
Comprehending Finite Maps for Algorithmic Debugging

of Higher-Order Functional Programs

Olaf Chitil and Thomas Davie

University of Kent, UK

16th July 2008

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 1 / 24



Algorithmic Debugging: Faulty Equation in Tree

main = "os" ×

foldr insert [] "sort" = "os" sort = foldr insert []

foldr insert [] "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o"

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 3 / 24



Algorithmic Debugging: Faulty Equation in Tree

main = "os" ×

foldr insert [] "sort" = "os" sort = foldr insert []
√

foldr insert [] "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o"

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 3 / 24



Algorithmic Debugging: Faulty Equation in Tree

main = "os" ×

foldr insert [] "sort" = "os" × sort = foldr insert []
√

foldr insert [] "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o"

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 3 / 24



Algorithmic Debugging: Faulty Equation in Tree

main = "os" ×

foldr insert [] "sort" = "os" × sort = foldr insert []
√

foldr insert [] "ort" = "o" insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o"

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 3 / 24



Algorithmic Debugging: Faulty Equation in Tree

main = "os" ×

foldr insert [] "sort" = "os" × sort = foldr insert []
√

foldr insert [] "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o"

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 3 / 24



Algorithmic Debugging: Faulty Equation in Tree

main = "os" ×

foldr insert [] "sort" = "os" × sort = foldr insert []
√

foldr insert [] "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o" ×

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 3 / 24



Algorithmic Debugging: Faulty Equation in Tree

main = "os" ×

foldr insert [] "sort" = "os" × sort = foldr insert []
√

foldr insert [] "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o" ×

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False
√

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 3 / 24



Algorithmic Debugging: Faulty Equation in Tree

main = "os" ×

foldr insert [] "sort" = "os" × sort = foldr insert []
√

foldr insert [] "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o" ×

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False
√

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 3 / 24



Fault located!

Faulty computation: insert ’o’ "r" = "o"

Program

main :: String

main = sort "sort"

sort :: Ord a => [a] -> [a]

sort = foldr insert []

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f a [] = a

foldr f a (x:xs) = f x (foldr f a xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x:ys

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 5 / 24



Representation of a Functional Value

As Applicative term

parse

(pSucc (flip ($)) <*> (pSucc (const 1) <*> pSym ’1’) <*>

(pSucc id <|> pSucc combine <*>

(pSucc (const 0) <*> pSym ’0’ <|> pSucc (const 0) <*> pSym ’1’) <*>

(pSucc id <|> pSucc combine <*>

(pSucc (const 0) <*> pSym ’0’ <|> pSucc (const 0) <*> pSym ’1’) <*>

(pSucc id <|> pSucc combine <*>

(pSucc (const 0) <*> pSym ’0’ <|> pSucc (const 0) <*> pSym ’1’) <*>

))))

"101"

= [4] ?
Program fragment

type Parser a = String -> [(a,String)]

parse :: Parser a -> String -> [a]

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 7 / 24



Representation of a Functional Value

As Applicative term

parse

(pSucc (flip ($)) <*> (pSucc (const 1) <*> pSym ’1’) <*>

(pSucc id <|> pSucc combine <*>

(pSucc (const 0) <*> pSym ’0’ <|> pSucc (const 0) <*> pSym ’1’) <*>

(pSucc id <|> pSucc combine <*>

(pSucc (const 0) <*> pSym ’0’ <|> pSucc (const 0) <*> pSym ’1’) <*>

(pSucc id <|> pSucc combine <*>

(pSucc (const 0) <*> pSym ’0’ <|> pSucc (const 0) <*> pSym ’1’) <*>

))))

"101"

= [4] ?

As Finite map

Program fragment

type Parser a = String -> [(a,String)]

parse :: Parser a -> String -> [a]

parse {"101" 7→ [(_,"01"),(_,"1"),(4,[])]} = [4]

