Exploiting Sparsity in Polyhedral Analysis

Axel Simon and Andy King

Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK \{A.Simon,A.King\}@kent.ac.uk September 7, 2005

Closed, Convex Polyhedra

Let P be a finite set of (non-strict) inequalities over n variables. Let $\operatorname{soln}(P) \subseteq \mathbb{R}^{n}$ denote the solution set of P.
Operations on polyhedra:

Closed, Convex Polyhedra

Let P be a finite set of (non-strict) inequalities over n variables. Let $\operatorname{soln}(P) \subseteq \mathbb{R}^{n}$ denote the solution set of P.
Operations on polyhedra:
$P_{1} \models P_{2}$ entailment check, i.e. $\operatorname{soln}\left(P_{1}\right) \subseteq \operatorname{soln}\left(P_{2}\right)$.

Closed, Convex Polyhedra

Let P be a finite set of (non-strict) inequalities over n variables.
Let $\operatorname{soln}(P) \subseteq \mathbb{R}^{n}$ denote the solution set of P.
Operations on polyhedra:
$P_{1} \models P_{2}$ entailment check, i.e. $\operatorname{soln}\left(P_{1}\right) \subseteq \operatorname{soln}\left(P_{2}\right)$.
compress (P) redundancy removal, i.e. smallest $P^{\prime} \subseteq P$ with $\operatorname{soln}\left(P^{\prime}\right)=\operatorname{soln}(P)$.

Closed, Convex Polyhedra

Let P be a finite set of (non-strict) inequalities over n variables.
Let $\operatorname{soln}(P) \subseteq \mathbb{R}^{n}$ denote the solution set of P.
Operations on polyhedra:
$P_{1} \models P_{2}$ entailment check, i.e. $\operatorname{soln}\left(P_{1}\right) \subseteq \operatorname{soln}\left(P_{2}\right)$.
compress (P) redundancy removal, i.e. smallest $P^{\prime} \subseteq P$ with $\operatorname{soln}\left(P^{\prime}\right)=\operatorname{soln}(P)$.
$P_{1} \sqcap P_{2}$ intersection, i.e. $\operatorname{soln}\left(P_{1}\right) \cap \operatorname{soln}\left(P_{2}\right)$.

Closed, Convex Polyhedra

Let P be a finite set of (non-strict) inequalities over n variables.
Let $\operatorname{soln}(P) \subseteq \mathbb{R}^{n}$ denote the solution set of P.
Operations on polyhedra:
$P_{1} \models P_{2}$ entailment check, i.e. $\operatorname{soln}\left(P_{1}\right) \subseteq \operatorname{soln}\left(P_{2}\right)$.
compress (P) redundancy removal, i.e. smallest $P^{\prime} \subseteq P$ with $\operatorname{soln}\left(P^{\prime}\right)=\operatorname{soln}(P)$.
$P_{1} \sqcap P_{2}$ intersection, i.e. $\operatorname{soln}\left(P_{1}\right) \cap \operatorname{soln}\left(P_{2}\right)$.
$P_{1} \sqcup P_{2}$ convex hull
$\exists_{Y} P$ projection

Frame Representation

Classically: $P_{1} \sqcup P_{2}$ and \exists_{Y} implemented on frame representation.

Frame representation:
Calculate vertices V_{i}, rays R_{i} and lines L_{i} of $\operatorname{soln}\left(P_{i}\right)$.
$P_{1} \sqcup P_{2}$ Convex hull defined by $V_{1} \cup V_{2}, R_{1} \cup R_{2}$ and $L_{1} \cup L_{2}$.
\exists_{Y} Remove the components corresponding to Y from V_{i}, R_{i} and L_{i}

Fundamental problem: Conversion to and from frame representation can incur exponential growth.

