Comprehending Finite Maps for Algorithmic Debugging of Higher-Order Functional Programs

Olaf Chitil and Thomas Davie

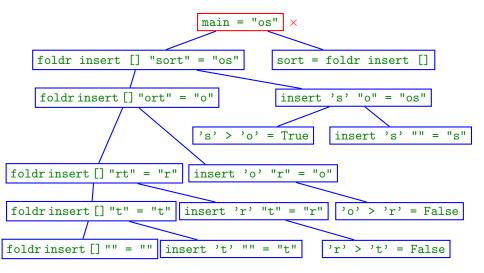
University of Kent, UK

16th July 2008

Olaf Chitil (Kent, UK)

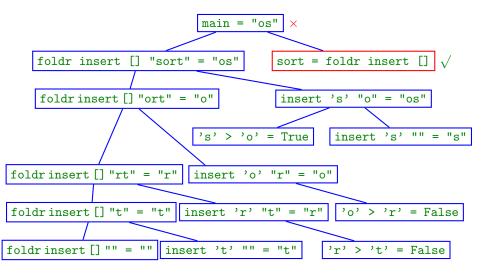
Debugging Higher-Order Programs

16th July 2008 1 / 24

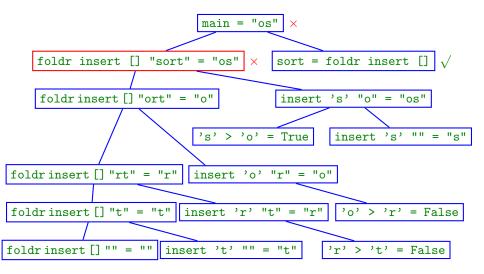


.....

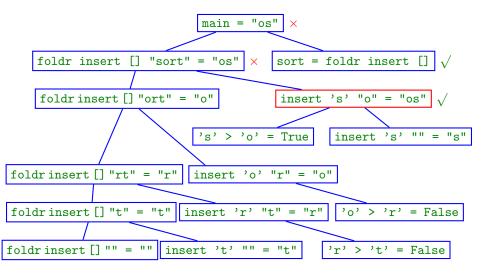
-



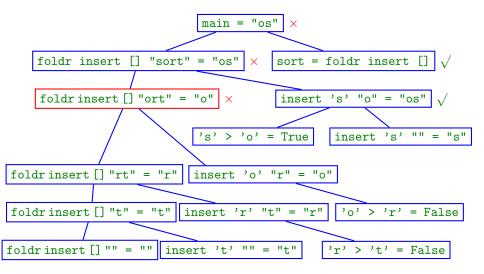
-



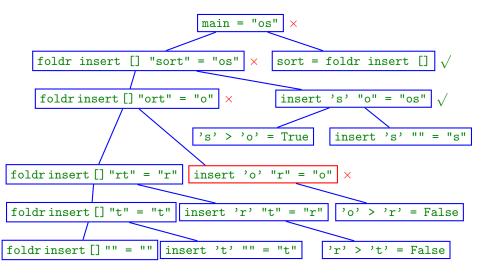
-



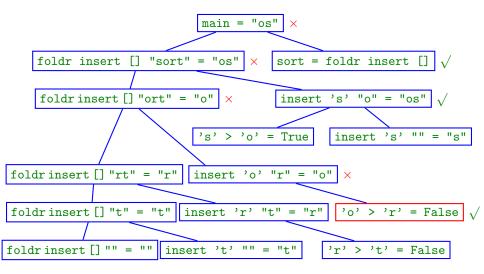
-



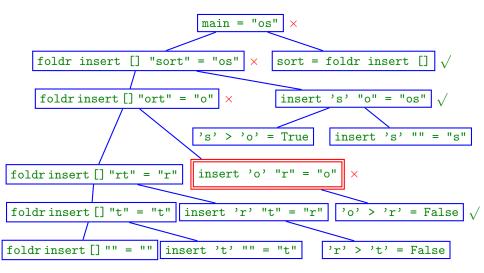
-



-



-



Olaf Chitil (Kent, UK)

..... 16th July 2008 3 / 24

-

Fault located!

