Contracts for Lazy Functional Languages

University of

Kent

Olaf Chitil (University of Kent, Contracts for Lazy Functional Languages 6" June 2013, Miinchen

From Assertions to Contracts

@ specify & dynamically check properties
@ more expressive than static types, less effort than verification

@ testing with real values

In functional languages assertion application is a partial identity.

assert (prop (>= 0)) 42 ~ 42
assert (prop (>= 0)) (-2) ~» exception

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6™ June 2013, Miinchen

Systematic use of assertions as contract between a server and a client,
separating their responsibilities.

Function contract:
@ pre-condition has to be met by caller of the function

@ post-condition has to be met by function itself

data Formula = Imp Formula Formula | And Formula Formula |
Or Formula Formula | Not Formula | Atom Char

clausalNF :: Formula -> [[Formula]]

cClausalNF = assert (conjNF&right >-> list (list 1it)) clausalNF

For Scheme: [Findler & Felleisen: Contracts for higher-order functions, ICFP '02]

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6™ June 2013, Miinchen 3 /36

The Challenge for Lazy Languages

According to
[Deggen, Thiemann, Wehr: The Interaction of Contracts and Laziness, PEPM '12]

@ meaning preservation and

@ completeness
are contradictory:

ep = assert (pair (prop (== 0)) true) (loop, 42)
main = print (snd ep)

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6™ June 2013, Miinchen 4 /36

The Challenge for Lazy Languages

According to
[Deggen, Thiemann, Wehr: The Interaction of Contracts and Laziness, PEPM '12]

@ meaning preservation and

@ completeness
are contradictory:

ep = assert (pair (prop (== 0)) true) (loop, 42)
main = print (snd ep)

My aim: Meaning preservation but weaker completeness.

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6™ June 2013, Miinchen 4 /36

High Expressiveness Violates Semantics

Old approach
[Chitil & Huch: Monadic, prompt lazy assertions in Haskell, APLAS 2007]

is meaning preserving, but

let x = assert equal (True,False)

~~ exception
in (fst x, snd x) P

and

(fst (assert equal (True,False)), (True,
A
snd (assert equal (True,False))) False)

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6™ June 2013, Miinchen

High Expressiveness Violates Semantics

Old approach
[Chitil & Huch: Monadic, prompt lazy assertions in Haskell, APLAS 2007]

is meaning preserving, but

let x = assert equal (True,False) (True, error "...") or
PUNN

in (fst x, snd x) (error "...", False)

and

(fst (assert equal (True,False)), (True,
A
snd (assert equal (True,False))) False)

Hence: First define semantics, then derive an implementation.

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6™ June 2013, Miinchen 5/ 36

Overview

Part | Identify contract axioms, derive an implementation.
[Chitil: A Semantics for Lazy Assertions, PEPM '11]

Part Il Consider practical problems for a useful contract library.
[Chitil: Practical Typed Lazy Contracts, ICFP 2012]

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6™ June 2013, Miinchen 6 /36

Lazy Contracts ...

... have to work with non-strict functions and infinite data structures.

fibs :: [Integer]
fibs = assert nats (0 : 1 : zipWith (+) fibs (tail fibs))

Need to consider partial values:

assert nats (0:1:1) ~ 0:1
assert nats (0:1:1:1) ~ 0:1:
assert nats (0:1:1:2:1) ~ 0:1

Any approximation of an acceptable value has to be accepted!

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6™ June 2013, Miinchen 7 /36

Axioms of Contracts

Write (c) : D — D for semantics of assert c.
Domain D is directed complete partial order with L.

Definition

Acceptance set [c] :={veD|{(c)v=v} CD.

Definition

c is lazy contract, if
© (c): D — D is a continuous function,
@ c is trustworthy, that is, (c) v € [¢] for any value v,
(equivalent: (c) is idempotent)
@ (c) is a partial identity, that is, (c) v C v for any value v, and
Q [c] is a lower set.

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6™ June 2013, Miinchen 8 /36

Contracts and Projections

Definition

A function p: D — D on a domain D is a projection if it is
@ continuous,
@ idempotent, and

@ a partial identity.

