND cANT-MINERpR TO
COMPLETE A FOLD OF THE CROSSVALIDATION .

data set cAnt-Miner2ypL PSO/ACO2 cAnt-Minerpg

annealing 35.15+ 0.81 17.16+ 0.44 1236.60+ 94.4
balance-scale 2.5% 0.08 21.65+ 1.15 2.90+ 0.13
breast-| 1.59+ 0.05 3.21+ 0.12 3.40+ 0.27
breast-tissue 2.0% 0.06 1.18+ 0.01 4.90+ 0.21
breast-w 21.09+ 0.76 8.85+ 0.05 66.23+ 3.01
credit-a 7.274+ 0.38 15.874+ 0.30 27.20+ 1.12
credit-g 11.13+ 0.27 51.24+ 0.69 1330.50+ 66.7
cylinder-bands 26.6& 1.16 7.02+ 0.27 1153.90+ 20.1
dermatology 35.13t 2.80 5.27+ 0.05 57.70+ 2.59
glass 5.59+ 0.24 4.28+ 0.03 16.51+ 0.78
heart-c 6.154+ 0.29 6.194 0.03 17.32+ 1.35
heart-h 7.494 0.40 5.47+ 0.03 24.33+ 1.44
ionosphere 14.7% 0.45 4.33+ 0.06 104.07+ 4.87
iris 1.04+ 0.03 1.00+ 0.00 1.93+ 0.03
liver-disorders 2.90t 0.21 6.25+ 0.03 18.13+ 0.74
parkinsons 4,93+ 0.21 1.91+ 0.01 8.42+ 0.43
pima 11.29+ 0.40 21.35+ 0.08 75.40+ 4.27
wine 2.264+ 0.10 1.114+ 0.01 1.42+ 0.09

on average 1 second to complete a fold in any of the data setsinghe experiments, given that they employ heuristics to
discover a list of rules without the need to evaluate mudtiphndidate solutions, and therefore are not present ire \bl

In general, the computational time taken b&nt-Minerpg is greater than the time taken by batAnt-Miner2yp. and
PSO/ACO2, with two exceptions: drmalance-scalgit is faster than PSO/ACO2 and avineit is faster tharcAnt-Miner2yp, .
Recall that the search space@@fnt-Minerpg is more complex than the search space of hétht-Miner2yp. and PSO/ACO2,
since cAnt-Minerpg is searching for the best list of rules instead of searchorgtlie best rule. Therefore, an increase in
computational time is expected. As can be seen in Table ¥tgethre three data sets where the time takeaAnt-Minerpg is
much greater than the otheesnnealing credit-gandcylinder-bandsThe common features of these data sets are the number of
attributes (20 or more attributes) and the number of exasnjphere than 500 examples), which suggest that the perfaenain
cAnt-Minerpg is sensible to the combination of the number of attributesparticular continuous attributes—and the number
of examples present in the data set.

It should be noted that in many data mining applications—ergedical diagnosis, bioinformatics and credit scoringe-t
computational time taken by the algorithm to induce a cfsgion model has a minor importance, since they represént o
line applications and the time spent collecting and prepgathe data is usually much greater than the running time ef th
classification algorithm. In addition, ACO algorithms caa dmsily parallelised since each ant builds and evaluatasdidate
solution (a complete list of rules inAnt-Minerpg) independent from all the other ants. Therefore, a largedpg could
be obtained by running a parallel version @nt-Minerpg on a computer cluster or another parallel computing system i

applications whereAnt-Minerpg's processing time becomes a significant issue.
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Performance (measured in terms of predictive acgliraf the algorithms used in our experiments when presewnié irrelevant attributes and

noisy data. The graph on the left corresponds to the obsamgain the data sets with increased noise probability. THaplg on the right corresponds to the

observations in the data sets with increased number oévaat attributes.