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 7 / 24



Function Dependency Tree: Functions as Finite Maps

main = "os"

sort = {"sort" -> "os"}

foldr {’s’ "o" 7→ "os",’o’ "r" 7→ "o",’r’ "t" 7→ "r",’t’ "" 7→ "t"} [] "sort" = "os"

foldr {’s’ "o" 7→ "os",’o’ "r" 7→ "o",’r’ "t" 7→ "r",’t’ "" 7→ "t"} [] "ort" = "o"

foldr {’s’ "o" 7→ "os",’o’ "r" 7→ "o",’r’ "t" 7→ "r",’t’ "" 7→ "t"} [] "rt" = "r"

foldr {’s’ "o" 7→ "os",’o’ "r" 7→ "o",’r’ "t" 7→ "r",’t’ "" 7→ "t"} [] "t" = "t"

foldr {’s’ "o" 7→ "os",’o’ "r" 7→ "o",’r’ "t" 7→ "r",’t’ "" 7→ "t"} [] "" = ""

insert ’s’ "o" = "os" insert ’o’ "r" = "o" insert ’r’ "t" = "r" insert ’t’ "" = "t"

’s’>’o’ = True insert ’s’ "" = "s" ’o’>’r’ = False ’r’>’t’ = False

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 9 / 24



Compositional Tree enables Algorithmic Debugging

main = "os"

foldr insert [] "sort" = "os" sort = foldr insert []

main

= {program equation of main}
sort "sort"

= {child}
foldr insert [] "sort"

= {child}
"os"

Program fragment

main = sort "sort"

Soundness of Algorithmic Debugging

If parent equation is incorrect and all child equations are correct,
then program equation of parent is faulty.

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 11 / 24



Soundness for Functions as Finite Maps

main = "os"

sort = {"sort" 7→ "os"}

main

= {program equation of main}
sort "sort"

= {child}
{"sort" 7→ "os"} "sort"

= {assumed property of intended semantics}
"os"

Program fragment

main = sort "sort"

Soundness of Algorithmic Debugging

If parent equation is incorrect and all child equations are correct,
then program equation of parent is faulty.

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 12 / 24



Intended Semantics with Consistency Properties

An intended semantics is a binary relation ⊒ on terms.

1 Reflexivity:
M ⊒ M

2 Transitivity:
M ⊒ N ∧ N ⊒ O =⇒ M ⊒ O

3 Closure:
M ⊒ N =⇒ M O ⊒ N O ∧ O M ⊒ O N

4 Least element:
M ⊒ {}

5 Application:
{N1 7→ M1, . . . , Nk 7→ Mk}Ni ⊒ Mi

6 Abstraction:
ON1 ⊒ M1 ∧ ... ∧ ONk ⊒ Mk =⇒ O ⊒ {N1 7→M1, ..., Nk 7→Mk}

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 13 / 24



Another Fragment of the Tree for Finite Maps

sort = {"sort" 7→ "os"}

foldr {...} [] "sort" = "os" insert ’s’ "o" = "os" . . . . . . . . .

sub-proof 1

insert ’s’ "o" ⊒ "os" ∧ . . . {children}
=⇒ {abstraction property}

insert ⊒ {’s’ "o" 7→ "os", ...}

sub-proof 2

foldr {...} [] "sort" ⊒ "os" {child}
=⇒ {abstraction property}

foldr {...} [] ⊒ {"sort"7→"os"}

Program fragment

sort = foldr insert []

sort

⊒{program equation of sort}
foldr insert []

⊒{sub-proof 1}
foldr {’s’ "o" 7→ "os", . . .} []

⊒{sub-proof 2}
{"sort" 7→ "os"}

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 15 / 24



Structure of Trees for Different Function Representations

main = "os"

foldr insert [] "sort" = "os" sort = foldr insert []

. . . insert ’s’ "o" = "os"

Program

main = sort "sort"

sort = foldr insert []

main = "os"

sort = {"sort" 7→ "os"}

foldr {...} [] "sort" = "os" insert ’s’ "o" = "os" . . . . . . . . .

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 17 / 24



Structure of Trees for Different Function Representations

Applicative Terms: application appears in definition of parent

main = "os"

foldr insert [] "sort" = "os" sort = foldr insert []

. . . insert ’s’ "o" = "os"

Program

main = sort "sort"

sort = foldr insert []

main = "os"

sort = {"sort" 7→ "os"}

foldr {...} [] "sort" = "os" insert ’s’ "o" = "os" . . . . . . . . .

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 17 / 24



Structure of Trees for Different Function Representations

Applicative Terms: application appears in definition of parent

main = "os"

foldr insert [] "sort" = "os" sort = foldr insert []

. . . insert ’s’ "o" = "os"

Program

main = sort "sort"

sort = foldr insert []

main = "os"

sort = {"sort" 7→ "os"}

foldr {...} [] "sort" = "os" insert ’s’ "o" = "os" . . . . . . . . .

