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Abstract 

This paper focuses on the discovery of surprising, unexpected patterns, 

based on a data mining method that consists of detecting instances of 

Simpson’s paradox. By its very nature, instances of this Paradox tend to be 

surprising to the user. Previous work in the literature has proposed an 

algorithm for discovering instances of that paradox, but it addressed only 

“flat” data stored in a single relation. This work proposes a novel algorithm 

that considerably extends that previous work, by discovering instances of 

Simpson’s paradox in hierarchical multidimensional data – the kind of data 

typically found in data warehouse and OLAP environments. Hence, the 

proposed algorithm can be regarded as integrating the areas of data mining 

and data warehousing, by using an adapted data mining technique to discover 

surprising patterns from data warehouse and OLAP environments.  

 

Keywords: Simpson’s paradox, data mining, data warehouse, OLAP, 

multidimensional data. 



INTRODUCTION  

In general data mining consists of discovering interesting hidden patterns 

or previously unknown relationships in data. However, the question of what 

properties the discovered patterns should have, in order to be considered 

“interesting”, is still an open problem.  

The majority of data mining algorithms focus on the discovery of accurate 

patterns. This is particularly the case in the three data mining tasks most 

investigated in the literature, namely classification, clustering and association 

(Fayyad et al., 1996). 

Another criterion that is also used quite often to evaluate discovered 

patterns (though not nearly so often as accuracy) is comprehensibility. Pattern 

comprehensibility is important in order to allow the user to validate and 

interpret discovered patterns, giving the user an insight that can be effectively 

used to make intelligent decisions.  

There is, however, another criterion to evaluate discovered patterns that 

has been relatively less explored in the literature, namely the surprisingness 

of discovered patterns. First of all, it should be noted that accuracy and 

comprehensibility do not imply surprisingness, and discovering surprising 

patterns seems more difficult than discovering accurate and comprehensible 

patterns. As a simple, classic example of this point, consider the following 

rule, which could be discovered from a hypothetical medical database: “IF 

(patient is pregnant) THEN (patient is female).” Clearly, this rule is highly 

accurate. It is also highly comprehensible – i.e., it is very short and simple, 

easy to be interpreted, referring to attribute values whose meaning are very 

well-known. However, this rule is not surprising at all, representing an 

obvious fact, and so it is useless to the user. 



The challenge addressed in this paper is to discover surprising patterns in 

data. There has been some work addressing this challenge, mainly in the 

context of the classification or association tasks (Liu & Hsu, 1996; 

Silberschatz & Tuzhilin, 1996; Suzuki, 1997; Liu et al., 1997; Padmanabhan 

& Tuzhilin, 1998; Suzuki & Kodratoff, 1998; Freitas, 1998; Dong & Li, 

1998; Sahar, 2002; Carvalho et al., 2003; Ohsaki et al., 2004; Romao et al., 

2004). However, there are two major differences between those projects and 

the work presented in this paper. 

First, this work does not address the classification or association tasks. 

Rather, it focuses on the detection of instances of Simpson’s paradox, which 

will be explained in section 2. In terms of the data mining tasks described in 

(Fayyad et al., 1996), the detection of Simpson’s paradox seems more closely 

related to the task of deviation detection, although it differs from most 

deviation detection techniques in the sense that it does not require the 

specification of what is a “normal” relationship from which deviations should 

be found. Hence, when detecting instances of Simpson’s paradox the system 

has more autonomy. This is a significant difference between this work and 

typical projects on deviation detection, such as (Matheus et al., 1996).  

Second, instead of trying to select the most surprising rules out of many 

discovered rules – as it is done in most of the previously mentioned projects 

on rule surprisingness – the system presented in this paper was designed 

specifically for discovering only surprising patterns. As will be argued in 

Section 2, Simpson’s paradox is surprising because in general the user cannot 

find an explanation for the “paradox”. In other words, the kind of pattern 

represented by an instance of Simpson’s paradox is, by its very nature, a 

surprising pattern to most users. 



There is a previous work alerting for the pitfalls associated with 

Simpson’s paradox in the context of data mining (Glymour et al., 1997). 

However, this paper follows a very different research direction consisting of 

exploiting the surprisingness of that paradox, making the detection of 

Simpson’s paradox the central goal of a data mining algorithm explicitly 

designed to discover surprising patterns. This research direction was 

suggested by (Freitas, 1998), which proposed an algorithm for detecting 

instances of Simpson’s paradox. However, that work did not implement the 

proposed algorithm. Later the algorithm was implemented and evaluated in 

public domain data sets by (Fabris & Freitas, 1999). However, those two 

projects involved only “flat” data sets, with no hierarchical dimensions, where 

each data set was represented by a single relation (corresponding to the 

universal relation of a relational database system).  

This work proposes a significant extension to those previous projects, by 

extending the previous Simpson’s paradox-discovery algorithm to a very 

different kind of data set, namely data cubes stored in a star format with 

hierarchical dimensions, as typically found in data warehouse (Kimball & 

Ross, 2002) and OLAP environments (Thomsen, 2002). The extended 

algorithm is then evaluated in a real-world data cube with 5 hierarchical 

dimensions.  

Hence, this work obtains an integration between data mining and data 

warehouse, in the sense that it proposes to adapt a data mining method for 

discovering surprising patterns to the typical data warehouse/OLAP 

environment of hierarchical multidimensional data. From a data mining 

viewpoint, this has the benefit of making the data mining method in question 

more widely applicable, considering the increasing popularity of hierarchical 

multidimensional data. From an OLAP viewpoint, this has the benefit of 



extending the functionality and increasing the degree of autonomy of typical 

OLAP tools.  

The remainder of this paper is organized as follows. Section 2 presents a 

review of Simpson’s paradox. Section 3 briefly describes the above-

mentioned algorithm for detecting instances of Simpson’s paradox in “flat” 

data stored in a single relation. Section 4 proposes the above-mentioned novel 

extension of that algorithm, designed for mining hierarchical 

multidimensional data. Section 5 presents computational results. Finally, 

Section 6 concludes the paper. 

 

SIMPSON’S PARADOX 

This section presents a brief review of Simpson’s paradox, based on 

(Fabris & Freitas, 1999). See also (Wagner, 1982; Newson, 1991) for further 

discussions about this kind of paradox. 

Let a population be partitioned into two mutually exclusive and 

exhaustive populations, denoted Pop1 and Pop2, according to the value of a 

given binary attribute, denoted 1stPartAtt (First Partitioning Attribute). Let 

each of the populations Pop1 and Pop2 be further partitioned, in parallel, 

according to the values of a given categorical attribute, denoted 2ndPartAtt 

(Second Partitioning Attribute), with m values in its domain. This will 

partition Pop1 and Pop2 into m subpopulations, denoted Pop11,…Pop1m and 

Pop21,…,Pop2m.  

