
DRAFT 18-09-2003

An Intrusion Detection System for Gigabit Networks An Intrusion Detection System for Gigabit Networks
(Working paper: describing ongoing work) (Working paper: describing ongoing work)

Gerald Tripp Gerald Tripp

Computing Laboratory, University of Kent. CT2 7NF. UK Computing Laboratory, University of Kent. CT2 7NF. UK

e-mail: G.E.W.Tripp@kent.ac.uk e-mail: G.E.W.Tripp@kent.ac.uk

8-09-2003
This draft paper is now superseded by the following technical report:

An intrusion detection system for gigabit networks – architecture and an example
system. Gerald Tripp. Technical Report 7-04, Computing Laboratory, University of

Kent, April 2004. http://www.cs.kent.ac.uk/pubs/2004/1893/content.pdf

Executive summary Executive summary
Intrusion detection consists of monitoring network traffic for various kinds of security threat –
to do this we need to inspect the contents of packets arriving from the network. This can be
very computationally expensive as we may not have any particular location within the packet
that we wish to inspect – standard mechanisms therefore tend to include pattern-matching
systems that can scan for a string or regular expression anywhere within the packet.

Intrusion detection consists of monitoring network traffic for various kinds of security threat –
to do this we need to inspect the contents of packets arriving from the network. This can be
very computationally expensive as we may not have any particular location within the packet
that we wish to inspect – standard mechanisms therefore tend to include pattern-matching
systems that can scan for a string or regular expression anywhere within the packet.
At network speeds of 1 Gbps or above, it can be difficult to keep up with intrusion detection in
software, and hardware systems or software with hardware assist are normally required. At
these types of speeds, we usually need customised hardware or custom designs for Field
Programmable Gate Arrays (FPGAs). The move to hardware-based systems allows the
introduction of more parallelism than might be possible in software and hence alternative
algorithms. Hardware based solutions are probably the only approach currently practical
for intrusion detection on high-speed backbone networks running at around 10 Gbps.

At network speeds of 1 Gbps or above, it can be difficult to keep up with intrusion detection in
software, and hardware systems or software with hardware assist are normally required. At
these types of speeds, we usually need customised hardware or custom designs for Field
Programmable Gate Arrays (FPGAs). The move to hardware-based systems allows the
introduction of more parallelism than might be possible in software and hence alternative
algorithms. Hardware based solutions are probably the only approach currently practical
for intrusion detection on high-speed backbone networks running at around 10 Gbps.
We can potentially build very fast intrusion detection systems using custom logic, although
this has the problem that if we wish to change the intrusion detection operations performed
we may need to generate a new hardware design. Systems can also be built with patterns
stored in registers, but here we need to supply copies of incoming data to large numbers of
comparators, which does not scale well with the numbers of rules or input word size.
Memory based systems are a good way in which to make systems flexible and easy to update –
however existing program based systems or large finite state machine based solutions can
suffer from lack of memory bandwidth.

We can potentially build very fast intrusion detection systems using custom logic, although
this has the problem that if we wish to change the intrusion detection operations performed
we may need to generate a new hardware design. Systems can also be built with patterns
stored in registers, but here we need to supply copies of incoming data to large numbers of
comparators, which does not scale well with the numbers of rules or input word size.
Memory based systems are a good way in which to make systems flexible and easy to update –
however existing program based systems or large finite state machine based solutions can
suffer from lack of memory bandwidth.
The aim of this work is to investigate the effectiveness of a finite state machine (FSM) based
string-matching scheme for the implementation of high-speed network intrusion detection
systems. The work uses standard RAM based techniques for the FSM implementation, but
provides a per-FSM input stream consisting of symbols representing multi-byte patterns that
appear in the input data. Multiple search strings are processed in parallel using multiple
FSMs. This pre-FSM classification stage is used to reduce the redundancy in the input data
stream (as seen by an individual FSM) and hence allows a FSM to be implemented with
relatively small resources that is able to operate on multiple bytes per clock cycle. The
benefit of this approach is that in operating on a relatively large number of input data bits per
clock cycle, we are able to cope with an increased network throughput.