Finite Map: function symbol appears in definition of parent

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 17 / 24



Basis of Trees: The Trace

main

Program fragment

main = sort "t"

sort = foldr insert []

foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

insert x [] = [x]

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 18 / 24



Basis of Trees: The Trace

main

’t’:

[]• •

• •sort

• •

Program fragment

main = sort "t"

sort = foldr insert []

foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

insert x [] = [x]

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 18 / 24



Basis of Trees: The Trace

main

’t’:

[]• •

• •sort

• •

foldr insert

• • []

• •

Program fragment

main = sort "t"

sort = foldr insert []

foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

insert x [] = [x]

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 18 / 24



Basis of Trees: The Trace

main

’t’:

[]• •

• •sort

• •

foldr insert

• • []

• •

foldr

• •

• •

• •• •

• •

Program fragment

main = sort "t"

sort = foldr insert []

foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

insert x [] = [x]

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 18 / 24



Basis of Trees: The Trace

main

’t’:

[]• •

• •sort

• •

foldr insert

• • []

• •

foldr

• •

• •

• •• •

• •

•

Program fragment

main = sort "t"

sort = foldr insert []

foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

insert x [] = [x]

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 18 / 24



Basis of Trees: The Trace

main

’t’:

[]• •

• •sort

• •

foldr insert

• • []

• •

foldr

• •

• •

• •• •

• •

•

:

• • []

• •

Program fragment

main = sort "t"

sort = foldr insert []

foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

insert x [] = [x]

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 18 / 24



Basis of Trees: The Trace

main

’t’:

[]• •

• •sort

• •

foldr insert

• • []

• •

foldr

• •

• •

• •• •

• •

•

:

• • []

• •

New nodes for right-hand-side, connected via result pointer.

Only add to graph, never remove.

Sharing ensures compact representation.

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 18 / 24



From Trace to Computation Tree

main

’t’:

[]• •

• •sort

• •

foldr insert

• • []

• •

foldr

• •

• •

• •• •

• •

•

:

• • []

• •

Each reduction edge gives rise to a tree node.

Tree structure based on node parent:

applicative: parent of reduction node (application)
finite map: parent of function symbol (left-most)

Most evaluated form of node: always follow reduction edges

finite map: show nodes representing functions differently

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 19 / 24



Finite Maps from the Trace

main

’t’:

[]• •

• •sort

• •

foldr insert

• • []

• •

foldr

• •

• •

• •• •

• •

•

:

• • []

• •

Finite map for a node: find all applications of node.

fMapG(node of sort) = {’t’:[] 7→ ’t’:[]}
fMapG(node of insert) = {’t’ 7→ {[] 7→ ’t’:[]}} = {’t’ [] 7→ ’t’:[]}

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 20 / 24



From Trace to Tree for Finite Maps

main

’t’:

[]• •

• •sort

• •

foldr insert

• • []

• •

foldr

• •

• •

• •• •

• •

•

:

• • []

• •

main = "t"

sort = {"t" 7→ "t"}

foldr {’t’ [] 7→ "t"} [] "t" = "t" insert ’t’ [] = "t"

foldr {’t’ [] 7→ "t"} [] [] = []
Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 21 / 24



Well-Definedness of Finite Maps

Self-application

main = g id

id x = x

g h = (h h) 4

main

idg

• •

4• •

• •

•

•

fMapI(node of id) = {fMapI(node of id) 7→ {4 7→ 4}, 4 7→ 4}

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 23 / 24



Well-Definedness of Finite Maps

Self-application

main = g id

id x = x

g h = (h h) 4

main

idg

• •

4• •

• •

•

•

fMapI(node of id) = {fMapI(node of id) 7→ {4 7→ 4}, 4 7→ 4}

main

idg

• •

4

• •

• •

• •

•

•

fMapJ (node of id) = {{4 7→ 4} 7→ {4 7→ 4}, 4 7→ 4 }

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 23 / 24



Conclusions

main = "t"

sort = {"t" 7→ "t"}

foldr {’t’ [] 7→ "t"} [] "t" = "t" insert ’t’ [] = "t"

foldr {’t’ [] 7→ "t"} [] [] = []

A finite map is a useful alternative representation of a functional value.

Trace provides framework for both applicative terms and finite maps.

formal definition
soundness proof
implementation

Olaf Chitil (Kent, UK) Debugging Higher-Order Programs 16th July 2008 24 / 24


