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Closed, Convex Polyhedra

Let P be a finite set of (non-strict) inequalities over n variables.
Let soln(P) ⊆ Rn denote the solution set of P.
Operations on polyhedra:

P1 |= P2 entailment check, i.e. soln(P1) ⊆ soln(P2).

compress(P) redundancy removal, i.e. smallest P ′ ⊆ P with
soln(P ′) = soln(P).

P1 u P2 intersection, i.e. soln(P1) ∩ soln(P2).

P1 t P2 convex hull

∃Y P projection
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Frame Representation

Classically: P1 t P2 and ∃Y implemented on frame representation.

Frame representation:
Calculate vertices Vi , rays Ri and lines Li of soln(Pi ).

P1 t P2 Convex hull defined by V1 ∪ V2, R1 ∪ R2 and L1 ∪ L2.

∃Y Remove the components corresponding to Y from
Vi , Ri and Li

Fundamental problem: Conversion to and from frame
representation can incur exponential growth.
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Convex Hull

P = P1 t P2 is the a set of inequalities P such that soln(P) is the
smallest set with soln(P1) ∪ soln(P2) ⊆ soln(P).
Example: P1 = {x ≥ 1, x ≤ 5, y ≥ 1, y ≤ 5}

P2 = {x ≥ 7, x ≤ 11, y ≥ 1, y ≤ 5}

Solution: P = {x ≥ 1, x ≤ 11, y ≥ 1, y ≤ 5}.
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Convex Hull

Frame representation: P1, P2 can be represented with 4 vertices.
In general, let P1, P2 be two n-dimensional hypercubes. Then
|P1| = |P2| = |P| = 2n, but each hypercube contains 2n vertices.
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Alternatives to General Polyhedra

Domains proposed to circumvent exponential cost:

Difference-Bound Matrices x − y ≤ c , c ∈ R
Octagon ±x ± y ≤ c , c ∈ R
Octahedron ±x1 · · · ± xn ≤ c , c ∈ R
Two-Variables-Per-Inequality ax1 + bx2 ≤ c , a, b, c ∈ N

Question: Which one?
Choosing one domain commits to a limited degree of precision.
Aim:
Stop generating inequalities when system becomes too large.
Problem:
Frame representation is inherently all-or-nothing.
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Convex Hull as Convex Combination

Given: Two input polyhedra A1~x ≤ ~c1 and A2~x ≤ ~c2.

I Smallest convex combination of entailed points:

P =

~x

∣∣∣∣∣∣
~x = λ1 ~x1 + λ2 ~x2∧
A1 ~x1 ≤ ~c1 ∧ A2 ~x2 ≤ ~c2 ∧
λ1 + λ2 = 1 ∧ λ1 ≥ 0 ∧ λ2 ≥ 0



I Substitute ~y1 = λ1 ~x1 and ~y2 = λ2 ~x2:

P ′ =

~x

∣∣∣∣∣∣
~x = ~y1 + ~y2∧
A1 ~y1 ≤ λ1 ~c1 ∧ A2 ~y2 ≤ λ2 ~c2 ∧
λ1 + λ2 = 1 ∧ λ1 ≥ 0 ∧ λ2 ≥ 0


I Project out ~y1, ~y2, λ1 and λ2.

; Need an efficient projection algorithm.
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Fourier-Motzkin Algorithm

Consider the following system E :

E+ = {

2x1 + x2 + 2x3 ≤ 7

,

−1x1 + 2x2 + x3 ≤ −5

}
E− = {

1x1 − x2 + 1x3 ≤ −3

,

3x1 − 2x2 − 1x3 ≤ 6

}
E res = {

2x1 + 2x3 ≤ 7

,

−1x1 + x3 ≤ −5

3x1 + 3x3 ≤ 4
7x1 + 5x3 ≤ 10
1x1 + 3x3 ≤ −11
2x1 + ≤ 1}

; E res is projection onto x1, x3 - plane
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Task: Eliminate x2.
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Partition system:
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Variable Selection

Input system: |E | = |E+|+ |E−|+ |E res |
Output system: |E+| × |E−|+ |E res |

I Growth is ∆ = |E+| × |E−| − (|E+|+ |E−|)
I For sparse systems ∆ is often zero or even −1

I To delay growth, select variables with lowest ∆ first

I Remove redundant inequalities:

quasi-syntactic after each step
compress if system grows beyond initial size

Fourier-Motzkin eliminates most variable without growth.
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Projection Algorithm

Eliminating Y from E producing at most i inequalities:
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Eliminating Several Variables At Once

Eliminate Y = {x1, . . . x4} from the following system:

1x1 + 2x2 − 3x3 + 4x4 − 2x5 + 3x7 ≤ −9
4x1 + 4x2 + 2x3 − x4 − 3x5 − 2x6 + 6x7 ≤ 3

−2x1 − 2x2 + 7x3 + 2x4 + x5 + 8x6 + 2x7 ≤ 4
7x1 + 5x2 − 4x4 + 4x6 + 10x7 ≤ −2

2x2 + 3x3 + 8x4 − 3x5 − 2x6 + 3x7 ≤ 12
8x1 + 2x2 − 2x3 + 2x5 − 9x6 + x7 ≤ 0

−8x1 − x3 − x4 − 4x5 − x6 + 6x7 ≤ −9

Rewrite:
1 2 −3 4
4 4 2 −1

−2 −2 7 2
7 5 0 −4
0 2 3 8
8 2 −2 0

−8 0 −1 −1


 x1

x2

x3

x4

 +


−2 0 3
−3 −2 6

1 8 2
0 4 10

−3 −2 3
2 −9 1

−4 −1 6


(

x5

x6

x7

)
≤


−9

3
4

−2
12
0

−9


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−3 −2 6

1 8 2
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~z︷ ︸︸ ︷(
x5

x6
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~c︷ ︸︸ ︷
−9
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4

−2
12
0

−9


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Finding Inequalities in the Projection Space

Project out ~y from the n inequalities rewritten as:

A~y + B~z ≤ ~c

I Let ~λ = 〈λ1, . . . λn〉 combine rows in A such that ~λA = 0.

