
A Semantics for Lazy Assertions

Olaf Chitil

25th January 2011

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 1 / 24

Assertions in Functional Languages

assert nats [4,2] [4,2]

assert nats [4,-2] exception

Assertion application is a partial identity.

assert :: Assertion t -> t -> t

nats :: Num t => Assertion [t]

Note: Contract = Assertion + Blaming

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 2 / 24

Lazy Assertions ...

... work with non-strict functions and infinite data structures.

fibs :: [Integer]

fibs = assert nats (0 : 1 : zipWith (+) fibs (tail fibs))

Need to consider partial values:

assert nats (0:1:⊥) 0:1:⊥
assert nats (0:1:1:⊥) 0:1:1:⊥
assert nats (0:1:1:2:⊥) 0:1:1:2:⊥

Any approximation of an acceptable value has to be accepted!

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 3 / 24

The Problem

let x = assert equal (True,False)

in (fst x, snd x)
 exception

but

(fst (assert equal (True,False)),

snd (assert equal (True,False)))

(True,

False)

Because
(True,⊥) v (True,True)

(⊥,False) v (False,False)
have to be accepted.

Hence: First define semantics, then derive an implementation.

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 4 / 24

The Problem

let x = assert equal (True,False)

in (fst x, snd x)

(True, error "...") or
(error "...", False)

but

(fst (assert equal (True,False)),

snd (assert equal (True,False)))

(True,

False)

Because
(True,⊥) v (True,True)

(⊥,False) v (False,False)
have to be accepted.

Hence: First define semantics, then derive an implementation.

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 4 / 24

Resulting Lazy Assertions: List of natural numbers

nats :: Assert [Integer]

nats = aList (pred (>=0))

aList :: Assert t -> Assert [t]

aList a = aNil <|> aCons a (aList a)

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 5 / 24

Resulting Lazy Assertions: Minimal list length

lengthAtLeast :: Int -> Assert [t]

lengthAtLeast 0 = aAny

lengthAtLeast (n+1) = aCons aAny (lengthAtLeast n)

initAverage :: [Int] -> Int

initAverage = assert (lengthAtLeast 5 |-> aAny) initAverage’

initAverage’ xs = sum (take 5 xs) ’div’ 5

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 6 / 24

Resulting Lazy Assertions: Logic Example

Data type for formulae:

data Form = Imp Form Form | And Form Form |

Or Form Form | Not Form | Atom Char

Assertions for conjunctive normal form:

conjNF, disj, lit, atom :: Assert Form

conjNF = aAnd conjNF conjNF <|> disj

disj = aOr disj disj <|> lit

lit = aNot atom <|> atom

atom = aAtom aAny

Conjunctive normal form with left-associated operators:

leftConjNF :: Assert Form

leftConjNF = conjNF <&> left

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 7 / 24

Axioms of Semantics

Write 〈a〉 : D → D for semantics of assert a.
Domain D is directed complete partial order with ⊥.

Definition

Acceptance set [[a]] := {v ∈ D | 〈a〉 v = v} ⊆ D.

Definition

a is lazy assertion, if

1 〈a〉 : D → D is a continuous function,

2 a is trustworthy, that is, 〈a〉 v ∈ [[a]] for any value v ,
(equivalent: a is idempotent)

3 〈a〉 is a partial identity, that is, 〈a〉 v v v for any value v , and

4 [[a]] is a lower set.

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 8 / 24

Assertions and Projections

Definition

A function p : D → D on a domain D is a projection if it is

continuous,

idempotent, and

a partial identity.

Lemma
a is lazy assertion ⇔ 〈a〉 is projection and its image is a lower set

(cf. Findler & Blume, FLOPS 2006)

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 9 / 24

Looking for Alternative Axioms

Definition

↓{v} := {v ′ | v ′ v v}
Av :=↓{v} ∩ A

Theorem
[[a]]v is an ideal (lower & directed)

〈a〉 v =
⊔

[[a]]v

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 10 / 24

Alternative Axioms

Definition

A set A ⊆ D is a lazy domain if

A is lower,

A contains the least upper bound of any directed subset, and

Av =↓{v} ∩ A is directed for all values v ∈ D.

