Comprehending Finite Maps for Algorithmic Debugging of Higher-Order Functional Programs

Olaf Chitil and Thomas Davie
University of Kent, UK

16th July 2008

Algorithmic Debugging: Faulty Equation in Tree

Fault located!

Faulty computation: insert 'o' "r" = "०"

```
Program
main :: String
main = sort "sort"
sort :: Ord a => [a] -> [a]
sort = foldr insert []
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y:ys) = if x > y then y : (insert x ys) else x:ys
```


Representation of a Functional Value

As Applicative term
parse
(pSucc (flip (\$)) <*> (pSucc (const 1) <*> pSym '1') <*>
(pSucc id <|> pSucc combine <*> (pSucc (const 0) <*> pSym '0' <|> pSucc (const 0) <*> pSym '1') <*> (pSucc id <|> pSucc combine <*>
(pSucc (const 0) <*> pSym '0' <|>pSucc (const 0) <*> pSym '1') <*>
(pSucc id <|> pSucc combine <*>
(pSucc (const 0) <*> pSym '0' <|> pSucc (const 0) <*> pSym '1') <*> _))))
"101"
$=[4]$?

Program fragment

```
type Parser a = String -> [(a,String)]
parse :: Parser a -> String -> [a]
```


Representation of a Functional Value

As Applicative term

parse
(pSucc (flip (\$)) <*> (pSucc (const 1) <*> pSym '1') <*>
(pSucc id <l> pSucc combine <*> (pSucc (const 0) <*> pSym '0' <|> pSucc (const 0) <*> pSym '1') <*> (pSucc id <|> pSucc combine <*>
(pSucc (const 0) <*> pSym '0' <1>pSucc (const 0) <*> pSym '1') <*> (pSucc id <|> pSucc combine <*>
(pSucc (const 0) <*> pSym '0' <|> pSucc (const 0) <*> pSym '1') <*> _))))
" 101 "
$=[4]$?

Program fragment
type Parser a = String -> [(a,String)] parse :: Parser a -> String -> [a]
As Finite map
parse $\left\{\right.$ "101" $\left.\mapsto\left[\left(_, " 01 "\right),\left(__{,}, 1 "\right),(4,[])\right]\right\}=[4]$

Function Dependency Tree: Functions as Finite Maps

Compositional Tree enables Algorithmic Debugging

$$
\begin{aligned}
& \text { main } \\
= & \{\text { program equation of main }\} \\
& \text { sort "sort" } \\
= & \{\text { child }\} \\
& \text { foldr insert [] "sort" } \\
= & \{\text { child }\} \\
& \text { "os" }
\end{aligned}
$$

Program fragment

```
main = sort "sort"
```


Soundness of Algorithmic Debugging

If parent equation is incorrect and all child equations are correct, then program equation of parent is faulty.

Soundness for Functions as Finite Maps

$$
\begin{aligned}
& \text { main } \\
&=\text { \{program equation of main }\} \\
& \text { sort "sort" } \\
&=\{\text { child }\} \\
&\{\text { "sort" } \mapsto \text { "os" }\} \text { "sort" } \\
&=\text { \{assumed property of intended semantics }\} \\
& \text { "os" } \\
& \text { Program fragment } \\
& \text { Soundness of Algorithmic Debugging } \\
& \hline
\end{aligned}
$$

Intended Semantics with Consistency Properties

An intended semantics is a binary relation \sqsupseteq on terms.
(1) Reflexivity:

$$
M \sqsupseteq M
$$

(2) Transitivity:

$$
M \sqsupseteq N \wedge N \sqsupseteq O \quad \Longrightarrow \quad M \sqsupseteq O
$$

(3) Closure:

$$
M \sqsupseteq N \Longrightarrow M O \sqsupseteq N O \wedge O M \sqsupseteq O N
$$

((Least element:

$$
M \sqsupseteq\}
$$

(5) Application:

$$
\left\{N_{1} \mapsto M_{1}, \ldots, N_{k} \mapsto M_{k}\right\} N_{i} \sqsupseteq M_{i}
$$

(0) Abstraction:

$$
O N_{1} \sqsupseteq M_{1} \wedge \ldots \wedge O N_{k} \sqsupseteq M_{k} \Longrightarrow O \sqsupseteq\left\{N_{1} \mapsto M_{1}, \ldots, N_{k} \mapsto M_{k}\right\}
$$

