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Convex Polyhedra Polyhedra Operations

Classic Frame Representation

Closed, Convex Polyhedra

Let P be a finite set of (non-strict) inequalities over n variables.
Let soln(P) C R" denote the solution set of P.
Operations on polyhedra:
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Classic Frame Representation

Closed, Convex Polyhedra

Let P be a finite set of (non-strict) inequalities over n variables.
Let soln(P) C R" denote the solution set of P.
Operations on polyhedra:

P1 = P> entailment check, i.e. soln(P1) C soln(P2).

compress(P) redundancy removal, i.e. smallest P’ C P with
soln(P") = soln(P).
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Convex Polyhedra Polyhedra Operations

Classic Frame Representation

Closed, Convex Polyhedra

Let P be a finite set of (non-strict) inequalities over n variables.
Let soln(P) C R" denote the solution set of P.
Operations on polyhedra:
P1 = P> entailment check, i.e. soln(P1) C soln(P2).
compress(P) redundancy removal, i.e. smallest P’ C P with
soln(P") = soln(P).
P11 Py intersection, i.e. soln(P1) N soln(P>).
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Convex Polyhedra Polyhedra Operations

Classic Frame Representation

Closed, Convex Polyhedra

Let P be a finite set of (non-strict) inequalities over n variables.
Let soln(P) C R" denote the solution set of P.
Operations on polyhedra:

P1 = P> entailment check, i.e. soln(P1) C soln(P2).
compress(P) redundancy removal, i.e. smallest P’ C P with
soln(P") = soln(P).
P11 P, intersection, i.e. soln(P1) N soln(P2).
Py LU P> convex hull

dy P projection
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Convex Polyhedra Polyhedra Operations

Classic Frame Representation

Frame Representation

Classically: P; U P> and dy implemented on frame representation.

Frame representation:
Calculate vertices Vj;, rays R; and lines L; of soln(P;).

Py LU P, Convex hull defined by ViU Vs, RiURy and L1 U L.

dy Remove the components corresponding to Y from
\/,', R,' and L,‘

Fundamental problem: Conversion to and from frame
representation can incur exponential growth.
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Convex Polyhedra Polyhedra Operations

Classic Frame Representation

Convex Hull

P = P; U P, is the a set of inequalities P such that soln(P) is the

smallest set with soln(P1) U soln(P») C soln(P).

Example: Pi={x>1,x<5y>1y <5}
P,={x>7,x<11,y > 1,y <5}
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Convex Polyhedra Polyhedra Operations

Classic Frame Representation

Convex Hull

P = P; U P, is the a set of inequalities P such that soln(P) is the
smallest set with soln(P1) U soln(P») C soln(P).
Example: Pi={x>1,x<5y>1y <5}
P,={x>7,x<11,y > 1,y <5}
Solution: P={x>1,x<1l,y > 1,y <b5}.
Y3

5
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Convex Polyhedra Polyhedra Operations

Classic Frame Representation

Convex Hull

Frame representation: Py, P> can be represented with 4 vertices.
In general, let P;, P> be two n-dimensional hypercubes. Then

|P1| = |P2| = |P| = 2n, but each hypercube contains 2" vertices.
Y
5
| | | | | | | | | | | >
T T T T T T T T T T T
0 5 10 x
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Convex Polyhedra Polyhedra Operations

Classic Frame Representation

Alternatives to General Polyhedra

Domains proposed to circumvent exponential cost:
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Convex Polyhedra Polyhedra Operations

Classic Frame Representation

Alternatives to General Polyhedra

Domains proposed to circumvent exponential cost:

Difference-Bound Matrices x—y<c ceR
Octagon +tx+ty<c ceR
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Classic Frame Representation

Alternatives to General Polyhedra

Domains proposed to circumvent exponential cost:

Difference-Bound Matrices x—y<c ceR
Octagon +tx+ty<c ceR
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Convex Polyhedra Polyhedra Operations

Classic Frame Representation

Alternatives to General Polyhedra

Domains proposed to circumvent exponential cost:

Difference-Bound Matrices x—y<c ceR
Octagon +tx+ty<c ceR
Octahedron +x1---Ex,<c,ceR
Two-Variables-Per-lInequality ax; + bxo < ¢, a,b,c e N

Question: Which one?

