
Teaching Introductory Java through LEGO MINDSTORMS Models

David J. Barnes
The Computing Laboratory

The University
Canterbury, Kent. CT2 7NF

United Kingdom
d.j.barnes@ukc.ac.uk

Abstract
Innovative teachers are continually looking for creative
ideas, both to get their ideas across and to hold the interest
of their students. One of the latest trends is the use of
LEGO MINDSTORMS™ kits [9] in various computing
courses. These kits allow a wide variety of physical models
to be built, some of which may be programmed via the
RCX™ processor integrated into them. Using its standard
firmware, the RCX device may be programmed through
several different specialist languages. However, the
additional availability of bytecode-compatible replacement
firmware for the RCX makes the use of Java™ as the
programming language for it a particularly attractive
approach. In this paper, we explore some of the issues
associated with choosing to program MINDSTORMS
models using Java within the context of an introductory
programming course. In particular, we consider the impact
on the material that is taught, and the use of an appropriate
API to support an objects-early programming style.

1 The RCX Processor
The RCX is a programmable processor housed in an
oversized LEGO brick. This allows the processor to be an
integral part of any model that is built with the
MINDSTORMS kits. On the outside of the processor’s
brick are three input ports (labeled 1, 2, and 3), three output
ports (labeled A, B, and C), an input-output infrared device,
a single-line LCD, a speaker, and four buttons (one of
which is the on-off switch). In size, the input and output
ports are compatible with standard LEGO bricks but they
also have electrical contacts. These are designed to attach
to similar contacts housed in special purpose input and out-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGCSE’02, February 27-March 3, 2002, Covington, Kentucky, USA.

Copyright 2002 ACM 1-58113-473-8/02/0002...$5.00

put devices. A number of input-output devices are
available as standard, such as motors, touch sensors, light
sensors, rotation sensors, etc. The configuration of the
RCX and the range of available devices make it possible
to create a wide variety of programmed LEGO models.
However, in this paper, our main interest is in the
programming aspects of modeling and we do not intend
to discuss any particular model in detail. The reader
interested in exploring construction aspects is referred to
references such as [3,5,7,10] for some of the ever-
growing range of highly imaginative designs.

2 RCX Programming Environments
With a standard MINDSTORMS kit, programs are created
in RCX Code using a PC-based graphical programming
environment. These programs are then uploaded via the
environment into the RCX over an infrared link. A popular
alternative to using RCX Code is Dave Baum's NQC [3] –
a textual C-like language with greater versatility than RCX
Code. In addition, a number of people have pieced together
the internal details of the MINDSTORMS kits [11],
enabling unofficial projects to create alternative firmware
for the RCX, such as legOs [12] and pbForth [6]. Our
particular interest is in the leJOS project [15], which has
created replacement firmware that is compatible with the
standard bytecode produced by Java compilers. This opens
up the possibility of programming RCX-based models
using Java.

3 The Appeal of Computer-Controlled Models
For a long time, educators have found the use of computer-
controlled models to be an aid in the teaching of
introductory programming. Turtle [13] is one of the best-
known examples, and Karel the Robot [14] is one that
started life as a paper-and-pencil approach but was
accompanied by optional simulation. Karel continues to be
used to teach programming [4], while other textbooks use
related ideas such as modeling and navigating a ship [1].
The availability of kits such as MINDSTORMS makes it
relatively easy to build and create interesting and
imaginative physical models for students to program and
control. One of the biggest advantages of such kits – for

both students and teachers – is surely that they need to
know almost nothing about hardware; yet they can still
create quite sophisticated working models.
One reason why physical models are attractive is that they
provide tangible feedback to students on the workings of
the programs [16]. Furthermore, the physical constraints of
the coding and debugging cycle mean that good design and
planning have to have a high priority in students’ thinking
[17]. In addition, for some students, controlling a physical
model is likely to have much more appeal than controlling
a graphical representation of what is, after all, meant to be a
simulation of a physical model.
In the remainder of this paper, we consider some of the
impacts that using RCX-based models in an introductory
programming course could have on both the Java material
that is taught and the object-oriented modeling aspects. For
the purpose of discussion, we focus on the leJOS
environment and its associated Java API [15].