Convex Hull

$P=P_{1} \sqcup P_{2}$ is the a set of inequalities P such that $\operatorname{soln}(P)$ is the smallest set with soln $\left(P_{1}\right) \cup \operatorname{soln}\left(P_{2}\right) \subseteq \operatorname{soln}(P)$.
Example: $P_{1}=\{x \geq 1, x \leq 5, y \geq 1, y \leq 5\}$

$$
P_{2}=\{x \geq 7, x \leq 11, y \geq 1, y \leq 5\}
$$

Convex Hull

$P=P_{1} \sqcup P_{2}$ is the a set of inequalities P such that $\operatorname{soln}(P)$ is the smallest set with soln $\left(P_{1}\right) \cup \operatorname{soln}\left(P_{2}\right) \subseteq \operatorname{soln}(P)$.
Example: $P_{1}=\{x \geq 1, x \leq 5, y \geq 1, y \leq 5\}$

$$
P_{2}=\{x \geq 7, x \leq 11, y \geq 1, y \leq 5\}
$$

Solution: $P=\{x \geq 1, x \leq 11, y \geq 1, y \leq 5\}$.

Convex Hull

Frame representation: P_{1}, P_{2} can be represented with 4 vertices. In general, let P_{1}, P_{2} be two n-dimensional hypercubes. Then $\left|P_{1}\right|=\left|P_{2}\right|=|P|=2 n$, but each hypercube contains 2^{n} vertices.

Alternatives to General Polyhedra

Domains proposed to circumvent exponential cost:

Alternatives to General Polyhedra

Domains proposed to circumvent exponential cost:

$$
\text { Difference-Bound Matrices } \quad x-y \leq c, c \in \mathbb{R}
$$

Alternatives to General Polyhedra

Domains proposed to circumvent exponential cost:

$$
\begin{array}{ll}
\text { Difference-Bound Matrices } & x-y \leq c, c \in \mathbb{R} \\
\text { Octagon } & \pm x \pm y \leq c, c \in \mathbb{R}
\end{array}
$$

Alternatives to General Polyhedra

Domains proposed to circumvent exponential cost:

$$
\begin{array}{ll}
\text { Difference-Bound Matrices } & x-y \leq c, c \in \mathbb{R} \\
\text { Octagon } & \pm x \pm y \leq c, c \in \mathbb{R} \\
\text { Octahedron } & \pm x_{1} \cdots \pm x_{n} \leq c, c \in \mathbb{R}
\end{array}
$$

Alternatives to General Polyhedra

Domains proposed to circumvent exponential cost:

$$
\begin{array}{ll}
\text { Difference-Bound Matrices } & x-y \leq c, c \in \mathbb{R} \\
\text { Octagon } & \pm x \pm y \leq c, c \in \mathbb{R} \\
\text { Octahedron } & \pm x_{1} \cdots \pm x_{n} \leq c, c \in \mathbb{R} \\
\text { Two-Variables-Per-Inequality } & a x_{1}+b x_{2} \leq c, a, b, c \in \mathbb{N}
\end{array}
$$

Alternatives to General Polyhedra

Domains proposed to circumvent exponential cost:

$$
\begin{array}{ll}
\text { Difference-Bound Matrices } & x-y \leq c, c \in \mathbb{R} \\
\text { Octagon } & \pm x \pm y \leq c, c \in \mathbb{R} \\
\text { Octahedron } & \pm x_{1} \cdots \pm x_{n} \leq c, c \in \mathbb{R} \\
\text { Two-Variables-Per-Inequality } & a x_{1}+b x_{2} \leq c, a, b, c \in \mathbb{N}
\end{array}
$$

Question: Which one?

Choosing one domain commits to a limited degree of precision. Aim:
Stop generating inequalities when system becomes too large.
Problem:
Frame representation is inherently all-or-nothing.

Convex Hull as Convex Combination

Given: Two input polyhedra $A_{1} \vec{x} \leq \overrightarrow{c_{1}}$ and $A_{2} \vec{x} \leq \overrightarrow{c_{2}}$.

- Smallest convex combination of entailed points:

$$
P=\left\{\begin{array}{l|l}
\vec{x} & \begin{array}{l}
\vec{x}=\lambda_{1} \overrightarrow{x_{1}}+\lambda_{2} \overrightarrow{x_{2}} \wedge \\
A_{1} \overrightarrow{x_{1}} \leq \overrightarrow{c_{1}} \wedge \overrightarrow{A_{2}} \overrightarrow{x_{2}} \leq \overrightarrow{c_{2}} \wedge \\
\lambda_{1}+\lambda_{2} \\
\\
\lambda_{1}
\end{array} 0 \wedge \lambda_{2} \geq 0
\end{array}\right\}
$$

Convex Hull as Convex Combination

Given: Two input polyhedra $A_{1} \vec{x} \leq \overrightarrow{c_{1}}$ and $A_{2} \vec{x} \leq \overrightarrow{c_{2}}$.