Choosing one domain commits to a limited degree of precision.
Aim:

Stop generating inequalities when system becomes too large.
Problem:

Frame representation is inherently all-or-nothing.
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Convex Hull as Convex Combination

Given: Two input polyhedra A1 X < ¢1 and AxX < ¢&.
» Smallest convex combination of entailed points:
X = Axi + XA

P=¢X| Aixi <aAAxe <& A
AMT+X=1AXAX>0AX>0
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Convex Hull as Convex Combination

Given: Two input polyhedra A1X < & and AxX < 6.
» Smallest convex combination of entailed points:
X = A1X1 + A2xoN

P=.X| Aixt S ANAxo <A
AMT+FXM=1AX>0AX>0

» A\1xi is not linear
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Convex Hull as Convex Combination

Given: Two input polyhedra A1 X < ¢1 and AxX < ¢&.
» Smallest convex combination of entailed points:
X = Axi + XA

P=¢X| Aixi <aAAxe <& A
AMT+X=1AXAX>0AX>0

» Substitute y3 = A1x1 and y5 = Aoxa:
X =y + ysA

P =< X| Ayl < Mé A Ays < A& A
MF+X=1AXAX1>0AX>0
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Convex Hull as Convex Combination

Given: Two input polyhedra A1 X < ¢1 and AxX < ¢&.
» Smallest convex combination of entailed points:
X = Axi + XA

P=¢X| Aixi <aAAxe <& A
AMT+X=1AXAX>0AX>0

» Substitute y3 = A1x1 and y5 = Aoxa:
X=yi+y2A
P'= < X| Ayi < ME A Ays < X6 A
MF+X=1AXAX1>0AX>0

» Project out yi, y5, A1 and Aj.
~» Need an efficient projection algorithm.
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Fourier-Motzkin Algorithm

Consider the following system E:

2x1 + x + 2x3 < 7
—1x3 + 2% 4+ x3 < -5
1xq — x + 1x3 < -3
3x1 — 2% — 1Ix3 < 6
2x1 4+ 2x3 < 7
—1Ix + x3 < =5
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Fourier-Motzkin Algorithm

Task: Eliminate x».

2x1  + X + 2x3 < 7
—1x3 4+ 2 4+ x3 <-5H
Ixt — x 4+ 1x3 < -3
3X1 - 2X2 - 1X3 S 6
2X1 + 2X3 < 7
—1x1 + x3 < =bH
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Fourier-Motzkin Algorithm

Partition system:

Et = { 2x1 + x + 2x3 < 7,
-1x1 + 2 + x3 <-b}

E- = { 1xp — X 4+ 1x3 < =3,
3x1 — 2% — 1lx3 < 6}

E™s = { 2x1 + 2x3 < 7,
—1xq + x3 < -5}
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Fourier-Motzkin Algorithm

Et=/{ 2x1 + x4+ 2x3 < 7,
-1x1 + 2% + x3 < -5}

E-={ Iy — x + 1x3 < -3,
3X1 - 2X2 - 1X3 S 6}

E™s = { 2X1 + 2X3 < 7,
—1x1 + x3 < =b

3x1 + 3x3 < 4-}
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Fourier-Motzkin Algorithm

Et=/{ 2x1 + x4+ 2x3 < 7,
-1x1 + 2% + x3 < -5}

E- = { 1x; — X 4+ 1x3 < =3,
3X1 - 2X2 - 1X3 S 6}

E™s = { 2X1 + 2X3 < 7,
—1x1 + x3 < =b

3x1 4+ 3x3 < 4,

7X1 + 5X3 S 10}
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Fourier-Motzkin Algorithm

Et = { 2x1  + X2 + 2x3 < 7,
-1x3 4+ 2x + x3 < =5}

E-={ Ixy, — x + 1Ix3 < =3,
3X1 - 2X2 — 1X3 S 6}

Eres={ 2x + 23 < 7,
—1x1 + x3 < b

3X1 + 3X3 < 47

7X1 + 5X3 < 107

1x1 + 3x3 < -11}
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Fourier-Motzkin Algorithm

Et = { 2x1  + x» + 2x3 < 7,
-1x3 4+ 2x + x3 < =5}

E-={ Ixy — x + 1x3 < =3,
3X1 - 2X2 - 1X3 S 6}

E™s = { 2X1 + 2X3 < 7,
—1x1 + x3 < —=b

3x1 4+ 3x3 < 4,

7X1 + 5X3 S 107

1x1 4+ 3x3 < -—11,

2x1 + < 1}
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Fourier-Motzkin Algorithm

E™s = { 2X1 + 2X3 < 7,
—1x1 + x3 < —=b

3x1 4+ 3x3 < 4,

7X1 + 5X3 S 107

1x1 4+ 3x3 < -—11,

2x1 + < 1}

~» E™ is projection onto xj, x3 - plane
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Variable Selection

Input system: |E| = |E"| + |E~| + |E™]
Output system: |ET| x |E~| + |E"™*|
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Convex Hull via Projection
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Variable Selection

