A Semantics for Lazy Assertions

Olaf Chitil

University of Kent $25^{\text {th }}$ January 2011

Assertions in Functional Languages

$$
\begin{array}{lll}
\text { assert nats }[4,2] & \rightsquigarrow & {[4,2]} \\
\text { assert nats }[4,-2] & \rightsquigarrow & \text { exception }
\end{array}
$$

Assertion application is a partial identity.

```
assert :: Assertion t -> t -> t
nats :: Num t => Assertion [t]
```

Note: Contract $=$ Assertion + Blaming

Lazy Assertions ...

... work with non-strict functions and infinite data structures.

```
fibs :: [Integer]
fibs = assert nats (0 : 1 : zipWith (+) fibs (tail fibs))
```

Need to consider partial values:

$$
\begin{array}{ll}
\text { assert nats }(0: 1: \perp) & \rightsquigarrow 0: 1: \perp \\
\text { assert nats }(0: 1: 1: \perp) & \rightsquigarrow 0: 1: 1: \perp \\
\text { assert nats }(0: 1: 1: 2: \perp) & \rightsquigarrow 0: 1: 1: 2: \perp
\end{array}
$$

Any approximation of an acceptable value has to be accepted!

The Problem


```
but
(fst (assert equal (True,False)), (True,
    snd (assert equal (True,False))) }\rightsquigarrow False
Because \begin{tabular}{lll} 
(True,\(\perp)\) & \(\sqsubseteq\) (True,True) \\
\((\perp\), False) & \(\sqsubseteq\) (False,False)
\end{tabular} have to be accepted.
```


The Problem

```
let x = assert equal (True,False) }\rightsquigarrow (True, error "...") or
in (fst x, snd x) (error "...", False)
but
(fst (assert equal (True,False)), (True,
    snd (assert equal (True,False)))}\mp@subsup{}{}{\rightsquigarrow}\mathrm{ False)
Because (True, \perp) 
```

Hence: First define semantics, then derive an implementation.

Resulting Lazy Assertions: List of natural numbers

```
nats :: Assert [Integer]
nats = aList (pred (>=0))
aList :: Assert t -> Assert [t]
aList a = aNil <|> aCons a (aList a)
```


Resulting Lazy Assertions: Minimal list length

```
lengthAtLeast :: Int -> Assert [t]
lengthAtLeast 0 = aAny
lengthAtLeast (n+1) = aCons aAny (lengthAtLeast n)
initAverage :: [Int] -> Int
initAverage = assert (lengthAtLeast 5 |-> aAny) initAverage'
initAverage' xs = sum (take 5 xs) 'div' 5
```


Resulting Lazy Assertions: Logic Example

Data type for formulae:

```
data Form = Imp Form Form | And Form Form |
    Or Form Form | Not Form | Atom Char
```

Assertions for conjunctive normal form:

```
conjNF, disj, lit, atom :: Assert Form
conjNF = aAnd conjNF conjNF <|> disj
disj = aOr disj disj <|> lit
lit = aNot atom <l> atom
atom = aAtom aAny
```

Conjunctive normal form with left-associated operators:
leftConjNF :: Assert Form
leftConjNF = conjNF <\&> left

Axioms of Semantics

Write $\langle a\rangle: D \rightarrow D$ for semantics of assert a.
Domain D is directed complete partial order with \perp.

Definition

Acceptance set $\llbracket a \rrbracket:=\{v \in D \mid\langle a\rangle v=v\} \subseteq D$.

Definition

a is lazy assertion, if
(1) $\langle a\rangle: D \rightarrow D$ is a continuous function,
(2) a is trustworthy, that is, $\langle a\rangle v \in \llbracket a \rrbracket$ for any value v, (equivalent: a is idempotent)
(3) $\langle a\rangle$ is a partial identity, that is, $\langle a\rangle v \sqsubseteq v$ for any value v, and
(9) 【a】 is a lower set.

Assertions and Projections

Definition

A function $p: D \rightarrow D$ on a domain D is a projection if it is

- continuous,
- idempotent, and
- a partial identity.

Lemma
a is lazy assertion $\Leftrightarrow\langle a\rangle$ is projection and its image is a lower set
(cf. Findler \& Blume, FLOPS 2006)

Looking for Alternative Axioms

Definition

$$
\begin{aligned}
\downarrow\{v\} & :=\left\{v^{\prime} \mid v^{\prime} \sqsubseteq v\right\} \\
A_{v} & :=\downarrow\{v\} \cap A
\end{aligned}
$$

Theorem

$$
\begin{aligned}
& \llbracket a \rrbracket_{v} \text { is an ideal (lower \& directed) } \\
& \langle a\rangle v=\bigsqcup \llbracket a \rrbracket_{v}
\end{aligned}
$$

Alternative Axioms

Definition

A set $A \subseteq D$ is a lazy domain if

- A is lower,
- A contains the least upper bound of any directed subset, and - $A_{v}=\downarrow\{v\} \cap A$ is directed for all values $v \in D$.

