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The Problem

reverse [] = []

reverse (x:xs) = reverse xs ++ x

last xs = head (reverse xs)

init = reverse . tail . reverse

rotateR xs = last xs : init xs

ERROR - Type error in application

*** Expression : last xs : init xs

*** Term : last xs

*** Type : [a]

*** Does not match : a

*** Because : unification would

give infinite type

• wrong error location

• scope of type variables?

• where do the two types

come from?
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Non-Solutions

• Milner’s algorithm W

. introduces globally scoped type variables

. globally updates variables

. has left-to right information flow f (not x) (x ++ "demo")

• A Hindley-Milner type inference tree:

{x :: Bool} ` x :: Bool

{} ` not :: Bool → Bool {x :: Bool} ` x :: Bool

{x :: Bool} ` not x :: Bool

{x :: Bool} ` (x,not x) :: (Bool,Bool)

. not compositional because of environment

. no proof that there exists no more general type
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Solution: Principal Typings

principal type: most general type for given expression + type environment

{x :: Bool} ` x :: Bool

principal typing: most general type environment + type
︸ ︷︷ ︸

typing

for given expression

{x :: α} ` x :: α

The inference tree of principal typings is compositional:

{x :: α} ` x :: α

{} ` not :: Bool → Bool {x :: α} ` x :: α

{x :: Bool} ` not x :: Bool
[Bool/α]

{x :: Bool} ` (x,not x) :: (Bool,Bool)
[Bool/α]
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An Obstacle

But x could be a let-bound, polymorphic variable.

{x :: ∀α.α} ` (x,not x) :: (Int,Bool)

the Hindley-Milner system doesn’t have principal typings [Jim ’96].

Solution: separate environments for let-bound variables [Mitchell ’96].

⇓ ⇓

{{} ` x :: α}, {} ` (x,not x) :: (α,Bool)

⇓ ⇓
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The Explanation Graph

Polymorphic type environment still creates global dependencies

⇒ “copy” inference tree of definition to use occurrences.

{x :: α} ` x :: α

{{} ` x :: α} ` let x = x

{} ` x :: α

{} ` not :: Bool → Bool {} ` x :: α

{} ` not x :: Bool
[Bool/α]

{} ` (x,not x) :: (α,Bool)

Not completely syntax-directed, but compositional.
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Navigation through the Explanation Graph

Explanation at expression level:

Error: unification would lead to infinite type

in expression: (last xs) : (init xs)

because

Expression: (:) (last xs) init xs

Type: [a]->[a] [a]

with xs [[a]] [[[a]]]

Explanation at function level:

Error: unification would lead to infinite type

in expression: (last xs) : (init xs)

because

Expression: last init

Type: [[a]]->a [[[a]]]->[a]
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Algorithmic Debugging

Shapiro ’83
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Algorithmic Debugging of the Example I

Error: unification would lead to infinite type

in expression: (last xs) : (init xs)

last :: [[a]]->a

Is intended type an instance? (y/n) n

head :: [a]->a

Is intended type an instance? (y/n) y

reverse :: [[a]]->[a]

Is intended type an instance? (y/n) n

ERROR LOCATED! Wrong definition of:

reverse :: [[a]]->[a]

Switch to detailed level of program fragments.
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Algorithmic Debugging of the Example II

reverse :: [a]->[b]
Is intended type an instance? (y/n) y

reverse (x : xs) :: b
reverse :: [a]->b
x :: a
xs :: [a]
Are intended types an instance? (y/n) y

(reverse xs) ++ x :: [b]
reverse :: a->[b]
xs :: a
x :: [b]
Are intended types an instance? (y/n) n

(++) (reverse xs) :: [b]->[b]
reverse :: a->[b]
xs :: a
Are intended types an instance? (y/n) y

ERROR LOCATED! Wrong program fragment:
(reverse xs) ++ x
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Locating the Source of Type Errors

Summary

• compositionality is the key to meaningful explanations

• principal typings instead of principal types

• interactive free navigation and algorithmic debugging

Future Work

• refine method

e.g. quick navigation to explanation of marked type constructor

• combine with other methods

e.g. minimal unsolvable constraints of Haack & Wells

and soft typing of Neubauer & Thiemann

• implement for full Haskell

including source browser showing typing of any marked expression
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Debugging Haskell Programs with the Haskell Tracer Hat

Joint work with Colin Runciman and Malcolm Wallace.

input output hat-observe

self-tracing

computation
trace hat-trail

hat-detect

Future Work

• formally relate operational semantics and trace

⇒ better understanding e.g. of trusting

• new views: animation à la GHood, locating black holes, stories of Booth

• tracing the functional-logic language Curry

(with Michael Hanus and Frank Huch at Kiel)

• tracing type inference

12



Programming and Programming Languages

New Language

Constructs
Types

future work:

relationship

future work:

free theorems

PhD:

deforestation

locating the

source of

type errors

future work:

refactoring

for ADTs

Operational

Semantics

Program

Transformation

Programming

Tools

MSc: strict &

non-strict
Haskell tracer
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