Let G be a binary goal attribute, which takes on a value indicating whether 

or not a given situation of interest has occurred in a population. We are 

interested in analyzing the variation of the probability of the situation of 

interest across the above-mentioned partitions, i.e., investigating the 



relationship between the values of the partitioning attributes and the 

probability of the situation of interest. In order to do this analysis, let us use 

the following notation: 

• G1 and G2 denote the attribute G value representing the situation of 

interest in each of the respective populations Pop1 and Pop2; 

• Pr(G1) and Pr(G2) denote the probability that the situation of 

interest has occurred in populations Pop1 and Pop2, respectively; 

• Gij denotes the attribute G value representing the situation of interest 

in the subpopulation Popij, where i is the id of the value of 

1stPartAtt (i=1,2) and j is the id of the value of 2ndPartAtt 

(j=1,...,m); 

• Pr(Gij) denotes the probability that the situation of interest has 

occurred in the subpopulation Popij, i=1,2 and j=1,...,m. 

Formally, Simpson’s paradox (Simpson, 1951) occurs when either of the 

following two logical expressions is satisfied: 

(a) Pr(G1) > Pr(G2) and Pr(G1j) ≤ Pr(G2j) for j=1,...,m; 
                       or, 
(b) Pr(G1) < Pr(G2) and Pr(G1j) ≥ Pr(G2j) for j=1,...,m. 
 

Expression (a) means that the paradox occurs when, although the 

probability of the situation of interest is higher in Pop1 than in Pop2, in each 

of the categories produced by 2ndPartAtt the probability of the situation of 

interest in Pop1 is lower than or equal to its value in Pop2. The paradox also 

occurs in the dual situation represented by expression (b). 

One of the earliest real-life examples of this paradox occurred in a 

comparison of tuberculosis deaths in New York City and Richmond, Virginia, 

during the year 1910, as shown in Table 1, where the situation of interest 

measured by attribute G was the occurrence of death in a tuberculosis case; 



the 1stPartAtt was city; and the 2ndPartAtt was racial category. As can be 

observed in the table, overall the tuberculosis mortality rate of New York was 

lower than Richmond’s one. However, the opposite was observed when the 

data was further partitioned according to two racial categories: white and non-

white. In both the white and non-white categories, Richmond had a lower 

mortality rate.  

It should be noted that an instance of Simpson’s paradox has an 

explanation. In the example of Table 1, this explanation is as follows. As 

shown in the table, taking a look at the disaggregated data (partitioned by 

both city and racial category), the mortality rates of non-white people (0.56% 

and 0.33%) were in general higher than the mortality rates of white people 

(0.18% and 0.16%) in both cities. The opposite conclusion is reached by 

taking a look at the aggregated data (partitioned only by city) because the 

proportion of non-white people in Richmond was 36.6% (46,733 / 127,682), a 

value much larger than the proportion of non-white people in New York, 

which was only 1.9% (91,709 / 4,766,883). In other words, the paradox 

occurred because the two racial categories white and non-white had different 

mortality rates and these two categories were present in considerably different 

proportions in the cities of New York and Richmond. 

 
Table 1: Simpson’s paradox in data about tuberculosis deaths. 

 New York Richmond 
Total Population 4766883 127682 
No. of deaths 8878 286 
Percentage 0.19% 0.22% 
 New York Richmond 
 white non-w.   white     non-w. 
Total Population 467517

4 
91709 80895 46733 

No. of deaths 8365 513 131 155 
Percentage 0.18% 0.56% 0.16% 0.33% 

 



The existence of such explanations, which are consistent with the data, 

have led some statisticians to point out that Simpson’s paradox is not really a 

paradox (De Groot & Schervish, 2002). This issue depends, of course, on 

how one defines a paradox. According to Rescher (2001): “... a paradox 

arises when a set of individually plausible propositions is collectively 

inconsistent. And the inconsistency at issue must be real rather than merely 

seeming" (p. 6). In Table 1 the aggregated data is associated with the 

proposition that the mortality rate was higher in Richmond than in New York; 

and the disaggregated data is associated with the proposition that in both 

racial categories the mortality rate was higher in New York than in 

Richmond. The inconsistency between these two individually-plausible 

propositions can be explained in a way that is consistent with the observed 

data, as explained earlier, so that the inconsistency is “merely seeming” rather 

than real. This leads us to the conclusion that Simpson’s paradox is not really 

a paradox, according to Rescher’s definition. 

We emphasize, however, that although Simpson’s paradox is not really a 

paradox in a strict technical sense, it is still a surprising kind of pattern. 

Furthermore, it does look like a paradox for most data mining users, who are 

not trained statisticians or data analysts. Even statisticians who do not 

consider Simpson’s paradox as a real paradox admit that it is a surprising 

result for someone who has not studied it before (De Groot & Schervish, 

2002).  

 

DISCOVERING INSTANCES OF SIMPSON’S 

PARADOX IN “FLAT”, SINGLE-RELATION 

DATA  



This section briefly describes an algorithm for discovering instances of 

Simpson’s paradox in “flat” data , stored in a single relation (corresponding to 

the universal relation of a database system), which is the typical kind of data 

mined by most data mining algorithms. The algorithm is described in the 

pseudocode of Algorithm 1 – adapted from (Freitas, 1998). The input for the 

algorithm is a list LG of user-defined binary goal attributes, each of them 

indicating whether or not a given situation of interest (to the user) has 

occurred. The algorithm then identifies all the binary attributes (potential 

“first partitioning attributes”) in the data and puts them into the list L1. It also 

identifies all categorical attributes (potential “second partitioning attributes”) 

in the data and puts them into the list L2. The algorithm enforces the 

constraint that any goal attribute included in LG cannot be included in L1 nor 

in L2. 

The output of Algorithm 1 consists of all instances of Simpson’s paradox 

found by the algorithm. These instances can be ranked in decreasing degree 

of surprisingness to the user, so that a user with little available time can focus 

on the analyses of only the most surprising instances of the paradox.  

 
INPUT: list of user-defined goal attributes, denoted LG 
BEGIN 
(1)  identify attributes that can be used as 1stPartAtt and put them in list L1 
(2)  identify attributes that can be used as 2ndPartAtt and put them in list L2 
(3)  FOR EACH goal attribute G in LG 

(4)          FOR EACH first partitioning attribute A in L1 
(5)            partition population into Pop1 and Pop2 according to values of A 
(6)            Pr(G1) = Pr(G=“yes”|A=1)  
(7)            Pr(G2) = Pr(G=“yes”|A=2)  
(8)            FOR EACH second partitioning attribute B in L2 such that B ≠ A 
(9)                 FOR  i=1,2 
(10)                    partition Popi into m new populations Popi1 ... Popim,  
                           according to the values of B 
(11)                    FOR j=1,...,m 
(12)                         Pr(Gij) = Pr(G=“yes”|A=i,B=j)   
(13)               IF ( Pr(G1) > Pr(G2)  AND  Pr(G1j) ≤ Pr(G2j), j=1,...,m ) 
                      OR ( Pr(G1) < Pr(G2)  AND  Pr(G1j) ≥ Pr(G2j), j=1,...,m ) 



(14)                      OUTPUT the occurrence of the paradox to the user 
END 

Algorithm 1: Search for instances of Simpson’s paradox in flat data 
 
The degree of surprisingness of a given instance of the paradox is 

estimated by a measure of the “magnitude” of the paradox, as proposed by 

(Fabris & Freitas, 1999). The basic idea is that the larger the magnitude of the 

paradox, the more the probability of the situation of interest given the first 

partitioning attribute differs from the probability of the situation of interest 

given both the first and the second partitioning attributes, and so the larger the 

estimated degree of surprisingness for the user.  