Lemma

If a is a lazy assertion, then $\llbracket a \rrbracket$ is a lazy domain.
Theorem
If A is a lazy domain, then a with

$$
\langle a\rangle v:=\bigsqcup \llbracket a \rrbracket_{v}
$$

is a lazy assertion with $\llbracket a \rrbracket=A$.

Assertion Combinators：Minimal \＆Maximal

Definition

$$
\begin{gathered}
\text { 【aNone】 }:=\{\perp\} \\
\llbracket \text { aAny】 }:=D
\end{gathered}
$$

Derived assertion applications

$$
\begin{gathered}
\langle\text { aNone }\rangle v=\bigsqcup \llbracket \text { aNone } \rrbracket_{v}=\bigsqcup \downarrow\{v\} \cap\{\perp\}=\bigsqcup\{\perp\}=\perp \\
\langle\text { aAny }\rangle v=\bigsqcup \llbracket \text { aAny } \rrbracket_{v}=\bigsqcup \downarrow\{v\} \cap D=\bigsqcup \downarrow\{v\}=v
\end{gathered}
$$

Assertion Combinators: Conjunction

Definition

$$
\llbracket a<\&>b \rrbracket:=\llbracket a \rrbracket \cap \llbracket b \rrbracket
$$

Lemma Conjunction of assertions is commutative and associative and has the assertion aAny as neutral element.

Lemma (Conjunction equals two assertions)

$$
\langle a<\&>b\rangle v=\langle a\rangle(\langle b\rangle v)
$$

Assertion Combinators: Disjunction

Not $\llbracket a \vee b \rrbracket:=\llbracket a \rrbracket \cup \llbracket b \rrbracket$
because $\llbracket a \vee b \rrbracket_{v}=(\downarrow\{v\} \cap \llbracket a \rrbracket) \cup(\downarrow\{v\} \cap \llbracket b \rrbracket)$ not directed.

Definition

$$
\llbracket a<1>b \rrbracket:=\bigcap\{Y \mid \llbracket a \rrbracket \cup \llbracket b \rrbracket \subseteq Y, Y \text { lazy domain }\}
$$

Attention!

$$
D=\{\perp,(\perp, \perp),(\text { True }, \perp),(\text { False }, \perp), \ldots,(\text { False }, \text { False })\}
$$

$$
\llbracket f \text { stTrue } \rrbracket=D \backslash\{(\text { False }, \perp),(\text { False }, \text { True }),(\text { False }, \text { False })\}
$$

$$
\llbracket \text { fstTrue <|> sndTrue】 }=D
$$

$$
\llbracket(f s t T r u e<\&>\text { sndTrue })<\mid>(f s t F a l s e<\&>\text { sndFalse }) \rrbracket=D
$$

Lemma Disjunction of assertions is commutative and associative and has the assertion aNone as neutral element.

Bounded Distributive Lattice of Assertions

Lemma (Absorption laws)

$$
\begin{aligned}
& a<\&>(a<\mid>b)=a \\
& a<\mid>(a<\&>b)=a
\end{aligned}
$$

Lemma (Distributive laws)

$$
\begin{aligned}
& a<1>(b<\&>c)=(a<1>b)<\&>(a<1>c) \\
& a<\&>(b<1>c)=(a<\&>b)<1>(a<\&>c)
\end{aligned}
$$

Theorem Lazy assertions form a bounded distributive lattice with meet $\langle \&\rangle$, join <|>, least element aNone and greatest element aAny. The ordering is the subset-relationship on acceptance sets.

Corollary (Idempotency laws)

$$
\begin{aligned}
& a<\&>a=a \\
& a<\mid>a=a
\end{aligned}
$$

No Negation

Let $\llbracket a \rrbracket:=\{\perp,(\perp, \perp)\}$
$a\langle \&\rangle \neg a=$ aNone implies $\llbracket a \rrbracket \cap \llbracket \neg a \rrbracket=\{\perp\}$.
$\llbracket\urcorner a \rrbracket$ must be a lower set.
So $\llbracket \neg a \rrbracket=\{\perp\}$.
But then $\llbracket a<1>\neg a \rrbracket=\llbracket a \rrbracket$.
Contradiction to $a<\mid>\neg a=$ aAny.

