Comprehending Finite Maps for Algorithmic Debugging

of Higher-Order Functional Programs

Olaf Chitil and Thomas Davie

University of Kent, UK

16th July 2008

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 1/24

Algorithmic Debugging: Faulty Equation in Tree

main = "os" | X
|foldr insert [] "sort" = "os"| |sort = foldr insert [] |
/
|foldrinsert [1"ort" = "o"| |insert ’s? "o = "os"|
|’s’ > 0’ = True| |insert ’g? "M = "s"|

foldrinsert []"rt" = "r"		insert 702 "r" = "o"		
foldrinsert [1"t" = "t"		insert R A "r"		’o’ > 'r’ = False
foldrinsert [Jnm = no		insert ’t’ "" = "t"		’r’ > 't = False

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 3 /24

Algorithmic Debugging: Faulty Equation in Tree

main = "os" | X
|foldr insert [] "sort" = "os"| |sort = foldr insert [] |\/
foldrinsert []/"ort" = "o"		insert ’s? "o" = "os"		
’s’ > 0’ = True		insert ’g? "M = "s"		
foldr insert [] "rt" = "r"		insert 702 "r" = "o"		
foldrinsert [1"t" = "t"		insert i S A "r"		’o’ > ’r’ = False
foldrinsert [Jnm = no		insert ’t’ "" = "t"		’r’ > ¢ = False

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 3 /24

Algorithmic Debugging: Faulty Equation in Tree

main = "os" | X
|foldr insert [] "sort" = "os" | X |sort = foldr insert [] |\/
foldrinsert []/"ort" = "o"		insert ’s? "o" = "os"		
’s’ > 0’ = True		insert ’g? "M = "s"		
foldr insert [] "rt" = "r"		insert 702 "r" = "o"		
foldrinsert [1"t" = "t"		insert i S A "r"		’o’ > ’r’ = False
foldrinsert [Jnm = no		insert ’t’ "" = "t"		’r’ > ¢ = False

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 3 /24

Algorithmic Debugging: Faulty Equation in Tree

main = "os" [X
|foldr insert [] "sort" = "os" | X |sort = foldr insert [] |\/
|foldrinsert []/"ort" = "o"| |insert ’s? "o" = "os"|\/
’s’ > 20’ = True		insert ’s? "' = "s"		
foldr insert [] "rt" = "r"		insert ’o’ "r" = "o"		
foldrinsert [1"g" = "t"		insert ‘r’ "g" = "r"		’o’ > 'r’ = False
foldrinsert gnrr =		insert ’t’ "" = "t"		’r’ > 't = False

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 3 /24

Algorithmic Debugging: Faulty Equation in Tree

main = "os" [X
|foldr insert [] "sort" = "os" | X |sort = foldr insert [] |\/
|foldrinsert []/"ort" = "o" | X |insert ’s? "o" = "os"|\/
’s’ > 20’ = True		insert ’s? "' = "s"		
foldr insert [] "rt" = "r"		insert ’o’ "r" = "o"		
foldrinsert [1"g" = "t"		insert ‘r’ "g" = "r"		’o’ > 'r’ = False
foldrinsert gnrr =		insert ’t’ "" = "t"		’r’ > 't = False

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 3 /24

Algorithmic Debugging: Faulty Equation in Tree

main = "os" [X
|foldr insert [] "sort" = "os" | X |sort = foldr insert [] |\/
|foldrinsert []/"ort" = "o" | X |insert ’s? "o" = "os"|\/
|’s’ > 20’ = True| |insert ’s? "' = "s"|
|foldr insert [] "rt" = "r" | | insert ’o’ "r" = "o" | X
|foldrinsert [1"g" = "¢" ||insert ‘r? "g" o= "' | | >0’ > ’r’ = False|
|foldrinsert gnrr = || insert ’t’ "" = "t"| |’r’ >t = False|

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 3 /24

Algorithmic Debugging: Faulty Equation in Tree

main = "os" [X
|foldr insert [] "sort" = "os" | X |sort = foldr insert [] |\/
|foldrinsert []/"ort" = "o" | X |insert ’s? "o" = "os"|\/
|’s’ > 20’ = True| |insert ’s? "' = "s"|
|foldr insert [] "rt" = "r" | | insert ’o’ "r" = "o" | X
|foldrinsert [1"g" = "¢" ||insert ‘r? "g" o= "' | | >0’ > ’r’ = False|\/
|foldrinsert gnrr = || insert ’t’ "" = "t"| |’r’ >t = False|

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 3 /24

Algorithmic Debugging: Faulty Equation in Tree

main = "os" [X
|foldr insert [] "sort" = "os" | X |sort = foldr insert [] |\/
|foldrinsert []/"ort" = "o"|>< |insert ’s? "o" = "os"|\/
|’s’ > 20’ = True| |insert ’s? "' = "s"|
|foldrinsert [1"rt" = "r"| insert ’o’ "r" = "o"| X
|foldrinsert [1"g" = "t"||insert ‘r’ "g" = "r"||’o’ > 'r’ = False|\/
|foldrinsert gnrr = || insert ’t’ "" = "t"| |’r’ > 't = False|

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 3 /24

Fault located!