4 An Illustrative Programming Example
Figure 1 illustrates a simple program that uses the leJOS
API to drive a wheeled model.
import josx.platform.rcx.*;

/**
 * A model with left and right motors,
 * plus a single touch sensor.
 */
public class OneBumper {
 private Motor left = Motor.A,
 right = Motor.C;
 private Sensor bumper = Sensor.S1;

 /**
 * Run forward until an obstacle is
 * hit. Then reverse.
 */
 public void run(){
 bumper.setTypeAndMode(
 SensorConstants.SENSOR_TYPE_TOUCH,
 SensorConstants.SENSOR_MODE_BOOL);
 left.setPower(3);
 right.setPower(3);
 left.forward();
 right.forward();
 // Wait until we hit a wall.
 while(bumper.readValue() == 0){
 // Do nothing.
 }
 // Back away from the wall.
 left.backward();
 right.backward();
 }
}

Figure 1: A model with two motors and one touch
sensor

The program causes the model to move forward until its
touch sensor is triggered, at which point the motors are
reversed. For the sake of simplicity, we have not attempted
to show any further interaction with the model once it is
moving backwards. Polling is used to determine when the
front bumper hits a wall; the value of the sensor is read
repeatedly until its value changes from zero to one, which
indicates a collision.
In the next section we discuss some of the issues that arise
from this example in the context of an introductory Java
course.

5 Introductory Programming Issues
Programs based around the example in Figure 1 might be
used relatively early in a Java course to illustrate
introductory features of object-oriented programming, such
as statement sequences, method calling, parameter passing,
and multiple instances of a class. However, there are some
aspects that it does not illustrate particularly well. Consider
the portion involving the while loop, for instance.
• This is not a good exemplar of a loop, as it has an

empty body. Normally one would teach that the body
of a loop contains statements that will eventually
cause the loop's condition to become false.

• Polling is not always the best way to interact with
input devices, particularly when there is more than
one to deal with.

• A touch-sensor is typically used as an on-off device;
we are only interested in whether it has been pressed
or released. However, the Sensor class returns its
state as an integer value. As Java supports a Boolean
type, it would be preferable pedagogically to use
genuine Boolean values for such sensors.

Figure 2 presents an alternative version of this example that
seeks to address the first two of these points.
Instead of using polling to detect changes in the sensor, we
have attached an event listener to it. This is a more natural
way to monitor sensors, and scales well with multiple
sensors. A negative aspect of using listeners, however, is
that the programming concepts involved are significantly
more complex than using polling. The implementation in
Figure 2 uses both interfaces and anonymous inner classes,
for instance, neither of which would normally be
considered to be easy introductory-level concepts.
Another issue that may be difficult for introductory
students is the link between the control flow within a
driving program and the sequence of actions that a physical
model goes through. The contrasting styles of polling and
event listening present some conceptual differences in this
respect. In Figure 1, the presence of the while loop tends to
suggest – albeit fallaciously – that the continuous execution
of the loop corresponds to the continuous forward
movement of the model. Once the sensor is triggered, the
forward motion is followed in sequence in the program by

statements to initiate backward motion, which is then
reflected in the model. In contrast, the control flow of the
version in Figure 2 seems to have no direct link with the
model’s behavior; the program appears to do nothing
further once the motors have been started, yet the model
does behave as required.
/**
 * A model with left and right motors,
 * plus a single touch sensor.
 */
public class OneBumper {
 private Motor left = Motor.A,
 right = Motor.C;
 private Sensor bumper = Sensor.S1;

 /**
 * Run forward until an obstacle is
 * hit. Then reverse.
 */
 public void run(){
 bumper.setTypeAndMode(
 SensorConstants.SENSOR_TYPE_TOUCH,
 SensorConstants.SENSOR_MODE_BOOL);
 bumper.addSensorListener(
 new SensorListener(){
 public void stateChanged(
 Sensor s,int oldValue,
 int newValue){
 if(newValue == 1){
 // We hit a wall.
 left.backward();
 right.backward();
 }
 }
 });

 left.setPower(3);
 right.setPower(3);
 left.forward();
 right.forward();
 }
}

Figure 2: Attaching an event listener to a sensor

What we have is an illustration that the model operates as a
separate process that is truly concurrent with the execution
of its driving program. This is one of the most significant
differences between real models and the sort of simulated
worlds discussed in Section 3; simulated models tend to
take discrete steps in synchrony with the control flow and
method calls of their driving programs. For students who
are trying to build mental models of program execution,
these differences between program flow and model
behavior, or real worlds and simulated worlds, may present
difficulties.
It is worth noting, however, that there are strong
similarities between this event-driven style of programming
physical models and the programming of graphical user
interfaces based on Java’s AWT and Swing frameworks
[1]. With GUIs, a user interacting with buttons, menus, etc.,

functions as the independent process. This concurrency is
managed in both scenarios by the presence of separate
threads of execution monitoring for events, and notifying
listeners when they occur.