Deriving an Implementation: Primitive Data Types

Flat domain, i.e., $v \sqsubset w$ implies $v=\perp$.
Definition (Acceptance set of predicate assertion)

$$
\llbracket \phi \rrbracket:=\{\perp\} \cup\{v \mid \phi v=\text { True }\}
$$

Derive application of assertion predicate:

$$
\begin{aligned}
\langle\phi\rangle v & =\bigsqcup \downarrow\{v\} \cap \llbracket \phi \rrbracket \\
& =\bigsqcup\{\perp, v\} \cap(\{\perp\} \cup\{w \mid \phi w=\text { True }\}) \\
& =\bigsqcup\{\perp\} \cup(\text { if } \phi v \text { then }\{v\} \text { else }\{ \}) \\
& =\text { if } \phi v \text { then } v \text { else } \perp
\end{aligned}
$$

Note: $\{\perp\} \cup\{v \mid \phi v \neq$ False $\}$ as acceptance set is un-implementable.

Primitive Data Types: Conjunction \& Disjunction

Expected definitions:

$$
\begin{aligned}
& \phi<\&>\psi:=\lambda x \cdot \phi x \wedge \psi x \\
& \phi<1>\psi:=\lambda x \cdot \phi x \vee \psi x
\end{aligned}
$$

Verify they work:

$$
\begin{aligned}
\llbracket \phi<\&>\psi \rrbracket & =\llbracket \phi \rrbracket \cap \llbracket \psi \rrbracket=\{v \mid \phi v \wedge \psi v\} \\
\llbracket \phi<\mid>\psi \rrbracket & =\bigcap\{X \mid \llbracket \phi \rrbracket \cup \llbracket \psi \rrbracket \subseteq X, X \text { lazy domain }\} \\
& =\bigcap\{X \mid \llbracket \phi \rrbracket \cup \llbracket \psi \rrbracket \subseteq X\} \\
& =\llbracket \phi \rrbracket \cup \llbracket \psi \rrbracket=\{v \mid \phi v \vee \psi v\}
\end{aligned}
$$

Negation is possible:

$$
\neg \phi:=\lambda x . \neg(\phi x)
$$

Deriving an Implementation: Algebraic Data Types

Definition (Acceptance set for pattern assertion)

$$
\llbracket C a_{1} \ldots a_{n} \rrbracket:=\{\perp\} \cup\left\{C \quad v_{1} \ldots v_{n} \mid v_{1} \in \llbracket a_{1} \rrbracket \ldots v_{n} \in \llbracket a_{n} \rrbracket\right\}
$$

Lemma (Conjunction of constructor assertions)

$$
\begin{aligned}
& \left(C \quad a_{1} \ldots a_{n}\right)<\&>\left(C b_{1} \ldots b_{n}\right)=C\left(a_{1}<\&>b_{1}\right) \ldots\left(a_{n}<\&>b_{n}\right) \\
& \left(C \quad a_{1} \ldots a_{n}\right)<\&>\left(C^{\prime} b_{1} \ldots b_{n}\right)=\text { pNone } \quad \text { if } C \neq C^{\prime}
\end{aligned}
$$

Lemma (Disjunction of constructor assertions)

$$
\left(C \quad a_{1} \ldots a_{n}\right)<1>\left(\begin{array}{ll}
C & b_{1} \ldots b_{n}
\end{array}\right)=C\left(a_{1}<1>b_{1}\right) \ldots\left(a_{n}<1>b_{n}\right)
$$

Also if $C \neq C^{\prime}$, then

$$
\llbracket\left(C \quad a_{1} \ldots a_{n}\right)<\mid>\left(C^{\prime} b_{1} \ldots b_{n}\right) \rrbracket=\llbracket C \quad a_{1} \ldots a_{n} \rrbracket \cup \llbracket C^{\prime} b_{1} \ldots b_{n} \rrbracket
$$

Assertion Representation and Application

Representation of constructor assertion

$$
C_{1} \bar{a}_{1}<1>C_{2} \bar{a}_{2}<1>\ldots<1>C_{m} \bar{a}_{m}
$$

where $\left\{C_{1}, \ldots, C_{m}\right\}$ is subset of all data constructors of the type.

