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The crossword compiling problem (fill-in crossword)

I Given a dictionary of words and a crossword grid:

torque colon tempt bon mini pique
quirky quay any encore turkey rue
clique droopy crypt anyhow yogi would
loci wreath napkin ugly

1 2

3 4

5

find all the ways (if any) of arranging the words into the grid.

I Can the problem of tackled with a modern SAT solver, ie, can
the problem be encoded such that:

I the size of the formulae (the number of clauses) is not
O(. . . d2 . . .), or worse, where d is the number of words in the
dictionary?

I the number of variables does not typically exceed 1000?
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Davis-Putnam-Logemann-Loveland2 (DPLL) algorithm

I Given a propositional formula, f say, does there exist a variable
assignment (a model) under which f evaluates to true?

I Although SAT is NP-complete, efficient solvers do exist for
many SAT instances [St̊almarck,US Patent N527689,1995]

I A model for f = (¬u ∨ v) ∧ (¬w ∨ u) ∧ (¬w ∨ ¬v) is
θ = {u 7→ false, v 7→ false,w 7→ false}

I bool function DPLL(f , θ)
begin

〈θ′, unsat〉 = unit(f , θ);
if (unsat) return false;
else if (isSatisfied(f , θ′)) return true;
else

let x ∈ var(f )− var(θ′);
if (DPLL(f , θ′ ∪ {x 7→ true})) return true;
else return DPLL(f , θ′ ∪ {x 7→ false});

end

2See invited paper by Zhang and Malik, “The Quest for Efficient Boolean
Satisfiability Solvers”, CAV, LNCS, volume 2404, 2002
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Walk-through for f = (¬u ∨ v) ∧ (¬w ∨ u) ∧ (¬w ∨ ¬v)

Consider DPLL(f , θ1) where θ1 = ∅
1. unit(f , θ1) = 〈θ′

1, false〉 where θ′
1 = ∅

2. isSatisfied(f , θ′
1) = false

3. Choose w ∈ var(f ) \ var(θ′
1) = {u, v ,w} \ ∅ = {u, v ,w}

4. Consider DPLL(f , θ2) where θ2 = {w 7→ true}
4.1 unit(f , θ2) = 〈θ′

2, true〉 where θ′
2 = θ2 ∪ {u 7→ true, v 7→ false}

4.2 Thus DPLL(f , θ2) = false

5. Now consider DPLL(f , θ2) where θ2 = {w 7→ false}
5.1 unit(f , θ2) = 〈θ′

2, false〉 where θ′
2 = {w 7→ false}

5.2 Choose u ∈ var(f ) \ var(θ′
2) = {u, v ,w} \ {w} = {u, v}

5.3 Consider DPLL(f , θ3) where θ3 = {w 7→ false, u 7→ true}
I unit(f , θ3) = 〈θ′

3, false〉 and θ′
3 = θ3 ∪ {v 7→ true}

I isSatisfied(f , θ′
3) = true

I Thus DPLL(f , θ3) = true

5.4 Thus DPLL(f , θ2) = true

6. Thus DPLL(f , θ1) = true



Some notes on the DPLL algorithm

I Solvers usually return the model and DPLL solvers can
systematically enumerate all models;

I More variables unit assigns, the more recursive calls are
avoided;

I SAT is a “low-entry topic” because of the simplicity of DPLL;

I SAT research addresses topics such as:

I Examining failing paths and adding new clauses to ensure that
similar paths are not explored again;

I Examining the structure of the SAT instance to assign
variables in an intelligent order;

I Investigating phase-transition behaviour;
I SAT encoding and SAT applications
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Encoding a crossword as a CNF formula (reduction)

I It is sufficient to find (encode) all combinations of characters
that can arise at the intersection points between words

1 2

3 4

5 6 7

C Q

L I

N K N

C Q

Y I

T K Y

T Q

M I

T K Y

W A

U Y

D O Y

I Flesh out the words by searching the dictionary (note that two
or more words might match the same intersection points)

C L I Q U E

O U

L O C I B

O R O

N A P K I N

Y

C L I Q U E

R U

Y O G I A

P R N

T U R K E Y

Y

T O R Q U E

E U

M I N I A

P R N

T U R K E Y

Y

W R E A T H

O N

U G L Y A

L H N

D R O O P Y

W



Encoding a crossword as a CNF formula (compositionality)

I The 7 characters at intersection points can be represented by
35 propositional variables x1, . . . , x35 where:

I ¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 expresses that intersection point
1 is character 0, ie, a

I ¬x6 ∧ ¬x7 ∧ ¬x8 ∧ x9 ∧ ¬x10 expresses that intersection point 2
is character 2, ie, c