The aim of this work is to investigate the effectiveness of a finite state machine (FSM) based
string-matching scheme for the implementation of high-speed network intrusion detection
systems. The work uses standard RAM based techniques for the FSM implementation, but
provides a per-FSM input stream consisting of symbols representing multi-byte patterns that
appear in the input data. Multiple search strings are processed in parallel using multiple
FSMs. This pre-FSM classification stage is used to reduce the redundancy in the input data
stream (as seen by an individual FSM) and hence allows a FSM to be implemented with
relatively small resources that is able to operate on multiple bytes per clock cycle. The
benefit of this approach is that in operating on a relatively large number of input data bits per
clock cycle, we are able to cope with an increased network throughput.

http://www.cs.kent.ac.uk/pubs/2004/1893/content.pdf

DRAFT 18-09-2003

1 Introduction
The aim of this work is to investigate the effectiveness of using a FSM based string-matching
system with a pre-FSM “classifier stage” for use in high-speed network intrusion detection
systems and to build a demonstrator to show that this can be implemented using current state
of the art hardware.

1.1 The problem

Intrusion detection consists of monitoring network traffic either at the host machines
themselves (Host-based) or by independently monitoring the network (Network-based) for
various kinds of security threat. A general characteristic of intrusion detection is the need to
be able to inspect packets arriving from a network.
A sub-set of this problem is packet classification, where we wish to inspect the content of the
packet headers. Packet classification’s primary role tends to be within routers either to
perform the packet routing itself or, more specifically, to identify packets as belonging to for
example a particular service class. Many algorithms have been developed for packet
classification and a good overview of techniques is given by Gupta and McKeown [i].
Intrusion detection systems are more complex than simple packet classification in that they
need to inspect the packet content (a.k.a. deep packet analysis) as well as the packet headers.
The general case becomes more complex in that we do not necessarily have a specific
location within the packet that we wish to inspect – the normal mechanisms therefore tend to
include pattern matching systems that can scan for a string or regular expression anywhere
within the packet.
Until recently, many intrusion detection systems were software based – one well-known
example being the UNIX software intrusion detection system called Snort [ii]. However as
we move to higher network speeds, the conventional software solution can have difficultly in
keeping up and some form of hardware assist may be required. We can of course partition the
load by using host-based rather than network-based detection systems – however, this is only
possible in situations where we have the ability to run our own software on the host platform.
Host based detection may not be suitable for many simple embedded systems or systems
without the performance to carry the additional load of running intrusion detection software.
Once we have identified a potential threat, there are a number of actions that can be taken as
defined by the rule that has been matched. This will typically consist of generating a report
detailing the perceived threat, but could also require suspect network packets, or a complete
network connection, to be dropped.

2 Background

2.1 Gigabit network intrusion detection systems

At network speeds of 1 Gbps or above, it can be difficult to keep up with intrusion detection
in software, and hardware systems or software with hardware assist tends to be required. This
is the type of speed targeted by new work in high speed intrusion detection, with network
speeds of 1 Gbps (Gigabit Ethernet) and 2.4 Gbps (STM-16) being of particular interest.
With these types of speeds, we tend to need customised hardware or custom designs for Field
Programmable Gate Arrays (FPGAs). The move to hardware based systems allows the
introduction of more parallelism than might be possible in software based systems and hence
alternative algorithms. Hardware based solutions are probably the only approach currently
practical for intrusion detection on high-speed backbone networks running at speeds of
around 10 Gbps.

DRAFT 18-09-2003

2.1.1 Existing work in this area

An approach taken by Franklin et.al. [iii] has been to build an intrusion detection system
using Non-Deterministic Finite Automata (NFA) – this approach to building FPGA based
automata first being suggested by Sidhu and Prasanna [iv]. The NFA approach has the
advantage of being able to match quite complex regular expressions, without the usual stage
of needing to convert the NFA into a Deterministic Finite Automata (DFA). Although the
work by Sidhu and Prasanna supports the idea of dynamic reconfiguration, this technique was
not used by Franklin et.al, so hence the FPGA designs need to be re-compiled following rule
changes. The work described by Franklin et.al. operates on 8-bit data items and the authors
report FPGA clock rates of 30-120 MHz, dependent on the regular expression complexity.
An approach taken by Gokhale et.al. [v] compares packet content from a data pipeline against
entries in a content addressable memory (CAM) – a “match vector” is then produced which
gives details of the entries in the CAM that caused a match. The match vector is appended to
the data packet and this is forwarded to software for further processing. This approach has
the advantage of being dynamically re-configurable.
A commercial product by PMC-Sierra is described by Iyer et.al in [vi]. This paper describes
the system called ClassiPi which is a classification engine and is implemented as a custom
ASIC. This classification engine is a flexible programmable device on which more traditional
software-type algorithms can be implemented. Performance depends on the algorithm being
implemented and the number of rules – with a lower performance being achieved for more
complex operations such as matching regular expressions.
Cho et.al. [vii] use a comparator based system that operates on 32-bits at a time – this uses
four sets of comparison logic to search for a given string at each of the four possible byte
offsets within a word. A match is successful if for a particular byte offset, all consecutive
parts of a string are found. Separate logic is provided for each string being searched for, such
that these can all operate in parallel. Rule sets are processed to generate VHDL code for each
rule – a problem with this is that the FPGA needs to be recompiled after a change in the rule
set.