Formally, the “magnitude” M of an instance of the paradox is given by the 

following formula: 

M = (M1 + M2) / 2,                    (1) 

where M1 measures by how much the probability of the situation of interest 

increases (decreases) from Pop1 to Pop2 after the first partition of the data and 

M2 measures by how much that probability decreases (increases) from Pop1 

to Pop2 for each of the categories of 2ndPartAtt after the second partition of 

the data.  

The measures M1 and M2 are as defined in formulas (2) and (3), where m 

is the number of values in the domain of 2ndPartAtt.  

                    M1 = |Pr(G1) – Pr(G2)| / max(Pr(G1), Pr(G2))                      (2) 

                  m 

        M2 = Σ  ( |Pr(G1j) – Pr(G2j)| / max(Pr(G1j),Pr(G2j)) ) / m                (3) 
                 j=1 

 

In formula (2) the numerator |Pr(G1) – Pr(G2)| is simply the absolute value 

of the difference between the probabilities of the situation of interest in Pop1 

and Pop2, after the first partitioning of the data. Similarly, in formula (3) the 

term |Pr(G1j) – Pr(G2j)| is the absolute value of the difference between the 



probabilities of the situation of interest in Pop1j and Pop2j, considering the j-th 

value of 2ndPartAtt. In both formulas the probability difference terms are 

divided by the maximum value between the two corresponding probabilities, 

and in formula (3) the result of this division is averaged over the m values of 

2ndPartAtt. 

The intuition behind the division of the probability difference terms by 

their corresponding maximum value is twofold. First, it produces a 

normalized value between 0 and 1 for both M1 and M2. As a result, the value 

of M in formula (1) is also normalized between 0 and 1, facilitating its 

interpretation by the user. Second, it takes into account the relative value of 

the differences between probabilities. To see this point, consider two 

scenarios in the comparison of two probabilities of the situation of interest. In 

the first scenario the probabilities are 0.01 and 0.02, whereas in the second 

scenario the probabilities are 0.49 and 0.50. The absolute value of the 

difference is 0.01 in both scenarios. However, in the first scenario the relative 

difference between the two probabilities is larger than in the second scenario 

– since dividing these differences by the corresponding maximum of the two 

probabilities we get 0.5 in the first scenario and 0.0002 in the second 

scenario. Therefore, the first scenario would be associated with a larger 

magnitude, reflecting the fact that the greater relative difference in the 

observed probabilities is estimated to be somewhat more surprising to the 

user. 

This kind of normalization –i.e., the division of the probability difference 

terms by their corresponding maximum value – is particularly important when 

analyzing data where the situation of interest is a rare event (i.e., it has a very 

small probability of occurrence) and even a minor probability difference can 

still be surprising to the user, due to the strategic importance of the rare 



situation of interest. This is the case, for instance, in the data represented by 

Table 1, where the number of deaths is a very small fraction of the numbers 

of individuals in the populations and even a minor difference in the 

probability of occurrence of this situation of interest is potentially very 

interesting to the user. In such cases, the just-described normalization is very 

useful in amplifying the degree of magnitude of the paradox, because without 

such a normalization the paradox’s magnitude would be unduly very low. 

This normalization avoids this problem by considering the relative (rather 

than the absolute) value of the probability differences.  

To see this point, and also as an example of the use of formulas (1), (2) 

and (3) to compute the magnitude of an instance of Simpson’s paradox, let us 

consider the paradox instance shown in Table 1, where Pr(G1) = 0.0019, 

Pr(G2) = 0.0022, Pr(G11) = 0.0018, Pr(G21) = 0.0016, Pr(G12) = 0.0056, 

Pr(G22) = 0.0033 and m = 2. Using formulas (2) and (3) we get M1 = 0.1364 

and M2 = 0.2609, and using formula (1) we finally get the measure of 

magnitude M = 0.1987. This indicates that this is a reasonably surprising 

instance of the paradox. If we did not use that above-described normalization 

(i.e. if in formulas (2) and (3) the probability differences were not divided by 

their maximum value), we would get M1 = 0.0003, M2 = 0.00155 and M = 

0.000775, which would be an extremely low value for the magnitude of the 

paradox – an undesirable result. 

Finally, it should be noted that the magnitude of an instance of the 

paradox is just a data-driven, objective estimate of the (ultimately subjective) 

degree of surprisingness of that pattern to the user. A precise measure of that 

degree of surprisingness would ideally take into account the user’s previous 

knowledge, but this kind of user-driven, subjective approach would of course 

considerably reduce the autonomy and generality of the proposed algorithm 



for detecting instances of Simpson’s paradox. The proposed data-driven 

approach for estimating the surprisingness of a paradox instance, although not 

perfect, has the twofold advantage that it is very generic and can be directly 

applied without requiring the user to spend her/his precious time to specify 

her/his previous knowledge in the application domain – which would be 

difficult to formalize, anyway. In the proposed approach the user just has to 

specify the list of goal attributes with their corresponding situation of interest. 

This task is much less time consuming and much simpler than capturing and 

formalizing the user’s previous knowledge. 

 

Analysis of the Computational Time Complexity of the 

Algorithm  

Intuitively, Algorithm 1 seems a time consuming algorithm, since it has 

several nested loops. In order to formalize this intuition and analyze how the 

algorithm scales up to large data sets, we now present an analysis of the 

computational complexity of the algorithm. 

The initialization steps of the algorithm – lines (1) and (2) – involve only 

checking the data type of each attribute, to identify binary and categorical 

attributes. Assuming this simple metadata information is readily available in 

the database – a safe assumption in general – each of those two steps takes a 

time on the order of K, denoted O(K), where K is the number of attributes (or 

“dimensions”) in the data being mined. 

On the other hand, lines (3)–(13) are much more time consuming, 

involving the computation of conditional probabilities. Lines (3), (4), (8), (9), 

(11) represent just the beginning of an iteration of a FOR loop. At each 

iteration of those loops, the corresponding line of course takes only O(1) to 



initialize or update the value of the loop variable (G, A, B, i, or j, 

respectively). To be precise, line (8) includes an additional operation, the 

comparison (B ≠ A), but this also takes just O(1). 

Lines (5), (6) and (7) can be performed in a single scan of all the tuples of 

the data being mined. This involves updating, on the fly, counters for the 

number of tuples (records) satisfying each of the conditions (A = 1), (G = 

“yes”,A = 1), (A = 2), (G = “yes”,A = 2). These counters are, of course, 

initialized with 0. Each time a tuple is read, its values for attributes G and A 

are checked and the appropriate counters are incremented accordingly. For 

instance, suppose the first tuple has values (A = 1) and (G = “no” ). After 

reading this tuple, the counter for the condition (A = 1) would be incremented 

to take the value 1, whereas the other three counters would remain with the 

value 0. After reading all the tuples and performing all the appropriate counter 

updates, the final values of those counters are directly used to compute the 

conditional probabilities in steps (6) and (7). Therefore, recalling that the 

conditional probabilities have to be computed for each iteration of the FOR 

loops in lines (3) and (4), the computation of lines (5), (6), (7) is performed in 

time O(N × |LG| × |L1|), where N is the number of tuples in the data being 

mined, |LG| is the cardinality of (number of attributes in) list LG and |L1| is the 

cardinality of list L1. 

