
Practical Typed Lazy Contracts

Olaf Chitil

10th September
ICFP 2012

Olaf Chitil (Kent, UK) Practical Typed Lazy Contracts 10th SeptemberICFP 2012 1 / 15

Why Contracts?

Specify & dynamically check pre- and post-conditions of functions.

data Formula = Imp Formula Formula | And Formula Formula |

Or Formula Formula | Not Formula | Atom Char

cClausalNF = assert (conjNF & right >-> list (list lit)) clausalNF

clausalNF :: Formula -> [[Formula]]

clausalNF (And f1 f2) = cClause f1 : clausalNF f2

clausalNF f = [cClause f]

cClause = assert (disj & right >-> list lit) clause

clause :: Formula -> [Formula]

clause (Or f1 f2) = f1 : clause f2

clause lit = [lit]

Olaf Chitil (Kent, UK) Practical Typed Lazy Contracts 10th SeptemberICFP 2012 2 / 15

Challenges −→ Contributions

a portable library

pure Haskell: language semantics unchanged

simple parametrically polymorphic types

list :: Contract a -> Contract [a]

lazy contracts: preserve program meaning

eager: assert (list nat) [4,-4] = error "..."

lazy: assert (list nat) [4,-4] = [4, error "..."]

a nice algebra of contracts

when violated, contracts provide information beyond blaming

simple data-type dependent code

easy to write by hand
can be derived automatically

Olaf Chitil (Kent, UK) Practical Typed Lazy Contracts 10th SeptemberICFP 2012 3 / 15

Example Contracts

A predicate contract:

nat :: Contract Int

nat = prop (>= 0)

Attaching contracts to functions:

cLength = assert (true >-> nat) length

cConst = assert (true >-> false >-> true) const

Another contract:

infinite :: Contract [a]

infinite = pCons true infinite

Olaf Chitil (Kent, UK) Practical Typed Lazy Contracts 10th SeptemberICFP 2012 4 / 15

The Contract API

type Contract a

assert :: Contract a -> (a -> a)

prop :: Flat a => (a -> Bool) -> Contract a

true :: Contract a

false :: Contract a

(&) :: Contract a -> Contract a -> Contract a

(>->) :: Contract a -> Contract b -> Contract (a -> b)

pNil :: Contract [a]

pCons :: Contract a -> Contract [a] -> Contract [a]

Cf. Hinze, Jeuring&Löh: Typed contracts for functional programming, FLOPS 2006
Olaf Chitil (Kent, UK) Practical Typed Lazy Contracts 10th SeptemberICFP 2012 5 / 15

A Simple Implementation ...

type Contract a = a -> a

assert c = c

prop p x = if p x then x else error "..."

true = id

false = const (error "...")

c1 & c2 = c2 . c1

pre >-> post = \f -> post . f . pre

pNil [] = []

pNil (_:_) = error "..."

pCons c cs [] = error "..."

pCons c cs (x:xs) = c x : cs xs

Cf. Findler & Felleisen: Contracts for higher-order functions, ICFP 2002
Olaf Chitil (Kent, UK) Practical Typed Lazy Contracts 10th SeptemberICFP 2012 6 / 15

...with a Problem

For lazy algebraic data types we need disjunction of contracts

(|>) :: Contract a -> Contract a -> Contract a

for example for

nats :: Contract [Int]

nats = pNil |> pCons nat nats

Olaf Chitil (Kent, UK) Practical Typed Lazy Contracts 10th SeptemberICFP 2012 7 / 15

Solution

type Contract a = a -> Maybe a

assert c x = case c x of

Just y -> y

Nothing -> error "..."

(c1 |> c2) x = case c1 x of

Nothing -> c2 x

Just y -> Just y

true x = Just x

false x = Nothing

...

Olaf Chitil (Kent, UK) Practical Typed Lazy Contracts 10th SeptemberICFP 2012 8 / 15

An Algebra of Contracts

Same laws as non-strict && and ||:

c1 & (c2 & c3) = (c1 & c2) & c3

true & c = c

c & true = c

false & c = false

...

For function contracts:

true >-> true = true

c1 >-> false = c2 >-> false

(c1 >-> c2) & (c3 >-> c4) = (c3 & c1) >-> (c2 & c4)

(c1 >-> c2) |> (c3 >-> c4) = c1 >-> c2

Olaf Chitil (Kent, UK) Practical Typed Lazy Contracts 10th SeptemberICFP 2012 9 / 15

Contracts are Projections

Lemma (Partial identity)

assert c v id

Claim (Idempotency)

assert c . assert c = assert c

Olaf Chitil (Kent, UK) Practical Typed Lazy Contracts 10th SeptemberICFP 2012 10 / 15

Contracts for our Original Example

cClausalNF = assert (conjNF & right >-> list (list lit)) clausalNF

Contracts:

conjNF, disj, lit, atom, right :: Contract Formula

conjNF = pAnd conjNF conjNF |> disj

disj = pOr disj disj |> lit

lit = pNot atom |> atom

atom = pAtom true

right = pImp (right & pNotImp) right |>

pAnd (right & pNotAnd) right |>

pOr (right & pNotOr) right |>

pNot right |> pAtom true

No general negation, but negated pattern contracts pNotImp, . . .

Olaf Chitil (Kent, UK) Practical Typed Lazy Contracts 10th SeptemberICFP 2012 11 / 15

Blaming

Implement like eager contracts: blame server or client.

cConst = assert (true >-> false >-> true) const

true: never blames anybody
false: always blames the client

Olaf Chitil (Kent, UK) Practical Typed Lazy Contracts 10th SeptemberICFP 2012 12 / 15

Add Witness Tracing

On violation report a path of data constructors:

*Main> cClausalNF form

[[Atom ’a’],[Atom ’b’,Not

*** Exception: Contract at ContractTest.hs:101:3

violated by

((And (Or (Not {Not })))->)

The client is to blame.

Starting point for debugging.

Blaming can be wrong: The contract may be wrong.

Olaf Chitil (Kent, UK) Practical Typed Lazy Contracts 10th SeptemberICFP 2012 13 / 15

Derive data-type-dependent code

Derive a contract pattern on demand

conjNF = $(p ’And) conjNF conjNF |> disj

disj = $(p ’Or) disj disj |> lit

lit = $(p ’Not) atom |> atom

atom = $(p ’Atom) true

or declare

$(deriveContracts ’’Formula)

Use Template Haskell; other generic Haskell systems

introduce a class context (Data a)

cannot handle functions, e.g. inside data structures

Olaf Chitil (Kent, UK) Practical Typed Lazy Contracts 10th SeptemberICFP 2012 14 / 15

Summary

A pure library

lazy pattern combinators (pCons) and disjunction (|>)

type Contract a = a -> Maybe a

contract violation yields location + blame + witness

hackage.haskell.org/package/Contract

Challenge
A lazy dependent function contract:

cTake :: Int -> [a] -> [a]

cTake =

assert (nat >>-> (\n -> lengthAtLeast n >-> listOfLength n))

take

Olaf Chitil (Kent, UK) Practical Typed Lazy Contracts 10th SeptemberICFP 2012 15 / 15

