Exploiting Sparsity in Polyhedral Analysis

Axel Simon and Andy King

Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK {A.Simon,A.King}@kent.ac.uk September 7, 2005

イロト イポト イヨト イヨト

Polyhedra Operations Classic Frame Representation

Closed, Convex Polyhedra

Let P be a finite set of (non-strict) inequalities over n variables. Let $soln(P) \subseteq \mathbb{R}^n$ denote the solution set of P. Operations on polyhedra:

イロン イヨン イヨン イヨン

Polyhedra Operations Classic Frame Representation

Closed, Convex Polyhedra

Let P be a finite set of (non-strict) inequalities over n variables. Let $soln(P) \subseteq \mathbb{R}^n$ denote the solution set of P. Operations on polyhedra:

 $P_1 \models P_2$ entailment check, i.e. $soln(P_1) \subseteq soln(P_2)$.

イロン イヨン イヨン イヨン

Polyhedra Operations Classic Frame Representation

Closed, Convex Polyhedra

Let P be a finite set of (non-strict) inequalities over n variables. Let $soln(P) \subseteq \mathbb{R}^n$ denote the solution set of P. Operations on polyhedra:

 $P_1 \models P_2$ entailment check, i.e. $soln(P_1) \subseteq soln(P_2)$. compress(P) redundancy removal, i.e. smallest $P' \subseteq P$ with soln(P') = soln(P).

・ロト ・回ト ・ヨト ・ヨト

-

Polyhedra Operations Classic Frame Representation

Closed, Convex Polyhedra

Let P be a finite set of (non-strict) inequalities over n variables. Let $soln(P) \subseteq \mathbb{R}^n$ denote the solution set of P. Operations on polyhedra:

 $P_1 \models P_2$ entailment check, i.e. $soln(P_1) \subseteq soln(P_2)$. compress(P) redundancy removal, i.e. smallest $P' \subseteq P$ with soln(P') = soln(P).

 $P_1 \sqcap P_2$ intersection, i.e. $soln(P_1) \cap soln(P_2)$.

・ロト ・回ト ・ヨト ・ヨト

Polyhedra Operations Classic Frame Representation

Closed, Convex Polyhedra

Let P be a finite set of (non-strict) inequalities over n variables. Let $soln(P) \subseteq \mathbb{R}^n$ denote the solution set of P. Operations on polyhedra:

 $P_1 \models P_2$ entailment check, i.e. $soln(P_1) \subseteq soln(P_2)$. compress(P) redundancy removal, i.e. smallest $P' \subseteq P$ with soln(P') = soln(P).

 $P_1 \sqcap P_2$ intersection, i.e. $soln(P_1) \cap soln(P_2)$.

 $P_1 \sqcup P_2$ convex hull

 $\exists_{Y} P$ projection

(日) (同) (E) (E) (E)

Polyhedra Operations Classic Frame Representation

Frame Representation

Classically: $P_1 \sqcup P_2$ and \exists_Y implemented on frame representation.

Frame representation:

Calculate vertices V_i , rays R_i and lines L_i of $soln(P_i)$.

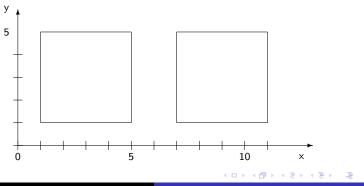
 $P_1 \sqcup P_2$ Convex hull defined by $V_1 \cup V_2$, $R_1 \cup R_2$ and $L_1 \cup L_2$. \exists_Y Remove the components corresponding to Y from V_i , R_i and L_i

Fundamental problem: Conversion to and from frame representation can incur exponential growth.