The computation of conditional probabilities associated with lines (10) 

and (12) can be performed in a similar way, with another single scan of all the 

tuples of the data being mined. The main difference is that now there are more 

counters to be updated, i.e., the algorithm now needs to keep track of counters 

for the conditions (A = 1, B = j), (G = “yes”,A = 1,B = j), (A = 2, B = j), (G 

= “yes”,A = 2,B = j); for all values j  (j = 1…m) of the attribute B, where m is 



the number of values of B. (For now we assume m has the same value for all 

attributes, for the sake of simplicity. We discuss the case where m varies 

across attributes later.) Therefore, recalling that the conditional probabilities 

of line (12) have to be computed for each iteration of the FOR loops in lines 

(3), (4), (8), (9) and (11), the computation of lines (10) and (12) is performed 

in time O(N × |LG| × |L1| × |L2| × m). Note that the value 2 associated with the 

two iterations of the FOR loop specified by line (9) – where i = 1,2 – does not 

appear in this expression, since it is a constant. 

Finally, lines (13) and (14) involve using the previously computed 

conditional probabilities to detect instances of the paradox and report them to 

the user. Line (14) represents only the output of the algorithm, rather than its 

processing, and therefore can be ignored in the analysis of the computational 

complexity of the algorithm. Hence, we focus on line (13). This line contains 

an implicit FOR loop, associated with the expression “j = 1,…,m”. (This loop 

was not explicitly indicated in Algorithm 1 for the sake of simplicity in the 

description of the pseudocode.) Hence, the time taken by each iteration of line 

(13) is O(m). Recalling that this line has to be computed for each iteration of 

the FOR loops in lines (3), (4) and (8), the computation of line (13) takes time 

O(|LG| × |L1| × |L2| × m). 

Therefore, the computational time taken by the algorithm as a whole is 

given by the summation of the following factors:  

•  O(K) for lines (1), (2); 

•  O(N × |LG| × |L1|) for lines (5), (6), (7) of the FOR loops in lines (3), (4); 

•  O(N × |LG| × |L1| × |L2| × m) for lines (10), (12) of the FOR loops in lines 

(3),  

   (4), (8), (9), (11); 



•  O(|LG| × |L1| × |L2| × m) for line (13) of the FOR loops in lines (3), (4), (8). 

The second and fourth above factors can be ignored since they are 

dominated by the third one, so that the total computational time of the 

algorithm is given by: O(K + N × |LG| × |L1| × |L2| × m).  

In practical applications the value of N, the number of tuples, tends to be 

much larger than the value of K, the number of categorical attributes in the 

data, so that this computational complexity can be simplified to: 

O(N × |LG| × |L1| × |L2| × m) . 

It is also useful to discuss how the cardinalities of LG, L1, L2 are related 

with K. In the worst-case scenario, each of those three lists would have a 

number of attributes close to K, the maximum possible value for those 

cardinalities. In this case the algorithm would have a time complexity of O(N 

× K3 × m). However, this is an unlikely scenario, because the list LG includes 

only goal attributes containing a situation of interest to the user and the list L1 

can contain only binary attributes. Therefore, it is quite possible that the 

cardinalities |LG| and |L1| will be considerably smaller than the value of K.  

In the best-case scenario where the user specifies a small set of goal 

attributes and the number of binary attributes is also small, |LG| and |L1| would 

be small constants, and so the above formula for the time complexity of the 

algorithm would collapse to O(N × K × m). 

To summarize, with respect to K, the time complexity of Algorithm 1 can 

vary from linear to cubic, depending on the sizes of |LG| and |L1|. We stress 

that the time complexity does not depend on the total number of attributes, but 

rather just on the number of categorical attributes, K – since continuous 

attributes are ignored by the algorithm. In any case, the time complexity is 



linear with respect to m, the number of values per categorical attribute, and 

also linear with respect to N, the number of tuples.  

Finally, a couple of remarks must be made about the analysis carried out 

to derive the above formula. First, this analysis was based on a 

straightforward implementation of the pseudocode described in Algorithm 1. 

This implementation has the disadvantage that two scans of all the tuples are 

required, one scan to compute the conditional probabilities of lines (6), (7) 

and another scan to compute the probabilities of line (12). This can be 

improved by a somewhat more complex implementation of the algorithm, 

which performs a single scan of all the tuples, updating all the counters 

necessary to compute all those probabilities on the fly, as each tuple is read. 

This reduces the number of scans of all tuples to 1, but it does not change the 

computational time complexity of the algorithm. 

Second, the above analysis assumed that m, the number of values of a 

categorical attribute, is constant for every attribute B in list L2. In practice this 

is unlikely to be the case. In the most likely scenario of m varying across 

different attributes in L2, the above formula for computational time 

complexity can be interpreted in two different ways, depending on the value 

assigned to m. If m is assigned the average number of values per attribute, 

computed over all attributes in L2, the above formula can be interpreted as the 

average-case time complexity of the algorithm. Alternatively, if m is assigned 

the largest number of values per attribute, out of all attributes in L2, the above 

formula can be interpreted as the worst-case time complexity of the algorithm. 

 



DISCOVERING INSTANCES OF SIMPSON’S 

PARADOX IN HIERARCHICAL MULTI-

DIMENSIONAL DATA  

The discussion of the previous section assumed that all attributes are 

“flat”, i.e. they have no hierarchy. This is a common situation when mining 

data extracted from a relational database. In this section, however, we are 

interested in mining a different kind of data, namely hierarchical 

multidimensional data (Kimball & Ross, 2002; Thomsen, 2002). The 

existence of hierarchical dimensions in data cubes introduces new 

opportunities and requirements for modifying the discovery and the 

evaluation of the degree of surprisingness of instances of Simpson’s paradox. 

Suppose we are analyzing data about sales of a product, involving 

combinations of values of two attributes, say address, with hierarchy store → 

city → state, and time, with hierarchy day → month → year. Consider an 

instance of the paradox involving a combination of states and years (highest 

hierarchical level of both attributes). Should the degree of surprisingness of 

that instance be computed in the same way as for the combinations of stores 

and days (lowest hierarchical level of both attributes)? What about 

combinations of stores and years (mixed hierarchical levels)?  

In order to address this kind of question, we modify the original 

computation of the degree of surprisingness of instances of the paradox 

(discussed in the previous Section) to take into account a correction factor 

based on the hierarchical levels of the two attribute values being analyzed.  

The first step of this modification consists of deciding whether the 

algorithm should favor the discovery of paradoxes involving attribute values 



at higher or lower hierarchical levels of the attributes being analyzed. We 

have chosen to favor higher hierarchical levels, which is a bias consistent with 

one of the basic goals of data mining, namely the discovery of 

comprehensible patterns. In general, the higher the hierarchical level of an 

attribute, the higher its associated level of abstraction and the smaller the 

number of values belonging to the domain of the attribute at that level. A 

smaller number of attribute values facilitates the interpretation of an instance 

of the paradox by the user, because there are fewer cells in a table 

representing an instance of the paradox.   