- Smallest convex combination of entailed points:

$$
P=\left\{\begin{array}{l|l}
\vec{x} & \begin{array}{l}
\vec{x}=\lambda_{1} \overrightarrow{x_{1}}+\lambda_{2} \overrightarrow{x_{2}} \wedge \\
A_{1} \overrightarrow{x_{1}} \leq \overrightarrow{c_{1}} \wedge \overrightarrow{A_{2}} \overrightarrow{x_{2}} \leq \overrightarrow{c_{2}} \wedge \\
\lambda_{1}+\lambda_{2} \\
1
\end{array} \lambda_{1} \geq 0 \wedge \lambda_{2} \geq 0
\end{array}\right\}
$$

- $\lambda_{1} \overrightarrow{x_{1}}$ is not linear

Convex Hull as Convex Combination

Given: Two input polyhedra $A_{1} \vec{x} \leq \overrightarrow{c_{1}}$ and $A_{2} \vec{x} \leq \overrightarrow{c_{2}}$.

- Smallest convex combination of entailed points:

$$
P=\left\{\begin{array}{l|l}
\vec{x} & \begin{array}{l}
\vec{x}=\lambda_{1} \overrightarrow{x_{1}}+\lambda_{2} \overrightarrow{x_{2}} \wedge \\
A_{1} \overrightarrow{x_{1}} \leq \overrightarrow{c_{1}} \wedge \overrightarrow{x_{2}} \overrightarrow{x_{2}} \leq \overrightarrow{c_{2}} \wedge \\
\lambda_{1}+\lambda_{2} \\
\\
\lambda_{1}
\end{array} 0 \wedge \lambda_{2} \geq 0
\end{array}\right\}
$$

- Substitute $\overrightarrow{y_{1}}=\lambda_{1} \overrightarrow{x_{1}}$ and $\overrightarrow{y_{2}}=\lambda_{2} \overrightarrow{x_{2}}$:

$$
P^{\prime}=\left\{\begin{array}{l|l}
\vec{x} & \begin{array}{l}
\vec{x}=\overrightarrow{y_{1}}+\overrightarrow{y_{2}} \\
A_{1} \overrightarrow{y_{1}} \leq \lambda_{1} \overrightarrow{c_{1}} \wedge A_{2} \overrightarrow{y_{2}} \leq \lambda_{2} \overrightarrow{c_{2}} \wedge \\
\lambda_{1}+\lambda_{2} \\
1
\end{array} \lambda_{1} \geq 0 \wedge \lambda_{2} \geq 0
\end{array}\right\}
$$

Convex Hull as Convex Combination

Given: Two input polyhedra $A_{1} \vec{x} \leq \overrightarrow{c_{1}}$ and $A_{2} \vec{x} \leq \overrightarrow{c_{2}}$.

- Smallest convex combination of entailed points:

$$
P=\left\{\begin{array}{l|l}
\vec{x} & \begin{array}{l}
\vec{x}=\lambda_{1} \overrightarrow{x_{1}}+\lambda_{2} \overrightarrow{x_{2}} \wedge \\
A_{1} \overrightarrow{x_{1}} \leq \overrightarrow{c_{1}} \wedge \overrightarrow{x_{2}} \overrightarrow{x_{2}} \leq \overrightarrow{c_{2}} \wedge \\
\lambda_{1}+\lambda_{2} \\
\\
1
\end{array} \lambda_{1} \geq 0 \wedge \lambda_{2} \geq 0
\end{array}\right\}
$$

- Substitute $\overrightarrow{y_{1}}=\lambda_{1} \overrightarrow{x_{1}}$ and $\overrightarrow{y_{2}}=\lambda_{2} \overrightarrow{x_{2}}$:

$$
P^{\prime}=\left\{\begin{array}{l|l}
\vec{x} & \begin{array}{l}
\vec{x}=\overrightarrow{y_{1}}+\overrightarrow{y_{2}} \wedge \\
A_{1} \overrightarrow{y_{1}} \leq \lambda_{1} \overrightarrow{c_{1}} \wedge A_{2} \overrightarrow{y_{2}} \leq \lambda_{2} \overrightarrow{c_{2}} \wedge \\
\lambda_{1}+\lambda_{2} \\
1
\end{array} \lambda_{1} \geq 0 \wedge \lambda_{2} \geq 0
\end{array}\right\}
$$

- Project out $\overrightarrow{y_{1}}, \overrightarrow{y_{2}}, \lambda_{1}$ and λ_{2}.
\leadsto Need an efficient projection algorithm.