Polyhedra Operations Classic Frame Representation

Convex Hull

 $P = P_1 \sqcup P_2 \text{ is the a set of inequalities } P \text{ such that } soln(P) \text{ is the smallest set with } soln(P_1) \cup soln(P_2) \subseteq soln(P).$ Example: $P_1 = \{x \ge 1, x \le 5, y \ge 1, y \le 5\}$ $P_2 = \{x \ge 7, x \le 11, y \ge 1, y \le 5\}$



Axel Simon and Andy King Exploiting Sparsity in Polyhedral Analysis

Polyhedra Operations Classic Frame Representation

Convex Hull

0

 $P = P_1 \sqcup P_2$ is the a set of inequalities P such that soln(P) is the smallest set with $soln(P_1) \cup soln(P_2) \subset soln(P)$. Example: $P_1 = \{x \ge 1, x \le 5, y \ge 1, y \le 5\}$ $P_2 = \{x > 7, x < 11, y > 1, y < 5\}$ Solution: $P = \{x \ge 1, x \le 11, y \ge 1, y \le 5\}.$ У 5

5

Axel Simon and Andy King Exploiting Sparsity in Polyhedral Analysis

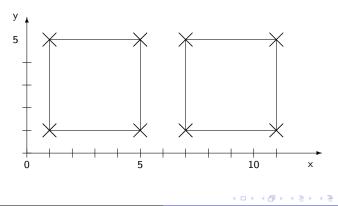
10

× ∢@> ∢≣> ∢≣>

Polyhedra Operations Classic Frame Representation

Convex Hull

Frame representation: P_1 , P_2 can be represented with 4 vertices. In general, let P_1 , P_2 be two *n*-dimensional hypercubes. Then $|P_1| = |P_2| = |P| = 2n$, but each hypercube contains 2^n vertices.



Polyhedra Operations Classic Frame Representation

Alternatives to General Polyhedra

Domains proposed to circumvent exponential cost:

・ロン ・回と ・ヨン ・ヨン

Polyhedra Operations Classic Frame Representation

Alternatives to General Polyhedra

Domains proposed to circumvent exponential cost:

Difference-Bound Matrices $x - y \leq c, c \in \mathbb{R}$

・ロト ・回ト ・ヨト ・ヨト

Polyhedra Operations Classic Frame Representation

Alternatives to General Polyhedra

Domains proposed to circumvent exponential cost:

Difference-Bound Matrices Octagon $x - y \leq c, \ c \in \mathbb{R}$ $\pm x \pm y \leq c, \ c \in \mathbb{R}$

イロン イヨン イヨン イヨン

Polyhedra Operations Classic Frame Representation

Alternatives to General Polyhedra

Domains proposed to circumvent exponential cost:

- Difference-Bound Matrices Octagon Octahedron
- $\begin{aligned} x y &\leq c, \ c \in \mathbb{R} \\ \pm x \pm y &\leq c, \ c \in \mathbb{R} \\ \pm x_1 \cdots \pm x_n &\leq c, \ c \in \mathbb{R} \end{aligned}$

イロン イヨン イヨン イヨン

-2

Polyhedra Operations Classic Frame Representation

Alternatives to General Polyhedra

Domains proposed to circumvent exponential cost:

Difference-Bound Matrices Octagon Octahedron Two-Variables-Per-Inequality $x - y \le c, c \in \mathbb{R}$ $\pm x \pm y \le c, c \in \mathbb{R}$ $\pm x_1 \cdots \pm x_n \le c, c \in \mathbb{R}$ $ax_1 + bx_2 \le c, a, b, c \in \mathbb{N}$

Polyhedra Operations Classic Frame Representation

Alternatives to General Polyhedra

Domains proposed to circumvent exponential cost:

Difference-Bound Matrices Octagon Octahedron Two-Variables-Per-Inequality

 $x - y \le c, c \in \mathbb{R}$ $\pm x \pm y \le c, c \in \mathbb{R}$ $\pm x_1 \cdots \pm x_n \le c, c \in \mathbb{R}$ $ax_1 + bx_2 \le c, a, b, c \in \mathbb{N}$

イロト イポト イヨト イヨト

Question: Which one?

Choosing one domain commits to a limited degree of precision. Aim:

Stop generating inequalities when system becomes too large. Problem:

Frame representation is inherently all-or-nothing.

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Convex Hull as Convex Combination

Given: Two input polyhedra $A_1 \vec{x} \leq \vec{c_1}$ and $A_2 \vec{x} \leq \vec{c_2}$.