Another Fragment of the Tree for Finite Maps

sub-proof 1

Program fragment

insert 's' "०" \sqsupseteq "os" $\wedge \ldots$ \{children\} sort $=$ foldr insert []
$\Longrightarrow \quad$ \{abstraction property\}
insert $\sqsupseteq\{' s ' " \circ " \mapsto "$ os", ...\}
sort
$\sqsupseteq\{$ program equation of sort $\}$ foldr insert []
sub-proof 2
foldr $\{\ldots\}[]$ "sort" \sqsupseteq "os" $\{$ child $\} \sqsupseteq\{$ sub-proof 1$\}$
\Longrightarrow \{abstraction property\}
foldr $\{\ldots\}[] \sqsupseteq\{$ "sort" \mapsto "os" $\}$
foldr \{'s' "o"ゅ"os", ...\} []
$\sqsupseteq\{$ sub-proof 2$\}$
\{"sort" \mapsto "os" $\}$

Structure of Trees for Different Function Representations

Program

```
main = sort "sort"
sort = foldr insert []
```


Structure of Trees for Different Function Representations

Applicative Terms: application appears in definition of parent

Program

```
main = sort "sort"
sort = foldr insert []
```


Structure of Trees for Different Function Representations

Applicative Terms: application appears in definition of parent

Program

```
main = sort "sort"
sort = \square insert []
```


$\{\ldots\}[]^{\prime \prime} \operatorname{sor} \mathrm{t}^{\prime \prime}={ }^{\prime \prime}$ os"

Finite Map: function symbol appears in definition of parent

Basis of Trees: The Trace

```
main
```


Program fragment

```
main = sort "t"
sort = foldr insert []
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
insert x [] = [x]
```


Basis of Trees: The Trace

Program fragment

```
main = sort "t"
sort = foldr insert []
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
insert x [] = [x]
```


Basis of Trees: The Trace

Program fragment

main $=$ sort "t"

```
sort = foldr insert []
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
insert x [] = [x]
```


Basis of Trees: The Trace

Program fragment

main $=$ sort "t"

```
sort = foldr insert []
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
insert x [] = [x]
```


Basis of Trees: The Trace

Program fragment

```
main = sort "t"
sort = foldr insert []
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
insert x [] = [x]
```


Basis of Trees: The Trace

Program fragment

```
main = sort "t"
sort = foldr insert []
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
insert x [] = [x]
```


Basis of Trees: The Trace

- New nodes for right-hand-side, connected via result pointer.
- Only add to graph, never remove.
- Sharing ensures compact representation.

From Trace to Computation Tree

- Each reduction edge gives rise to a tree node.
- Tree structure based on node parent:
- applicative: parent of reduction node (application)
- finite map: parent of function symbol (left-most)
- Most evaluated form of node: always follow reduction edges
- finite map: show nodes representing functions differently

Finite Maps from the Trace

Finite map for a node: find all applications of node.
fMap ${ }_{\mathcal{G}}$ (node of sort) $=\{$ 't': [] \mapsto 't': [] $\}$

From Trace to Tree for Finite Maps

Well-Definedness of Finite Maps

Self-application
 main $=\mathrm{g}$ id
 id $\mathrm{x}=\mathrm{x}$
 gh = (h h) 4

 $\mathrm{fMap}_{\mathcal{I}}($ node of id $)=\left\{\mathrm{fMap}_{\mathcal{I}}(\right.$ node of id) $\mapsto\{4 \mapsto 4\}, 4 \mapsto 4\}$

Well-Definedness of Finite Maps

```
Self-application
main = g id
id x = x
g h = (h h) 4
```


$\mathrm{fMap} \mathrm{P}_{\mathcal{I}}($ node of id$)=\left\{\mathrm{fMap}_{\mathcal{I}}(\right.$ node of id$\left.) \mapsto\{4 \mapsto 4\}, 4 \mapsto 4\right\}$

$\mathrm{fMap}_{\mathcal{J}}($ node of id$)=\{\{4 \mapsto 4\} \mapsto\{4 \mapsto 4\}, 4 \mapsto 4\}$

Conclusions

- A finite map is a useful alternative representation of a functional value.
- Trace provides framework for both applicative terms and finite maps.
- formal definition
- soundness proof
- implementation