Fourier-Motzkin Algorithm

Consider the following system E :

$$
\begin{aligned}
& 2 x_{1}+x_{2}+2 x_{3} \leq 7 \\
& -1 x_{1}+2 x_{2}+x_{3} \leq-5 \\
& 1 x_{1}-x_{2}+1 x_{3} \leq-3 \\
& 3 x_{1}-2 x_{2}-1 x_{3} \leq 6 \\
& 2 x_{1} \\
& -1 x_{1}+x_{3} \leq-5
\end{aligned}
$$

Fourier-Motzkin Algorithm

Task: Eliminate x_{2}.

$$
\begin{aligned}
& 2 x_{1}+x_{2}+2 x_{3} \leq 7 \\
& -1 x_{1}+2 x_{2}+x_{3} \leq-5 \\
& 1 x_{1}-x_{2}+1 x_{3} \leq-3 \\
& 3 x_{1}-2 x_{2}-1 x_{3} \leq 6 \\
& 2 x_{1} \\
& -1 x_{1} \\
& +x_{3} \leq-5
\end{aligned}
$$

Fourier-Motzkin Algorithm

Partition system:

$$
\begin{aligned}
& E^{+}=\left\{2 x_{1}+x_{2}+2 x_{3} \leq 7,\right. \\
& \left.-1 x_{1}+2 x_{2}+x_{3} \leq-5\right\} \\
& E^{-}=\left\{1 x_{1}-x_{2}+1 x_{3} \leq-3\right. \text {, } \\
& \left.3 x_{1}-2 x_{2}-1 x_{3} \leq 6\right\} \\
& E^{r e s}=\left\{2 x_{1}+2 x_{3} \leq 7,\right. \\
& \left.-1 x_{1}+x_{3} \leq-5\right\}
\end{aligned}
$$

Fourier-Motzkin Algorithm

$$
\begin{aligned}
& E^{+}=\left\{2 x_{1}+x_{2}+2 x_{3} \leq 7,\right. \\
& \left.-1 x_{1}+2 x_{2}+x_{3} \leq-5\right\} \\
& E^{-}=\left\{1 x_{1}-x_{2}+1 x_{3} \leq-3\right. \text {, } \\
& \left.3 x_{1}-2 x_{2}-1 x_{3} \leq 6\right\} \\
& E^{\text {res }}=\left\{\begin{array}{l}
2 x_{1}
\end{array}\right. \\
& -1 x_{1} \\
& 3 x_{1} \\
& +2 x_{3} \leq 7, \\
& +x_{3} \leq-5 \text {, } \\
& \left.+3 x_{3} \leq 4\right\}
\end{aligned}
$$

Fourier-Motzkin Algorithm

$$
\begin{aligned}
& E^{+}=\left\{2 x_{1}+x_{2}+2 x_{3} \leq 7,\right. \\
& \left.-1 x_{1}+2 x_{2}+x_{3} \leq-5\right\} \\
& E^{-}=\left\{1 x_{1}-x_{2}+1 x_{3} \leq-3\right. \text {, } \\
& \left.3 x_{1}-2 x_{2}-1 x_{3} \leq 6\right\} \\
& E^{\text {res }}=\left\{\quad 2 x_{1}\right. \\
& -1 x_{1} \\
& 3 x_{1} \\
& 7 x_{1} \\
& +2 x_{3} \leq 7, \\
& +x_{3} \leq-5 \text {, } \\
& +3 x_{3} \leq 4 \text {, } \\
& \left.+5 x_{3} \leq 10\right\}
\end{aligned}
$$