Smallest convex combination of entailed points:

$$P = \begin{cases} \vec{x} & \vec{x} = \lambda_1 \vec{x_1} + \lambda_2 \vec{x_2} \land \\ A_1 \vec{x_1} \le \vec{c_1} \land A_2 \vec{x_2} \le \vec{c_2} \land \\ \lambda_1 + \lambda_2 = 1 \land \lambda_1 \ge 0 \land \lambda_2 \ge 0 \end{cases}$$

・ロト ・回ト ・ヨト ・ヨト

-2

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Convex Hull as Convex Combination

Given: Two input polyhedra $A_1 \vec{x} \leq \vec{c_1}$ and $A_2 \vec{x} \leq \vec{c_2}$.

Smallest convex combination of entailed points:

$$P = \left\{ \vec{x} \mid \begin{array}{l} \vec{x} = \lambda_1 \vec{x_1} + \lambda_2 \vec{x_2} \land \\ A_1 \vec{x_1} \le \vec{c_1} \land A_2 \vec{x_2} \le \vec{c_2} \land \\ \lambda_1 + \lambda_2 = 1 \land \lambda_1 \ge 0 \land \lambda_2 \ge 0 \end{array} \right\}$$

• $\lambda_1 \vec{x_1}$ is not linear

・ロト ・回ト ・ヨト ・ヨト

-2

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Convex Hull as Convex Combination

Given: Two input polyhedra $A_1 \vec{x} \leq \vec{c_1}$ and $A_2 \vec{x} \leq \vec{c_2}$.

Smallest convex combination of entailed points:

$$P = \begin{cases} \vec{x} & \vec{x} = \lambda_1 \vec{x_1} + \lambda_2 \vec{x_2} \land \\ A_1 \vec{x_1} \le \vec{c_1} \land A_2 \vec{x_2} \le \vec{c_2} \land \\ \lambda_1 + \lambda_2 = 1 \land \lambda_1 \ge 0 \land \lambda_2 \ge 0 \end{cases}$$

• Substitute $\vec{y_1} = \lambda_1 \vec{x_1}$ and $\vec{y_2} = \lambda_2 \vec{x_2}$:

$$P' = \left\{ \vec{x} \mid \begin{array}{c} \vec{x} = \vec{y_1} + \vec{y_2} \land \\ A_1 \vec{y_1} \le \lambda_1 \vec{c_1} \land A_2 \vec{y_2} \le \lambda_2 \vec{c_2} \land \\ \lambda_1 + \lambda_2 = 1 \land \lambda_1 \ge 0 \land \lambda_2 \ge 0 \end{array} \right\}$$

・ロト ・回ト ・ヨト ・ヨト

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Convex Hull as Convex Combination

Given: Two input polyhedra $A_1 \vec{x} \leq \vec{c_1}$ and $A_2 \vec{x} \leq \vec{c_2}$.

Smallest convex combination of entailed points:

$$P = \begin{cases} \vec{x} & | \vec{x} = \lambda_1 \vec{x_1} + \lambda_2 \vec{x_2} \land \\ A_1 \vec{x_1} \le \vec{c_1} \land A_2 \vec{x_2} \le \vec{c_2} \land \\ \lambda_1 + \lambda_2 = 1 \land \lambda_1 \ge 0 \land \lambda_2 \ge 0 \end{cases}$$

• Substitute $\vec{y_1} = \lambda_1 \vec{x_1}$ and $\vec{y_2} = \lambda_2 \vec{x_2}$:

$$P' = \left\{ \vec{x} \mid \begin{array}{c} \vec{x} = \vec{y_1} + \vec{y_2} \land \\ A_1 \vec{y_1} \le \lambda_1 \vec{c_1} \land A_2 \vec{y_2} \le \lambda_2 \vec{c_2} \land \\ \lambda_1 + \lambda_2 = 1 \land \lambda_1 \ge 0 \land \lambda_2 \ge 0 \end{array} \right\}$$

Project out y₁⁻, y₂⁻, λ₁ and λ₂. → Need an efficient projection algorithm.

イロト イポト イヨト イヨト

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Fourier-Motzkin Algorithm

Consider the following system *E*:

・ロン ・回と ・ヨン・

-2

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Fourier-Motzkin Algorithm

Task: Eliminate x₂.