E. Artificial Data

In this section we study the behaviour @nt-Minerrg when presented with irrelevant attributes and noisy dat.héve

used an artificial data set generator that simulates thesstédita seven Light-Emitting Diodes (LED) display when reyanating

each of the ten decimal digits [46]. Using the artificial ds¢d generator, we generated 12 data sets and divided theregpes

into 2 groups:

« noisy attributes6 data sets with 500 examples were generated by incredsingaise probability of each of the original

7 attributes from 5% to 30% in steps of 5%. In this group of ekpents there were no irrelevant attributes;

« irrelevant attributes 6 data sets with 500 examples were generated by fixing thse mprobability of each of the original

7 attributes to 10% and increasing the number of irrelevétnbates from 1 to 11 in steps of 2.

We have performed a ten-fold cross-validation and for thechsdstic cAnt-Miner2yp., PSO/ACO2 andcAnt-Minerpg

algorithms, they are run fifteen times using a different candseed to initialise the search for each partition of thessro

validation, while the deterministic CN2, C4.5rules, PARAdalRip algorithms are run just once for each partition of the

cross-validation. The results of the experiments with thiical data sets are presented in Fig. 4, where it is ithtstd the

effect of noisy and irrelevant attributes in the predictaecuracy of the algorithms. Each result shown in Fig. 4 seferthe

average predictive accuracy across the 6 artificial datasstd to investigate the effect of the level of noise (lefipgrin Fig.
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4) or number of irrelevant attributes (right graph in Fig. 4)

When applied to the data sets with noisy attributes, theiptied accuracy of all algorithms decreased with the insecin
the noise probability—JRip andAnt-Miner2yp. are the algorithms more affected. The performance of theridfgns in the
data sets with irrelevant attributes are mixed and smalhgbs in the number of irrelevant attributes have eithertpesor
negative effects. A closer look at the resultsedint-Miner2yp. and cAnt-Minerpg suggests that the new sequential covering

strategy is slightly more robust tha#nt-Miner2yp,'s strategy, in particular in the presence of noisy atteigut

V. CONCLUSIONAND FUTURE RESEARCH

In this paper we have discussed the sequential coveringgyraommonly used by ant colony classification algorithmg a
its potential limitations. We have proposed a new strategdiscover a list of classification rules, which guides tharsle
performed by the ACO algorithm using the quality of a cantidast of rules, instead of a single rule. The main motivatio
is to avoid the problem of rule interaction derived from thear in which the rules are discovered—i.e., the outcome of a
rule affects the rules that can be discovered subsequéntg the search space is modified due to the removal of example
covered by previous rules. In the new sequential coveriragegty proposed, the pheromone matrix used by the ACO #hgori
is extended to include a tour identification that indire@hcodes the sequence in which the rules should be crealmding
a more effective search for the best list of rules.

We have implemented the proposed sequential coveringgréi a new algorithm—nameghnt-Minerrg—and conducted
experiments involving eighteen publicly available datesseomparing the results against state-of-the-art rudedtion algo-
rithms. We regard our results as very positive, given tait-Minerpg is the most accurate algorithm, achieving statistically
significantly higher predictive accuracy than all algamithused in the comparison and discovering lists of rules edgthpetitive
size, measured as the total number of terms (conditions)l irulas. The direct comparison afAnt-Minerpg againstcAnt-
Miner2ypL shows the advantage of the new sequential covering stratdgyproving the predictive accuracy of the discovered
list of rules.

There are several interesting directions for future regeawhich explore the fact that a candidate solution is regmeed
by a complete list of rules. First, it would be interestingei@mluate a global pruning procedure, where a rule is prualddd
into account its effect on the whole list of rules, rathemthpmuning each rule individually—as discussed in subsad6B.
Second, the use of a heuristic to reorder the list of ruleg-eorting the rules based on their confidence—in order tdegu
the search can potentially improve the convergence of therighm and the quality of the discovered list of rules.

In addition, the design of a Michigan-style ACO classifioatalgorithm, incorporating niching methods to ensure rdite
in the colony (i.e., ants representing rules that coveedtffit training examples) and the use of meta-learning tqubs [47]
to investigate the links between data sets characteriatids:Ant-Minerpg's performance are interesting research directions

worth further exploration.
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APPENDIX

SOFTWARE AVAILABILITY

The documentation, source-code and binaries of the wrAwt-Minerrg algorithm are available for download at

http://sourceforge.net/projects/myra.
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