An analogy can be made here with the discovery of IF-THEN rules in the 

classification task of data mining. It is a well-established practice to favor the 

discovery of shorter rules, having fewer attribute values in their antecedent, 

because short rules are in general considered more easily interpretable by the 

user than long rules (Witten & Frank, 2000; Quinlan, 1993).  

In other words, both favoring shorter classification rules and favoring 

paradox instances at higher hierarchical levels aim at the same broad 

objective, namely reducing the size of the discovered patterns, therefore 

facilitating their interpretation by the user. 

The above mentioned correction factor (hereafter denoted C), based on the 

hierarchical levels of the two partitioning attributes characterizing the 

paradox, is computed by formula (4): 

 
                         C =         ( (nhmax – havg) / hmax ),             (4) 
 
where nhmax = max(nhA, nhB) and havg = (hA + hB) / 2, where nhA and nhB are 

the numbers of hierarchical levels of attributes A (the first partitioning 

attribute) and B (the second partitioning attribute), and hA and hB are the 

indices of the hierarchical levels of attributes A and B characterizing the 



paradox. For a given attribute A (B), its index hA (hB) varies from 0 (the root 

level) to nhA – 1 (nhB – 1).  

Finally, the degree of Surprisingness (S) of an instance of Simpson’s 

paradox is computed by formula (5): 

S = M x C,     (5) 

where M is the magnitude of the paradox, computed by formula (1), and C is 

the correction factor taking into account the hierarchical levels of the two 

partitioning attributes characterizing the paradox, computed by formula (4). 

One can see that formula (4) favors the discovery of paradox instances at 

higher hierarchical levels of attributes A and B by considering the following 

example. Suppose that attributes A and B have respectively 5 and 3 

hierarchical levels – i.e., nhA = 5 and nhB = 3 – and that an instance of 

Simpson’s paradox is characterized by the hierarchical level 1 of attribute A 

and by hierarchical level 1 of attribute B – i.e., hA = 1 and hB = 1 – i.e, 

attribute values at a high hierarchical level (close to the root level). Then C = 

0.89. Now suppose instead that another instance of the paradox is 

characterized by hA = 4 and hB = 2 – i.e, attribute values at a low hierarchical 

level. Then C = 0.63. In other words, attribute values at lower hierarchical 

levels are more penalized, since they have a smaller value of the correction 

factor, and so lead to a smaller value of S in formula (5).  

Note that formula (4) returns its maximum value, 1, only when the values 

of attributes A and B associated with the paradox instances are at the root 

levels in their hierarchies, i.e., when hA = hB = 0. This is an intuitive result, 

since C = 1 means no penalty will be applied to attribute values at the root 

level – which is the “best” hierarchical level in the sense of having the 

smallest number of attribute values among all hierarchical levels. 



In any case, there is nothing magical about formula (4). This formula was 

chosen in this work because it is a simple formula with the desired effect of 

favoring paradox instances at higher levels of an attribute hierarchy and it has 

empirically performed well in our preliminary experiments. However, other 

formulas that are biased towards favoring higher-level hierarchical values 

could be used instead. Of course, it would also be easy to use a very different 

kind of formula implementing a different kind of bias, if the user wished so, 

since the issue of how the correction factor is computed is orthogonal to the 

execution of the algorithm for detecting instances of Simpson’s paradox. 

Note that in formula (5), if we remove the above-discussed correction 

factor considering hierarchical levels, we obtain the basic equation S = M. 

The motivation for measuring the surprisingness of a paradox instance by its 

magnitude was explained in section 3. Formula (5) is simply extending that 

basic equation to the more complex case of hierarchical multidimensional 

data, introducing the correction factor to favor the discovery of paradox 

instances involving higher-level attribute values – which tend to be paradox 

instances more easily interpretable by the user, as discussed earlier. 

Our new algorithm for discovering instances of Simpson’s paradox in 

hierarchical multidimensional data is presented in Algorithm 2. Similarly to 

Algorithm 1, the input for the Algorithm 2 is a list LG of user-defined binary 

goal attributes, each of them indicating whether or not a given situation of 

interest has occurred. There are some basic restrictions that must be put on the 

creation of the lists L1 and L2, as follows. 

First, note that list L1 (the list of candidate First Partitioning Attributes) 

contains pairs of the form <A, hA>, standing for attribute A and hierarchical 

level hA of that attribute. A given pair <A, hA> can be included in list L1 only 

if the hierarchical level hA contains two categorical values, which can then be 



used to divide the data into two populations. Second, all attributes in L2 (the 

list of candidate Second Partitioning Attributes) must be categorical, so that 

they can be used to further divide the data into m subpopulations. For each 

attribute in L2, all of its hierarchical levels can be used to discover instances 

of Simpson’s paradox. In other words, list L2 will contain all pairs of the form 

<B, hB> where attribute B is categorical, regardless of the number of 

categorical values in hierarchical level hB, as can be seen in Algorithm 2.  

 
INPUT: list of user-defined goal attributes, denoted LG 
BEGIN 
(1)  identify all pairs <attribute, hierarchical level> that can be used 
       as 1stPartAtt and put them in list L1; 
(2)  identify attributes that can be used as 2ndPartAtt and put all the 
       corresponding pairs <attribute, hierarchical level> in list L2; 
(3)  FOR EACH goal attribute G in LG 
(4)      FOR EACH pair of attribute A and its corresponding 
           hierarchical level hA in L1: 
(5)           partition population into Pop1 and Pop2, according  
                to values of A in hierarchical level hA; 
(6)           Pr(G1) = Pr(G=“yes”|A=1) ; 
(7)           Pr(G2) = Pr(G=“yes”|A=2) ; 
(8)           FOR EACH pair of attribute B and its corresponding  
                hierarchical level hB in L2 such that A ≠ B 
(9)           FOR  i=1,2 
(10)                   partition Popi into m new populations  
                          Popi1 ... Popim, according to the values  
                          of B in hierarchical level hB; 
(11)                   FOR j=1,...,m 
(12)                        Pr(Gij) = Pr(G=“yes”|A=i,B=j) ;  
(13)         IF (Pr(G1) > Pr(G2) AND Pr(G1j) ≤ Pr(G2j), j=1,...,m) 
               OR (Pr(G1) < Pr(G2) AND Pr(G1j) ≥ Pr(G2j), j=1,...,m ) 
(14)              OUTPUT the instance of the paradox to the user; 
END 

Algorithm 2: Discovering instances of Simpson’s paradox in hierarchical 
multidimensional data 
 
 
Analysis of Computational Time Complexity 
 

The analysis of the computational time complexity of Algorithm 2 is 

similar to the analysis of Algorithm 1, presented earlier. Hence, in the current 

subsection we present a relatively summarized version of this kind of 



analysis, focusing on the parts of the pseudocode in Algorithm 2 that were not 

present in the Algorithm 1, i.e, the parts referring to the handling of 

hierarchical dimensions.  