・ロン ・回と ・ヨン・

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Fourier-Motzkin Algorithm

Partition system:

・ロン ・回と ・ヨン・

-2

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Fourier-Motzkin Algorithm

・ロン ・回と ・ヨン・

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Fourier-Motzkin Algorithm

Axel Simon and Andy King Exploiting Sparsity in Polyhedral Analysis

・ロン ・回と ・ヨン・

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Fourier-Motzkin Algorithm

・ロン ・回と ・ヨン・

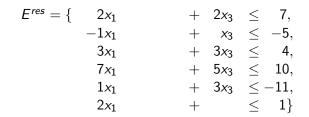
Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Fourier-Motzkin Algorithm

・ロン ・回と ・ヨン・

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Fourier-Motzkin Algorithm



 $\rightarrow E^{res}$ is projection onto x_1, x_3 - plane

・ロト ・回ト ・ヨト ・ヨト

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Variable Selection

Input system: $|E| = |E^+| + |E^-| + |E^{res}|$ Output system: $|E^+| \times |E^-| + |E^{res}|$

・ロン ・回と ・ヨン ・ヨン

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Variable Selection

Input system: $|E| = |E^+| + |E^-| + |E^{res}|$ Output system: $|E^+| \times |E^-| + |E^{res}|$

• Growth is $\Delta = |E^+| \times |E^-| - (|E^+| + |E^-|)$

・ロン ・回と ・ヨン ・ヨン

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Variable Selection

Input system: $|E| = |E^+| + |E^-| + |E^{res}|$ Output system: $|E^+| \times |E^-| + |E^{res}|$

- Growth is $\Delta = |E^+| \times |E^-| (|E^+| + |E^-|)$
- For sparse systems Δ is often zero or even -1

・ロン ・回と ・ヨン ・ヨン

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Variable Selection

Input system: $|E| = |E^+| + |E^-| + |E^{res}|$ Output system: $|E^+| \times |E^-| + |E^{res}|$

- Growth is $\Delta = |E^+| \times |E^-| (|E^+| + |E^-|)$
- For sparse systems Δ is often zero or even -1
- To delay growth, select variables with lowest Δ first

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Variable Selection

Input system: $|E| = |E^+| + |E^-| + |E^{res}|$ Output system: $|E^+| \times |E^-| + |E^{res}|$

- Growth is $\Delta = |E^+| \times |E^-| (|E^+| + |E^-|)$
- For sparse systems Δ is often zero or even -1
- To delay growth, select variables with lowest Δ first
- Remove redundant inequalities:
 quasi-syntactic after each step
 compress if system grows beyond initial size

イロト イポト イヨト イヨト

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Variable Selection

Input system: $|E| = |E^+| + |E^-| + |E^{res}|$ Output system: $|E^+| \times |E^-| + |E^{res}|$

- Growth is $\Delta = |E^+| \times |E^-| (|E^+| + |E^-|)$
- For sparse systems Δ is often zero or even -1
- To delay growth, select variables with lowest Δ first
- Remove redundant inequalities:
 quasi-syntactic after each step
 compress if system grows beyond initial size

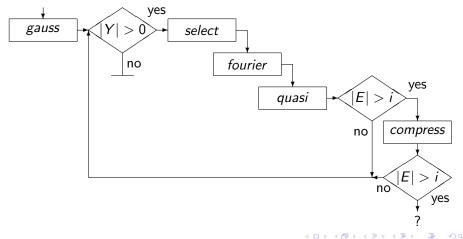
Fourier-Motzkin eliminates most variable without growth.