2.2 Using finite state machines

One method of building string or pattern matching systems is by the use of finite state
machines (FSM) (normally DFA). This technique was explained by Hershey [viii] in his PhD
thesis, which describes a network monitoring system using FSM based matching, with the
current state being held in a register and a separate RAM component being used to generate
the output and next state. This approach is useful as it can be implemented in hardware and
being RAM based means that the FSM can be changed without modification to the hardware
design. A disadvantage is that the memory utilisation increases exponentially with the input
data word size. Unfortunately we need to use a large input word size in order to be able to
deal with a high network data rate – this is unfortunate as it is relatively straightforward to
modify FSM designs that operate on one character at a time (such as those generated using
the Knuth-Morris-Pratt [ix] string matching algorithm) to work with a multi-character word.
In any hardware based design we have rather different criteria for assessing an algorithm’s
performance – for example we can use multiple FSMs to perform pattern matching for a
number of patterns in parallel without the increased FSM complexity that we might get from
algorithms that perform pattern matching on multiple strings, such as Aho-Corasick [x].

2.2.1 Recursive flow classification

DRAFT 18-09-2003 8-09-2003

Gupta and McKeown proposed a mechanism for packet classification [xi] called recursive
flow classification (RFC). This system uses a series of lookup tables to classify network
traffic on the basis of multiple fields. The mechanism used is that the data from various
header fields is broken up into groups of bits,
known as ‘chunks’. Each chunk is then used
as an index into a lookup table that gives a
classification value for that group of bits. The
general idea is that the size of the
classification value (in bits) should be smaller
than the size in bits of the input chunk. Hence
an address field can be classified as one of a
number of addresses or groups of addresses
that are of interest – or it may be shown to be
no match. If we take these classified values
from various ‘chunks’, then we can combine
these together to form a new value for lookup
in the second level of the hierarchy. This can
be repeated until we have a final classifier
value for a whole group of header fields.

Gupta and McKeown proposed a mechanism for packet classification [xi] called recursive
flow classification (RFC). This system uses a series of lookup tables to classify network
traffic on the basis of multiple fields. The mechanism used is that the data from various
header fields is broken up into groups of bits,
known as ‘chunks’. Each chunk is then used
as an index into a lookup table that gives a
classification value for that group of bits. The
general idea is that the size of the
classification value (in bits) should be smaller
than the size in bits of the input chunk. Hence
an address field can be classified as one of a
number of addresses or groups of addresses
that are of interest – or it may be shown to be
no match. If we take these classified values
from various ‘chunks’, then we can combine
these together to form a new value for lookup
in the second level of the hierarchy. This can
be repeated until we have a final classifier
value for a whole group of header fields.

Lookup
tables

classID

Combine
index
values

Packet
Figure 1 – diagram of RFC, based on [xi]

2.2.2 The proposed technique 2.2.2 The proposed technique

Any finite state machine used for pattern matching will typically only be interested in a subset
of the possible input values. This effect becomes more pronounced as we increase the word
size and try to match several characters at a time. Because of this it is possible to use a form
of classification system similar to
that developed by Gupta and
McKeown and then to generate a
limited width data stream for input
into a FSM that represents just the
input symbol set for that FSM. A
benefit of this is that the overall
memory requirements for a single
FSM that looks at many bytes at
time is significantly reduced. Using
a state of the art Field
Programmable Gate Array, such as
the Xilinx Virtex-II series, we can
implement some of the classification
stages and the FSMs themselves
using the 18Kbit select Block RAM
components – other larger memory requirements, such as for the first classification stage(s)
can be satisfied using external RAM chips. The classification system used here is however
more complex than that used by Gupta and McKeown in that it does not produce a single
classifier value, but one for each FSM. In practice for large numbers of input bits, we may
not have any single internal data path that represents all possible input symbols – instead we
may start reducing the size of the symbol set as part of an earlier classifier stage and then
generate a set of data paths that each carry all possible symbols for a group of finite state
machines. A simple example of this type of structure is shown in figure 2.

