
Promoting Non-Strict Programming
—

Introducing StrictCheck

Olaf Chitil

University of Kent, UK

6th September 2006

Olaf Chitil (Kent, UK) Non-Strict Programming 6th September 2006 1 / 26

Why Non-Strictness / Laziness Matters

John Hughes:

evaluate = max . maximise’ . highfirst . maptree static .
prune 8 . gametree

Intermediate data structures as glue enable modular program structure

without space costs

online: part of output already for part of input

Olaf Chitil (Kent, UK) Non-Strict Programming 6th September 2006 3 / 26

Strict vs. Non-Strict

Space leak: unexpectedly large space consumption

Claim: overly strict functions cause space leaks

evaluate = max . maximise’ . highfirst . maptree static .
prune 8 . gametree

Aim: StrictCheck, a tool for testing whether a Haskell function is too strict

Olaf Chitil (Kent, UK) Non-Strict Programming 6th September 2006 5 / 26

An Example

unzip :: [(a,b)] -> ([a],[b])
unzip [] = ([],[])
unzip ((x,y):zs) = (x:xs,y:ys)
where
(xs,ys) = unzip zs

unzip2 :: [(a,b)] -> ([a],[b])
unzip2 = foldr (\(x,y) (xs,ys) -> (x:xs,y:ys)) ([],[])

unzip ((0,0):⊥) = (0:⊥,0:⊥) but
unzip2 ((0,0):⊥) = ⊥

Olaf Chitil (Kent, UK) Non-Strict Programming 6th September 2006 7 / 26

An Example

unzip :: [(a,b)] -> ([a],[b])
unzip [] = ([],[])
unzip ((x,y):zs) = (x:xs,y:ys)
where
(xs,ys) = unzip zs

unzip2 :: [(a,b)] -> ([a],[b])
unzip2 = foldr (\(x,y) (xs,ys) -> (x:xs,y:ys)) ([],[])

unzip ((0,0):⊥) = (0:⊥,0:⊥) but
unzip2 ((0,0):⊥) = ⊥

Olaf Chitil (Kent, UK) Non-Strict Programming 6th September 2006 7 / 26

Least Strictness

Distinguish

function results for total arguments

function results for partial arguments

The first do not uniquely determine the later.

Because of monotonicity and continuity:

f v v
⊔
{f v ′|v v v ′} v

⊔
{f v ′|v v v ′, v ′ is total}

Function f least-strict iff

f v =
⊔
{f v ′|v v v ′, v ′ is total}

Olaf Chitil (Kent, UK) Non-Strict Programming 6th September 2006 9 / 26

How to Test for Least-Strictness

f not least-strict if there exists partial argument v such that

f v @
⊔
{f v ′|v v v ′, v ′ is total}

f probably not least-strict if

f v @
⊔
{f v ′

1, f v ′
2, . . . , f v ′

n}

where v ′
1, . . . , v

′
n are total with v @ v ′

1, . . . , v @ v ′
n.

Olaf Chitil (Kent, UK) Non-Strict Programming 6th September 2006 11 / 26

Implementation

Example test data:

⊥ [], [(0,0)], [(1,1)], [(0,0),(0,0)], ...
[⊥] [(0,0)], [(1,1)], [(0,0),(0,0)], ...
(0,0):⊥ [(0,0)], [(0,0),(0,0)], [(0,0),(1,1)], ...
...

Systematically generate all arguments with one ⊥ up to given depth.

Use

Scrap-your-boilerplate generics of Glasgow Haskell Compiler

Chasing Bottoms library: (non-pure) isBottom, . . .

Olaf Chitil (Kent, UK) Non-Strict Programming 6th September 2006 13 / 26

Using StrictCheck

*Main> test1 5 (unzip2 :: [(Int,Int)] -> ([Int],[Int]))

Function seems not to be least strict.
Input(s): _|_
Current output: _|_
Proposed output: (_|_, _|_)
Continue? y

Function seems not to be least strict.
Input(s): [(0, 0)_|_
Current output: _|_
Proposed output: ([0_|_, [0_|_)

Detects spine-strictness of unzip2.

Olaf Chitil (Kent, UK) Non-Strict Programming 6th September 2006 15 / 26

Using StrictCheck

*Main> test1 5 (True:)

Completed 36 test(s).
Function seems to be least strict.

Some functions are clearly least-strict.

Olaf Chitil (Kent, UK) Non-Strict Programming 6th September 2006 17 / 26

Using StrictCheck

*Main> test2 10 (&&)

Function seems not to be least strict.
Input(s): (_|_, False)
Current output: _|_
Proposed output: False
Continue? y

Completed 4 test(s).

Proposes a function that is not sequential, hence undefinable in Haskell.

Olaf Chitil (Kent, UK) Non-Strict Programming 6th September 2006 19 / 26

Using StrictCheck

*Main> test2 5 ((++) :: [Int] -> [Int] -> [Int])

Function seems not to be least strict.
Input(s): (_|_, [0])
Current output: _|_
Proposed output: [_|__|_
Continue? y

Function seems not to be least strict.
Input(s): (_|_, [0, 0])
Current output: _|_
Proposed output: [_|_, _|__|_

Not sequential.

Olaf Chitil (Kent, UK) Non-Strict Programming 6th September 2006 21 / 26

Using StrictCheck

*Main> test1 5 (reverse :: [Int] -> [Int])

Function seems not to be least strict.
Input(s): [0_|_
Current output: _|_
Proposed output: [_|__|_
Continue?

Function seems not to be least strict.
Input(s): [0, 0_|_
Current output: _|_
Proposed output: [_|_, _|__|_
Continue?

Achievable, but inefficient.

Olaf Chitil (Kent, UK) Non-Strict Programming 6th September 2006 23 / 26

Using StrictCheck

*Main> test1 5 (bfNum :: Tree Int -> Tree Int)

Function seems not to be least strict.
Input(s): T E 0 _|_
Current output: _|_
Proposed output: T E 1 _|_
Continue? y

Function seems not to be least strict.
Input(s): T E 0 (T E 0 _|_)
Current output: _|_
Proposed output: T E 1 (T E 2 _|_)

That is the information we want.

Olaf Chitil (Kent, UK) Non-Strict Programming 6th September 2006 25 / 26

Problems Observed in Practice

proposes non-sequential functions (&&)

proposes undesirably inefficient functions (reverse)

abstract data types:

distinguishes equal elements of product types
⊥ = Queue ⊥ ⊥ = Queue ⊥ [] = Queue [] ⊥
generates illegal elements
generated elements that are hard to read (internal representation)

cannot exclude a class of counter examples

Olaf Chitil (Kent, UK) Non-Strict Programming 6th September 2006 26 / 26

Summary

StrictCheck

tests whether a function is least-strict

proposes less strict variant

*Main> test1 5 (bfNum :: Tree Int -> Tree Int)
Function seems not to be least strict.
Input(s): T E 0 _|_
Current output: _|_
Proposed output: T E 1 _|_

To Do:

solve problems

apply to more examples

Olaf Chitil (Kent, UK) Non-Strict Programming 6th September 2006 28 / 26