・ロン ・回と ・ヨン・

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Projection Algorithm

Eliminating Y from E producing at most i inequalities:



Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Eliminating Several Variables At Once

Eliminate $Y = \{x_1, \dots, x_4\}$ from the following system:

$1x_1$	+	$2x_2$	_	$3x_3$	+	4 <i>x</i> ₄	_	$2x_{5}$			+	3 <i>x</i> 7	≤ -9
												6 <i>x</i> 7	
$-2x_{1}$	_	$2x_{2}$	+	$7x_3$	+	2 <i>x</i> ₄	+	x_5	+	8 <i>x</i> 6	+	2 <i>x</i> ₇	\leq 4
$7x_1$	+	5 <i>x</i> 2			_	4 <i>x</i> ₄			+	4 <i>x</i> 6	+	10 <i>x</i> 7	≤ -2
		$2x_{2}$	+	$3x_3$	+	8 <i>x</i> 4	_	3 <i>x</i> 5	_	$2x_6$	+	3 <i>x</i> 7	\leq 12
$8x_1$	+	$2x_{2}$	_	$2x_3$			+	$2x_5$	_	$9x_6$	+	<i>x</i> ₇	\leq 0
$-8x_{1}$			_	<i>x</i> 3	_	<i>x</i> 4	_	$4x_{5}$	_	<i>x</i> 6	+	6 <i>x</i> 7	≤ -9

・ロト ・回ト ・ヨト ・ヨト ・ ヨ

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Eliminating Several Variables At Once

Eliminate $Y = \{x_1, \dots, x_4\}$ from the following system:

$1x_1$	+	$2x_2$	_	$3x_3$	+	4 <i>x</i> ₄	_	$2x_5$			+	3 <i>x</i> 7	≤ -9
$4x_1$	$^+$	$4x_{2}$	+	$2x_3$	_	<i>x</i> ₄	_	$3x_5$	_	$2x_6$	+	6 <i>x</i> 7	\leq 3
$-2x_{1}$	_	$2x_{2}$	+	$7x_3$	+	$2x_4$	+	x_5	+	8 <i>x</i> 6	+	2 <i>x</i> ₇	\leq 4
$7x_1$	+	$5x_2$			_	4 <i>x</i> ₄			+	4 <i>x</i> 6	+	10 <i>x</i> 7	≤ -2
		$2x_{2}$	+	$3x_3$	+	8 <i>x</i> 4	_	$3x_5$	_	$2x_6$	+	3 <i>x</i> 7	\leq 12
$8x_1$	+	$2x_{2}$	_	$2x_3$			+	$2x_5$	_	$9x_6$	+	<i>x</i> ₇	\leq 0
$-8x_{1}$			-	<i>x</i> 3	-	<i>x</i> 4	_	$4x_{5}$	_	x ₆	+	6 <i>x</i> 7	≤ -9

Rewrite:

$$\begin{pmatrix} 1 & 2 & -3 & 4 \\ 4 & 4 & 2 & -1 \\ -2 & -2 & 7 & 2 \\ 7 & 5 & 0 & -4 \\ 0 & 2 & 3 & 8 \\ 8 & 2 & -2 & 0 \\ -8 & 0 & -1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} + \begin{pmatrix} -2 & 0 & 3 \\ -3 & -2 & 6 \\ 1 & 8 & 2 \\ 0 & 4 & 10 \\ -3 & -2 & 3 \\ 2 & -9 & 1 \\ -4 & -1 & 6 \end{pmatrix} \begin{pmatrix} x_5 \\ x_6 \\ x_7 \end{pmatrix} \leq \begin{pmatrix} -9 \\ 3 \\ 4 \\ -2 \\ 12 \\ 0 \\ -9 \end{pmatrix}$$

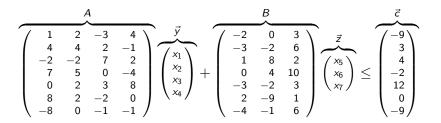
・ロト ・回ト ・ヨト ・ヨト

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Eliminating Several Variables At Once

Eliminate $Y = \{x_1, \dots, x_4\}$ from the following system:

$1x_1$	+	$2x_{2}$	_	3 <i>x</i> 3	+	4 <i>x</i> ₄	_	$2x_{5}$			+	3 <i>x</i> 7	≤ -9
$4x_1$	+	$4x_{2}$	+	$2x_3$	_	<i>x</i> 4	_	$3x_5$	_	$2x_6$	+	6 <i>x</i> 7	\leq 3
$-2x_{1}$	_	$2x_2$	+	$7x_3$	+	$2x_4$	+	x_5	+	8 <i>x</i> 6	+	2x7	\leq 4
$7x_1$	+	$5x_2$			_	4 <i>x</i> ₄			+	4 <i>x</i> ₆	+	10x7	≤ -2
		$2x_2$	+	$3x_3$	$^+$	8 <i>x</i> 4	_	$3x_5$	_	$2x_6$	$^+$	3 <i>x</i> 7	\leq 12
8 <i>x</i> 1	+	$2x_2$	_	$2x_3$			+	$2x_{5}$	_	$9x_6$	+	<i>X</i> 7	\leq 0
$-8x_{1}$			_	<i>x</i> 3	_	<i>x</i> 4	_	4 <i>x</i> 5	_	x_6	+	6 <i>x</i> 7	≤ -9



▲同 ▶ ▲ 臣 ▶

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Finding Inequalities in the Projection Space

Project out \vec{y} from the *n* inequalities rewritten as:

 $A\vec{y} + B\vec{z} \le \vec{c}$

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Finding Inequalities in the Projection Space

Project out \vec{y} from the *n* inequalities rewritten as:

$$A\vec{y} + B\vec{z} \leq \vec{c}$$

• Let $\vec{\lambda} = \langle \lambda_1, \dots, \lambda_n \rangle$ combine rows in A such that $\vec{\lambda}A = 0$.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Project out \vec{y} from the *n* inequalities rewritten as:

$$A\vec{y} + B\vec{z} \leq \vec{c}$$

- Let $\vec{\lambda} = \langle \lambda_1, \dots, \lambda_n \rangle$ combine rows in A such that $\vec{\lambda}A = 0$.
- Require that $\lambda_i \geq 0$, $i = 1, \ldots n$.

・ロン ・回と ・ヨン・

Project out \vec{y} from the *n* inequalities rewritten as:

$$A\vec{y} + B\vec{z} \leq \vec{c}$$

- Let $\vec{\lambda} = \langle \lambda_1, \dots, \lambda_n \rangle$ combine rows in A such that $\vec{\lambda}A = 0$.
- Require that $\lambda_i \geq 0$, $i = 1, \ldots n$.
- ► Given a $\vec{\lambda}$, it follows that $\vec{\lambda}(A\vec{y} + B\vec{z}) \leq \vec{\lambda}\vec{c}$, hence $\vec{\lambda}B\vec{z} \leq \vec{\lambda}\vec{c}$, which is a single inequality in the projection space.

・ロン ・回 と ・ ヨン ・ ヨン

Project out \vec{y} from the *n* inequalities rewritten as:

$$A\vec{y} + B\vec{z} \le \vec{c}$$

• Let $\vec{\lambda} = \langle \lambda_1, \dots, \lambda_n \rangle$ combine rows in A such that $\vec{\lambda}A = 0$.

- Require that $\lambda_i \geq 0$, $i = 1, \ldots n$.
- ► Given a $\vec{\lambda}$, it follows that $\vec{\lambda}(A\vec{y} + B\vec{z}) \leq \vec{\lambda}\vec{c}$, hence $\vec{\lambda}B\vec{z} \leq \vec{\lambda}\vec{c}$, which is a single inequality in the projection space.
- If $\vec{\lambda}$ is a solution, so is $s\vec{\lambda}$, s > 0, hence require $\lambda_1 + \ldots + \lambda_n = 1$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Project out \vec{y} from the *n* inequalities rewritten as:

$$A\vec{y} + B\vec{z} \le \vec{c}$$

• Let $\vec{\lambda} = \langle \lambda_1, \dots, \lambda_n \rangle$ combine rows in A such that $\vec{\lambda}A = 0$.

- Require that $\lambda_i \geq 0$, $i = 1, \ldots n$.
- ► Given a $\vec{\lambda}$, it follows that $\vec{\lambda}(A\vec{y} + B\vec{z}) \leq \vec{\lambda}\vec{c}$, hence $\vec{\lambda}B\vec{z} \leq \vec{\lambda}\vec{c}$, which is a single inequality in the projection space.
- If $\vec{\lambda}$ is a solution, so is $s\vec{\lambda}$, s > 0, hence require $\lambda_1 + \ldots + \lambda_n = 1$.
- Find vertices of the polytope $\vec{\lambda}A = 0, \lambda_i \ge 0, \lambda_1 + \ldots + \lambda_n = 1$. The set of all vertices $\vec{\lambda_1}, \ldots, \vec{\lambda_m}$ define projection space.