Lemma
c is lazy contract < (c) is projection and its image is a lower set

cf. [Findler & Blume: Contracts as pairs of projections, FLOPS 2006]

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6™ June 2013, Miinchen 9 /36

Looking for Alternative Axioms

Definition

W} ={V VT v}
A ={v}NA

Theorem

[c]v is an ideal (lower & directed)

() v =il

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6™ June 2013, Miinchen 10 / 36

Alternative Axioms

Definition
A set AC D is a lazy domain if

@ A is lower,

@ A contains the least upper bound of any directed subset, and
o A, =l{v} N A s directed for all values v € D.

Lemma
If ¢ is a lazy assertion, then [c] is a lazy domain.

Theorem
If Ais a lazy domain, then ¢ with

(c)v =]l

is a lazy assertion with [c] = A.

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6 June 2013, Miinchen 11 /36

Basic Contracts: Minimal & Maximal

Definition

[false] :={L}
[true] := D

Derived contract applications
(false)v=||[false], =] H{v}in{L}= | {L} =1L
(true) v= | [true], = [JH{v}ND = H{v}=v

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages " June 2013, Miinchen

Contract Combinators: Conjunction

Definition

[cad] == [c] N [d]

Lemma Conjunction is commutative and associative and has true as
neutral element.

Lemma (Conjunction equals two contracts)

(c&d)v={c)({d)v)

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6 June 2013, Miinchen 13 / 36

Contract Combinators: Disjunction

Not [c I>d] :=[c] U [d]
because [c |>d], = ({v} N [c]) U ({v} N[d]) not directed.

Definition

[c1>d]:==({Y|[]Uld] C Y,Y lazy domain}

Attention!
D={Ll,(L,1),(True, L), (False, 1),..., (False,False)}
[fstTrue] = D\ {(False, 1), (False,True), (False,False)}

[fstTrue |> sndTrue] =D
[(fstTrue & sndTrue) |> (fstFalse & sndFalse)] =D

Lemma Disjunction is commutative and associative and has false as
neutral element.

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6™ June 2013, Miinchen 14 / 36

Bounded Distributive Lattice of Contracts

Lemma (Absorption laws)
ck(cl>d)=c
cl>(c&d)=c

Lemma (Distributive laws)
cl>(d&e)=(cl>d)&(cl>e)
ck(d|>e)=(c&d)I>(c&e)

Theorem Lazy contracts form a bounded distributive lattice with meet &,

join |>, least element false and greatest element true. The ordering is
the subset-relationship on acceptance sets.

Corollary (ldempotency laws)
ckc=c

cl>c=c

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6 June 2013, Miinchen 15 / 36

Let [c] := {L, (L, L)}

c&—c = false implies [c] N [-c] = {L}.
[—c] must be a lower set.

So [-c] = {L}.

But then [c I>—c] = [c].

Contradiction to ¢ |> —¢ = true.

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages " June 2013, Miinchen 16 / 36

Deriving an Implementation: Primitive Data Types

Flat domain, i.e., v C w implies v = L.

Definition (Acceptance set of Boolean property contract)

[prop ¢] := {1} U{v | ¢ v = True}

Derive application of contract:

(prop ¢) v = |_| Hvinle]
=| {L.vin({L}u{w|¢w = True})
- U{J_}U(if ¢v then {v} else {})

=if ¢ v then v else L

Note: {L}U{v | ¢ v # False} as acceptance set is un-implementable.

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6 June 2013, Miinchen 17 / 36

Primitive Data Types: Conjunction & Disjunction

Expected definitions:
prop ¢ & prop v := prop (Ax.¢x A x)
prop ¢ |> prop ¢ := prop (Ax.¢x V 1 x)

Verify they work:
[prop ¢ & prop ¢] = [prop ¢] N [prop ¢] ={L}U{v|ovAiv}

[prop ¢ I> prop ¢] =){X | [prop ¢] U [prop ¢'] C X, X lazy domain}
= ({X | [prop ¢] U [prop ¢] C X}
= [prop ¢] U [prop ¥] = {L}U{v[¢v Vi v}

Negation is possible:
~(prop ¢) := prop (Ax.—(¢ x))

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages " June 2013, Miinchen 18 / 36

