
Contracts for Lazy Functional Languages

Olaf Chitil

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 1 / 36

From Assertions to Contracts

specify & dynamically check properties

more expressive than static types, less effort than verification

testing with real values

In functional languages assertion application is a partial identity.

assert (prop (>= 0)) 42 42

assert (prop (>= 0)) (-2) exception

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 2 / 36

Contracts

Systematic use of assertions as contract between a server and a client,
separating their responsibilities.

Function contract:

pre-condition has to be met by caller of the function

post-condition has to be met by function itself

data Formula = Imp Formula Formula | And Formula Formula |

Or Formula Formula | Not Formula | Atom Char

clausalNF :: Formula -> [[Formula]]

cClausalNF = assert (conjNF & right >-> list (list lit)) clausalNF

For Scheme: [Findler & Felleisen:Contracts for higher-order functions, ICFP ’02]

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 3 / 36

The Challenge for Lazy Languages

According to
[Deggen, Thiemann, Wehr: The Interaction of Contracts and Laziness, PEPM ’12]

meaning preservation and

completeness

are contradictory:

ep = assert (pair (prop (== 0)) true) (loop, 42)

main = print (snd ep)

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 4 / 36

The Challenge for Lazy Languages

According to
[Deggen, Thiemann, Wehr: The Interaction of Contracts and Laziness, PEPM ’12]

meaning preservation and

completeness

are contradictory:

ep = assert (pair (prop (== 0)) true) (loop, 42)

main = print (snd ep)

My aim: Meaning preservation but weaker completeness.

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 4 / 36

High Expressiveness Violates Semantics

Old approach

[Chitil & Huch: Monadic, prompt lazy assertions in Haskell, APLAS 2007]

is meaning preserving, but

let x = assert equal (True,False)

in (fst x, snd x)
 exception

and

(fst (assert equal (True,False)),

snd (assert equal (True,False)))

(True,

False)

Hence: First define semantics, then derive an implementation.

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 5 / 36

High Expressiveness Violates Semantics

Old approach

[Chitil & Huch: Monadic, prompt lazy assertions in Haskell, APLAS 2007]

is meaning preserving, but

let x = assert equal (True,False)

in (fst x, snd x)

(True, error "...") or
(error "...", False)

and

(fst (assert equal (True,False)),

snd (assert equal (True,False)))

(True,

False)

Hence: First define semantics, then derive an implementation.

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 5 / 36

Overview

Part I Identify contract axioms, derive an implementation.
[Chitil: A Semantics for Lazy Assertions, PEPM ’11]

Part II Consider practical problems for a useful contract library.
[Chitil: Practical Typed Lazy Contracts, ICFP 2012]

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 6 / 36

Lazy Contracts ...

... have to work with non-strict functions and infinite data structures.

fibs :: [Integer]

fibs = assert nats (0 : 1 : zipWith (+) fibs (tail fibs))

Need to consider partial values:

assert nats (0:1:⊥) 0:1:⊥
assert nats (0:1:1:⊥) 0:1:1:⊥
assert nats (0:1:1:2:⊥) 0:1:1:2:⊥

Any approximation of an acceptable value has to be accepted!

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 7 / 36

Axioms of Contracts

Write 〈c〉 : D → D for semantics of assert c .
Domain D is directed complete partial order with ⊥.

Definition

Acceptance set [[c]] := {v ∈ D | 〈c〉 v = v} ⊆ D.

Definition

c is lazy contract, if

1 〈c〉 : D → D is a continuous function,

2 c is trustworthy, that is, 〈c〉 v ∈ [[c]] for any value v ,
(equivalent: 〈c〉 is idempotent)

3 〈c〉 is a partial identity, that is, 〈c〉 v v v for any value v , and

4 [[c]] is a lower set.

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 8 / 36

Contracts and Projections

Definition

A function p : D → D on a domain D is a projection if it is

continuous,

idempotent, and

a partial identity.

Lemma
c is lazy contract ⇔ 〈c〉 is projection and its image is a lower set

cf. [Findler & Blume: Contracts as pairs of projections, FLOPS 2006]

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 9 / 36

Looking for Alternative Axioms

Definition

↓{v} := {v ′ | v ′ v v}
Av :=↓{v} ∩ A

Theorem

[[c]]v is an ideal (lower & directed)

〈c〉 v =
⊔

[[c]]v

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 10 / 36

Alternative Axioms

Definition

A set A ⊆ D is a lazy domain if

A is lower,

A contains the least upper bound of any directed subset, and

Av =↓{v} ∩ A is directed for all values v ∈ D.