Faulty computation: insert 'o' "r" = "o"

```
Program
main :: String
main = sort "sort"
sort :: Ord a => [a] \rightarrow [a]
sort = foldr insert
foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
insert :: Ord a => a -> [a] \rightarrow [a]
insert x [] = [x]
insert x (y:ys) = if x > y then y : (insert x ys) else x:ys
```

As Applicative term

parse

```
(pSucc (flip ($)) <*> (pSucc (const 1) <*> pSym '1') <*>
  (pSucc id <|> pSucc combine <*>
   (pSucc (const 0) <*> pSym '0' <|> pSucc (const 0) <*> pSym '1') <*>
    (pSucc id <|> pSucc combine <*>
     (pSucc (const 0) <*> pSym '0' <|> pSucc (const 0) <*> pSym '1') <*>
      (pSucc id <|> pSucc combine <*>
       (pSucc (const 0) <*>pSym '0' <|>pSucc (const 0) <*>pSym '1') <*>
        ))))
"101"
```

= [4] ?

Program fragment

```
type Parser a = String -> [(a,String)]
parse :: Parser a -> String -> [a]
```

- 4 同 6 4 日 6 4 日 6

As Applicative term

parse

```
(pSucc (flip ($)) <*> (pSucc (const 1) <*> pSym '1') <*>
  (pSucc id <|> pSucc combine <*>
    (pSucc (const 0) <*> pSym '0' <|> pSucc (const 0) <*> pSym '1') <*>
    (pSucc id <|> pSucc combine <*>
        (pSucc (const 0) <*> pSym '0' <|> pSucc (const 0) <*> pSym '1') <*>
        (pSucc id <|> pSucc combine <*>
        (pSucc id <|> pSucc combine <*>
        (pSucc (const 0) <*> pSym '0' <|> pSucc (const 0) <*> pSym '1') <*>
        (pSucc id <|> pSucc combine <*>
        (pSucc (const 0) <*> pSym '0' <|> pSucc (const 0) <*> pSym '1') <*>
        _))))
"101"
```

= [4] ?

Program fragment

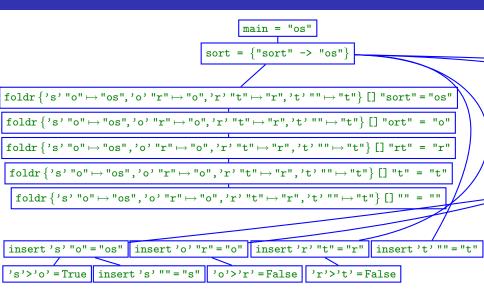
type Parser a = String -> [(a,String)]
parse :: Parser a -> String -> [a]

As Finite map

parse {"101" \mapsto [(_,"01"),(_,"1"),(4,[])]} = [4]

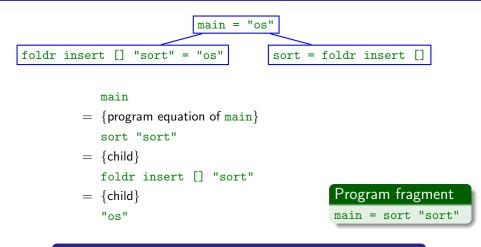
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ・ □ ● の Q @

Function Dependency Tree: Functions as Finite Maps



・ロン ・四 ・ ・ ヨン ・ ヨン

Compositional Tree enables Algorithmic Debugging



Soundness of Algorithmic Debugging

If parent equation is incorrect and all child equations are correct, then program equation of parent is faulty.

Olaf Chitil (Kent, UK)

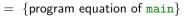
Debugging Higher-Order Programs

16th July 2008

11 / 24

Soundness for Functions as Finite Maps

main



sort "sort"

 $= \{child\}$

```
\{"sort" \mapsto "os"\} "sort"
```

= {assumed property of intended semantics}
"os"

Program fragment main = sort "sort"

Soundness of Algorithmic Debugging

If parent equation is incorrect and all child equations are correct, then program equation of parent is faulty.

Olaf Chitil (Kent, UK)

Debugging Higher-Order Programs

16th July 2008

12 / 24

Intended Semantics with Consistency Properties

An intended semantics is a binary relation \square on terms.