Any finite state machine used for pattern matching will typically only be interested in a subset
of the possible input values. This effect becomes more pronounced as we increase the word
size and try to match several characters at a time. Because of this it is possible to use a form
of classification system similar to
that developed by Gupta and
McKeown and then to generate a
limited width data stream for input
into a FSM that represents just the
input symbol set for that FSM. A
benefit of this is that the overall
memory requirements for a single
FSM that looks at many bytes at
time is significantly reduced. Using
a state of the art Field
Programmable Gate Array, such as
the Xilinx Virtex-II series, we can
implement some of the classification
stages and the FSMs themselves
using the 18Kbit select Block RAM
components – other larger memory requirements, such as for the first classification stage(s)
can be satisfied using external RAM chips. The classification system used here is however
more complex than that used by Gupta and McKeown in that it does not produce a single
classifier value, but one for each FSM. In practice for large numbers of input bits, we may
not have any single internal data path that represents all possible input symbols – instead we
may start reducing the size of the symbol set as part of an earlier classifier stage and then
generate a set of data paths that each carry all possible symbols for a group of finite state
machines. A simple example of this type of structure is shown in figure 2.

FSM

FSM

FSM

FSM

Lookup tables
(classifiers)

Input data

Figure 2 – simple example of proposed solution
.

Combine index
values

The input symbol set for the FSM will consist of portions of the string being matched at
various byte offsets within the word. At the start and end of the string we will need to
perform 'wild-card' matching. Because of the 'wild-card' matching, we will need to prioritise
the way the input is classified so as to give the longest possible match. We can however have
a conflict in priority between matching the start or the end of strings, particularly between

The input symbol set for the FSM will consist of portions of the string being matched at
various byte offsets within the word. At the start and end of the string we will need to
perform 'wild-card' matching. Because of the 'wild-card' matching, we will need to prioritise
the way the input is classified so as to give the longest possible match. We can however have
a conflict in priority between matching the start or the end of strings, particularly between

DRAFT 18-09-2003

strings for separate FSMs. This problem is resolved by using two parallel classification
systems and performing the matching of (say) starts of string patterns separately from all the
rest. The two 'classID' values so generated are combined at a final classifier stage, prior to the
input into a FSM.

Benefits
There are several benefits of this approach, which are detailed below:
• As the system is table driven, it should be possible to reconfigure the system for updated

rule sets without rebuilding the FPGA design.
• The separation of the classification stages from the FSM itself means that we are able to

perform a series of pipelined operations on the data without any impact on the timing of
the FSM cycle. We can therefore use a variety of implementation methods for the
classification stages including external memory, block memory within the FPGA and
even CAM.

• These techniques expand well with the input word size – and hence data rate. The size of
a FSM memory is mainly dependent on the string length being searched for – so for most
real life intrusion detection rules this remains small. The main memory usage is in the
classification, however this is vastly smaller than that required for a FSM-only solution
with a large input word size and is further reduced by the hierarchical division of the
symbol set as index values are combined together.

• As each individual FSM will typically have a small sized input word, we can normally
implement each FSM almost entirely within one, (or in the case of complex rules, a small
number of) Xilinx FPGA (synchronous) block RAM component(s). Initial tests have
shown that FSMs based on a single block RAM component are capable of operating a
clock periods down to as low as 4.3ns.

Initial work suggests that using state of the art FPGA components and external memory, it
should be possible to build a sizeable network intrusion detection system (NIDS) that operates
with an input word size of 32-bits and quite reasonable designs with a 64-bit word size. The
latter should enable us to build NIDS that operate at data rates of the order of 6.4 Gbps.
Further work, as proposed in this project, is required to investigate the best ways in which to
configure such a system and to determine how well this might expand to larger word sizes
and hence higher data rates.