Faulty computation: insert ’o’ "r" = "o"

Program

main :: String
main = sort "sort"

sort :: Ord a => [a] -> [a]
sort foldr insert []

foldr :: (a -=> b ->b) > b -> [a] -> b
foldr f a [] = a
foldr f a (x:xs) f x (foldr f a xs)

insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y:ys) = if x > y then y : (insert x ys) else x:ys

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 5 /24

Representation of a Functional Value

As Applicative term

parse
(pSucc (flip ($)) <*> (pSucc (const 1) <*> pSym ’17) <x*>
(pSucc id <|> pSucc combine <*>
(pSucc (const 0) <*>pSym >0’ <|>pSucc (const 0) <x>pSym ’17) <*>
(pSucc id <|> pSucc combine <*>
(pSucc (const 0) <*>pSym >0’ <|>pSucc (const 0) <*>pSym’17) <x>
(pSucc id <|> pSucc combine <*>
(pSucc (const 0) <x*>pSym ’0’ <|>pSucc (const 0) <*>pSym’1’) <*>
)
"101"

= [4] 7

Program fragment

type Parser a = String -> [(a,String)]
parse :: Parser a -> String -> [al

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 7 /24

Representation of a Functional Value

As Applicative term

parse
(pSucc (flip ($)) <*> (pSucc (const 1) <*> pSym ’17) <x*>
(pSucc id <|> pSucc combine <*>
(pSucc (const 0) <*>pSym >0’ <|>pSucc (const 0) <x>pSym ’17) <*>
(pSucc id <|> pSucc combine <*>
(pSucc (const 0) <*>pSym >0’ <|>pSucc (const 0) <*>pSym’17) <x>
(pSucc id <|> pSucc combine <*>
(pSucc (const 0) <x*>pSym ’0’ <|>pSucc (const 0) <*>pSym’1’) <*>

2)))
11?; . Program fragment
type Parser a = String -> [(a,String)]
As Finite map parse :: Parser a -> String -> [al

parse {"101" — [(_,"01"),(_,"1"),(4,[1)]1} = [4]

16th July 2008 7/ 24

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs

Function Dependency Tree: Functions as Finite Maps

main = "os"

|sort = {"sort" -> "os"} }—

’fOldI‘{’S’ Mol — "OS", o) Myt "O", LR AL LN "I'", R VRN "t"} [] "sort" ="osg"

T
|f01dr{’s’ ot ”OS", LR R AL lloll’ R AL LN llrll, (R VEALLLL N lltll} [] "ort" = "o" |
T

|f01dr{’s’ ot "OS", L RALL LN "O", R AL LN llrll’)t) LELIN lltll} I:] Hpgt = Hpn |

|f01dr{;s; "o "os", 0 "r" i "o", ' "M Nyt g2 Hlltll} [] Ngn o= ngn |
> H H

|fOldI‘{’S’ lloll — "OS",’O’ uru — "O",’I" "t" — "I‘", ;t; [N "t"} [] nno o= un

| insert ’s’ "o" ="os" insert o’ "r"="o" insert ’r’ "t"="¢" || insert ’t’ ""="¢"
/

| s’>’0’ =True " insert ’s’ ""="g" ” ’o’>’r’=False|| ’r’>’t’=False|

Olaf Chitil (Ke

Debugging Higher-Order Programs

16th July 2008 9 /24

Compositional Tree enables Algorithmic Debugging

main = "os"

|foldr insert [] "sort" = ”os"| |sort = foldr insert []|

main

= {program equation of main}
sort "sort"

= {child}
foldr insert [] "sort"

= {child} Program fragment

"og" main = sort "sort"

Soundness of Algorithmic Debugging

If parent equation is incorrect and all child equations are correct,
then program equation of parent is faulty.

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 11 /24

Soundness for Functions as Finite Maps

main = "os"

|sort = {"sort" — "os"}|

main
= {program equation of main}

sort "sort"

= {child}
llsortll — IIOSII "SOI‘t"
= {assumed property of intended semantics} Program fragment
"os" main = sort "sort"

Soundness of Algorithmic Debugging

If parent equation is incorrect and all child equations are correct,
then program equation of parent is faulty.

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 12 / 24

Intended Semantics with Consistency Properties

An intended semantics is a binary relation 2] on terms.