Lemma
If a is a lazy assertion, then [[a]] is a lazy domain.

Theorem
If A is a lazy domain, then a with

〈a〉 v :=
⊔

[[a]]v

is a lazy assertion with [[a]] = A.
Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 11 / 24

Assertion Combinators: Minimal & Maximal

Definition

[[aNone]] := {⊥}
[[aAny]] := D

Derived assertion applications

〈aNone〉 v =
⊔

[[aNone]]v =
⊔
↓{v} ∩ {⊥}=

⊔
{⊥} =⊥

〈aAny〉 v =
⊔

[[aAny]]v =
⊔
↓{v} ∩ D =

⊔
↓{v}= v

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 12 / 24

Assertion Combinators: Conjunction

Definition

[[a <&> b]] := [[a]] ∩ [[b]]

Lemma Conjunction of assertions is commutative and associative and has
the assertion aAny as neutral element.

Lemma (Conjunction equals two assertions)

〈a<&>b〉 v = 〈a〉 (〈b〉 v)

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 13 / 24

Assertion Combinators: Disjunction

Not [[a ∨ b]] := [[a]] ∪ [[b]]
because [[a ∨ b]]v = (↓{v} ∩ [[a]]) ∪ (↓{v} ∩ [[b]]) not directed.

Definition

[[a <|> b]] :=
⋂
{Y | [[a]] ∪ [[b]] ⊆ Y ,Y lazy domain}

Attention!
D = {⊥, (⊥,⊥), (True,⊥), (False,⊥), . . . , (False,False)}

[[fstTrue]] = D \ {(False,⊥), (False,True), (False,False)}

[[fstTrue <|> sndTrue]] = D

[[(fstTrue <&> sndTrue) <|> (fstFalse <&> sndFalse)]] = D

Lemma Disjunction of assertions is commutative and associative and has
the assertion aNone as neutral element.

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 14 / 24

Bounded Distributive Lattice of Assertions

Lemma (Absorption laws)

a <&> (a <|> b) = a

a <|> (a <&> b) = a

Lemma (Distributive laws)

a <|> (b <&> c) = (a <|> b) <&> (a <|> c)

a <&> (b <|> c) = (a <&> b) <|> (a <&> c)

Theorem Lazy assertions form a bounded distributive lattice with meet
<&>, join <|>, least element aNone and greatest element aAny. The
ordering is the subset-relationship on acceptance sets.

Corollary (Idempotency laws)

a <&> a = a

a <|> a = a

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 15 / 24

No Negation

Let [[a]] := {⊥, (⊥,⊥)}

a <&>¬a = aNone implies [[a]] ∩ [[¬a]] = {⊥}.

[[¬a]] must be a lower set.

So [[¬a]] = {⊥}.

But then [[a <|>¬a]] = [[a]].

Contradiction to a <|>¬a = aAny.

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 16 / 24

Deriving an Implementation: Primitive Data Types

Flat domain, i.e., v @ w implies v = ⊥.

Definition (Acceptance set of predicate assertion)

[[φ]] := {⊥} ∪ {v | φ v = True}

Derive application of assertion predicate:

〈φ〉 v =
⊔
↓{v} ∩ [[φ]]

=
⊔
{⊥, v} ∩ ({⊥} ∪ {w | φw = True})

=
⊔
{⊥} ∪ (if φ v then {v} else {})

= if φ v then v else ⊥

Note: {⊥} ∪ {v | φ v 6= False} as acceptance set is un-implementable.

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 17 / 24

Primitive Data Types: Conjunction & Disjunction

Expected definitions:
φ <&>ψ := λx .φ x ∧ ψ x

φ <|>ψ := λx .φ x ∨ ψ x

Verify they work:
[[φ <&>ψ]] = [[φ]] ∩ [[ψ]] = {v | φ v ∧ ψ v}

[[φ <|>ψ]] =
⋂
{X | [[φ]] ∪ [[ψ]] ⊆ X ,X lazy domain}

=
⋂
{X | [[φ]] ∪ [[ψ]] ⊆ X}

= [[φ]] ∪ [[ψ]] = {v | φ v ∨ ψ v}

Negation is possible:
¬φ := λx .¬(φ x)

