A Semantics for Lazy Assertions

Olaf Chitil

University of

Kent

25™ January 2011

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions January 2011 1/24

Assertions in Functional Languages

assert nats [4,2] ~ [4,2]
assert nats [4,-2] ~-» exception

Assertion application is a partial identity.

assert :: Assertion t >t > t
nats :: Num t => Assertion [t]

Note: Contract = Assertion + Blaming

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions January 2011 2 /24

Lazy Assertions ...

. work with non-strict functions and infinite data structures.

fibs :: [Integer]
fibs = assert nats (0 : 1 : zipWith (+) fibs (tail fibs))

Need to consider partial values:

assert nats (0:1:1) ~ 0:1:1
assert nats (0:1:1:1) ~ 0:1:1: L
assert nats (0:1:1:2:1) ~ 0:1:1:2:1

Any approximation of an acceptable value has to be accepted!

January 2011 3/24

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions

The Problem

let x = assert equal (True,False)

. exception
in (fst x, snd x) e P

but

(fst (assert equal (True,False)), — (True,
snd (assert equal (True,False))) False)

(True, 1) (True,True)

C
Because (L,False) L (False,False)

have to be accepted.

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25t January 2011

The Problem

let x = assert equal (True,False) (True, error "...") or
A

in (fst x, snd x) (error "...", False)

but

(fst (assert equal (True,False)), (True,

snd (assert equal (True,False))) - False)

(True, 1) C (True,True)

Because (L,False) LC (False,False)

have to be accepted.

Hence: First define semantics, then derive an implementation.

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25t January 2011

Resulting Lazy Assertions: List of natural numbers

nats :: Assert [Integer]
nats = aList (pred (>=0))

alist :: Assert t -> Assert [t]
alist a = aNil <|> aCons a (alist a)

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions January 2011

Resulting Lazy Assertions: Minimal list length

lengthAtLeast :: Int -> Assert [t]
lengthAtLeast O = alAny
lengthAtLeast (n+1) = aCons aAny (lengthAtLeast n)

initAverage :: [Int] -> Int
initAverage = assert (lengthAtLeast 5 |-> aAny) initAverage’

initAverage’ xs = sum (take 5 xs) ’div’ 5

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions

Resulting Lazy Assertions: Logic Example

Data type for formulae:
data Form = Imp Form Form | And Form Form |
Or Form Form | Not Form | Atom Char
Assertions for conjunctive normal form:
conjNF, disj, 1lit, atom :: Assert Form
conjNF = aAnd conjNF conjNF <[> disj
disj = aOr disj disj <[> 1lit

1lit = aNot atom <|> atom
atom = aAtom aAny

Conjunctive normal form with left-associated operators:

leftConjNF :: Assert Form
leftConjNF = conjNF <&> left

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions January 2011 7/ 24

Axioms of Semantics

Write (a) : D — D for semantics of assert a.
Domain D is directed complete partial order with L.

Definition

Acceptance set [a] :={ve D |(a)v=v} CD.

Definition

a is lazy assertion, if
Q@ (a): D — D is a continuous function,

@ ais trustworthy, that is, (a) v € [a] for any value v,
(equivalent: 2 is idempotent)

© (a) is a partial identity, that is, (a) v C v for any value v, and
O [2] is a lower set.

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions January 2011 8 /24

Assertions and Projections

Definition

A function p: D — D on a domain D is a projection if it is
@ continuous,
@ idempotent, and

@ a partial identity.

Lemma
a is lazy assertion < (a) is projection and its image is a lower set

(cf. Findler & Blume, FLOPS 2006)

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions January 2011 9 /24

Looking for Alternative Axioms

Definition

Hv}p={V [V Cv}
A =l{v}INA

Theorem
[a]y is an ideal (lower & directed)

(ayv = Il

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25t January 2011

Alternative Axioms

Definition
A set AC D is a lazy domain if

o Ais lower,
@ A contains the least upper bound of any directed subset, and
o A, =l{v} N Ais directed for all values v € D.

Lemma
If ais a lazy assertion, then [a] is a lazy domain.

Theorem
If Ais a lazy domain, then a with

(@) v:=|_|lalv

is a lazy assertion with [a] = A.

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25t January 2011 11 /24

Assertion Combinators: Minimal & Maximal

Definition

[aNone] := { L}
[aAny] := D

Derived assertion applications

(aNone) v =| |[aNone], = | {v} n{L}= | {L} =1L
(ahny) v = Ufadng], = L H{v}nD =L {v}=v

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions " January 2011

Assertion Combinators: Conjunction

Definition

[a<&> b] := [a] N [b]

Lemma Conjunction of assertions is commutative and associative and has
the assertion aAny as neutral element.

Lemma (Conjunction equals two assertions)

(a<&>b) v = (a) ((b) v)

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25t January 2011 13 /24

Assertion Combinators: Disjunction

Not [a Vv b] := [a] U [b]
because [a Vv b], = ({v} N [a]) U ({v} n[b]) not directed.

Definition

[a<I>b] ==Y [[a]U[b] C V.Y lazy domain}

Attention!
SMOND = {1, (L, 1), (True, 1), (False, 1),..., (False,False)}

[fstTrue] = D\ {(False, L), (False,True), (False,False)}

[fstTrue <|> sndTrue] =D
[(fstTrue <&> sndTrue) <|> (fstFalse <&> sndFalse)] =D

Lemma Disjunction of assertions is commutative and associative and has
the assertion aNone as neutral element.