Fourier-Motzkin Algorithm

$$
\begin{aligned}
& E^{+}=\left\{2 x_{1}+x_{2}+2 x_{3} \leq 7,\right. \\
& \left.-1 x_{1}+2 x_{2}+x_{3} \leq-5\right\} \\
& E^{-}=\left\{\quad 1 x_{1}-x_{2}+1 x_{3} \leq-3,\right. \\
& E^{\text {res }}=\left\{\begin{array}{rlll}
3 x_{1} & -2 x_{2} & -1 x_{3} & \leq 6\} \\
2 x_{1} & & +2 x_{3} & \leq 7, \\
-1 x_{1} & & +x_{3} & \leq-5, \\
3 x_{1} & & +3 x_{3} & \leq 4, \\
7 x_{1} & & +5 x_{3} & \leq 10,
\end{array}\right. \\
& \left.1 x_{1} \quad+3 x_{3} \leq-11\right\}
\end{aligned}
$$

Fourier-Motzkin Algorithm

$$
\begin{aligned}
& E^{+}=\left\{2 x_{1}+x_{2}+2 x_{3} \leq 7,\right. \\
& \left.-1 x_{1}+2 x_{2}+x_{3} \leq-5\right\} \\
& E^{-}=\left\{\quad 1 x_{1}-x_{2}+1 x_{3} \leq-3,\right. \\
& \left.3 x_{1}-2 x_{2}-1 x_{3} \leq 6\right\} \\
& E^{r e s}= \begin{cases}2 x_{1}\end{cases} \\
& -1 x_{1} \\
& 3 x_{1} \\
& 7 x_{1} \\
& 1 x_{1} \\
& 2 x_{1} \\
& +2 x_{3} \leq 7, \\
& +x_{3} \leq-5 \text {, } \\
& +3 x_{3} \leq 4 \text {, } \\
& +5 x_{3} \leq 10 \text {, } \\
& +3 x_{3} \leq-11 \text {, } \\
& +\leq 1\}
\end{aligned}
$$

Fourier-Motzkin Algorithm

$$
E^{\text {res }=\left\{\begin{array}{rll}
2 x_{1} & +2 x_{3} & \leq 7, \\
-1 x_{1} & +x_{3} & \leq-5, \\
3 x_{1} & +3 x_{3} & \leq 4, \\
7 x_{1} & +5 x_{3} & \leq 10, \\
1 x_{1} & +3 x_{3} & \leq-11, \\
2 x_{1} & + & \leq 1\}
\end{array}, \begin{array}{rl}
& +
\end{array}\right)} \begin{aligned}
&
\end{aligned}
$$

$\leadsto E^{\text {res }}$ is projection onto x_{1}, x_{3} - plane

Variable Selection

Input system: $|E|=\left|E^{+}\right|+\left|E^{-}\right|+\left|E^{\text {res }}\right|$
Output system: $\left|E^{+}\right| \times\left|E^{-}\right|+\left|E^{\text {res }}\right|$

Variable Selection

Input system: $|E|=\left|E^{+}\right|+\left|E^{-}\right|+\left|E^{\text {res }}\right|$
Output system: $\left|E^{+}\right| \times\left|E^{-}\right|+\left|E^{\text {res }}\right|$

- Growth is $\Delta=\left|E^{+}\right| \times\left|E^{-}\right|-\left(\left|E^{+}\right|+\left|E^{-}\right|\right)$

Variable Selection

Input system: $|E|=\left|E^{+}\right|+\left|E^{-}\right|+\left|E^{\text {res }}\right|$
Output system: $\left|E^{+}\right| \times\left|E^{-}\right|+\left|E^{\text {res }}\right|$

- Growth is $\Delta=\left|E^{+}\right| \times\left|E^{-}\right|-\left(\left|E^{+}\right|+\left|E^{-}\right|\right)$
- For sparse systems Δ is often zero or even -1

Variable Selection

Input system: $|E|=\left|E^{+}\right|+\left|E^{-}\right|+\left|E^{\text {res }}\right|$
Output system: $\left|E^{+}\right| \times\left|E^{-}\right|+\left|E^{\text {res }}\right|$

- Growth is $\Delta=\left|E^{+}\right| \times\left|E^{-}\right|-\left(\left|E^{+}\right|+\left|E^{-}\right|\right)$
- For sparse systems Δ is often zero or even -1
- To delay growth, select variables with lowest Δ first