Line (1) of Algorithm 2 takes a time on the order of O(K × nhA), since the 

algorithm has to check, for each of the K attributes, whether or not each of its 

nhA  hierarchical levels contains just two categorical values. Line (2) takes 

O(K × nhB) by a similar argument, since every possible pair of <B, hB> has to 

be put in L2. 

Lines (5), (6) and (7) can be performed in a single scan of all the tuples of 

the data being mined by updating the appropriate counters on the fly, as 

discussed in the analysis of Algorithm 1. Hence, the time complexity of lines 

(5), (6), (7) is given by the formula O(N × |LG| × |HL1|), where N is the 

number of tuples (records) in the data being mined, |LG| is the number of 

attributes in list LG and |HL1| is the number of attribute-value pairs in the 

hierarchical list L1.  

The computation of conditional probabilities associated with lines (10) 

and (12) of Algorithm 2 can also be performed using the same approach as 

described earlier for Algorithm 1. Therefore, the computation of lines (10) 

and (12) of Algorithm 2 takes time O(N × |LG| × |HL1| × |HL2| × m), where 

|HL2| is the number of attribute-value pairs in the hierarchical list L2 and m is 

the number of values of attribute B at each hierarchical level. (For now we 

assume m has the same value for all hierarchical levels, for the sake of 

simplicity. We discuss the case where m varies across hierarchical levels 

later.) 



The analysis of the time taken by lines 13 and 14 is, again, similar to the 

analysis of the corresponding lines of Algorithm 1 discussed earlier.1. Hence, 

the time taken by these lines is O(|LG| × |HL1| × |HL2| × m). 

Finally, doing the same simplifications that were done in the analysis of 

Algorithm 1, the computational time taken by the algorithm as a whole is 

given by:   

O(N × |LG| × |HL1| × |HL2| × m) . 

Superficially, this computational time complexity is similar to its 

counterpart for Algorithm 1 derived earlier, viz: O(N × |LG| × |L1| × |L2| × m). 

An important difference is that the time complexity of Algorithm 2 involves 

|HL1| and |HL2|, rather than |L1| and |L2| for Algorithm 1. Hence, it is useful to 

re-express the former notation in terms of the latter, for a direct comparison 

between the time complexities of the two algorithms. |HL1| and |HL2| can be 

straightforwardly expressed by |L1| × nhA and |L2| × nhB, respectively. Hence, 

the computational time complexity of Algorithm 2 can be expressed as: 

O(N × |LG| × |L1| × nhA × |L2| × nhB × m) 

which is clearly considerably higher than the time complexity of Algorithm 1. 

In the case of very large data sets, the computational time taken by 

Algorithm 2 can be significantly reduced by using parallel processing. 

However, this topic is beyond the scope of this paper, and the interested 

reader is referred to (Freitas & Lavington, 1998) for a review of parallel data 

mining techniques. 

So far we have assumed that the number of hierarchical levels nhA is the 

same for every attribute A in L1, the number of hierarchical levels nhB is the 

same for every attribute B in L2 and every categorical attribute B has the same 

number of values, m, in all of its hierarchical levels. In practice, the values of 



these three variables will vary across attributes. Hence, the previous formula 

for the time complexity of Algorithm 2 can be interpreted in two different 

ways. If these three variables are assigned their corresponding average value 

per attribute, the previous formula can be interpreted as the average-case time 

complexity of the algorithm. Alternatively, if these three variables are 

assigned their corresponding largest value per attribute, the previous formula 

can be interpreted as the worst-case time complexity of the algorithm. 

 
 

COMPUTATIONAL RESULTS  

Hereafter the algorithm described in the previous section will be called 

HSPD (Hierarchical Simpson’s Paradox Discovery). We have applied the 

HSPD algorithm to a real-world data cube containing insurance data. The 

original data was stored in a star-scheme format in disk, containing a fact 

table with 51332 records and 9 dimension tables. For the purposes of our 

experiments the data was loaded into main-memory arrays, to make the 

execution of the algorithm more efficient.  

For our experiments, we have manually selected five dimensions, which 

seem to be the dimensions more promising for the discovery of interesting 

patterns. The selected dimensions were Claimant, Covered_Item, 

Event_Time, Insured_Party, and Policy. Figure 1 shows, for each of these 

dimensions, which were the attributes used in our experiments. Attribute-

value hierarchies are indicated by nesting the names of the attribute levels. 

For instance, the dimension Claimant has attributes Gender, Claimant Type 

and Age Group with just one hierarchical level each, and an attribute with 

three hierarchical levels: State → Count → City. The number of the 

hierarchical level shown between brackets ranges from 0 for the root (highest) 



level to nh – 1 for the deepest level, where nh is the number of levels in the 

hierarchy of the attribute. 

CLAIMANT  
      Gender       (level 0) 
       State           (level 0) 
                   County         (level 1) 
                                  City       (level 2) 
       Claimant type (level 0) 
       Age_Group   (level 0) 
 
COVERED_ITEM  
       Covered_Item_Type    (level 0) 
       Covered_Item_Description    (level 0) 
    
EVENT_TIME  
       Week_Number    (level 0) 
       Year        (level 0) 
                  Quarter     (level 1) 
                          Month_Name    (level 2) 
        Week_Day_Name   (level 0) 
        Fiscal_Year      (level 0) 
                     Fiscal_Quarter   (level 1) 
 
INSURED_PARTY 
       Gender     (level 0) 
       State       (level 0) 
                   County       (level 1) 
                               City       (level 2) 
       Age_Group     (level 0) 
 
POLICY  
       Risk_Grade (level 0) 

Figure 1: Description of the dimensions of the data cube used in our 
experiments 

 

Mining the five dimensions shown in Figure 1, the HSPD algorithm 

discovered in total 15 instances of Simpson’s paradox, with surprisingness 

degrees – measured by formula (5) – varying from 0.036 to 0.476. We report 

the four most surprising instances of the Paradox in Tables 2 through 5. The 

degree of surprisingness of these instances varies from 0.426 to 0.476. 

 
Table 2: 1stPartAttr = Claimant’s state;  2ndPartAttr = Insured party’s district 
               Situation of Interest: (Claimant’s type = third party) 
               Surprisingness degree: 0.461 



Claimant’ state = PA  Claimant’ state = DE 
Insured 
party’s 
district 

total 
pop. 

claimant 
= third 
 party 

 % Insured 
party’s 
district 

total 
pop. 

claimant 
= third 
 party 

% 

Bucks 9186 2532   27.6 Bucks 0 0 0 
Philadel. 12476 3948   31.6 Philadel. 0 0 0 
NewCast. 42 42 100.0 NewCast. 3954 1320 33.4 
Montgom 11564 3456   29.9 Montgom. 0 0 0 
Delaware 7458 2464   33.0 Delaware 0 0 0 
Chester 6652 2328   35.0 Chester 0 0 0 
TOTAL 47378 17770   31.2 TOTAL 3954 1320 33.4 
 
 
Table 3: 1stPartAttr=Insured party’s gender;  2ndPartAttr=Claimant’s gender 
               Situation of Interest: (Insured party’s state = DE)      
               Surprisingness degree: 0.476 

Insured party’s gender = female   Insured party’s gender = male  
Claimant’
s gender 

total 
pop. 