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25t January 2011 14 / 24

Bounded Distributive Lattice of Assertions

Lemma (Absorption laws)
a<&>(a<|>b)=a

a<|>(a<&>b)=a

Lemma (Distributive laws)
a<|>(b<&>c) = (a<l|>b)<&>(a<l>c)
a<&>(b<|>c) = (a<&>b)<|>(a<&>c)

Theorem Lazy assertions form a bounded distributive lattice with meet
<&>, join <[>, least element aNone and greatest element aAny. The
ordering is the subset-relationship on acceptance sets.

Corollary (ldempotency laws)

a<&>a—=a

a<|>a=a

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25t January 2011 15 / 24

Let [a] := {L, (L, 1)}

a<&>—a = alNone implies [a] N [-a] = {L}.
[—a] must be a lower set.

So [—a] = {L}.

But then [a<|>—a] = [a].

Contradiction to a<|>—a = aAny.

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions " January 2011 16 / 24

Deriving an Implementation: Primitive Data Types

Flat domain, i.e., v C w implies v = L.

Definition (Acceptance set of predicate assertion)

[¢] :={L}U{v| ¢ v =True}

Derive application of assertion predicate:

(@) v=]|Hv}n[gl
= U{L, vin({L}u{w| ¢w = True})
= |_|{J_}U(if ¢v then {v} else {})

= if ¢ v then v else L

Note: { L} U{v | ¢ v # False} as acceptance set is un-implementable.

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions " January 2011 17 / 24

Primitive Data Types: Conjunction & Disjunction

Expected definitions:
O<&>Y ;= AX.ox NP x

O<I>Y = Ax.px V1 x

Verify they work
[[(/5<&>¢]] [Pl [l ={v|ovAypv}

[o<1>¢] = (X [[e] U [¥] < X, X lazy domain}
=X IelV] € X}
=[oJull={vIovVvev}

Negation is possible:

—¢ = Ax.—(¢ x)

Olaf Chitil (Kent, UK)

Deriving an Implementation: Algebraic Data Types

Definition (Acceptance set for pattern assertion)

[Car...an] ={L}U{Cvi...vy|v1 €a1].. va€[an]}

Lemma (Conjunction of constructor assertions)
(Cay...ap) <&> (C by...by) = C (a1<&>b1) ... (an<&>by)
(Cay...an) <& (C' by...b,) = pNone if C#£C
Lemma (Disjunction of constructor assertions)

(Car...an) <I>(C by...by) = C (ar1<I>by)...(an<|>bp)

Also if C # (', then
[(Car...an) <I>(C"by...b,)]=[Ca1...anJ U[C b1...b,]

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions " January 2011 19 / 24

Assertion Representation and Application

Representation of constructor assertion
Gai<I>Ga<l> ... <|>Cphan

where {Cy,..., Cp} is subset of all data constructors of the type.

Application of a constructor assertion

C((3)v) fC=C
(Giar<l>...<I>Cpam) (CV) = { (<jf>v) Iotherwisé

(Giai<l>...<I>Cpam L = 1L

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions " January 2011 20 /

Algebraic Data Types

Conjunction
(Cyai <> ...<I>C;,3a;,) <&> (C; b, <I>...<I>C; b;)
= Gk, (35,<&> by) <I> ... <> Cy, (3k,<&> by,)
where {ki,.... kot ={i, ... im0 {1, .- i}
Disjunction
(Cya,<I>...<I>G a,) <I>(C; by<I>...<I>C; b))
= Ci Zk, <I> ... <I> Cy, Zg,
where {ki, ... ko} = {it, .. im} U {1, ... Ji}
a<I>by, ifks € {it,...,im} O {1, .. di}

Zy, = Eks if ksE{il,...,im}\{jl,...,j/}
bks if ks € {j17---7jl}\{i17--->im}

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions " January 2011

What about Function Types?

Function Assertion a — b

Standard definition of assertion application:

(a s bY & = Ax.(b) (5({a) x))

But
[a— bl ={0]| (b) 0cdo(a) =6}
is not a lower set! However,
{6 |Vvela].ovelb]}
is a lazy domain.

Need two acceptance sets, for argument and context.
(cf. Findler & Blume, FLOPS 2006)

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions " January 2011 22 /24

Last Slide

Semantics
@ Only few axioms: functional, trustworthy, partial identity, lower set.
@ Acceptance sets [a] are lazy domains, subdomains.

@ Algebra of assertions: bounded distributive lattice.

Lazy Assertions

Derived as library from semantics.
Laziness restricts expressibility!

°
@ Pattern assertions similar to algebraic data types; subtypes!
°

Pattern assertions are efficient.

Future
@ Assertions to express non-strictness properties.

o (Dependent?) function assertion semantics.

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25t January 2011

Example: Normalisation of <&>

Formula in conjunctive normal form with left-associated binary operators:

conjNF = aAnd conjNF conjNF <|> aOr disj disj <|> aNot atom <|>
aAtom aAny

left = almp left nolmp <|> aAnd left noAnd <|> aOr left noOr <|>
aNot left <|> aAtom alAny

Combined:

leftConjNF

conjNF <&> left

= aAnd (conjNF <&> left) (conjNF <&> noAnd) <[>
aOr (disj <&> left) (disj <&> noOr) <[>

aNot (atom <&> left) <|>

aAtom (aAny <&> aAny)

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25t January 2011