Scope and limitations
The parallelism provided by the hardware is at a cost of needing to provide large numbers of
relatively small blocks of memory that can be accessed independently. The amount of
memory will generally grow with the number and complexity of the rules. FPGAs provide
these types of resources, and given trends over the last few years we are probably safe to
predict that over the course of this project new FPGAs are likely to be released with increased
amounts of these resources – not least because of the competition between FPGA
manufacturers. As the number and size of memory blocks on an FPGA increase so will the
potential number of rules that a single FPGA can support. We would aim to update our
simulations throughout the project to follow the current state of the art FPGA components.
As this proposal stands, the plan is to only look for rule matches within individual data
packets – this is the approach taken by much of the current work on high-speed intrusion
detection systems. An additional feature provided by many of the lower speed NIDS is to
track individual connections and to look for pattern matches that may span separate data
packets. This would actually be quite straight forward in the type of system proposed here
due to the matching being performed as a series of FSMs – the final state (in each FSM) for a
particular stream could be saved at the end of a data packet and then restored the next time an
in-sequence data packet is seen for that connection. The downside is however the additional
work required implementing this functionality and the additional use of FPGA resources.
There is no plan to include this type of facility in this piece of work – although this could be
looked at later as an area for further work outside of this project.

DRAFT 18-09-2003 8-09-2003

3 Basic Components 3 Basic Components
Before going into specifics of implementation, we shall first describe the basic high-level
components that we are trying to realise. When used in any real design, these will of course
need to be chosen carefully to match the abilities of the technology used for their
implementation – the solution to this problem is addressed during compilation and will be
discussed later. Although not shown here in these high level diagrams, the various stages are
pipelined, with one or more pipeline stage per module depending on its complexity. The
intention here is to ensure we have a small clock-to-setup delay and hence a good clock rate
for the FPGA.

Before going into specifics of implementation, we shall first describe the basic high-level
components that we are trying to realise. When used in any real design, these will of course
need to be chosen carefully to match the abilities of the technology used for their
implementation – the solution to this problem is addressed during compilation and will be
discussed later. Although not shown here in these high level diagrams, the various stages are
pipelined, with one or more pipeline stage per module depending on its complexity. The
intention here is to ensure we have a small clock-to-setup delay and hence a good clock rate
for the FPGA.

The values of the data paths are an enumerated type that gives a numeric value for groups of
bytes that are of interest (length depends on word size used, and position with the
architecture) and a final value indicating a no-match or full wild card or don’t care pattern.
This is referred to as the “symbol set" and is specific to each data path. This implies quite a
lot of complexity within the compiler – with a symbol table being used for each symbol set.
This complexity does not however carry over into the hardware, where mapping between
different symbol sets is generally performed using small pieces of RAM as lookup tables.
Multipliers and adders may also be used – if available – when generating cross products.

The values of the data paths are an enumerated type that gives a numeric value for groups of
bytes that are of interest (length depends on word size used, and position with the
architecture) and a final value indicating a no-match or full wild card or don’t care pattern.
This is referred to as the “symbol set" and is specific to each data path. This implies quite a
lot of complexity within the compiler – with a symbol table being used for each symbol set.
This complexity does not however carry over into the hardware, where mapping between
different symbol sets is generally performed using small pieces of RAM as lookup tables.
Multipliers and adders may also be used – if available – when generating cross products.

3.1 The Finite State Machine 3.1 The Finite State Machine

This is implemented as a number of parts, to address the problems related with matching
beginning and end of strings using wildcards. A general block diagram is as follows:
This is implemented as a number of parts, to address the problems related with matching
beginning and end of strings using wildcards. A general block diagram is as follows:

ip 1 Cross
product

FSM
Match? ip 2

The two inputs relate to the way in which strings are matched, with the string “starts” with
wildcards being matched separately to the rest of the string. At present the FSM is created
from a modified KMP string matching algorithm that will operate on a representation of
multi-byte input and will also match at a rate of 1 word per clock cycle independent of
whether any pattern miss-matches occur. Depending on the amount of memory available, the
FSM may also be created using a modified Aho-Corasick algorithm to allow each FSM to
match multiple patterns.

The two inputs relate to the way in which strings are matched, with the string “starts” with
wildcards being matched separately to the rest of the string. At present the FSM is created
from a modified KMP string matching algorithm that will operate on a representation of
multi-byte input and will also match at a rate of 1 word per clock cycle independent of
whether any pattern miss-matches occur. Depending on the amount of memory available, the
FSM may also be created using a modified Aho-Corasick algorithm to allow each FSM to
match multiple patterns.

3.2 Group 3.2 Group

The group is the mechanism that we use to sub-divide a symbol set into multiple smaller
symbol sets. This is done in the compiler in reverse by taking the output symbol sets and
creating an input symbol set that contains all output symbols. For each output, we determine
which input symbols cover each output symbol and build a transformation table for each
output. This table will be represented in hardware as simply a piece of RAM.

