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Assertions

An assertion in C:

#include <assert.h>

list *get_tail (list *ptr)

{
assert(ptr!=NULL);

. . .
}

specify & dynamically check properties

more expressive than static types, less effort than verification

testing with real values
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Contracts

Systematic use of assertions as contract between a server and a client,
separating their responsibilities.

A contract in Eiffel:

connect_to_server (server: SOCKET)

require

server /= Void and then server.address /= Void

do

. . .
ensure

connected: server.is_connected

end

If pre-condition fails, then method caller is blamed.

If post-condition fails, then method itself is blamed.

[Bertrand Meyer:Object-Oriented Software Construction, Prentice Hall, 1988]
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Contracts in Functional Programming Languages

Define new contracts:

nat :: Contract Int

nat = prop (>= 0)

Define function variants with contracts:

cInc = assert (nat >-> nat) (+1)

cDec = assert (nat >-> nat) (subtract 1)

In functional languages contract assertion is a partial identity.

cInc 42  43

cInc (-2)  exception, blame caller
cDec 2  1

cDec 0  exception, blame function

where

assert :: Contract a -> a -> a

(>->) :: Contract a -> Contract b -> Contract (a->b)
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Higher-Order Contracts

Define

cMap = assert ((nat >-> nat) >-> list nat >-> list nat) map

where

map :: (Int -> Int) -> [Int] -> [Int]

and use it:

. . . cMap (subtract 1) [2,1,0] . . .

When passing functional argument (subtract 1) to cMap,
impossible to check whether it meets the contract.

When finding that (subtract 1) violates the contract, have to
blame call of cMap, not definition of cMap.

[Findler & Felleisen:Contracts for higher-order functions, ICFP ’02]
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Typed Lazy Contracts

I The challenge of designing contracts for lazy languages.

II Design semantics, derive an implementation.
[Chitil: A Semantics for Lazy Assertions, PEPM ’11]

III Consider practical problems for a useful contract library.
[Chitil: Practical Typed Lazy Contracts, ICFP 2012]
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Part I

The Challenge of Designing Contracts for Lazy Languages
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Lazy Evaluation

Define the infinite list of Fibonacci numbers:

fibs :: [Integer]

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

Evaluate:

fibs

 0 : 1 : zipWith (+) • (tail • )

 0 : 1 : zipWith (+) • •

 0 : 1 : 1 : zipWith (+) • •

 0 : 1 : 1 : 2 : zipWith (+) • •
...

...
 0 : 1 : 1 : 2 : 3 : 5 : 8 : 13 : 21 : . . .
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Lazy Contracts have to preserve the meaning ...

... of recursively defined data structures:

nats :: Contract [Integer]

nats = list (prop (>= 0))

fibs :: [Integer]

fibs = assert nats (0 : 1 : zipWith (+) fibs (tail fibs))
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A Problem

According to
[Deggen, Thiemann, Wehr: The Interaction of Contracts and Laziness, PEPM ’12]

meaning preservation and

completeness

are contradictory:

x :: (Int, Int)

x = assert (pair nat nat) (loop, 42)

loop = loop

main = print (snd x)
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A Problem

According to
[Deggen, Thiemann, Wehr: The Interaction of Contracts and Laziness, PEPM ’12]

meaning preservation and

completeness

are contradictory:

x :: (Int, Int)

x = assert (pair nat nat) (loop, 42)

loop = loop

main = print (snd x)

My aim: Meaning preservation but weaker completeness.
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High Expressiveness Violates Semantics

Old approach

[Chitil & Huch: Monadic, prompt lazy assertions in Haskell, APLAS 2007]

is meaning preserving, but

let x = assert equal (True,False)

in (fst x, snd x)
 exception

and

(fst (assert equal (True,False)),

snd (assert equal (True,False)))
 

(True,

False)
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High Expressiveness Violates Semantics

Old approach

[Chitil & Huch: Monadic, prompt lazy assertions in Haskell, APLAS 2007]

is meaning preserving, but

let x = assert equal (True,False)

in (fst x, snd x)
 

(True, error "...") or
(error "...", False)

and

(fst (assert equal (True,False)),

snd (assert equal (True,False)))
 

(True,

False)

So meaning preservation alone is insufficient.
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Part II

Design Semantics, Derive an Implementation
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Initial Design of Semantics

All domains D are directed complete partial order with ⊥D which
represents undefinedness and exception for contract failure.