Lemma
If c is a lazy assertion, then [[c]] is a lazy domain.

Theorem
If A is a lazy domain, then c with

〈c〉 v :=
⊔

[[c]]v

is a lazy assertion with [[c]] = A.
Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 11 / 36

Basic Contracts: Minimal & Maximal

Definition

[[false]] := {⊥}
[[true]] := D

Derived contract applications

〈false〉 v =
⊔

[[false]]v =
⊔
↓{v} ∩ {⊥}=

⊔
{⊥} =⊥

〈true〉 v =
⊔

[[true]]v =
⊔
↓{v} ∩ D =

⊔
↓{v}= v

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 12 / 36

Contract Combinators: Conjunction

Definition

[[c & d]] := [[c]] ∩ [[d]]

Lemma Conjunction is commutative and associative and has true as
neutral element.

Lemma (Conjunction equals two contracts)

〈c & d〉 v = 〈c〉 (〈d〉 v)

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 13 / 36

Contract Combinators: Disjunction

Not [[c |> d]] := [[c]] ∪ [[d]]
because [[c |> d]]v = (↓{v} ∩ [[c]]) ∪ (↓{v} ∩ [[d]]) not directed.

Definition

[[c |> d]] :=
⋂
{Y | [[c]] ∪ [[d]] ⊆ Y ,Y lazy domain}

Attention!
D = {⊥, (⊥,⊥), (True,⊥), (False,⊥), . . . , (False,False)}

[[fstTrue]] = D \ {(False,⊥), (False,True), (False,False)}

[[fstTrue |> sndTrue]] = D

[[(fstTrue & sndTrue) |> (fstFalse & sndFalse)]] = D

Lemma Disjunction is commutative and associative and has false as
neutral element.
Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 14 / 36

Bounded Distributive Lattice of Contracts

Lemma (Absorption laws)

c & (c |> d) = c

c |> (c & d) = c

Lemma (Distributive laws)

c |> (d & e) = (c |> d) & (c |> e)

c & (d |> e) = (c & d) |> (c & e)

Theorem Lazy contracts form a bounded distributive lattice with meet &,
join |>, least element false and greatest element true. The ordering is
the subset-relationship on acceptance sets.

Corollary (Idempotency laws)

c & c = c

c |> c = c

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 15 / 36

No Negation

Let [[c]] := {⊥, (⊥,⊥)}

c &¬c = false implies [[c]] ∩ [[¬c]] = {⊥}.

[[¬c]] must be a lower set.

So [[¬c]] = {⊥}.

But then [[c |>¬c]] = [[c]].

Contradiction to c |>¬c = true.

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 16 / 36

Deriving an Implementation: Primitive Data Types

Flat domain, i.e., v @ w implies v = ⊥.

Definition (Acceptance set of Boolean property contract)

[[prop φ]] := {⊥} ∪ {v | φ v = True}

Derive application of contract:

〈prop φ〉 v =
⊔
↓{v} ∩ [[φ]]

=
⊔
{⊥, v} ∩ ({⊥} ∪ {w | φw = True})

=
⊔
{⊥} ∪ (if φ v then {v} else {})

= if φ v then v else ⊥

Note: {⊥} ∪ {v | φ v 6= False} as acceptance set is un-implementable.

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 17 / 36

Primitive Data Types: Conjunction & Disjunction

Expected definitions:

prop φ & prop ψ := prop (λx .φ x ∧ ψ x)

prop φ |> prop ψ := prop (λx .φ x ∨ ψ x)

Verify they work:

[[prop φ & prop ψ]] = [[prop φ]] ∩ [[prop ψ]] = {⊥} ∪ {v | φ v ∧ ψ v}

[[prop φ |> prop ψ]] =
⋂
{X | [[prop φ]] ∪ [[prop ψ]] ⊆ X ,X lazy domain}

=
⋂
{X | [[prop φ]] ∪ [[prop ψ]] ⊆ X}

= [[prop φ]] ∪ [[prop ψ]] = {⊥} ∪ {v | φ v ∨ ψ v}

Negation is possible:

¬(prop φ) := prop (λx .¬(φ x))

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 18 / 36

Pattern Contracts for Algebraic Data Types

Recall:

data Formula = Imp Formula Formula | And Formula Formula |

Or Formula Formula | Not Formula | Atom Char

clausalNF :: Formula -> [[Formula]]

cClausalNF = assert (conjNF & right >-> list (list lit)) clausalNF

So define

lit :: Contract Formula

lit = pAtom true |> pNot (pAtom true)

list :: Contract a -> Contract [a]

list c = pNil |> pCons c (list c)

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 19 / 36

Deriving an Implementation: Algebraic Data Types

Definition (Acceptance set for pattern contract)

[[pC c1 . . . cn]] := {⊥} ∪ {C v1 . . . vn | v1 ∈ [[c1]] . . . vn ∈ [[cn]]}

Lemma (Conjunction of constructor assertions)

(pC c1 . . . cn) & (pC d1 . . . dn) = pC (c1&d1) . . . (cn&dn)

(pC c1 . . . cn) & (pC ′ d1 . . . dn) = false if C 6= C ′

Lemma (Disjunction of constructor assertions)

(pC c1 . . . cn) |> (pC d1 . . . dn) = pC (c1|>d1) . . . (cn|>dn)

Also if C 6= C ′, then

[[(pC c1 . . . cn) |> (pC ′ d1 . . . dn)]] = [[pC c1 . . . cn]] ∪ [[pC ′ d1 . . . dn]]

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 20 / 36

Contract Representation and Application

Representation of constructor contract

pC1 c1 |> pC2 c2 |> . . . |> pCm cm

where {C1, . . . ,Cm} is subset of all data constructors of the type.

Application of a constructor contract

〈pC1 c1 |> . . . |> pCm cm〉 (C v) =

{
C (〈c j〉 v) if C = Cj

⊥ otherwise
〈pC1 c1 |> . . . |> pCm cm〉 ⊥ = ⊥

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 21 / 36

Algebraic Data Types

Conjunction

(pCi1 c i1 |> . . . |> pCim c im) & (pCj1 d j1 |> . . . |> pCjl d jl)

= pCk1 (ck1& dk1) |> . . . |> pCko (cko& dko)

where {k1, . . . , ko} = {i1, . . . , im} ∩ {j1, . . . , jl}

Disjunction

(pCi1 c i1 |> . . . |> pCim c im) |> (pCj1 d j1 |> . . . |> pCjl d jl)

= pCk1 zk1 |> . . . |> pCko zko

where {k1, . . . , ko} = {i1, . . . , im} ∪ {j1, . . . , jl}

zks =

cks|> dks if ks ∈ {i1, . . . , im} ∩ {j1, . . . , jl}

cks if ks ∈ {i1, . . . , im}\{j1, . . . , jl}
dks if ks ∈ {j1, . . . , jl}\{i1, . . . , im}

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 22 / 36

What about Function Types?

Function contract c >-> d

Eager definition of function contract application:

〈c >-> d〉 δ = λx .〈d〉 (δ(〈c〉 x))

But

[[c >-> d]] = {δ | 〈d〉 ◦ δ ◦ 〈c〉 = δ}

is not a lower set!

Maybe need to relax axiom for function types?

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 23 / 36

From Theory to Practice

Have

pure Haskell: language semantics unchanged; portable library

lazy contracts: preserve program meaning

eager: assert (list nat) [4,-4] = error "..."

lazy: assert (list nat) [4,-4] = [4, error "..."]

a nice algebra of contracts

Still Want

function type contracts

simple parametrically polymorphic types

(&), (|>) :: Contract a -> Contract a -> Contract a

simple data-type dependent code

easy to write by hand
can be derived automatically

when violated, a contract provides information beyond blaming

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 24 / 36

The Contract API

type Contract a

assert :: Contract a -> (a -> a)

prop :: Flat a => (a -> Bool) -> Contract a

true :: Contract a

false :: Contract a

(&) :: Contract a -> Contract a -> Contract a

(>->) :: Contract a -> Contract b -> Contract (a -> b)

pNil :: Contract [a]

pCons :: Contract a -> Contract [a] -> Contract [a]

Cf. [Hinze, Jeuring & Löh: Typed contracts for functional programming, FLOPS 2006]
Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 25 / 36