The group is the mechanism that we use to sub-divide a symbol set into multiple smaller
symbol sets. This is done in the compiler in reverse by taking the output symbol sets and
creating an input symbol set that contains all output symbols. For each output, we determine
which input symbols cover each output symbol and build a transformation table for each
output. This table will be represented in hardware as simply a piece of RAM.

Group

O/P
I/P

O/P
O/P

DRAFT 18-09-2003 8-09-2003

In most cases, the output data paths from the Group will be represented by less bits than the
input, although this may not always be the case. The actual size of the symbol set is also
important here as reducing this can also help to reduce the amount of logic used further on.

In most cases, the output data paths from the Group will be represented by less bits than the
input, although this may not always be the case. The actual size of the symbol set is also
important here as reducing this can also help to reduce the amount of logic used further on.

3.3 Combine 3.3 Combine

This provides a reverse operation to the group in that it takes two (or more) input paths and
generates a single output path. Assuming the two inputs represent the same “length” patterns,
then the output will therefore represent patterns of twice this length. This operation is
performed by performing a cross-product of the two input symbol sets, so initially the symbol
set size will be the product of the symbol set sizes of the two inputs. This cross-product
symbol set will however have a very high redundancy, as many of the combinations will not
be of interest. To map the initial cross product into the required output symbol set, we again
look to see how the output symbol set is covered by the symbols in the cross product and
perform a mapping. As with the group, particular note needs to be made here of the priority
of the output symbol set when performing this mapping. Again following the example of the
group, the compilation is performed in reverse by taking the output symbol set, and using that
to determine the symbol sets required for the two input symbol sets.

This provides a reverse operation to the group in that it takes two (or more) input paths and
generates a single output path. Assuming the two inputs represent the same “length” patterns,
then the output will therefore represent patterns of twice this length. This operation is
performed by performing a cross-product of the two input symbol sets, so initially the symbol
set size will be the product of the symbol set sizes of the two inputs. This cross-product
symbol set will however have a very high redundancy, as many of the combinations will not
be of interest. To map the initial cross product into the required output symbol set, we again
look to see how the output symbol set is covered by the symbols in the cross product and
perform a mapping. As with the group, particular note needs to be made here of the priority
of the output symbol set when performing this mapping. Again following the example of the
group, the compilation is performed in reverse by taking the output symbol set, and using that
to determine the symbol sets required for the two input symbol sets.

Combine

 I/P
O/P

I/P

Various mechanisms can be used for implementation, however an efficient method is to
perform the cross-product using a “multiply and add” operation and then to follow this with a
RAM based table for removing the redundancy. Particular care is needed with choice of
symbol sets here as the table used for removing redundancy can potentially use large amounts
of memory.

Various mechanisms can be used for implementation, however an efficient method is to
perform the cross-product using a “multiply and add” operation and then to follow this with a
RAM based table for removing the redundancy. Particular care is needed with choice of
symbol sets here as the table used for removing redundancy can potentially use large amounts
of memory.

3.4 Input classifiers 3.4 Input classifiers

These are the first stage of the classifier network, in that they take raw network data and
classify this to generate an output symbol set. A RAM based input classifier might take up to
16-bits of data – and use 64K entries to generate a classified output. Larger RAM classifiers
could be used, however they are not likely to map to a useful word size and would also
require increasingly unmanageable amounts of memory to be initialised. A ternary-CAM
based classifier could, for example, take 128-bits of input data; here we need roughly the
same order of magnitude of CAM words as output symbols, although we may sometimes
need more than one word of ternary CAM per output symbol, as a word of ternary CAM can
only match groups of inputs values that can be specified using a word containing 0, 1 or don’t
care bits.

These are the first stage of the classifier network, in that they take raw network data and
classify this to generate an output symbol set. A RAM based input classifier might take up to
16-bits of data – and use 64K entries to generate a classified output. Larger RAM classifiers
could be used, however they are not likely to map to a useful word size and would also
require increasingly unmanageable amounts of memory to be initialised. A ternary-CAM
based classifier could, for example, take 128-bits of input data; here we need roughly the
same order of magnitude of CAM words as output symbols, although we may sometimes
need more than one word of ternary CAM per output symbol, as a word of ternary CAM can
only match groups of inputs values that can be specified using a word containing 0, 1 or don’t
care bits.