To preserve meaning of recursive definitions of data structures

fibs :: [Integer]

fibs = assert nats (0 : 1 : zipWith (+) fibs (tail fibs))

any approximation of an acceptable data structure has to be accepted!

assert nats (0:1:⊥)  0:1:⊥
assert nats (0:1:1:⊥)  0:1:1:⊥
assert nats (0:1:1:2:⊥)  0:1:1:2:⊥
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Axioms of Contracts

Let D be a first-order domain, a directed complete partial order with ⊥.
Write 〈c〉 : D → D for semantics of assert c .

Definition

Acceptance set [[c]] := {v ∈ D | 〈c〉 v = v} ⊆ D.

Definition

c is lazy contract, if

1 〈c〉 : D → D is a continuous function,

2 c is trustworthy, that is, 〈c〉 v ∈ [[c]] for any value v ,
(equivalent: 〈c〉 is idempotent)

3 〈c〉 is a partial identity, that is, 〈c〉 v v v for any value v , and

4 [[c]] is a lower set.

Olaf Chitil (University of Kent, UK) Typed Lazy Contracts PROLE 2013, Madrid 14 / 42



Contracts and Projections

Definition

A function p : D → D on a domain D is a projection if it is

continuous,

idempotent, and

a partial identity.

Lemma
c is lazy contract ⇔ 〈c〉 is projection and its image is a lower set

cf. [Findler & Blume: Contracts as pairs of projections, FLOPS 2006]
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Looking for Alternative Axioms

Definition

↓{v} := {v ′ | v ′ v v}
Av :=↓{v} ∩ A

Theorem

[[c]]v is an ideal (lower & directed)

〈c〉 v =
⊔

[[c]]v
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Alternative Axioms

Definition

A set A ⊆ D is a lazy domain if

A is lower,

A contains the least upper bound of any directed subset, and

Av =↓{v} ∩ A is directed for all values v ∈ D.

Lemma
If c is a lazy assertion, then [[c]] is a lazy domain.

Theorem
If A is a lazy domain, then c with

〈c〉 v :=
⊔

[[c]]v

is a lazy assertion with [[c]] = A.
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Basic Contracts: Minimal & Maximal

Definition

[[false]] := {⊥}
[[true]] := D

Derived contract applications

〈false〉 v =
⊔

[[false]]v =
⊔
↓{v} ∩ {⊥}=

⊔
{⊥} =⊥

〈true〉 v =
⊔

[[true]]v =
⊔
↓{v} ∩ D =

⊔
↓{v}= v
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Contract Combinators: Conjunction

Definition

[[c & d ]] := [[c]] ∩ [[d ]]

Lemma Conjunction is commutative and associative and has true as
neutral element.

Lemma (Conjunction equals two contracts)

〈c & d〉 v = 〈c〉 (〈d〉 v)
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Contract Combinators: Disjunction

Not [[c |> d ]] := [[c]] ∪ [[d ]]
because [[c |> d ]]v = (↓{v} ∩ [[c]]) ∪ (↓{v} ∩ [[d ]]) not directed.

Definition

[[c |> d ]] :=
⋂
{Y | [[c]] ∪ [[d ]] ⊆ Y ,Y lazy domain}

Attention!
D = {⊥, (⊥,⊥), (True,⊥), (False,⊥), . . . , (False,False)}

[[fstTrue]] = D \ {(False,⊥), (False,True), (False,False)}

[[fstTrue |> sndTrue]] = D

[[(fstTrue & sndTrue) |> (fstFalse & sndFalse)]] = D

Lemma Disjunction is commutative and associative and has false as
neutral element.
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Bounded Distributive Lattice of Contracts

Lemma (Absorption laws)

c & (c |> d) = c

c |> (c & d) = c

Lemma (Distributive laws)

c |> (d & e) = (c |> d) & (c |> e)

c & (d |> e) = (c & d) |> (c & e)

Theorem Lazy contracts form a bounded distributive lattice with meet &,
join |>, least element false and greatest element true. The ordering is
the subset-relationship on acceptance sets.

Corollary (Idempotency laws)

c & c = c

c |> c = c
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No Negation

Let [[c]] := {⊥, (⊥,⊥)}

c &¬c = false implies [[c]] ∩ [[¬c]] = {⊥}.

[[¬c]] must be a lower set.

So [[¬c]] = {⊥}.

But then [[c |>¬c]] = [[c]].

Contradiction to c |>¬c = true.
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Deriving an Implementation: Primitive Data Types

Flat domain, i.e., v @ w implies v = ⊥.