Input system: |E| = |E"| + |E~| + |E™]
Output system: |ET| x |E~| + |E"™*|

» Growth is A = |ET| x |[E~| = (JET|+ |E7|)
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» Growth is A = |ET| x |[E~| = (JET|+ |E7|)

» For sparse systems A is often zero or even —1

Axel Simon and Andy King Exploiting Sparsity in Polyhedral Analysis



Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Variable Selection

Input system: |E| = |E"| + |E~| + |E™]

Output system: |E™"| x |[E~| + |E"™]
» Growth is A = |ET| x |[E~| = (JET|+ |E7|)
» For sparse systems A is often zero or even —1

» To delay growth, select variables with lowest A first

Axel Simon and Andy King Exploiting Sparsity in Polyhedral Analysis



Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Variable Selection

Input system: |E| = |E"| + |E~| + |E™]
Output system: |E™"| x |[E~| + |E"™]
» Growth is A = |ET| x |[E~| = (JET|+ |E7|)
» For sparse systems A is often zero or even —1
» To delay growth, select variables with lowest A first
» Remove redundant inequalities:

quasi-syntactic after each step
compress if system grows beyond initial size
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Variable Selection

Input system: |E| = |E"| + |E~| + |E™]
Output system: |E™"| x |[E~| + |E"™]
» Growth is A = |ET| x |[E~| = (JET|+ |E7|)
» For sparse systems A is often zero or even —1
» To delay growth, select variables with lowest A first
» Remove redundant inequalities:
quasi-syntactic after each step

compress if system grows beyond initial size

Fourier-Motzkin eliminates most variable without growth.
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Projection Algorithm

Eliminating Y from E producing at most /i inequalities:

select

fourier
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Eliminating Several Variables At Once

Eliminate Y = {x1,... x4} from the following system:

It + 2x — 3x3 + 4x4s — 2xs + 3x7 <-9
4x; 4+ 4xo + 2x3 — x4 — 3x5 — 2x5 + 6xy < 3
—2x1 — 2x0 4+ TIx3 + 2x4 + x5 + 8xg + 2x7 < 4
7x1 + bx — 4xy + 4x¢ + 10x; < =2
20+ 3x3 + 8xs — 3x5 — 2x5 -+ 3xg < 12

8x1 4+ 2x — 2x3 + 2x5 — 9% + x7 <0
—8x1 . X3 - Xqs — 4x5 — X6 + 6x; < -9
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Eliminating Several Variables At Once

Eliminate Y = {x1,... x4} from the following system:

It + 2x — 3x3 + 4x4s — 2xs + 3x7 <-9

4x; 4+ 4xo + 2x3 — x4 — 3x5 — 2x5 + 6xy < 3

—2x1 — 2x0 4+ TIx3 + 2x4 + x5 + 8xg + 2x7 < 4

7x1 + bx — 4xy + 4x¢ + 10x; < =2

20+ 3x3 + 8xs — 3x5 — 2x5 -+ 3xg < 12

8x1 4+ 2x — 2x3 + 2x5 — 9% + x7 <0

—8x1 . X3 - Xqs — 4x5 — X6 + 6x; < -9
Rewrite:

1 2 -3 4 -2 0 3 -9

4 4 2 -1 -3 =2 6 3

-2 -2 7 2 X1 1 8 2 X5 4

7 5 0 -4 2+ 0 4 10 <x6> < | -2

0 2 3 8 o -3 -2 3 x7 12

8 2 -2 0 4 2 -9 1 0

-8 0o -1 -1 -4 -1 6 -9
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Eliminating Several Variables At Once

Eliminate Y = {x1,... x4} from the following system:

Ixi + 2x — 3x3 4+ 4x4 — 2xs + 3x7 < -9

4x; 4+ 4dx2 4+ 2x3 — xa — 3x5 — 2x¢ + bx; < 3

—2x1 — 2x + TIx3 4+ 2x4 + x5 + 8xs + 2x7 < 4

<1 + bxo — 4xy + 4x + 10x; < -2

2xp + 3x3 4+ 8x4 — 3x5 — 2x5 + 3x; < 12

8x1 4+ 2x2 — 2x3 + 2x5 — 9% + x7 < 0

—8x1 — X3 — x4 — 4x5 — X6 + 6x; < -9
A B c

T 2 3 4 % /2 0 3 9

4 4 2 1\ 3 2 6 | 3

2 2 7 2 X 1 8 2 s 4

7 5 0 —4 2+ 0 4 10 <x6) < | -2

0 2 3 8 3 -3 -2 3 X7 12

8 2 -2 0 a 2 -9 1 0

-8 0o -1 -1 -4 -1 6 -9
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Finding Inequalities in the Projection Space

