
Locating the Source of Type Errors

Olaf Chitil

Programming Languages and Systems Group

The University of York

1

The Problem

reverse [] = []

reverse (x:xs) = reverse xs ++ x

last xs = head (reverse xs)

init = reverse . tail . reverse

rotateR xs = last xs : init xs

ERROR - Type error in application

*** Expression : last xs : init xs

*** Term : last xs

*** Type : [a]

*** Does not match : a

*** Because : unification would

give infinite type

• wrong error location

• scope of type variables?

• where do the two types

come from?

2

Non-Solutions

• Milner’s algorithm W

. introduces globally scoped type variables

. globally updates variables

. has left-to right information flow f (not x) (x ++ "demo")

• A Hindley-Milner type inference tree:

{x :: Bool} ` x :: Bool

{} ` not :: Bool → Bool {x :: Bool} ` x :: Bool

{x :: Bool} ` not x :: Bool

{x :: Bool} ` (x,not x) :: (Bool,Bool)

. not compositional because of environment

. no proof that there exists no more general type

3

Solution: Principal Typings

principal type: most general type for given expression + type environment

{x :: Bool} ` x :: Bool

principal typing: most general type environment + type
︸ ︷︷ ︸

typing

for given expression

{x :: α} ` x :: α

The inference tree of principal typings is compositional:

{x :: α} ` x :: α

{} ` not :: Bool → Bool {x :: α} ` x :: α

{x :: Bool} ` not x :: Bool
[Bool/α]

{x :: Bool} ` (x,not x) :: (Bool,Bool)
[Bool/α]

4

An Obstacle

But x could be a let-bound, polymorphic variable.

{x :: ∀α.α} ` (x,not x) :: (Int,Bool)

the Hindley-Milner system doesn’t have principal typings [Jim ’96].

Solution: separate environments for let-bound variables [Mitchell ’96].

⇓ ⇓

{{} ` x :: α}, {} ` (x,not x) :: (α,Bool)

⇓ ⇓

5

The Explanation Graph

Polymorphic type environment still creates global dependencies

⇒ “copy” inference tree of definition to use occurrences.

{x :: α} ` x :: α

{{} ` x :: α} ` let x = x

{} ` x :: α

{} ` not :: Bool → Bool {} ` x :: α

{} ` not x :: Bool
[Bool/α]

{} ` (x,not x) :: (α,Bool)

Not completely syntax-directed, but compositional.

6

Navigation through the Explanation Graph

Explanation at expression level:

Error: unification would lead to infinite type

in expression: (last xs) : (init xs)

because

Expression: (:) (last xs) init xs

Type: [a]->[a] [a]

with xs [[a]] [[[a]]]

Explanation at function level:

Error: unification would lead to infinite type

in expression: (last xs) : (init xs)

because

Expression: last init

Type: [[a]]->a [[[a]]]->[a]

7

Algorithmic Debugging

Shapiro ’83

· · · · · ·

· · ·

· · · · · ·

· · ·

· · ·
√

· · · · · ·

· · ·
√

· · ·
√

· · ·
√

· · · ×

· · · ×

· · · ×

· · · · · ·

· · ·

· · · · · ·

· · ·

· · ·

· · · · · ·

· · ·

· · · · · ·

· · ·

· · ·

· · ·

· · · ×

8

Algorithmic Debugging of the Example I

Error: unification would lead to infinite type

in expression: (last xs) : (init xs)

last :: [[a]]->a

Is intended type an instance? (y/n) n

head :: [a]->a

Is intended type an instance? (y/n) y

reverse :: [[a]]->[a]

Is intended type an instance? (y/n) n

ERROR LOCATED! Wrong definition of:

reverse :: [[a]]->[a]

Switch to detailed level of program fragments.

9

Algorithmic Debugging of the Example II

reverse :: [a]->[b]
Is intended type an instance? (y/n) y

reverse (x : xs) :: b
reverse :: [a]->b
x :: a
xs :: [a]
Are intended types an instance? (y/n) y

(reverse xs) ++ x :: [b]
reverse :: a->[b]
xs :: a
x :: [b]
Are intended types an instance? (y/n) n

(++) (reverse xs) :: [b]->[b]
reverse :: a->[b]
xs :: a
Are intended types an instance? (y/n) y

ERROR LOCATED! Wrong program fragment:
(reverse xs) ++ x

10

Locating the Source of Type Errors

Summary

• compositionality is the key to meaningful explanations

• principal typings instead of principal types

• interactive free navigation and algorithmic debugging

Future Work

• refine method

e.g. quick navigation to explanation of marked type constructor

• combine with other methods

e.g. minimal unsolvable constraints of Haack & Wells

and soft typing of Neubauer & Thiemann

• implement for full Haskell

including source browser showing typing of any marked expression

11

Debugging Haskell Programs with the Haskell Tracer Hat

Joint work with Colin Runciman and Malcolm Wallace.

input output hat-observe

self-tracing

computation
trace hat-trail

hat-detect

Future Work

• formally relate operational semantics and trace

⇒ better understanding e.g. of trusting

• new views: animation à la GHood, locating black holes, stories of Booth

• tracing the functional-logic language Curry

(with Michael Hanus and Frank Huch at Kiel)

• tracing type inference

12

Programming and Programming Languages

New Language

Constructs
Types

future work:

relationship

future work:

free theorems

PhD:

deforestation

locating the

source of

type errors

future work:

refactoring

for ADTs

Operational

Semantics

Program

Transformation

Programming

Tools

MSc: strict &

non-strict
Haskell tracer

13