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 18 / 24

Deriving an Implementation: Algebraic Data Types

Definition (Acceptance set for pattern assertion)

[[C a1 . . . an]] := {⊥} ∪ {C v1 . . . vn | v1 ∈ [[a1]] . . . vn ∈ [[an]]}

Lemma (Conjunction of constructor assertions)

(C a1 . . . an) <&> (C b1 . . . bn) = C (a1<&>b1) . . . (an<&>bn)

(C a1 . . . an) <&> (C ′ b1 . . . bn) = pNone if C 6= C ′

Lemma (Disjunction of constructor assertions)

(C a1 . . . an) <|> (C b1 . . . bn) = C (a1<|>b1) . . . (an<|>bn)

Also if C 6= C ′, then

[[(C a1 . . . an) <|> (C ′ b1 . . . bn)]] = [[C a1 . . . an]] ∪ [[C ′ b1 . . . bn]]

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 19 / 24

Assertion Representation and Application

Representation of constructor assertion

C1 a1 <|> C2 a2 <|> . . . <|> Cm am

where {C1, . . . ,Cm} is subset of all data constructors of the type.

Application of a constructor assertion

〈C1 a1 <|> . . . <|>Cm am〉 (C v) =

{
C (〈aj〉 v) if C = Cj

⊥ otherwise
〈C1 a1 <|> . . . <|>Cm am〉 ⊥ = ⊥

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 20 / 24

Algebraic Data Types

Conjunction

(Ci1 ai1 <|> . . . <|>Cim aim) <&> (Cj1 bj1 <|> . . . <|>Cjl bjl)

= Ck1 (ak1<&> bk1) <|> . . . <|>Cko (ako<&> bko)

where {k1, . . . , ko} = {i1, . . . , im} ∩ {j1, . . . , jl}

Disjunction

(Ci1 ai1 <|> . . . <|>Cim aim) <|> (Cj1 bj1 <|> . . . <|>Cjl bjl)

= Ck1 zk1 <|> . . . <|>Cko zko

where {k1, . . . , ko} = {i1, . . . , im} ∪ {j1, . . . , jl}

zks =


aks<|> bks if ks ∈ {i1, . . . , im} ∩ {j1, . . . , jl}

aks if ks ∈ {i1, . . . , im}\{j1, . . . , jl}
bks if ks ∈ {j1, . . . , jl}\{i1, . . . , im}

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 21 / 24

What about Function Types?

Function Assertion a 7→ b

Standard definition of assertion application:

〈a 7→ b〉 δ = λx .〈b〉 (δ(〈a〉 x))

But

[[a 7→ b]] = {δ | 〈b〉 ◦ δ ◦ 〈a〉 = δ}

is not a lower set! However,

{δ | ∀v ∈ [[a]]. δ v ∈ [[b]]}

is a lazy domain.

Need two acceptance sets, for argument and context.
(cf. Findler & Blume, FLOPS 2006)

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 22 / 24

Last Slide

Semantics

Only few axioms: functional, trustworthy, partial identity, lower set.

Acceptance sets [[a]] are lazy domains, subdomains.

Algebra of assertions: bounded distributive lattice.

Lazy Assertions

Derived as library from semantics.

Laziness restricts expressibility!

Pattern assertions similar to algebraic data types; subtypes!

Pattern assertions are efficient.

Future

Assertions to express non-strictness properties.

(Dependent?) function assertion semantics.

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 23 / 24

Example: Normalisation of <&>

Formula in conjunctive normal form with left-associated binary operators:

conjNF = aAnd conjNF conjNF <|> aOr disj disj <|> aNot atom <|>

aAtom aAny

left = aImp left noImp <|> aAnd left noAnd <|> aOr left noOr <|>

aNot left <|> aAtom aAny

Combined:

leftConjNF = conjNF <&> left

= aAnd (conjNF <&> left) (conjNF <&> noAnd) <|>

aOr (disj <&> left) (disj <&> noOr) <|>

aNot (atom <&> left) <|>

aAtom (aAny <&> aAny)

Olaf Chitil (Kent, UK) A Semantics for Lazy Assertions 25th January 2011 24 / 24