Insured 
party’s 
state= 
DE 

% Claimant’
s gender 

total 
pop. 

Insured 
party’s 
state= 
DE 

% 

female 24774 2150 8.7 female 234 42 17.9 
male 84 0 0 male 26240 1804 6.9 
TOTAL 24858 2150 8.6 TOTAL 26474 1846 7.0 
 
 
Table 4: 1stPartAttr = Claimant’s state;  2ndPartAttr = Insured party’s state 
               Situation of Interest: (Claimant’s type = third party) 
               Surprisingness degree: 0.450 

Claimant’ state = PA  Claimant’ state = DE 
Insured 
party’s 
state 

total 
populati
on 

claimant 
= third 
 party 

% Insured 
party’s 
state 

total 
popula
tion 

claimant 
= third 
 party 

% 

PA 47336 14728 31.1 PA 0 0 0 
DE 42 42 100.0 DE 3954 1320 33.4 
TOTAL 47378 14770 31.2 TOTAL 3954 1320 33.4 
 
 
Table 5: 1stPartAttt = Insured party’s state;  2ndPartAttr = Claimant’s state 
               Situation of Interest: (Insured party’s sex = male)     
               Surprisingness degree: 0.426 

Insured party’s state = PA  Insured party’s state = DE 
Claimant’
s state 

total 
pop. 

Insured 
party’s 
sex = 
male 

% Claimant’
s state 

total 
pop. 

Insured 
party’s 
sex = 
male 

% 

PA 47336 24628 52.0 PA 42 42 100 
DE 0 0 0.0 DE 3954 1804 45.6 
TOTAL 47336 24628 52.0 TOTAL 3996 1846 46.2 
 
 



In the title of each table we indicate the first partitioning attribute, the 

second partitioning attribute, the situation of interest and the surprisingness 

degree of the corresponding instance of the paradox. In addition, these tables 

have the following structure. The first row indicates the two values of the 

First Partitioning Attribute used to partition the data into subpopulations Pop1  

and Pop2. Those two values divide the table into two parts. Each of those 

parts is further divided into four columns, whose meaning is as follows. The 

first column indicates the values of the Second Partitioning Attribute. In this 

column each row, starting from the third row of the table, specifies one value 

of that attribute. In the second column each cell contains the number of 

records having the corresponding values of the First and Second Partitioning 

Attributes used to specify the position of the cell. In the third column each cell 

contains the number of records that not only have the corresponding values of 

First and Second Partitioning Attributes but also have the situation of interest 

(value of the goal attribute) indicated in the header of this column (in the 

second row of the table). Finally, in the fourth column each cell contains the 

percentage of records with the situation of interest for the corresponding 

values of First and Second Partitioning Attributes.  

As shown in Tables 2 through 5, all the four most surprising discovered 

instances of the paradox involved a combination of partitioning attributes of 

two dimensions, namely Claimant and Insured Party. In addition, in three out 

of  those four tables, the partitioning attributes were the addresses of the 

Claimant and the Insured Party, indicating that there is a surprising 

relationship between the addresses of these two agents. This surprising 

relationship holds for two different situations of interest, namely “Claimant 

type = third party” (Tables 2 and 4), and “Insured party’s sex = male” (Table 

5). In Tables 2, 4 and 5, in general the instances of the paradox are associated 



with the addresses of Claimant and Insured Party at the hierarchical level of 

state. (The exception is that in Table 2 the address of the Insured Party is at 

the hierarchical level of district. )  

Note that the fact that instances of Simpson’s paradox were discovered 

from hierarchical multidimensional data offers the user a possibility that is not 

available when instances of the paradox are discovered from a single “flat” 

relation. In the former case, the user can use conventional OLAP operators, 

such as drill-down, to further analyze the discovered instances of the paradox, 

observing the data at a lower level of abstraction (a deeper hierarchical level). 

Actually, the result of a drill-down on an instance of the paradox might even 

have been already reported to the user, if the paradox also occurred in the data 

associated with the drill-down. For instance, Table 2 is actually a drill-down 

of Table 4. Looking at Table 4, one can see that in general the claimant’s state 

is the same as the insured party’s state. However, there are some exceptions. 

More precisely, there are 42 cases where the claimant’s state is PA but the 

insured party’s state is DE. Observing the drilled-down data in Table 2 one 

can see that all those 42 cases occur when the insured party’s district is New 

Castle.  

Hence, instances of the paradox discovered in hierarchical 

multidimensional data not only represent surprising patterns by themselves, 

but also have the nice “side effect” of naturally suggesting potentially-

interesting drill-down directions for the user – therefore, in some sense, 

increasing the functionality of OLAP tools.  

 

CONCLUSIONS AND FUTURE RESEARCH 



Previous work in the literature introduced an algorithm that discovers 

surprising instances of Simpson’s paradox in data based on the relational 

model, assuming that all the data was stored in a single universal relation. In 

this paper we have extended that algorithm to cope with hierarchical 

multidimensional data, stored in a star scheme. Hence, this work obtains an 

integration between data mining and data warehouse/OLAP, which is 

beneficial for both areas. 

We emphasize that the algorithm proposed in this paper was designed 

specifically for discovering surprising patterns. By contrast, a number of data 

mining algorithms in the literature were designed for initially discovering a 

large number of patterns and then passing them through a filter, to try to 

select the most surprising (or interesting) patterns. It is also important to 

notice that many measures of “interestingness” proposed in the literature 

focus on measuring some kind of statistical correlation or another predictive 

accuracy-related criterion, without actually trying to estimate the degree of 

surprisingness of discovered patterns to the user. This is the case, for 

instance, with the 21 measures of rule interestingness discussed by Tan et al. 

(2002). There are, of course, several measures of rule surprisingness 

(mentioned in the Introduction), but this work focuses on the discovery of a 

very different kind of surprising pattern, as explained in the Introduction. 

We believe that Simpson’s paradox offers good opportunities for future 

research in data mining, since the usefulness of discovering Simpson’s 

paradox instances has been underexplored in the literature. Discovered 

instances of the paradox are potentially useful for helping to solve other kinds 

of data mining problems. 

As one example, we can envisage the following application of Simpson’s 

paradox discovery in prediction-rule discovery. Consider that hidden 



instances of Simpson’s paradox can fool a greedy data mining algorithm, 

making it to misinterpret a given relationship between some attributes 

(Glymour et al., 1997). E.g., greedy decision tree induction and rule induction 

algorithms can select an attribute or attribute value that seems to have a 

certain relationship with a given class, when in reality the true relationship – 

taking into account attribute interactions (Freitas, 2001) – is the reverse of the 

apparent one. If instances of Simpson’s paradox have been previously 

discovered, in principle the decision tree or rule induction algorithm could be 

given information about those discovered instances of the paradox, in the 

form of “background knowledge”. Once the algorithm has been properly 

modified to take into account this kind of background knowledge, it would 

not be fooled by those instances of the paradox – i.e., it would not choose the 

wrong attribute or attribute value to add to a prediction rule, because it would 

know that the true relationship is the reverse of the apparent one. This seems 

an interesting research direction.  