Pattern Contracts for Algebraic Data Types

Recall:

data Formula = Imp Formula Formula | And Formula Formula |
Or Formula Formula | Not Formula | Atom Char

clausalNF :: Formula -> [[Formula]]

cClausalNF = assert (conjNF&right >-> list (list 1it)) clausalNF

So define

1it :: Contract Formula
lit = pAtom true |> pNot (pAtom true)

list :: Contract a -> Contract [a]
list ¢ = pNil |> pCons c (list c)

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6" June 2013, Miinchen 19 / 36

Deriving an Implementation: Algebraic Data Types

Definition (Acceptance set for pattern contract)

[pPCci...cn] ={LIU{Cwvi...vy| w1 €fca]...vn € [c]}

Lemma (Conjunction of constructor assertions)

(pCcr...cn) & (pC di...dn) =pC (c1&dr) ... (ch&dy)
(pCci...cn) & (pC' dy...d,) = false if C+#C

Lemma (Disjunction of constructor assertions)

(pCcr...cp) I>(pC dy...dp) =pC (al>di)...(cnl>dy)

Also if C # (', then
[(PCci...cn) 1> (pC d1...dy)] =[pC c1...cr] U[pC di...dn]

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages " June 2013, Miinchen 20 / 36

Contract Representation and Application

Representation of constructor contract
pGcl>pG > .0 I>pChCh

where {Cy, ..., Cp} is subset of all data constructors of the type.

Application of a constructor contract

C(()v) fC=¢

(pGici 1> ... I>pCprCm) (CV) = { i otherwise

pGici|>... I>pCpm) L = L

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6" June 2013, Miinchen 21/

Algebraic Data Types

Conjunction
(pCyCiy I> ... 1>pC;,C;) & (pC;dj, 1> ... 1>pC; d})
= pCh (C&di) 1> ... 1>pCy, (T, & dk,)
where {ki,..., kot ={i, ..., im0 {1, .-, J}
Disjunction
(pCiciy I> ... 1>pC;, T;,)) |> (pCy djy 1> ... I>pC; d})
= pCZi 1> ... I>pCy, Zk,
where {ki,.... kot ={i, ... imt U{, ..., J}
i 1>dy, ifks € {in, ... im0, .}

Zy, = Eks if ks € {il, .. .,im}\{jl, - ,j/}
dks if ks € {jl,...,j/}\{il,...,im}

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages " June 2013, Miinchen 22 /36

What about Function Types?

Function contract ¢>->d

Eager definition of function contract application:

(c>=>d)d = Ax.(d) (6({c) x))

But
[e>>d]={0]|(d) ocdo(c) =6}
is not a lower set!

Maybe need to relax axiom for function types?

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6 June 2013, Miinchen 23 /36

From Theory to Practice

Have
@ pure Haskell: language semantics unchanged; portable library

@ lazy contracts: preserve program meaning

eager: assert (list nat) [4,-4] = error "..."
lazy: assert (list nat) [4,-4] = [4, error "..."]
@ a nice algebra of contracts
Still Want
@ function type contracts
@ simple parametrically polymorphic types
(&), (|>) :: Contract a -> Contract a -> Contract a

@ simple data-type dependent code

e easy to write by hand
e can be derived automatically

@ when violated, a contract provides information beyond blaming

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6 June 2013, Miinchen 24 / 36

The Contract API

type Contract a
assert :: Contract

prop :: Flat a =>

true :: Contract
false :: Contract
(&) :: Contract
(>->) :: Contract
pNil :: Contract
pCons :: Contract

Cf. [Hinze, Jeuring & Loh:

a -> (a -> a)

(a -> Bool) -> Contract a

a —-> Contract a -> Contract a
a -> Contract b -> Contract (a -> b)

[al

a -> Contract [a] -> Contract [a]

Typed contracts for functional programming, FLOPS 2006]

Olaf Chitil (University of Kent, UK)

Contracts for Lazy Functional Languages 6" June 2013, Miinchen 25 / 36

A Simple Implementation ...

type Contract a = a -> a

assert c

pProp p X

true =

false

cl & c2
pre >—>

pNil []
pNil (_:

pCons c
pCons ¢

= c
= if p x then x else error "..."
id
const (error "...")
=c2 . cl

post = \f -> post . f . pre

= [
_) = error "..."
cs [] = error "..."
cs (x:Xs) = c x : cs xs

Cf. [Findler & Felleisen: Contracts for higher-order functions, ICFP 2002]

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6 June 2013, Miinchen

...with a Problem

We need disjunction of contracts for lazy algebraic data types

(]>) :: Contract a -> Contract a -> Contract a

for example for

nats :: Contract [Int]
nats = pNil |> pCons nat nats

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6" June 2013, Miinchen 27 / 36

type Contract a = a -> Maybe a

assert ¢ x = case ¢ x of
Just y >y
Nothing -> error "..."