I Require that λi ≥ 0, i = 1, . . . n.

I Given a ~λ, it follows that ~λ(A~y + B~z) ≤ ~λ~c , hence ~λB~z ≤ ~λ~c ,
which is a single inequality in the projection space.

I If ~λ is a solution, so is s~λ, s >0, hence require λ1+. . .+λn =1.

I Find vertices of the polytope ~λA = 0, λi ≥ 0, λ1+. . .+λn =1.
The set of all vertices ~λ1, . . . ~λm define projection space.
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Generating Useful Inequalities

Use Simplex to find vertices ~λ of ~λA = 0, λi ≥ 0, λ1 + . . .+λn = 1.

Need a goal function!

Observation:

I [Kohler] Given ~λa, ~λb, if {i | λa
i = 0} ⊃ {i | λb

i = 0} then
λbB ≤ λb~c will be redundant.

Idea: Run Simplex for 〈1, 0, . . . 0〉, 〈0, 1, 0, . . . 0〉, . . . 〈0, . . . 0, 1〉.
I Creates at most n inequalities in the projection space.

Axel Simon and Andy King Exploiting Sparsity in Polyhedral Analysis



Convex Polyhedra
Projection

Experimental Results

Convex Hull via Projection
Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Generating Useful Inequalities

Use Simplex to find vertices ~λ of ~λA = 0, λi ≥ 0, λ1 + . . .+λn = 1.

Need a goal function!

Observation:

I [Kohler] Given ~λa, ~λb, if {i | λa
i = 0} ⊃ {i | λb

i = 0} then
λbB ≤ λb~c will be redundant.

Idea: Run Simplex for 〈1, 0, . . . 0〉, 〈0, 1, 0, . . . 0〉, . . . 〈0, . . . 0, 1〉.
I Creates at most n inequalities in the projection space.

Axel Simon and Andy King Exploiting Sparsity in Polyhedral Analysis



Convex Polyhedra
Projection

Experimental Results

Convex Hull via Projection
Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Generating Useful Inequalities

Use Simplex to find vertices ~λ of ~λA = 0, λi ≥ 0, λ1 + . . .+λn = 1.

Need a goal function!

Observation:

I [Kohler] Given ~λa, ~λb, if {i | λa
i = 0} ⊃ {i | λb

i = 0} then
λbB ≤ λb~c will be redundant.

Idea: Run Simplex for 〈1, 0, . . . 0〉, 〈0, 1, 0, . . . 0〉, . . . 〈0, . . . 0, 1〉.

I Creates at most n inequalities in the projection space.

Axel Simon and Andy King Exploiting Sparsity in Polyhedral Analysis



Convex Polyhedra
Projection

Experimental Results

Convex Hull via Projection
Fourier-Motzkin Variable Elimination
Extreme Point Elimination

Generating Useful Inequalities

Use Simplex to find vertices ~λ of ~λA = 0, λi ≥ 0, λ1 + . . .+λn = 1.

Need a goal function!

Observation:

I [Kohler] Given ~λa, ~λb, if {i | λa
i = 0} ⊃ {i | λb

i = 0} then
λbB ≤ λb~c will be redundant.

Idea: Run Simplex for 〈1, 0, . . . 0〉, 〈0, 1, 0, . . . 0〉, . . . 〈0, . . . 0, 1〉.
I Creates at most n inequalities in the projection space.

Axel Simon and Andy King Exploiting Sparsity in Polyhedral Analysis



Convex Polyhedra
Projection

Experimental Results

Argument-Size Analysis for Prolog

Analysis times on a 2.4GHz, 512MB RAM PC using classic
widening if SCCs are not stable after two iterations. Inequalities
with excessive coefficients are removed.

vars approx’ed sparsity
benchmark LOC ratio % dim ineq vars time

sim 1071 0/2412 0.0 12.0 20.1 1.3 0.61
rubik 1229 0/1062 0.0 5.7 9.4 1.5 0.20
chat 4698 105/7917 1.3 9.7 19.1 1.5 4.58

pl2wam 4775 96/4078 2.3 8.0 13.4 1.5 3.20
lptp 7419 213/12525 1.7 8.2 15.2 1.4 9.97

aqua c 15026 493/32340 1.5 10.3 19.5 1.5 27.59

; Results seem comparable to classic polyhedra (cTI).
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Conclusion

I Program analyses often generate sparse inequalities.

I Fourier-Motzkin projection works well on sparse systems.

I Projection can be approximated if output becomes large.

I Calculating convex hull without reverting to frame
representation yields incremental algorithm.

Future Work:

I More optimisations possible (e.g. Kohler’s rule).
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