O Reflexivity:
MM
@ Transitivity:
MINANZIO = MIO
© Closure:
MIN =— MOINOANOMION
@ Least element:
M3 {}
© Application:
{Ny — My, ..., N — M} N; 2 M;
© Abstraction:
ONi OMiA...ANON, I M, — O3 {N1I—>M1,..., Nk'—>/\/lk}

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 13 / 24

Another Fragment of the Tree for Finite Maps

|sort = {"sort" — "os"}

\
|foldr{. ..} [] "sort"="os" | |insert Y8 oM = "os"m

sub-proof 1 Program fragment
insert ’s’ "o" O "os" A... {children} sort = foldr insert []

= {abstraction property}
insert J {’s’ "o"—"os", ...} sort

J{program equation of sort}

sub-proof 2 foldr insert []
foldr{...} [1 "sort" 3 "os" {child} = {sub-proof 1}

= {abstraction property} foldr {’s’"o"+"os", ...} []
foldr{...} [1 O {"sort"—"os" 3 {sub-proof 2}

llsortll — llosll

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 15 / 24

Structure of Trees for Different Function Representations

main = "os"
foldr insert [] ‘'"sort" = "os" |sort = foldr insert []|
e | insert)s) "0" = llosll |
Program
main = sort '"sort"
sort = foldr insert []

n

main = "os
|sort = {"sort" — "os"}|
foldr{. . } [] "sort" ="os" | insert ’s’ "o" ="osg" |\| .. |\| .. ‘|\| . |

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 17 / 24

Structure of Trees for Different Function Representations

Applicative Terms: application appears in definition of parent

n

main = "os
foldr insert []."sort" = "og" |sort = foldr insert [] |
e | insert)s) ||0|| = llosll |

Program

main = sort." sort"

sort = foldr insert []
main = "os"
|sort = {"sort" — "os"}|
foldr{...} [] "sort"="os" | insert ’s’ "o"="os" |\| T T]

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 17 / 24

Structure of Trees for Different Function Representations

Applicative Terms: application appears in definition of parent

n

main = "os
foldr insert [] ‘'"sort" = "os" |sort = foldr insert [] |
e | insert)s) "0" = llosll |
Program
main = sort '"sort"
sort = - insert []
main = "os"
|sort = {"sort" — "os"}|

-{ . } [] "sort" ="os" | insert ’s’ "o" ="os" |\| . |\| .. ‘|\| e |

Finite Map: function symbol appears in definition of parent

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 17 / 24

Basis of Trees: The Trace

Program fragment

main = sort "t"
sort = foldr insert []

foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

insert x [] = [x]

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 18 / 24

Basis of Trees: The Trace

Program fragment

main = sort "t"
sort = foldr insert []

foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

insert x [] = [x]

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 18 / 24

Basis of Trees: The Trace

Program fragment

main = sort "t"
sort = foldr insert []

foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

insert x [] = [x]

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 18 / 24

Basis of Trees: The Trace

Program fragment

main = sort "t"
sort = foldr insert []

foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

insert x [] = [x]

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 18 / 24

Basis of Trees: The Trace

Program fragment
main = sort "t"
sort = foldr insert []

foldr f a [1 = a

foldr f a (x:xs) = f x (foldr f a xs)
insert x [1 = [x]

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 18 / 24

Basis of Trees: The Trace

Program fragment

main = sort "t"
sort = foldr insert []

foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

insert x [] = [x]

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 18 / 24

Basis of Trees: The Trace

@ New nodes for right-hand-side, connected via result pointer.
@ Only add to graph, never remove.

@ Sharing ensures compact representation.

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 18 / 24

From Trace to Computation Tree
T

@ Each reduction edge gives rise to a tree node.
@ Tree structure based on node parent:

@ applicative: parent of reduction node (application)
o finite map: parent of function symbol (left-most)

@ Most evaluated form of node: always follow reduction edges
o finite map: show nodes representing functions differently

Olaf Chitil (Kent, UK)

Debugging Higher-Order Programs

16th July 2008

Finite Maps from the Trace

Guain)-Coe

Finite map for a node: find all applications of node.

fMapg(node of sort) = {’t*: [1 — ’t’:[1}
fMapg(node of insert) = {*t’ > {[1+— *t’>: [1}} = {°t* [+~ t’:[1}

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 20 / 24

From Trace to Tree for Finite Maps

Guain)-Coe

|SOI‘t = {"t" —s "t"}|

|foldr v 0 = "t} 0 "t"="t"| |insert 150 [] =g
I
[foldr {’t> [0 — "'} 01 01=01]

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 21 /24

Well-Definedness of Finite Maps

Self-application ﬁ }E\.)\ /9

main = g id

O @D O

fMapz(node of id) = {fMapz(node of id) — {4 — 4},4 — 4}

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 23 /24

Well-Definedness of Finite Maps

Self-application ﬁ }E\.)\ /9

main = g id

O @D O

fMapz(node of id) = {fMapz(node of id) — {4 — 4},4 — 4}

ﬁﬁ@ﬁ

fMap_;(node of id) = {{4 — 4} — {4 — 4}, 4 — 4}

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 23 /24

Conclusions

main = "t"

sort = {"t" —s "t"}

foldr {’t’> [1 — "t"} []"t"="t"
I

foldr {’t’> [1 — "t"} [11[]

(]

| insert ’t’ []="t" |

@ A finite map is a useful alternative representation of a functional value.

@ Trace provides framework for both applicative terms and finite maps.

o formal definition
@ soundness proof
@ implementation

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs

16th July 2008 24 /24