(cl |> ¢2) x = case cl x of
Nothing -> c2 x
Just y -> Just y

true x = Just x
false x = Nothing

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6" June 2013, Miinchen

An Algebra of Contracts

Same laws as non-strict && and | | (not commutative):

c1 & (c2 & c3) = (c1 & c2) & c3
true & ¢ = ¢
c & true = ¢

false & ¢ = false

For function contracts:

true >-> true = true
cy >-> false = cp >-> false
(c1>=>cp) & (c3>>cy) = (c3 & c1) >> (co & cy4)

(c1>->c2) > (c3>>cy) = c1 >> ¢

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6 June 2013, Miinchen

Contracts are Projections

Lemma (Partial identity)

assert ¢ L id

Claim (Idempotency)

assert ¢ . assert c — assert c

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6 June 2013, Miinchen 30/ 36

Contracts for our Original Example

cClausalNF = assert (conjNF&right >-> list (list 1it)) clausalNF

Contracts:

conjNF, disj, 1it, atom, right :: Contract Formula

conjNF = pAnd conjNF conjNF [|> disj

disj = pOr disj disj [> 1lit
lit = pNot atom [> atom
atom = pAtom true

right = pImp (right & pNotImp) right [>
pAnd (right & pNotAnd) right [>
pOr (right & pNotOr) right |[>
pNot right |> pAtom true

No general negation, but negated pattern contracts pNotImp, ...

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6 June 2013, Miinchen

Implement like eager contracts: blame server or client.

cConst = assert (true >-> false >-> true) const

true: never blames anybody
false: always blames the client

Different from [Findler & Blume: Contracts as pairs of projections, FLOPS 2006]

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6 June 2013, Miinchen 32 /36

Add Witness Tracing

On violation report a path of data constructors:

*Main> cClausalNF form
[[Atom ’a’],[Atom ’b’,Not

%x Exception: Contract at ContractTest.hs:101:3
violated by

((And _ (Or - (Not {Not _})))->.)
The client is to blame.

@ Starting point for debugging.

@ Blaming can be wrong: The contract may be wrong.

Olaf Chitil (University of Kent, UK)

Contracts for Lazy Functional Languages 6t June 2013, Miinchen 33 /36

Derive data-type-dependent code

Derive a contract pattern on demand

conjNF = $(p ’And) conjNF conjNF |> disj
disj = $(p ’0r) disj disj |> 1lit

lit = $(p ’Not) atom |> atom

atom = $(p ’Atom) true

or declare

$(deriveContracts ’’Formula)

Use Template Haskell; other generic Haskell systems
@ introduce a class context (Data a)

@ cannot handle functions, e.g. inside data structures

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6 June 2013, Miinchen

Last Slide

Lazy Contracts
o Need lazy pattern combinators (pCons) and disjunction (|>).
@ Pattern assertions similar to algebraic data types; subtypes!
o Laziness restricts expressibility!
Semantics
@ Few axioms: continuous, trustworthy, partial identity, lower set.
@ Acceptance sets [c] are lazy domains, subdomains.
@ Algebra of contracts: bounded distributive lattice.
Practice
@ type Contract a = a -> Maybe a
o Portable library: hackage.haskell.org/package/Contract
Future
@ Dependent function contracts?

@ Contracts to express non-strictness properties?

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6 June 2013, Miinchen

Example Contracts

A predicate contract:

nat :: Contract Int
nat = prop (>= 0)

Expressing non-strictness of a function:

cLength = assert (list false >-> nat) length
cConst = assert (true >-> false >-> true) const

A list is not finite:

infinite :: Contract [a]
infinite = pCons true infinite

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6 June 2013, Miinchen