Variable Selection

Input system: $|E|=\left|E^{+}\right|+\left|E^{-}\right|+\left|E^{\text {res }}\right|$
Output system: $\left|E^{+}\right| \times\left|E^{-}\right|+\left|E^{\text {res }}\right|$

- Growth is $\Delta=\left|E^{+}\right| \times\left|E^{-}\right|-\left(\left|E^{+}\right|+\left|E^{-}\right|\right)$
- For sparse systems Δ is often zero or even -1
- To delay growth, select variables with lowest Δ first
- Remove redundant inequalities:
quasi-syntactic after each step
compress if system grows beyond initial size

Variable Selection

Input system: $|E|=\left|E^{+}\right|+\left|E^{-}\right|+\left|E^{\text {res }}\right|$
Output system: $\left|E^{+}\right| \times\left|E^{-}\right|+\left|E^{\text {res }}\right|$

- Growth is $\Delta=\left|E^{+}\right| \times\left|E^{-}\right|-\left(\left|E^{+}\right|+\left|E^{-}\right|\right)$
- For sparse systems Δ is often zero or even -1
- To delay growth, select variables with lowest Δ first
- Remove redundant inequalities:
quasi-syntactic after each step
compress if system grows beyond initial size
Fourier-Motzkin eliminates most variable without growth.

Projection Algorithm

Eliminating Y from E producing at most i inequalities:

Eliminating Several Variables At Once

Eliminate $Y=\left\{x_{1}, \ldots x_{4}\right\}$ from the following system:

$$
\begin{array}{rlllllllllllll}
1 x_{1} & +2 x_{2} & - & 3 x_{3} & + & 4 x_{4} & - & 2 x_{5} & & & & 3 x_{7} & \leq & -9 \\
4 x_{1} & +4 x_{2} & + & 2 x_{3} & - & x_{4} & - & 3 x_{5} & - & 2 x_{6} & + & 6 x_{7} & \leq & 3 \\
-2 x_{1} & -2 x_{2} & + & 7 x_{3} & + & 2 x_{4} & + & x_{5} & + & 8 x_{6} & + & 2 x_{7} & \leq \\
7 x_{1} & +5 x_{2} & & & & 4 x_{4} & & & + & 4 x_{6} & + & 10 x_{7} & \leq & -2 \\
& & 2 x_{2} & + & 3 x_{3} & + & 8 x_{4} & - & 3 x_{5} & - & 2 x_{6} & + & 3 x_{7} & \leq \\
8 x_{1} & +2 x_{2} & -2 x_{3} & & & + & 2 x_{5} & - & 9 x_{6} & + & x_{7} & \leq \\
-8 x_{1} & & & x_{3} & - & x_{4} & - & 4 x_{5} & - & x_{6} & + & 6 x_{7} & \leq & -9
\end{array}
$$

Eliminating Several Variables At Once

Eliminate $Y=\left\{x_{1}, \ldots x_{4}\right\}$ from the following system:

Rewrite:

$$
\left(\begin{array}{rrrr}
1 & 2 & -3 & 4 \\
4 & 4 & 2 & -1 \\
-2 & -2 & 7 & 2 \\
7 & 5 & 0 & -4 \\
0 & 2 & 3 & 8 \\
8 & 2 & -2 & 0 \\
-8 & 0 & -1 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)+\left(\begin{array}{rrr}
-2 & 0 & 3 \\
-3 & -2 & 6 \\
1 & 8 & 2 \\
0 & 4 & 10 \\
-3 & -2 & 3 \\
2 & -9 & 1 \\
-4 & -1 & 6
\end{array}\right)\left(\begin{array}{l}
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right) \leq\left(\begin{array}{r}
-9 \\
3 \\
4 \\
-2 \\
12 \\
0 \\
-9
\end{array}\right)
$$

