
Pretty Printing with Delimited Continuations

Olaf Chitil

University of Kent, UK

IFL 2005

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 1 / 11



What is Pretty Printing?

if True

then if True then True else True

else

if False

then False

else False

Pretty printing library interface

text :: String -> Doc

line :: Doc

(<>) :: Doc -> Doc -> Doc

nest :: Int -> Doc -> Doc

group :: Doc -> Doc

pretty :: Int -> Doc -> String

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 2 / 11



What is Pretty Printing?

if True

then if True then True else True

else

if False

then False

else False

User code

toDoc :: Exp -> Doc

toDoc (If e1 e2 e3) =

group (nest 3 (

group (nest 3 (text "if" <> line <> toDoc e1)) <> line <>

group (nest 3 (text "then" <> line <> toDoc e2)) <> line <>

group (nest 3 (text "else" <> line <> toDoc e3))))

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 2 / 11



What is Pretty Printing?

if True

then if True then True else True

else

if False

then False

else False

Pretty printing library interface

text :: String -> Doc

line :: Doc

(<>) :: Doc -> Doc -> Doc

(nest :: Int -> Doc -> Doc)
group :: Doc -> Doc

pretty :: Int -> Doc -> String

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 2 / 11



Specification: Functionality

A document may be formatted horizontally or vertically.
type Horizontal = Bool

A document has many different layouts.
type Doc = Horizontal -> [String]

Layouts for each document:
(text t) _ = [t]

line True = [" "]

line False = ["\n"]

(d1 <> d2) h = [l1 ++ l2 | l1 <- d1 h, l2 <- d2 h]

(group d) True = d True

(group d) False = d False ++ d True

Prettiest: compare line by line; within width-limit longer line better.
pretty w d = minimumBy (compareLayout w) (d False)

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 3 / 11



Specification: Further Properties

time:

linear in document size
independent of document width

(optimally) bounded

pretty 4 (group (text "Hi" <> line <> text "you" <> undefined))

yields

Program error: {undefined}

Instead want

Hi

you

Program error: {undefined}

space (lazy input/output): linear in width-limit

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 4 / 11



Outline of a Linear Algorithm

text "a" <> group (text "b" <> line <> group (text "c" <> line))

1 2 3 4

Two passes:

1 Use position in document to determine width of each group.

2 Use remaining space on line to determine for each group if horizontal.

Linear but unbounded.

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 5 / 11



Correctness Problem

pretty 6 (group (text "Hi" <> line <> text "you")<> text "!")

algorithm yields

Hi you!

but specification says

Hi

you!

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 6 / 11



Correctness Problem

pretty 6 (group (text "Hi" <> line <> text "you")<> text "!")

algorithm yields

Hi you!

but specification says

Hi

you!

Only group-closed documents:

A line between end of each group and next text.

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 6 / 11



Represent Document as Token List

Represent

group (text "Hi"<> line <> text "you")<> text "!"

as

[Open, Text "Hi", Line, Text "you", Close, Text "!"]

Group-closed document via rewriting:

Close (Text s ts) ⇒ Text s (Close ts)

Open (Text s ts) ⇒ Text s (Open ts)

Open (Close ts) ⇒ ts

Effect of representation change:

Rewritten document describes same set of layouts.

Algorithm always selects correct layout.