Project out ¥ from the n inequalities rewritten as:

Ay + BZ< ¢
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Finding Inequalities in the Projection Space

Project out ¥ from the n inequalities rewritten as:
Ay+BZ<¢

» Let X = (A1,...\,) combine rows in A such that XA = 0.
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Finding Inequalities in the Projection Space

Project out ¥ from the n inequalities rewritten as:
Ay+BZ<¢

» Let X = (A1,...\,) combine rows in A such that XA = 0.
» Require that A\; >0,i=1,...n.
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Finding Inequalities in the Projection Space

Project out ¥ from the n inequalities rewritten as:
Ay+BZ<¢

» Let X = (A1,...\,) combine rows in A such that XA = 0.
» Require that A\; >0,i=1,...n.

> Given a X, it follows that X(Ay + BZ) < A&, hence ABZ < A&,
which is a single inequality in the projection space.
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Finding Inequalities in the Projection Space

Project out ¥ from the n inequalities rewritten as:
Ay+BZ<¢

» Let X = (A1,...\,) combine rows in A such that XA = 0.

» Require that A\; >0,i=1,...n.

» Given a X it follows that X(A)_/'—i- BZ) < XE, hence \BZ < X?:',
which is a single inequality in the projection space.

> If Xisa solution, so is sX, s>0, hence require \1+...+\, =1.
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Finding Inequalities in the Projection Space

Project out ¥ from the n inequalities rewritten as:

Ay +BZ < ¢

» Let X = (A1,...\,) combine rows in A such that XA = 0.

» Require that A\; >0,i=1,...n.

» Given a X it follows that X(A)_/'—i- BZ) < XE, hence \BZ < X?:',
which is a single inequality in the projection space.

> If Xis a solution, so is sX, s>0, hence require \1+...+\, =1.

» Find vertices of the polytope XA = 0,A\i >0, \i+...+X, =1

The set of all vertices /\1, ... Am define projection space.
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Generating Useful Inequalities

Use Simplex to find vertices X of NA = 0,Ai >0, \+...+ A, =1.
Need a goal function!

Observation:
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Generating Useful Inequalities

Use Simplex to find vertices X of NA = 0,Ai >0, \+...+ A, =1.
Need a goal function!

Observation:
> [Kohler] Given A2, AL, if {i | A2 =0} D {i | \b = 0} then
A\PB < \bZ will be redundant.

Axel Simon and Andy King Exploiting Sparsity in Polyhedral Analysis



Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Generating Useful Inequalities

Use Simplex to find vertices X of NA = 0,Ai >0, \+...+ A, =1.
Need a goal function!

Observation:
> [Kohler] Given X2, Ab, if {i | A2 =0} S {i | Al = 0} then
A\PB < \bZ will be redundant.
Idea: Run Simplex for (1,0,...0), (0,1,0,...0), ...(0,...0,1).
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Convex Hull via Projection
Projection Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Generating Useful Inequalities

Use Simplex to find vertices X of NA = 0,Ai >0, \+...+ A, =1.
Need a goal function!

Observation:
> [Kohler] Given X2, Ab, if {i | A2 =0} S {i | Al = 0} then
A\PB < \bZ will be redundant.
Idea: Run Simplex for (1,0,...0), (0,1,0,...0), ...(0,...0,1).

» Creates at most n inequalities in the projection space.
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Experimental Results

Argument-Size Analysis for Prolog

Analysis times on a 2.4GHz, 512MB RAM PC using classic
widening if SCCs are not stable after two iterations. Inequalities
with excessive coefficients are removed.

vars approx’'ed sparsity
benchmark | LOC ratio % | dim ineq vars | time
sim 1071 0/2412 0.0 | 120 201 13| 0.61

rubik | 1229 0/1062 00| 57 94 15| 0.20

chat | 4698 105/7917 13| 9.7 191 15| 458
pl2wam | 4775 96/4078 23| 80 134 15| 3.20
Iptp | 7419 | 213/12525 1.7 | 82 152 14| 9.97
aqua_c | 15026 | 493/32340 15| 103 195 1.5 |27.59

~> Results seem comparable to classic polyhedra (cTI).
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Experimental Results

Conclusion

Program analyses often generate sparse inequalities.
Fourier-Motzkin projection works well on sparse systems.

Projection can be approximated if output becomes large.

vV v vy

Calculating convex hull without reverting to frame
representation yields incremental algorithm.

Future Work:

» More optimisations possible (e.g. Kohler's rule).
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