6 Object-Oriented Issues
When teaching object-oriented analysis and design, we
encourage students to identify the natural classes and
objects that exist within a particular scenario. Of course,
the ‘correct’ identification of these depends strongly upon
the level of abstraction we wish them to consider, and how
far we plan to take the design through to implementation.
This can be hard for students to deal with. For instance, if
we wish to model a vehicle such as a car, is it necessary to
model wheels, axles, pistons, petrol tank, windows, and so
on? A big advantage of using a physical model that we are
really going to program is that there is a much stronger
focus for the modeling process – the motors are probably
much more relevant than the individual wheels, for
instance.
Having identified the natural classes that arise from a
particular model, we would probably like the students to
then create objects of those classes in their own programs.
It is here that some stylistic issues of concern might arise
from the programming examples we have used so far.
• In neither example have we created any device-related

objects. In both, references to pre-created motor and
sensor objects are obtained via static references. This
may not be the best pedagogic approach in an objects-
early course.

• The touch sensor of the model has had to be mapped
to a generic Sensor object, and it is necessary to tell
that object what type it actually represents. Normal
object-oriented style would require that an object’s
type should be an inherent part of its class definition.

In the next section, we seek to address some of these
concerns.

7 Working with Alternative APIs
The comments towards the end of the previous section are
not intended as a criticism of the leJOS platform API. We
recognize that the main reasons behind its design are
pragmatic; the amount of memory available within the
RCX is only 32K bytes. If sufficient memory is to remain
available for user programs, it is important that the
firmware and general API be as lean as possible, yet still
provide a practical general-purpose programming
environment. Our requirements of the API happen to be
constrained by the highly specialized desire to present a
pedagogically clean object-oriented programming
environment. An API that purely satisfies these
requirements runs the risk of being too bloated to allow
practical programs to be written with it. However, we
believe that one of the best features of the leJOS project is
that the platform is sufficiently well defined that it is viable

to develop custom APIs to suit individual teaching
environments and the particular abstractions to be pursued
in different courses.
Figure 3 presents a version of the running example using
one such alternative API [2], designed to support an
objects-early approach to Java.
/**
 * A model with left and right motors,
 * plus a single touch sensor.
 */
public class OneBumper {
 private Motor left = new Motor('A'),
 right = new Motor('C');
 private TouchSensor bumper =
 new TouchSensor(1);

 /**
 * Run forward until an obstacle is
 * hit. Then reverse.
 */
 public void run(){
 bumper.addSensorListener(
 new BooleanSensorListener(){
 public void stateChanged(
 boolean oldValue,
 boolean newValue){
 if(newValue){
 // We hit a wall.
 left.backward();
 right.backward();
 }
 }
 });

 left.setPower(3);
 right.setPower(3);
 left.forward();
 right.forward();
 }
}

Figure 3: Programming with an alternative API

This API differs from the standard one in that instances of
the Motor class may be created and a small set of typed
sensor classes are also available. In addition, alternative
listener interfaces permit sensor values to be notified to an
application as either integer or Boolean values.
In order to assess the memory impact of the different
approaches, Table 1 presents a comparison of the static size
and remaining free space for each of the three versions of
the programming example we have discussed. It is clear
from these that the use of event handlers is more memory
hungry than the use of polling. In addition, execution using
the alternative API has consumed a further approximately
800 bytes of free space at runtime.

Version Static size Free space

Figure 1 3031 6046
Figure 2 3124 5444
Figure 3 3999 4632

Table 1: Static size and remaining free space in the
different versions (values in bytes).

8 Further Issues
When developing course material based around the RCX,
there are some further practical issues that are worth taking
into account.
In traditional programming environments, when things are
not working as expected we are accustomed to inserting
extra print statements or using a debugger in order to track
down the problem. With only a single small LCD line on
the RCX to print to, lack of feedback can be a problem,
unless you are prepared to communicate back to the host
PC via the IR device! While as a teacher one might hope
that this would make students more systematic in their
approach to problem solving [17], students may simply find
it frustrating.
Allied to the debugging issue is the length of time taken by
the edit-compile-upload-run cycle. With upload speeds of
the order of 100 bytes per second, the cycle can be
significantly longer than with purely PC-hosted examples.
It is amusing to reflect that the availability of a simulator
would help here! It might also be worth noting that the time
taken to code and debug examples in the Karel simulator
was one reason why Pattis felt that students might better
spend their time reading the book and working through the
problems on paper [14].
In Section 5, we noted some of the perceptual differences
between physical models and their simulated counterparts.
Further differences arise from the inexact nature of a
physical model’s movements and the environment in which
it operates. For instance, two motors driving independent
wheels are unlikely to match each other exactly in their
output, causing a model to drift unpredictably from a
straight line. This is impossible to allow for in software
without mechanical assistance from a combination of
differential gearing and rotation sensors [8]. Furthermore,
typical actions that are relatively easy to program in
simulation software – such as turning a Turtle through a
fixed angle – can be hard to configure in a physical model.