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 7 / 11



A Linear Unbounded Algorithm

single pass

no laziness

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 8 / 11



A Linear Unbounded Algorithm

single pass

no laziness

︸ ︷︷ ︸

output
already
produced

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 8 / 11



A Linear Unbounded Algorithm

single pass

no laziness

︸ ︷︷ ︸

output
already
produced

︸ ︷︷ ︸

group
output
function

type Out = Remaining -> String

type OutGroup = Horizontal -> Out -> Out

inter:: Tokens-> Width -> Position-> 〈(Position,OutGroup)〉-> Out

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 8 / 11



A Linear Unbounded Algorithm

single pass

no laziness

︸ ︷︷ ︸

output
already
produced

︸ ︷︷ ︸

group
output
function

︸ ︷︷ ︸

group
output
function

type Out = Remaining -> String

type OutGroup = Horizontal -> Out -> Out

inter:: Tokens-> Width -> Position-> 〈(Position,OutGroup)〉-> Out

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 8 / 11



A Linear Unbounded Algorithm

single pass

no laziness

︸ ︷︷ ︸

output
already
produced

︸ ︷︷ ︸

group
output
function

︸ ︷︷ ︸

group
output
function

︸ ︷︷ ︸

group
output
function

type Out = Remaining -> String

type OutGroup = Horizontal -> Out -> Out

inter:: Tokens-> Width -> Position-> 〈(Position,OutGroup)〉-> Out

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 8 / 11



A Linear Unbounded Algorithm

single pass

no laziness

︸ ︷︷ ︸

output
already
produced

︸ ︷︷ ︸

group
output
function

︸ ︷︷ ︸

group
output
function

type Out = Remaining -> String

type OutGroup = Horizontal -> Out -> Out

inter:: Tokens-> Width -> Position-> 〈(Position,OutGroup)〉-> Out

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 8 / 11



A Linear Unbounded Algorithm

single pass

no laziness

︸ ︷︷ ︸

output
already
produced

︸ ︷︷ ︸

group
output
function

︸ ︷︷ ︸

group
output
function

type Out = Remaining -> String

type OutGroup = Horizontal -> Out -> Out

inter:: Tokens-> Width -> Position-> 〈(Position,OutGroup)〉-> Out

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 8 / 11



A Linear Unbounded Algorithm

single pass

no laziness

︸ ︷︷ ︸

output
already
produced

︸ ︷︷ ︸

group
output
function

︸ ︷︷ ︸

group
output
function

︸ ︷︷ ︸

group
output
function

type Out = Remaining -> String

type OutGroup = Horizontal -> Out -> Out

inter:: Tokens-> Width -> Position-> 〈(Position,OutGroup)〉-> Out

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 8 / 11



The Linear Bounded Algorithm

continuously check
whether outermost
surrounding group fits

current position

︸ ︷︷ ︸

output
already
produced

︸ ︷︷ ︸

group
output
function

︸ ︷︷ ︸

group
output
function

︸ ︷︷ ︸

group
output
function

type Out = Remaining -> String

type OutGroup = Horizontal -> Out -> Out

inter:: Tokens-> Width -> Position-> 〈(Position,OutGroup)〉-> Out

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 9 / 11



The Linear Bounded Algorithm

continuously check
whether outermost
surrounding group fits

current position

︸ ︷︷ ︸

output
already
produced

︸ ︷︷ ︸

group
output
function

︸ ︷︷ ︸

group
output
function

type Out = Remaining -> String

type OutGroup = Horizontal -> Out -> Out

inter:: Tokens-> Width -> Position-> 〈(Position,OutGroup)〉-> Out

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 9 / 11



Optimisation by Specialisation

Replace

inter :: Tokens -> Width -> Position -> 〈OutGroup〉 -> Out

by

noGroup :: Tokens -> Width -> Position -> Out

oneGroup :: Tokens -> Width -> Position ->

Position -> OutGroup -> Out

multiGroup :: Tokens -> Width -> Position ->

Position -> OutGroup ->

〈(Position,OutGroup)〉 ->

Position -> OutGroup -> Out

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 10 / 11



Summary

Delimited continuations express explicitly switching between
consuming input and producing output.

Dequeue is buffer between input consumed and output produced.

Specialisation improves performance but duplicates code.

Laziness gives space linear in width, but irrelevant for correctness and
linearity.

Higher-order functions essential; defunctionalised algorithm
incomprehensible.

How to prove equivalence of specification and implementation?

Olaf Chitil (University of Kent, UK) Pretty Printing with Delimited Continuations IFL 2005 11 / 11


	Introduction
	Specification
	Algorithm Outline
	Algorithm
	Summary