It may therefore be possible to use a single CAM to perform classification of the entire input
data word, whereas we are likely to require at least 2 RAM based classifiers and probably
more.

It may therefore be possible to use a single CAM to perform classification of the entire input
data word, whereas we are likely to require at least 2 RAM based classifiers and probably
more.

4 Compiler 4 Compiler
Initial work has looked at the generation of software to perform compilation and simulation of
a simple system that uses just a CAM input classifier, two levels of groups and final FSM
stages. Primary and secondary paths are used to deal with the main matching and start wild

Initial work has looked at the generation of software to perform compilation and simulation of
a simple system that uses just a CAM input classifier, two levels of groups and final FSM
stages. Primary and secondary paths are used to deal with the main matching and start wild

DRAFT 18-09-2003 8-09-2003

card matches. The number of groups and FSMs is not fixed by the software, but determined
dynamically. The structure of groups at each layer can be specified and the software fits the
match patterns to the specified structure.

card matches. The number of groups and FSMs is not fixed by the software, but determined
dynamically. The structure of groups at each layer can be specified and the software fits the
match patterns to the specified structure.

A simple example of the overall hardware structure is as follows: A simple example of the overall hardware structure is as follows:

network
data

Secondary path

Primary path

CAM group group

FSM

FSM

FSM group

FSM groupgroupCAM

Match
outputs

The symbol sets in this example are assumed to be smaller for the secondary path than for the
primary path. The first group in the secondary path is therefore not required and hence
simply maps input to output.

The symbol sets in this example are assumed to be smaller for the secondary path than for the
primary path. The first group in the secondary path is therefore not required and hence
simply maps input to output.

In a real implementation, the overall structure of the hardware will usually be determined in
advance at the time of hardware synthesis and/or FPGA build time. Thus we will have a
general structure to which the compiled design will need to be mapped. This mapping is
performed to give the best fit, although this may not be an ideal fit and it is likely that some
logic blocks may not actually be used. This is an intentional trade-off to avoid the overhead
of rebuilding the FPGA design when the intrusion detection signatures change. The time for
recompiling the FSMs etc is likely to be a few seconds at most – whereas the time to rebuild
the FPGA design may well be tens of minutes at least – also the FPGA place and route is not
deterministic and designs with high levels of utilisation of the FPGA may not always build at
the first attempt (or at all).

In a real implementation, the overall structure of the hardware will usually be determined in
advance at the time of hardware synthesis and/or FPGA build time. Thus we will have a
general structure to which the compiled design will need to be mapped. This mapping is
performed to give the best fit, although this may not be an ideal fit and it is likely that some
logic blocks may not actually be used. This is an intentional trade-off to avoid the overhead
of rebuilding the FPGA design when the intrusion detection signatures change. The time for
recompiling the FSMs etc is likely to be a few seconds at most – whereas the time to rebuild
the FPGA design may well be tens of minutes at least – also the FPGA place and route is not
deterministic and designs with high levels of utilisation of the FPGA may not always build at
the first attempt (or at all).

The input word size is specified, as are the bus sizes, and maximum numbers of output ports
for each of the blocks of groups. The search strings are read in from an input file, these are
compiled with the given parameters to create the various groups, FSMs and CAMs (content)
that are used. The design can be tested by performing a high-level simulation of the design
against network data from a file. The simulation allows the design to be run to completion or
single stepped. For debugging and testing ideas, any of the FSMs or groups can be examined
to see the symbol sets being used and the contents of the various lookup tables being used.

The input word size is specified, as are the bus sizes, and maximum numbers of output ports
for each of the blocks of groups. The search strings are read in from an input file, these are
compiled with the given parameters to create the various groups, FSMs and CAMs (content)
that are used. The design can be tested by performing a high-level simulation of the design
against network data from a file. The simulation allows the design to be run to completion or
single stepped. For debugging and testing ideas, any of the FSMs or groups can be examined
to see the symbol sets being used and the contents of the various lookup tables being used.

The following diagram shows a screen shot from this compiler that is searching for nine
different strings in a file containing the same data.
The following diagram shows a screen shot from this compiler that is searching for nine
different strings in a file containing the same data.

DRAFT 18-09-2003

This software has only just been completed at the time of writing and further testing is still
required.

5 Further work
This paper describes ongoing work, so therefore is just a snapshot of the current state. This
section describes further work already planned and future ideas.