Application of a constructor assertion

$$
\begin{aligned}
& \left\langle C_{1} \bar{a}_{1}\langle\mid\rangle \ldots\langle\mid\rangle C_{m} \bar{a}_{m}\right\rangle(C \bar{v})=\left\{\begin{array}{cc}
C\left(\left\langle\bar{a}_{j}\right\rangle \bar{v}\right) & \text { if } C=C_{j} \\
\perp & \text { otherwise }
\end{array}\right. \\
& \left\langle C_{1} \bar{a}_{1}\langle\mid\rangle \ldots\langle\mid\rangle C_{m} \bar{a}_{m}\right\rangle \perp
\end{aligned}
$$

Algebraic Data Types

Conjunction

$$
\begin{aligned}
& \left(C_{i_{1}} \bar{a}_{i_{1}}<\mid>\ldots<1>C_{i_{m}} \bar{a}_{i_{m}}\right)<\&>\left(C_{j_{1}} \bar{b}_{j_{1}}<1>\ldots<1>C_{j} \bar{b}_{j_{l}}\right) \\
= & C_{k_{1}}\left(\bar{a}_{k_{1}}<\&>\bar{b}_{k_{1}}\right)<1>\ldots<1>C_{k_{o}}\left(\bar{a}_{k_{o}}<\&>\bar{b}_{k_{o}}\right)
\end{aligned}
$$

where $\left\{k_{1}, \ldots, k_{o}\right\}=\left\{i_{1}, \ldots, i_{m}\right\} \cap\left\{j_{1}, \ldots, j_{l}\right\}$
Disjunction

$$
\begin{aligned}
& \left(C_{i_{1}} \bar{a}_{i_{1}}<|>\ldots<|>C_{i_{m}} \bar{a}_{i_{m}}\right)<\mid>\left(C_{j_{1}} \bar{b}_{j_{1}}<|>\ldots<|>C_{j_{1}} \bar{b}_{j_{l}}\right) \\
= & C_{k_{1}} \bar{z}_{k_{1}}<|>\ldots<|>C_{k_{o}} \bar{z}_{k_{o}}
\end{aligned}
$$

where $\left\{k_{1}, \ldots, k_{0}\right\}=\left\{i_{1}, \ldots, i_{m}\right\} \cup\left\{j_{1}, \ldots, j_{l}\right\}$

$$
z_{k_{s}}=\left\{\begin{array}{cl}
\bar{a}_{k_{s}}<1>\bar{b}_{k_{s}} & \text { if } k_{s} \in\left\{i_{1}, \ldots, i_{m}\right\} \cap\left\{j_{1}, \ldots, j_{l}\right\} \\
\bar{a}_{k_{s}} & \text { if } k_{s} \in\left\{i_{1}, \ldots, i_{m}\right\} \backslash\left\{j_{1}, \ldots, j_{l}\right\} \\
\bar{b}_{k_{s}} & \text { if } k_{s} \in\left\{j_{1}, \ldots, j_{l}\right\} \backslash\left\{i_{1}, \ldots, i_{m}\right\}
\end{array}\right.
$$

What about Function Types?

Function Assertion $a \mapsto b$
Standard definition of assertion application:

$$
\langle a \mapsto b\rangle \delta=\lambda x .\langle b\rangle(\delta(\langle a\rangle x))
$$

But

$$
\llbracket a \mapsto b \rrbracket=\{\delta \mid\langle b\rangle \circ \delta \circ\langle a\rangle=\delta\}
$$

is not a lower set! However,

$$
\{\delta \mid \forall v \in \llbracket a \rrbracket . \delta v \in \llbracket b \rrbracket\}
$$

is a lazy domain.
Need two acceptance sets, for argument and context.
(cf. Findler \& Blume, FLOPS 2006)

Last Slide

Semantics

- Only few axioms: functional, trustworthy, partial identity, lower set.
- Acceptance sets 【a】 are lazy domains, subdomains.
- Algebra of assertions: bounded distributive lattice.

Lazy Assertions

- Derived as library from semantics.
- Laziness restricts expressibility!
- Pattern assertions similar to algebraic data types; subtypes!
- Pattern assertions are efficient.

Future

- Assertions to express non-strictness properties.
- (Dependent?) function assertion semantics.

Example: Normalisation of <\&>

Formula in conjunctive normal form with left-associated binary operators:

```
conjNF = aAnd conjNF conjNF <l> aOr disj disj <|> aNot atom <l> aAtom aAny
left = aImp left noImp <|> aAnd left noAnd <|> aOr left noOr <|> aNot left <l> aAtom aAny
```

Combined:

```
leftConjNF = conjNF <&> left
    = aAnd (conjNF <&> left) (conjNF <&> noAnd) <l>
    aOr (disj <&> left) (disj <&> noOr) <l>
    aNot (atom <&> left) <l>
    aAtom (aAny <&> aAny)
```