9 Conclusions
It has long been recognized that computer-controlled
models are a useful aid in teaching introductory
programming. Physical models provide an interesting
alternative to simulated models which are commonplace.
LEGO MINDSTORMS models are a particularly
convenient way to build physical programmable models
without having to know anything about hardware. The

availability of replacement firmware, such as leJOS, means
that models built around the RCX processor can be
programmed using Java – an increasingly common
introductory programming language. Aside from the
programming aspects, this environment certainly provides
nice illustrations of two fundamental concepts that are
often associated with Java; bytecode portability and the
programmability of small devices.
In this paper, we have considered some of the pedagogic
issues that arise from using the RCX in combination with
Java for introductory programming. We have seen that
there are some significant differences between simulated
models and their physical counterparts. The concurrent and
event-driven nature of physical models best suits a
programming style that may be considered relatively
advanced for introductory students, although there are
similarities with the style used to program graphical user
interfaces, which is regularly undertaken on introductory
courses.
We also believe that there is a risk that good object-
oriented programming style could be distorted by the
pragmatics and physical limitations of the RCX
environment. However, we have suggested that there is
good scope for developing custom APIs that better suit the
pedagogic requirements of particular courses, in order to
mitigate these disadvantages.
On balance, we believe that is better to use these models to
enhance and support an introductory programming course
rather than as the basis for a whole course.

10 Acknowledgements
I am particularly grateful to Michael Caspersen (University
of Aarhus) for demonstrating a Java-programmed RCX
turtle, which sparked my initial interest in these models. In
preparing this paper, I valued the discussions I had with a
number of people, including Roger Glassey (University of
California, Berkeley), Janet Linington (University of Kent
at Canterbury), and Bill Margolis (National University of
Samoa), all of who are using the RCX with Java in their
teaching.
Java is a trademark of Sun Microsystems, Inc., LUGNET is
a trademark of Todd S. Lehman and Suzanne D. Rich,
RCX and MINDSTORMS are trademarks and LEGO is a
registered trademark of the LEGO company.

References
[1] Barnes, David J. Object-Oriented Programming with

Java: An Introduction. Prentice-Hall, 2000.
[2] Barnes, David J. An API for the Lejos platform,

intended for introductory Java instruction. Online.
Internet. [August 22, 2001]. Available WWW:
http://www.cs.ukc.ac.uk/people/staff/djb/rcx/

[3] Baum, Dave. Definitive Guide to LEGO
MINDSTORMS. Apress, 2000.

[4] Becker, Byron Weber. Teaching CS1 with Karel the
Robot in Java, in Proceedings of the 32nd SIGCSE
(Feb 2001), ACM Press, 50-54.

[5] Erwin, Benjamin, Creative Projects with LEGO
Mindstorms, Addison-Wesley, 2001.

[6] Hempel, Ralph. pbFORTH. Online. Internet. [August
22, 2001]. Available WWW:
http://www.hempeldesigngroup.com/lego/pbFORTH/

[7] Knudsen, Jonathan B. The Unofficial Guide to LEGO
MINDSTORMS Robots, O'Reilly, 1999.

[8] Knudsen, Jonathan B. The Straight and Narrow,
O’Reilly Network, 2000. Online. Internet. [August 22,
2001]. Available WWW: http://www.oreillynet.com/
lpt/a/network/2000/05/22/LegoMindstorms.html

[9] LEGO. LEGO MINDSTORMS Official site. Online.
Internet. [August 22, 2001]. Available WWW:
http://mindstorms.lego.com/

[10] LUGNET. LEGO Users Group Network. Online.
Internet. [August 22, 2001]. Available WWW:
http://www.lugnet.com/

[11] Nelson, Russell, LEGO MINDSTORMS Internals.
Online. Internet. [August 22, 2001]. Available
WWW: http://www.crynwr.com/lego-robotics/

[12] Noga, Markus L. legOS. Online. Internet. [August 22,
2001]. Available WWW: http://www.noga.de/legOS/

[13] Papert, Seymour. MINDSTORMS: Children,
Computers, and Powerful Ideas, The Harvester Press
Ltd, 1980.

[14] Pattis, Richard E. Karel the Robot: A Gentle
Introduction to the Art of Programming, John Wiley
& Sons, 1981.

[15] Solorzano, Jose. leJOS: Java based OS for Lego RCX.
Online. Internet. [August 22, 2001]. Available
WWW: http://lejos.sourceforge.net/

[16] VanderBijl, Ryan. Lego Mindstorms Robotics.
Online. Internet. [March 5, 2002]. Available WWW:
http://cs.calvin.edu/CS/research/robots/Ryan/

[17] Wolz, Ursula. Teaching Design and Project
Management with Lego RCX Robots in Proceedings
of the 32nd SIGCSE (Feb 2001), ACM Press, 95-99.