5.1 Software

5.1.1 RAM input classifiers and Combine stages

Although the software is already written to implement the combine stages, these have not
been tested in a real configuration. The next stage in the design of the compiler should be to
allow various possible hardware configurations, including the use of RAM for the initial
classification stages and the combine stages that will then be required. These are probably
best specified in a separate configuration file that specifies not only the hardware structure but
also the data path widths. This is likely to make the GUI more complex as the screen layout
will need to be chosen dynamically.

5.1.2 Compiler input and output

At present the compiler just accepts a set of quoted text strings as input. This needs to be
extended to allow arbitrary byte values, such as we may need to search for when looking for a
virus signature for example. A parser for the “Snort” rule system has already been written
and it is hoped that this can be integrated with the current software.
The compiler currently produces no output apart from displaying data within the GUI. To
enable this to operate with any hardware system we will need to output the contents of the
various lookup tables to enable this data to be loaded into FPGA memory.

DRAFT 18-09-2003

5.2 Hardware

5.2.1 Hardware simulation

Tests have already been carried out on a VHDL simulation of a single input FSM for a Xilinix
Virtex FPGA, and this has been successfully loaded and tested [xii] with FSM designs created
using a modified Aho-Corasick algorithm. Future work here will require the design of sample
architectural structures into which designs can be loaded and simulated. As with previous
work this would use VHDL and be targeted at state of the art Xilinx FPGAs.

5.2.2 Real hardware implementation

The final stage here is to create a test bench system, containing a large FPGA, large memory
components and a fast path to a high-speed network interface. This would be used on a real
network to test out the algorithms against real network traffic, including traffic created to look
like possible intrusion attacks and also attempts for attacks to be hidden or disguised.

[i] P.Gupta and N.McKeown, “Algorithms for packet classification”, IEEE Network March/April

2001.

[ii] M.Roesch, “Snort - Lightweight Intrusion Detection for Networks”, USENIX Technical
Program - 13th Systems Administration Conference - LISA '99, 1999.

[iii] R.Franklin, D.Carver and B.L.Hutchings. “Assisting Network Intrusion Detection with
Reconfigurable Hardware”, Proceedings: IEEE Symposium and Field-Programmable Custom
Computing Machines FCCM ’02, April 2002.

[iv] R.Sidhu and V.K.Prasanna. Fast Regular Expression Matching using FPGAs. Proceedings of
IEEE workshop on FPGAs for Custom Computing Machines, April 2001.

[v] M.Gokhale, D.Dubois, A.Dubois, M.Boorman, S.Poole and V.Hogsett. Granidt: Towards
Gigabit Rate Network Intrusion Detection Technology. FPL 2002, Lecture Notes in Computer
Science 2438, pp. 4004-413, Springer-Verlag 2002.

[vi] S.Iyer, R.R.Kompella, A.Shelat, PMC-Sierra Inc. “ClassiPi: An Archictecture for fast and
flexible Packet Classification.”. IEEE Network March/April 2001.

[vii] Y.H.Cho, S.Navab, W.H.Mangione-Smith, “Specialized Hardware for Deep Network Packet
Filtering”, In proceedings of FPL2002: 12th International Conference on Field Programmable
Logic and Applications, Montpellier, France September 2-4, 2002.

[viii] P.C.Hershey. Information collection architecture for performance measurement of computer
networks. Ph.D. Dissertation. University of Maryland College Park, 1994.

[ix] D.E. Knuth, J.H. Morris and V.B. Pratt, Fast pattern matching in strings, SIAM J. Computing 6
(2) 1977, pp.323-350.

[x] A.V. Aho and M.J. Corasick, Efficient string matching: an aid to bibliographic search,
Communications of the ACM 18(6) 1975, pp.333-340.

[xi] Packet Classification on Multiple Fields. P.Gupta and N.McKeown, SIGCOMM 99, Computer
Communications Review, Vol. 29, No. 4, Sept 1999, pp.147-160.

[xii] “Real Time Virus Scanning using the Aho-Corasick Matching Algorithm”, G.Gao MSc
Dissertation, University of Kent, 2003.

	Executive summary
	Introduction
	The problem

	Background
	Gigabit network intrusion detection systems
	Existing work in this area

	Using finite state machines
	Recursive flow classification
	The proposed technique

	Basic Components
	The Finite State Machine
	Group
	Combine
	Input classifiers

	Compiler
	Further work
	Software
	RAM input classifiers and Combine stages
	Compiler input and output

	Hardware
	Hardware simulation
	Real hardware implementation