イロト イヨト イヨト イヨト

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Generating Useful Inequalities

Use Simplex to find vertices $\vec{\lambda}$ of $\vec{\lambda}A = 0, \lambda_i \ge 0, \lambda_1 + \ldots + \lambda_n = 1$.

Need a goal function!

Observation:

・ロン ・回と ・ヨン・

-2

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Generating Useful Inequalities

Use Simplex to find vertices $\vec{\lambda}$ of $\vec{\lambda}A = 0, \lambda_i \ge 0, \lambda_1 + \ldots + \lambda_n = 1$.

Need a goal function!

Observation:

▶ [Kohler] Given $\lambda^{\vec{a}}, \lambda^{\vec{b}}$, if $\{i \mid \lambda_i^a = 0\} \supset \{i \mid \lambda_i^b = 0\}$ then $\lambda^b B \leq \lambda^b \vec{c}$ will be redundant.

・ロン ・回 と ・ ヨ と ・ ヨ と

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Generating Useful Inequalities

Use Simplex to find vertices $\vec{\lambda}$ of $\vec{\lambda}A = 0, \lambda_i \ge 0, \lambda_1 + \ldots + \lambda_n = 1$.

Need a goal function!

Observation:

▶ [Kohler] Given $\lambda^{\vec{a}}, \lambda^{\vec{b}}$, if $\{i \mid \lambda_i^a = 0\} \supset \{i \mid \lambda_i^b = 0\}$ then $\lambda^b B \leq \lambda^b \vec{c}$ will be redundant.

Idea: Run Simplex for $(1, 0, \dots 0)$, $(0, 1, 0, \dots 0)$, $\dots (0, \dots 0, 1)$.

Convex Hull via Projection Fourier-Motzkin Variable Elimination Extreme Point Elimination

Generating Useful Inequalities

Use Simplex to find vertices $\vec{\lambda}$ of $\vec{\lambda}A = 0, \lambda_i \ge 0, \lambda_1 + \ldots + \lambda_n = 1$.

Need a goal function!

Observation:

▶ [Kohler] Given $\lambda^{\vec{a}}, \lambda^{\vec{b}}$, if $\{i \mid \lambda_i^a = 0\} \supset \{i \mid \lambda_i^b = 0\}$ then $\lambda^b B \leq \lambda^b \vec{c}$ will be redundant.

Idea: Run Simplex for $(1, 0, \dots 0)$, $(0, 1, 0, \dots 0)$, $\dots (0, \dots 0, 1)$.

• Creates at most *n* inequalities in the projection space.

・ロン ・回 と ・ ヨン ・ ヨン

Argument-Size Analysis for Prolog

Analysis times on a 2.4GHz, 512MB RAM PC using classic widening if SCCs are not stable after two iterations. Inequalities with excessive coefficients are removed.

		vars approx	9				
benchmark	LOC	ratio	%	dim	ineq	vars	time
sim	1071	0/2412	0.0	12.0	20.1	1.3	0.61
rubik	1229	0/1062	0.0	5.7	9.4	1.5	0.20
chat	4698	105/7917	1.3	9.7	19.1	1.5	4.58
pl2wam	4775	96/4078	2.3	8.0	13.4	1.5	3.20
lptp	7419	213/12525	1.7	8.2	15.2	1.4	9.97
aqua_c	15026	493/32340	1.5	10.3	19.5	1.5	27.59

 \sim Results seem comparable to classic polyhedra (cTl).

イロン イヨン イヨン イヨン

Conclusion

- Program analyses often generate sparse inequalities.
- ► Fourier-Motzkin projection works well on sparse systems.
- Projection can be approximated if output becomes large.
- Calculating convex hull without reverting to frame representation yields incremental algorithm.

Future Work:

More optimisations possible (e.g. Kohler's rule).

・ 同 ト ・ ヨ ト ・ ヨ ト