I Suppose that:

I f1(x1, . . . , x10) expresses the relationships between points 1 and
2 imposed by the horizontal starting at square 1;

I f2(x1, . . . , x5, x11, . . . , x15, x21, . . . , x25) between points 1, 3 and
5 imposed by the vertical starting at square 1;

I . . .
I f6(x30, . . . , x35) expresses the relationships on point 7 imposed

by the vertical ending at square 7;

I Then f1(x1, . . . , x35) ∧ . . . ∧ f6(x1, . . . , x35) is a CNF formula
that expresses the relationships between all intersection points

[Draw grid with intersection points on board]
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Generating the formula f1(x1, . . . , x10)

I Scan the dictionary for all 6 letter words and extract the first
and fourth characters:

torque colon tempt bon mini pique
quirky quay any encore turkey rue
clique droopy crypt anyhow yogi would
loci wreath napkin ugly

tq qr eo
tk cq do
ah wa nk

I Interpret as 10-bit numbers, sort and encode as a formula:

ah 00000,00111
cq 00010,10000
. . .
qr 10000,10001
wa 10111,00000

f1=∨


¬x1∧¬x2∧¬x3∧¬x4∧¬x5∧¬x6∧¬x7∧ x8∧ x9∧ x10 00000, 00111
¬x1∧¬x2∧¬x3∧ x4∧¬x5∧ x6∧¬x7∧¬x8∧¬x9∧¬x10 00010, 10000

. . .
x1∧¬x2∧¬x3∧¬x4∧¬x5∧ x6∧¬x7∧¬x8∧¬x9∧ x10 10000, 10001
x1∧¬x2∧ x3∧ x4∧ x5∧¬x6∧¬x7∧¬x8∧¬x9∧¬x10 10111, 00000



Generating the formula f1(x1, . . . , x10) (reprise)

Alternatively ¬f1 = g0 ∨ g1 ∨ . . . ∨ g9 where gi are in DNF and:

g0=∨



¬x1∧¬x2∧¬x3∧¬x4∧¬x5∧¬x6∧¬x7∧¬x8∧¬x9∧¬x10 00000, 00000
¬x1∧¬x2∧¬x3∧¬x4∧¬x5∧¬x6∧¬x7∧¬x8∧¬x9∧ x10 00000, 00001
¬x1∧¬x2∧¬x3∧¬x4∧¬x5∧¬x6∧¬x7∧¬x8∧ x9∧¬x10 00000, 00010
¬x1∧¬x2∧¬x3∧¬x4∧¬x5∧¬x6∧¬x7∧¬x8∧ x9∧ x10 00000, 00011
¬x1∧¬x2∧¬x3∧¬x4∧¬x5∧¬x6∧¬x7∧ x8∧ x9∧ x10 00000, 00100
¬x1∧¬x2∧¬x3∧¬x4∧¬x5∧¬x6∧¬x7∧ x8∧¬x9∧ x10 00000, 00101
¬x1∧¬x2∧¬x3∧¬x4∧¬x5∧¬x6∧¬x7∧ x8∧ x9∧¬x10 00000, 00110

g0=∨


¬x1∧¬x2∧¬x3∧¬x4∧¬x5∧¬x6∧¬x7∧¬x8∧¬x9 00000, 0000∗
¬x1∧¬x2∧¬x3∧¬x4∧¬x5∧¬x6∧¬x7∧¬x8∧ x9 00000, 0001∗
¬x1∧¬x2∧¬x3∧¬x4∧¬x5∧¬x6∧¬x7∧ x8∧¬x9 00000, 0010∗
¬x1∧¬x2∧¬x3∧¬x4∧¬x5∧¬x6∧¬x7∧ x8∧ x9 ∧¬x10 00000, 00110

where the second g0 is compromised of 4 implicants.



Generating the formula g1(x1, . . . , x10)

g1=∨



¬x1∧¬x2∧¬x3∧¬x4∧¬x5∧¬x6∧¬x7∧¬x8∧¬x9∧¬x10 00000, 01000
¬x1∧¬x2∧¬x3∧¬x4∧¬x5∧¬x6∧¬x7∧¬x8∧¬x9∧ x10 00000, 01001
¬x1∧¬x2∧¬x3∧¬x4∧¬x5∧¬x6∧¬x7∧¬x8∧ x9∧¬x10 00000, 01010