Another research direction consists of devising more efficient algorithms 

for discovering Simpson’s paradox instances, perhaps by exploiting 

background knowledge to reduce the size of the search space. 

 

ACKNOWLEDGMENT  

We are very grateful to Kurt E. Allebach for making available to us the 

hierarchical multi-dimensional data set used in our experiments. We also 

thank the anonymous reviewers for their valuable comments, which 

significantly contributed to the final, improved version of this paper. 

 
 

REFERENCES 



Carvalho, D.R., Freitas, A.A. and Ebecken, N.F.F. (2003). A critical review 

of rule surprisingness measures. In: N.F.F. Ebecken, C.A. Brebbia, A. 

Zanasi (Eds.) Proceedings of Data Mining IV (4th International  

Conference on Data Mining), pp. 545-555. Southampton, UK: WIT Press. 

De Groot, M.H. and Schervish, M.J. (2002). Probability and Statistics. 3rd 

Ed. New York: Addison-Wesley. 

Dong, G. and Li, J. (1998). Interestingness of discovered association rules in 

terms of neighborhood-based unexpectedness. Research and Development 

in Knowledge Discovery & Data Mining (Proceedings of the 2nd Pacific-

Asian Conference, PAKDD-98). Lecture Notes in Artificial Intelligence 

1394, pp. 72-86. Berlin: Springer-Verlag. 

Fabris, C.C. and Freitas, A.A (1999). Discovering surprising patterns by 

detecting instances of Simpson’s paradox. In: M. Bramer, A. Macintosh, 

and F. Coenen (Eds.) Research and Development in Intelligent Systems 

XVI (Proceedings of ES-99, the 19th International Conference on 

Knowledge Based Systems and Applied Artificial Intelligence), pp. 148-

160. Berlin: Springer-Verlag. 

Fayyad, U.M., Piatetsky-Shapiro, G. and Smyth, P. (1996). From data mining 

to knowledge discovery: an overview. In: Fayyad, U.M. et al (Eds.) 

Advances in Knowledge Discovery and Data Mining, pp. 1-34. Menlo 

Park, CA, USA: AAAI/MIT. 

Freitas, A.A. (1998). On objective measures of rule surprisingness. Principles 

of Data Mining and Knowledge Discovery: Proceedings of the 2nd 

European Symposium (PKDD’98). Lecture Notes in Artificial Intelligence 

1510, pp. 1-9. Berlin: Springer-Verlag. 

Freitas, A.A. (2001). Understanding the crucial role of attribute interaction in 

data mining. Artificial Intelligence Review 16(3), pp. 177-199. 

Freitas, A.A. and Lavington, S.H. (1998). Mining Very Large Databases with 

Parallel Processing. Amsterdam: Kluwer. 

Glymour, C., Madigan, D., Pregibon, D. and Smyth, P. (1997). Statistical 

themes and lessons for data mining. Data Mining and Knowledge 

Discovery 1(1), pp. 11-28.  

Kimball, R. and Ross, M. (2002). The Datawarehouse Toolkit: the complete 

guide to multidimensional modeling. 2nd Ed. New York: John Wiley & 

Sons. 



Liu, B. and Hsu, W. (1996). Post-analysis of learned rules. Proceedings of the 

1996 National Conference of the American Association for Artificial 

Intelligence (AAAI-96), pp. 828-834. Menlo Park, CA, USA: AAAI Press. 

Liu, B., Hsu, W. and Chen, S. (1997). Using general impressions to analyze 

discovered classification rules. Proceedings of the 3rd International 

Conference on Knowledge Discovery & Data Mining, pp. 31-36. Menlo 

Park, CA, USA: AAAI Press. 

Matheus, C.J.; Piatetsky-Shapiro, G. and McNeil, D. (1996). Selecting and 

reporting what is interesting: the KEFIR application to health data. In: 

Fayyad, U.M. et al. (Eds.) Advances in Knowledge Discovery and Data 

Mining, pp. 495-516. Menlo Park, CA, USA: AAAI/MIT Press. 

Newson, G. (1991). Simpson´s paradox revisited. The Mathematical Gazette 

75(473), pp. 290-293. 

Ohsaki, M., Kitaguchi, S., Okamoto, K., Yokoi, H., and Yamaguchi, T. 

(2004). Evaluation of rule interestingness measures with a clinical dataset 

on hepatitis. Knowledge Discovery in Databases: Proceedings of PKDD-

2004, Lecture Notes in Artificial Intelligence 3202, pp. 362-373. Berlin: 

Springer-Verlag. 

Padmanabhan, B. and Tuzhilin, A. (1998) A belief-driven method for 

discovering unexpected patterns. Proceedings of the 4th International 

Conference on Knowledge Discovery & Data Mining (KDD-98), pp. 94-

100. Menlo Park, CA, USA: AAAI Press. 

Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. San Francisco, 

CA, USA: Morgan Kaufmann. 

Rescher, N. (2001). Paradoxes: their roots, range and resolution. New York: 

Open Court. 

Romao, W., Freitas, A.A. and Gimenes, I.M.S. (2004). Discovering 

interesting knowledge from a science and technology database with a 

genetic algorithm. Applied Soft Computing 4(2), pp. 121-137. 

Sahar, S. (2002). On incorporating subjective interestingness into the mining 

process. Proc. 2002 IEEE International Conference on Data Mining. New 

York: IEEE Press. 

Silberschatz, A. and Tuzhilin, A. (1996). What makes patterns interesting in 

knowledge discovery systems. IEEE Transactions on Knowledge & Data 

Engineering, 8(6), pp. 970-974.  



Simpson, E.H. (1951). The interpretation of interaction in contingency tables. 

Journal of the Royal Statistical Society, Series B, 13, pp. 238-241. 

Suzuki, E. (1997). Autonomous discovery of reliable exception rules. 

Proceedings of the 3rd International Conference on Knowledge Discovery 

& Data Mining, pp. 259-262. Menlo Park, CA, USA: AAAI Press. 

Suzuki, E. and Kodratoff, Y. (1998). Discovery of surprising exception rules 

based on intensity of implication. Proceedings of the 2nd European 

Symposium on Principles of Data Mining and Knowledge Discovery 

(PKDD’98). Lecture Notes in Artificial Intelligence, 1510, pp. 10-18. 

Berlin: Springer-Verlag. 

Tan, P.N., Kumar, V. and Srivastava, J. (2002). Selecting the right 

interestingness measure for association patterns. Proceedings of the ACM 

SIGKDD 2002 International Conference on Knowledge Discovery and 

Data Mining (KDD-2002). New York: ACM Press. 

Thomsen, E. (2002). OLAP Solutions : building multi-dimensional systems, 

2nd Ed. New York: Wiley.  

Wagner, C.H. (1982). Simpson’s paradox in real life. The American 

Statistician, 36(1), pp. 46-48. 

Witten, I.H. and Frank, E. (2000). Data Mining: practical machine learning 

tools with Java implementations. San Francisco, CA, USA: Morgan 

Kaufmann. 