Eliminating Several Variables At Once

Eliminate $Y=\left\{x_{1}, \ldots x_{4}\right\}$ from the following system:

$$
\overbrace{\left(\begin{array}{rrrr}
1 & 2 & -3 & 4 \\
4 & 4 & 2 & -1 \\
-2 & -2 & 7 & 2 \\
7 & 5 & 0 & -4 \\
0 & 2 & 3 & 8 \\
8 & 2 & -2 & 0 \\
-8 & 0 & -1 & -1
\end{array}\right)}^{A} \overbrace{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)}^{\vec{y}}+\overbrace{\left(\begin{array}{rrr}
-2 & 0 & 3 \\
-3 & -2 & 6 \\
1 & 8 & 2 \\
0 & 4 & 10 \\
-3 & -2 & 3 \\
2 & -9 & 1 \\
-4 & -1 & 6
\end{array}\right)}^{B} \overbrace{\left(\begin{array}{c}
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right)}^{\vec{z}} \leq \overbrace{\left(\begin{array}{r}
-9 \\
3 \\
4 \\
-2 \\
12 \\
0 \\
-9
\end{array}\right)}^{\vec{c}}
$$

Convex Hull via Projection

Finding Inequalities in the Projection Space

Project out \vec{y} from the n inequalities rewritten as:

$$
A \vec{y}+B \vec{z} \leq \vec{c}
$$

Finding Inequalities in the Projection Space

Project out \vec{y} from the n inequalities rewritten as:

$$
A \vec{y}+B \vec{z} \leq \vec{c}
$$

- Let $\vec{\lambda}=\left\langle\lambda_{1}, \ldots \lambda_{n}\right\rangle$ combine rows in A such that $\vec{\lambda} A=0$.

Finding Inequalities in the Projection Space

Project out \vec{y} from the n inequalities rewritten as:

$$
A \vec{y}+B \vec{z} \leq \vec{c}
$$

- Let $\vec{\lambda}=\left\langle\lambda_{1}, \ldots \lambda_{n}\right\rangle$ combine rows in A such that $\vec{\lambda} A=0$.
- Require that $\lambda_{i} \geq 0, i=1, \ldots n$.

Finding Inequalities in the Projection Space

Project out \vec{y} from the n inequalities rewritten as:

$$
A \vec{y}+B \vec{z} \leq \vec{c}
$$

- Let $\vec{\lambda}=\left\langle\lambda_{1}, \ldots \lambda_{n}\right\rangle$ combine rows in A such that $\vec{\lambda} A=0$.
- Require that $\lambda_{i} \geq 0, i=1, \ldots n$.
- Given a $\vec{\lambda}$, it follows that $\vec{\lambda}(A \vec{y}+B \vec{z}) \leq \vec{\lambda} \vec{c}$, hence $\vec{\lambda} B \vec{z} \leq \vec{\lambda} \vec{c}$, which is a single inequality in the projection space.

Finding Inequalities in the Projection Space

Project out \vec{y} from the n inequalities rewritten as:

$$
A \vec{y}+B \vec{z} \leq \vec{c}
$$

- Let $\vec{\lambda}=\left\langle\lambda_{1}, \ldots \lambda_{n}\right\rangle$ combine rows in A such that $\vec{\lambda} A=0$.
- Require that $\lambda_{i} \geq 0, i=1, \ldots n$.
- Given a $\vec{\lambda}$, it follows that $\vec{\lambda}(A \vec{y}+B \vec{z}) \leq \vec{\lambda} \vec{c}$, hence $\vec{\lambda} B \vec{z} \leq \vec{\lambda} \vec{c}$, which is a single inequality in the projection space.
- If $\vec{\lambda}$ is a solution, so is $s \vec{\lambda}, s>0$, hence require $\lambda_{1}+\ldots+\lambda_{n}=1$.

Finding Inequalities in the Projection Space

Project out \vec{y} from the n inequalities rewritten as:

$$
A \vec{y}+B \vec{z} \leq \vec{c}
$$

- Let $\vec{\lambda}=\left\langle\lambda_{1}, \ldots \lambda_{n}\right\rangle$ combine rows in A such that $\vec{\lambda} A=0$.
- Require that $\lambda_{i} \geq 0, i=1, \ldots n$.
- Given a $\vec{\lambda}$, it follows that $\vec{\lambda}(A \vec{y}+B \vec{z}) \leq \vec{\lambda} \vec{c}$, hence $\vec{\lambda} B \vec{z} \leq \vec{\lambda} \vec{c}$, which is a single inequality in the projection space.
- If $\vec{\lambda}$ is a solution, so is $s \vec{\lambda}, s>0$, hence require $\lambda_{1}+\ldots+\lambda_{n}=1$.
- Find vertices of the polytope $\vec{\lambda} A=0, \lambda_{i} \geq 0, \lambda_{1}+\ldots+\lambda_{n}=1$. The set of all vertices $\overrightarrow{\lambda_{1}}, \ldots \overrightarrow{\lambda_{m}}$ define projection space.