. . .
¬x1∧¬x2∧¬x3∧ x4∧¬x5∧¬x6∧ x7∧ x8∧¬x9∧ x10 00010, 01101
¬x1∧¬x2∧¬x3∧ x4∧¬x5∧¬x6∧ x7∧ x8∧ x9∧¬x10 00010, 01110
¬x1∧¬x2∧¬x3∧ x4∧¬x5∧¬x6∧ x7∧ x8∧ x9∧ x10 00010, 01111

g1=∨


¬x1∧¬x2∧¬x3∧¬x4∧¬x5 ∧¬x6 ∧¬x7 00000,01***
¬x1∧¬x2∧¬x3∧¬x4∧¬x5 ∧¬x6 00000,1****
¬x1∧¬x2∧¬x3∧ x4∧¬x5 00001,*****
¬x1∧¬x2∧¬x3∧ x4∧¬x5 ∧¬x6 00010,0****

where the first and second g1 compromise of
10100002 − 1112 − 1 = 72 and 4 implicants respectively.

This way of obtaining a CNF encoding cannot be novel.



Complexity of the encoding

I The formulae g0 and g9 consists of ≤ 2× 5 implicants and all
other gi consist of ≤ 2× 2× 5 implicants

I More generally, each ¬gi consists of O(lg(c)m) clauses where:

I c is the number of characters in the alphabet
I m is the maximum number of intersections for any word in the

grid

I Each fi consists of O(lg(c)md) clauses and the complete
system is ∧i fi is O(lg(c)mdg) where:

I d is the number of words in the dictionary
I g is the number of words in the grid



Dictionary of 73,338 words on a 60 word grid with 132
intersections

G E A R S I S S E A M A R A S

A G R U N U U O D V G

U E H A B E B A S F A U O R E

D U P L E X A D O L U

I T L E G E H O R R I S O N O

A M A V I = R = = I = E = T E R = N

= = = = T R A N A B O Q U E = A X E

P I O = U = V = = E = U = S I N = R

R = U A S T A B A R = I = = = T U E

O R A = = = V = V I D E T Q U E = N

P = N I L = I = E = = S = U = S I T

A S T = A B S O L U O Q U E = = = =

G = E A T = S = L = = U = R U E R E

O B S T A V E R E = S E S E = X = V

= R = T = E = = R = U = E M O T A E

M E T U I S = S E N A T U I = E = R

= V = L = T = P = E = U = N O R I S

R E G I A E = E R U D I R I = A = A

I 1,092,868 clauses generated in 76s and sat4j solves the SAT
instance in 367s ≈ 6m on a 3.2GHz, 1GB RAM PC

I French requires 6-bit encoding for á, â, ç, è, é, ê, ô, œ, etc



Reducing the number of propositional variables

Consider again the dictionary and the grid:

torque colon tempt bon mini pique
quirky quay any encore turkey rue
clique droopy crypt anyhow yogi would
loci wreath napkin ugly

1 2

3 4

5 6 7

I S1 ⊆ {A,C ,D,E ,N,Q,T ,W } and
S2 ⊆ {A,K ,H,K ,O,Q,R}

I S4 ⊆ {I ,Y } and S6 ⊆ {K ,O} from quirky and anyhow

I S5 ⊆ {D,E ,N,T} and S7 ⊆ {E ,N,Y } from encore, turkey,
droopy and napkin

I S3 ⊆ {L,M,Q,U,Y } from mini, quay, yogi, loci and ugly

I S1 ⊆ {C ,T ,W } from colon, tempt, pique, crypt and would
(note how the P is excluded)
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Minimising the number of propositional variables

for i := 1 to 7 { s[i ] := {a, . . . , z} }
change := true
while change

change := false
for all w ∈ {1a, 1d , 2d , 3a, 5a, 4d}

suppose w includes intersections i1, . . . , ik at positions p1, . . . , pk

for j := 1 to k { t[j ] = ∅ }
read word d from dictionary until empty

if length(d) = length(w) then
keep := true
for j := 1 to k

if char(d , pj) 6∈ s[ij ] then keep := false
if keep then

for j := 1 to k { t[j ] = t[j ] ∪ {char(d , pj)} }
for j := 1 to k

if s[ij ] ∩ t[j ] ⊂ s[ij ] then
change := true; s[ij ] := s[ij ] ∩ t[j ]



Avoiding the SAT encoding with divide-and-conquer

I Minimise Si

I If there exists Si = ∅ then return []

I If each Si = {ci} then return [[c1, . . . , c7]]

I Otherwise there exists Si = {c1, . . . , ck} where k > 1 then

I Put Si = {c1, . . . , cdk/2e} and recurse to obtain L1

I Put Si = {cdk/2e+1, . . . , ck} and recurse to obtain L2

I Return append(L1, L2)

[Relevance of principle of least commitment]



Time for a demonstration

java15 -Xmx300m -jar CrossWord.jar
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