Definition (Acceptance set of Boolean property contract)

[[prop φ]] := {⊥} ∪ {v | φ v = True}

Derive application of contract:

〈prop φ〉 v =
⊔
↓{v} ∩ [[φ]]

=
⊔
{⊥, v} ∩ ({⊥} ∪ {w | φw = True})

=
⊔
{⊥} ∪ (if φ v then {v} else {})

= if φ v then v else ⊥

Note: {⊥} ∪ {v | φ v 6= False} as acceptance set is un-implementable.
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Primitive Data Types: Conjunction & Disjunction

Expected definitions:

prop φ & prop ψ := prop (λx .φ x ∧ ψ x)

prop φ |> prop ψ := prop (λx .φ x ∨ ψ x)

Verify they work:

[[prop φ & prop ψ]] = [[prop φ]] ∩ [[prop ψ]] = {⊥} ∪ {v | φ v ∧ ψ v}

[[prop φ |> prop ψ]] =
⋂
{X | [[prop φ]] ∪ [[prop ψ]] ⊆ X ,X lazy domain}

=
⋂
{X | [[prop φ]] ∪ [[prop ψ]] ⊆ X}

= [[prop φ]] ∪ [[prop ψ]] = {⊥} ∪ {v | φ v ∨ ψ v}

Negation is possible:

¬(prop φ) := prop (λx .¬(φ x))

Olaf Chitil (University of Kent, UK) Typed Lazy Contracts PROLE 2013, Madrid 24 / 42



Pattern Contracts for Algebraic Data Types

Example:

list :: Contract a -> Contract [a]

list c = pNil |> pCons c (list c)

Example:

data Formula = Imp Formula Formula | And Formula Formula |

Or Formula Formula | Not Formula | Atom Char

clausalNF :: Formula -> [[Formula]]

cClausalNF = assert (conjNF & right >-> list (list lit)) clausalNF

lit :: Contract Formula

lit = pAtom true |> pNot (pAtom true)

. . .
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Deriving an Implementation: Algebraic Data Types

Definition (Acceptance set for pattern contract)

[[pC c1 . . . cn]] := {⊥} ∪ {C v1 . . . vn | v1 ∈ [[c1]] . . . vn ∈ [[cn]]}

Lemma (Conjunction of constructor assertions)

(pC c1 . . . cn) & (pC d1 . . . dn) = pC (c1&d1) . . . (cn&dn)

(pC c1 . . . cn) & (pC ′ d1 . . . dn) = false if C 6= C ′

Lemma (Disjunction of constructor assertions)

(pC c1 . . . cn) |> (pC d1 . . . dn) = pC (c1|>d1) . . . (cn|>dn)

Also if C 6= C ′, then

[[(pC c1 . . . cn) |> (pC ′ d1 . . . dn)]] = [[pC c1 . . . cn]] ∪ [[pC ′ d1 . . . dn]]

Olaf Chitil (University of Kent, UK) Typed Lazy Contracts PROLE 2013, Madrid 26 / 42



Contract Representation and Application

Representation of constructor contract

pC1 c1 |> pC2 c2 |> . . . |> pCm cm

where {C1, . . . ,Cm} is subset of all data constructors of the type.

Application of a constructor contract

〈pC1 c1 |> . . . |> pCm cm〉 (C v) =

{
C (〈c j〉 v) if C = Cj

⊥ otherwise
〈pC1 c1 |> . . . |> pCm cm〉 ⊥ = ⊥
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Algebraic Data Types

Conjunction

(pCi1 c i1 |> . . . |> pCim c im) & (pCj1 d j1 |> . . . |> pCjl d jl )

= pCk1 (ck1& dk1) |> . . . |> pCko (cko& dko )

where {k1, . . . , ko} = {i1, . . . , im} ∩ {j1, . . . , jl}

Disjunction

(pCi1 c i1 |> . . . |> pCim c im) |> (pCj1 d j1 |> . . . |> pCjl d jl )

= pCk1 zk1 |> . . . |> pCko zko

where {k1, . . . , ko} = {i1, . . . , im} ∪ {j1, . . . , jl}

zks =


cks|> dks if ks ∈ {i1, . . . , im} ∩ {j1, . . . , jl}

cks if ks ∈ {i1, . . . , im}\{j1, . . . , jl}
dks if ks ∈ {j1, . . . , jl}\{i1, . . . , im}
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What about Function Types?

Function contract c >-> d

Just use definition from eager functional languages!

〈c >-> d〉 δ = 〈d〉 ◦ δ ◦ 〈c〉

No new primitive contract.
Hence meaning preserving and semantically just a normal function.