Generating Useful Inequalities

Use Simplex to find vertices $\vec{\lambda}$ of $\vec{\lambda} A=0, \lambda_{i} \geq 0, \lambda_{1}+\ldots+\lambda_{n}=1$.

Need a goal function!

Observation:

Generating Useful Inequalities

Use Simplex to find vertices $\vec{\lambda}$ of $\vec{\lambda} A=0, \lambda_{i} \geq 0, \lambda_{1}+\ldots+\lambda_{n}=1$.

Need a goal function!

Observation:

- [Kohler] Given $\overrightarrow{\lambda^{a}}, \overrightarrow{\lambda^{b}}$, if $\left\{i \mid \lambda_{i}^{a}=0\right\} \supset\left\{i \mid \lambda_{i}^{b}=0\right\}$ then $\lambda^{b} B \leq \lambda^{b} \vec{c}$ will be redundant.

Generating Useful Inequalities

Use Simplex to find vertices $\vec{\lambda}$ of $\vec{\lambda} A=0, \lambda_{i} \geq 0, \lambda_{1}+\ldots+\lambda_{n}=1$.

Need a goal function!

Observation:

- [Kohler] Given $\overrightarrow{\lambda^{a}}, \overrightarrow{\lambda^{b}}$, if $\left\{i \mid \lambda_{i}^{a}=0\right\} \supset\left\{i \mid \lambda_{i}^{b}=0\right\}$ then $\lambda^{b} B \leq \lambda^{b} \vec{c}$ will be redundant.
Idea: Run Simplex for $\langle 1,0, \ldots 0\rangle,\langle 0,1,0, \ldots 0\rangle, \ldots\langle 0, \ldots 0,1\rangle$.

Generating Useful Inequalities

Use Simplex to find vertices $\vec{\lambda}$ of $\vec{\lambda} A=0, \lambda_{i} \geq 0, \lambda_{1}+\ldots+\lambda_{n}=1$.

Need a goal function!

Observation:

- [Kohler] Given $\overrightarrow{\lambda^{a}}, \overrightarrow{\lambda^{b}}$, if $\left\{i \mid \lambda_{i}^{a}=0\right\} \supset\left\{i \mid \lambda_{i}^{b}=0\right\}$ then $\lambda^{b} B \leq \lambda^{b} \vec{c}$ will be redundant.
Idea: Run Simplex for $\langle 1,0, \ldots 0\rangle,\langle 0,1,0, \ldots 0\rangle, \ldots\langle 0, \ldots 0,1\rangle$.
- Creates at most n inequalities in the projection space.

Argument-Size Analysis for Prolog

Analysis times on a 2.4 GHz , 512 MB RAM PC using classic widening if SCCs are not stable after two iterations. Inequalities with excessive coefficients are removed.

		vars approx'ed			sparsity		
benchmark	LOC	ratio	$\%$	dim	ineq	vars	time
sim	1071	$0 / 2412$	0.0	12.0	20.1	1.3	0.61
rubik	1229	$0 / 1062$	0.0	5.7	9.4	1.5	0.20
chat	4698	$105 / 7917$	1.3	9.7	19.1	1.5	4.58
pl2wam	4775	$96 / 4078$	2.3	8.0	13.4	1.5	3.20
Iptp	7419	$213 / 12525$	1.7	8.2	15.2	1.4	9.97
aqua_c	15026	$493 / 32340$	1.5	10.3	19.5	1.5	27.59

\leadsto Results seem comparable to classic polyhedra (cTI).

Conclusion

- Program analyses often generate sparse inequalities.
- Fourier-Motzkin projection works well on sparse systems.
- Projection can be approximated if output becomes large.
- Calculating convex hull without reverting to frame representation yields incremental algorithm.

Future Work:

- More optimisations possible (e.g. Kohler's rule).