A Simple Implementation ...

type Contract a = a -> a

assert c = c

prop p x = if p x then x else error "..."

true = id

false = const (error "...")

c1 & c2 = c2 . c1

pre >-> post = \f -> post . f . pre

pNil [] = []

pNil (_:_) = error "..."

pCons c cs [] = error "..."

pCons c cs (x:xs) = c x : cs xs

Cf. [Findler & Felleisen: Contracts for higher-order functions, ICFP 2002]
Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 26 / 36

...with a Problem

We need disjunction of contracts for lazy algebraic data types

(|>) :: Contract a -> Contract a -> Contract a

for example for

nats :: Contract [Int]

nats = pNil |> pCons nat nats

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 27 / 36

Solution

type Contract a = a -> Maybe a

assert c x = case c x of

Just y -> y

Nothing -> error "..."

(c1 |> c2) x = case c1 x of

Nothing -> c2 x

Just y -> Just y

true x = Just x

false x = Nothing

...

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 28 / 36

An Algebra of Contracts

Same laws as non-strict && and || (not commutative):

c1 & (c2 & c3) = (c1 & c2) & c3

true & c = c

c & true = c

false & c = false

...

For function contracts:

true >-> true = true

c1 >-> false = c2 >-> false

(c1 >-> c2) & (c3 >-> c4) = (c3 & c1) >-> (c2 & c4)

(c1 >-> c2) |> (c3 >-> c4) = c1 >-> c2

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 29 / 36

Contracts are Projections

Lemma (Partial identity)

assert c v id

Claim (Idempotency)

assert c . assert c = assert c

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 30 / 36

Contracts for our Original Example

cClausalNF = assert (conjNF & right >-> list (list lit)) clausalNF

Contracts:

conjNF, disj, lit, atom, right :: Contract Formula

conjNF = pAnd conjNF conjNF |> disj

disj = pOr disj disj |> lit

lit = pNot atom |> atom

atom = pAtom true

right = pImp (right & pNotImp) right |>

pAnd (right & pNotAnd) right |>

pOr (right & pNotOr) right |>

pNot right |> pAtom true

No general negation, but negated pattern contracts pNotImp, . . .

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 31 / 36

Blaming

Implement like eager contracts: blame server or client.

cConst = assert (true >-> false >-> true) const

true: never blames anybody
false: always blames the client

Different from [Findler & Blume: Contracts as pairs of projections, FLOPS 2006]

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 32 / 36

Add Witness Tracing

On violation report a path of data constructors:

*Main> cClausalNF form

[[Atom ’a’],[Atom ’b’,Not

*** Exception: Contract at ContractTest.hs:101:3

violated by

((And (Or (Not {Not })))->)

The client is to blame.

Starting point for debugging.

Blaming can be wrong: The contract may be wrong.

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 33 / 36

Derive data-type-dependent code

Derive a contract pattern on demand

conjNF = $(p ’And) conjNF conjNF |> disj

disj = $(p ’Or) disj disj |> lit

lit = $(p ’Not) atom |> atom

atom = $(p ’Atom) true

or declare

$(deriveContracts ’’Formula)

Use Template Haskell; other generic Haskell systems

introduce a class context (Data a)

cannot handle functions, e.g. inside data structures

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 34 / 36

Last Slide

Lazy Contracts

Need lazy pattern combinators (pCons) and disjunction (|>).

Pattern assertions similar to algebraic data types; subtypes!

Laziness restricts expressibility!

Semantics

Few axioms: continuous, trustworthy, partial identity, lower set.

Acceptance sets [[c]] are lazy domains, subdomains.

Algebra of contracts: bounded distributive lattice.

Practice

type Contract a = a -> Maybe a

Portable library: hackage.haskell.org/package/Contract

Future

Dependent function contracts?

Contracts to express non-strictness properties?

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 35 / 36

Example Contracts

A predicate contract:

nat :: Contract Int

nat = prop (>= 0)

Expressing non-strictness of a function:

cLength = assert (list false >-> nat) length

cConst = assert (true >-> false >-> true) const

A list is not finite:

infinite :: Contract [a]

infinite = pCons true infinite

Olaf Chitil (University of Kent, UK) Contracts for Lazy Functional Languages 6th June 2013, München 36 / 36