- Reflexivity: $M \supseteq M$
- Closure:

 $M \sqsupseteq N \implies M O \sqsupseteq N O \land O M \sqsupseteq O N$

Least element:

 $M \sqsupseteq \{\}$

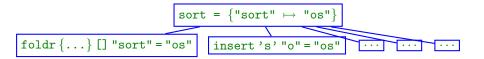
Application:

 $\{N_1 \mapsto M_1, \ldots, N_k \mapsto M_k\} N_i \sqsupseteq M_i$

Abstraction:

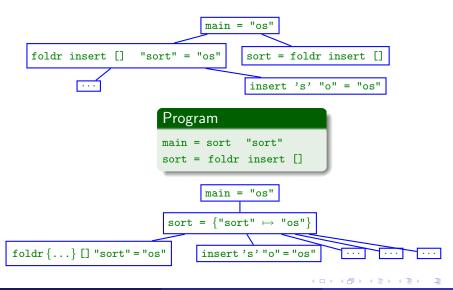
 $ON_1 \sqsupseteq M_1 \land ... \land ON_k \sqsupseteq M_k \implies O \sqsupseteq \{N_1 \mapsto M_1, ..., N_k \mapsto M_k\}$

Another Fragment of the Tree for Finite Maps



sub-proof 1	Program fragment
insert's'"o" \supseteq "os" $\land \dots$ {children}	<pre>sort = foldr insert []</pre>
\implies {abstraction property}	
$insert \supseteq \{ s, o'' \mapsto os', \ldots \}$	sort
_ ($\supseteq \{ program equation of sort \}$
sub-proof 2	foldr insert []
foldr $\{\ldots\}$ [] "sort" \supseteq "os" {child}	\Box {sub-proof 1}
\Rightarrow {abstraction property}	foldr {'s' "o" \mapsto "os", \ldots } []
foldr {} [] \supseteq {"sort" \mapsto "os"}	⊒ {sub-proof 2}
	$\{\texttt{"sort"} \mapsto \texttt{"os"}\}$
	<□> <@> < 注 > < 注 > < 注 > のQC

Structure of Trees for Different Function Representations

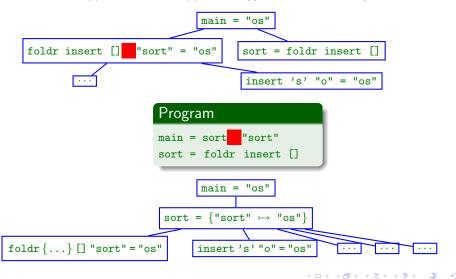


Olaf Chitil (Kent, UK)

16th July 2008 17 / 24

Structure of Trees for Different Function Representations

Applicative Terms: application appears in definition of parent



16th July 2008 17 / 24

Structure of Trees for Different Function Representations

Applicative Terms: application appears in definition of parent



Olaf Chitil (Kent, UK)

Debugging Higher-Order Programs

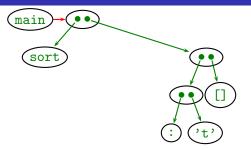
16th July 2008 17 / 24

Program fragment

```
main = sort "t"
sort = foldr insert []
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
insert x [] = [x]
```

Olaf Chitil (Kent, UK)

Debugging Higher-Order Programs

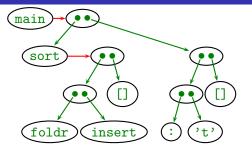


Program fragment

```
main = sort "t"
sort = foldr insert []
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
insert x [] = [x]
```

Olaf Chitil (Kent, UK)

Debugging Higher-Order Programs

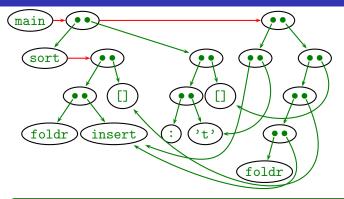


Program fragment

```
main = sort "t"
sort = foldr insert []
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
insert x [] = [x]
```

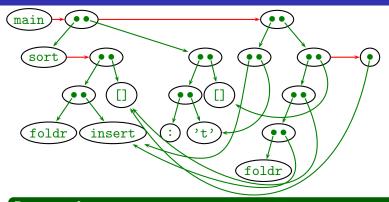
Olaf Chitil (Kent, UK)

Debugging Higher-Order Programs



Program fragment

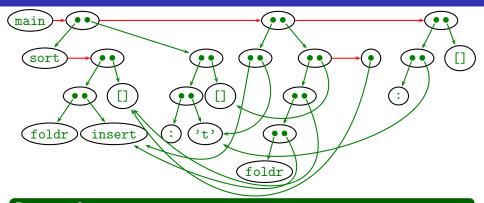
```
main = sort "t"
sort = foldr insert []
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
insert x [] = [x]
```



Program fragment

```
main = sort "t"
sort = foldr insert []
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
insert x [] = [x]
```

Olaf Chitil (Kent, UK)

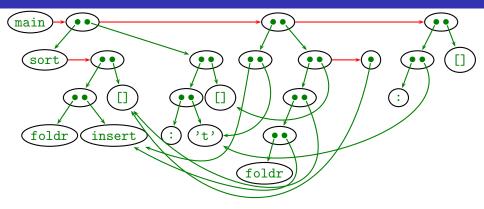


Program fragment

```
main = sort "t"
sort = foldr insert []
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
insert x [] = [x]
```

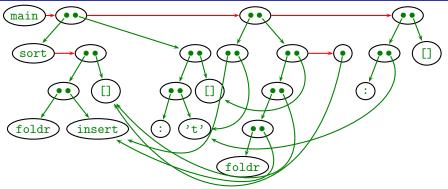
Olaf Chitil (Kent, UK)

16th July 2008 18 / 24



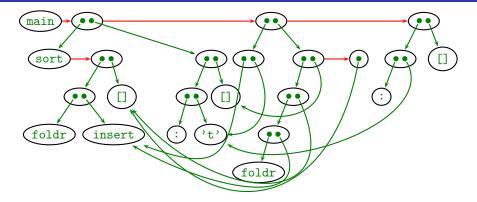
- New nodes for right-hand-side, connected via result pointer.
- Only add to graph, never remove.
- Sharing ensures compact representation.

From Trace to Computation Tree



- Each reduction edge gives rise to a tree node.
- Tree structure based on node parent:
 - applicative: parent of reduction node (application)
 - finite map: parent of function symbol (left-most)
- Most evaluated form of node: always follow reduction edges
 - finite map: show nodes representing functions differently

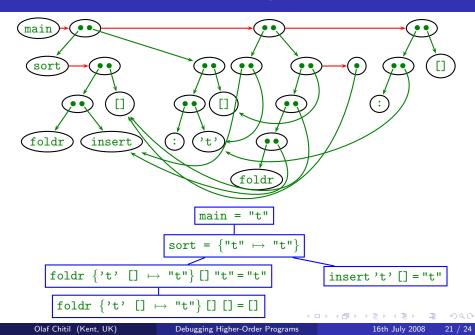
Finite Maps from the Trace



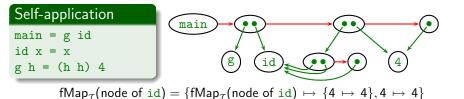
Finite map for a node: find all applications of node.

$$\begin{split} \mathsf{fMap}_{\mathcal{G}}(\mathsf{node of sort}) &= \{\texttt{'t'}: [] \mapsto \texttt{'t'}: [] \} \\ \mathsf{fMap}_{\mathcal{G}}(\mathsf{node of insert}) &= \{\texttt{'t'} \mapsto \{[] \mapsto \texttt{'t'}: [] \} \} = \{\texttt{'t'} \ [] \mapsto \texttt{'t'}: [] \} \end{split}$$

From Trace to Tree for Finite Maps

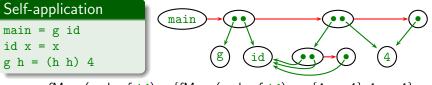


Well-Definedness of Finite Maps

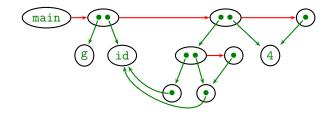


伺下 イヨト イヨト

Well-Definedness of Finite Maps



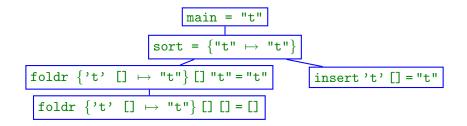
 $\mathsf{fMap}_\mathcal{I}(\mathsf{node of id}) = \{\mathsf{fMap}_\mathcal{I}(\mathsf{node of id}) \, \mapsto \, \{4 \, \mapsto \, 4\}, 4 \, \mapsto \, 4\}$



 $\mathsf{fMap}_{\mathcal{J}}(\mathsf{node of id}) = \{\{4 \ \mapsto \ 4\} \ \mapsto \ \{4 \ \mapsto \ 4\}, \ 4 \ \mapsto \ 4 \ \}$

・ロト ・聞ト ・ ヨト ・ ヨト

📃 ૧૧૯



• A finite map is a useful alternative representation of a functional value.

- Trace provides framework for both applicative terms and finite maps.
 - formal definition
 - soundness proof
 - implementation