Note

[[c >-> d ]] = {δ | 〈d〉 ◦ δ ◦ 〈c〉 = δ}

is not a lower set, but 〈c >-> d〉 is a projection.
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Part III

Consider Practical Problems for a Useful Contract Library
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From Theory to Practice

Have

pure Haskell: language semantics unchanged; portable library

lazy contracts: preserve program meaning

eager: assert (list nat) [4,-4] = error "..."

lazy: assert (list nat) [4,-4] = [4, error "..."]

a nice algebra of contracts

Still Want

simple parametrically polymorphic types

(&), (|>) :: Contract a -> Contract a -> Contract a

simple data-type dependent code

easy to write by hand
can be derived automatically

when violated, a contract provides information beyond blaming
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The Contract API

type Contract a

assert :: Contract a -> (a -> a)

prop :: Flat a => (a -> Bool) -> Contract a

true :: Contract a

false :: Contract a

(&) :: Contract a -> Contract a -> Contract a

(>->) :: Contract a -> Contract b -> Contract (a -> b)

pNil :: Contract [a]

pCons :: Contract a -> Contract [a] -> Contract [a]

Cf. [Hinze, Jeuring & Löh: Typed contracts for functional programming, FLOPS 2006]
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A Simple Implementation ...

type Contract a = a -> a

assert c = c

prop p x = if p x then x else error "..."

true = id

false = const (error "...")

c1 & c2 = c2 . c1

pre >-> post = \f -> post . f . pre

pNil [] = []

pNil (_:_) = error "..."

pCons c cs [] = error "..."

pCons c cs (x:xs) = c x : cs xs

Cf. [Findler & Felleisen: Contracts for higher-order functions, ICFP 2002]
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...with a Problem

A list is not finite:

infinite :: Contract [a]

infinite = pCons true infinite

We need disjunction of contracts for lazy algebraic data types

(|>) :: Contract a -> Contract a -> Contract a

for example for

nats :: Contract [Int]

nats = pNil |> pCons nat nats
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Solution

type Contract a = a -> Maybe a

assert c x = case c x of

Just y -> y

Nothing -> error "..."

(c1 |> c2) x = case c1 x of

Nothing -> c2 x

Just y -> Just y

true x = Just x

false x = Nothing

...

Olaf Chitil (University of Kent, UK) Typed Lazy Contracts PROLE 2013, Madrid 35 / 42



An Algebra of Contracts

Same laws as non-strict && and || (not commutative):

c1 & (c2 & c3) = (c1 & c2) & c3

true & c = c

c & true = c

false & c = false

...

For function contracts:

true >-> true = true

c1 >-> false = c2 >-> false

(c1 >-> c2) & (c3 >-> c4) = (c3 & c1) >-> (c2 & c4)

(c1 >-> c2) |> (c3 >-> c4) = c1 >-> c2
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Contracts are Projections

Lemma (Partial identity)

assert c v id

Claim (Idempotency)

assert c . assert c = assert c
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Contracts for our Earlier Example

cClausalNF = assert (conjNF & right >-> list (list lit)) clausalNF

Contracts:

conjNF, disj, lit, atom, right :: Contract Formula

conjNF = pAnd conjNF conjNF |> disj

disj = pOr disj disj |> lit

lit = pNot atom |> atom

atom = pAtom true

right = pImp (right & pNotImp) right |>

pAnd (right & pNotAnd) right |>

pOr (right & pNotOr) right |>

pNot right |> pAtom true

No general negation, but negated pattern contracts pNotImp, . . .
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Blaming

Implement like eager contracts: blame server or client.

cConst = assert (true >-> false >-> true) const

true: never blames anybody
false: always blames the client

Different from [Findler & Blume: Contracts as pairs of projections, FLOPS 2006]

Another example expressing non-strictness of a function:

cLength = assert (list false >-> nat) length
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Add Witness Tracing

On violation report a path of data constructors:

*Main> cClausalNF form

[[Atom ’a’],[Atom ’b’,Not

*** Exception: Contract at ContractTest.hs:101:3

violated by

((And (Or (Not {Not })))-> )

The client is to blame.

Starting point for debugging.

Blaming can be wrong: The contract may be wrong.
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Derive data-type-dependent code

Derive a contract pattern on demand

conjNF = $(p ’And) conjNF conjNF |> disj

disj = $(p ’Or) disj disj |> lit

lit = $(p ’Not) atom |> atom

atom = $(p ’Atom) true

or declare

$(deriveContracts ’’Formula)

Use Template Haskell; other generic Haskell systems

introduce a class context (Data a)

cannot handle functions, e.g. inside data structures
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Last Slide

Lazy Contracts

Need lazy pattern combinators (pCons) and disjunction (|>).

Pattern assertions similar to algebraic data types; subtypes!

Laziness restricts expressibility!

Semantics

Few axioms: continuous, trustworthy, partial identity, lower set.

Acceptance sets [[c]] are lazy domains, subdomains.

Algebra of contracts: bounded distributive lattice.

Practice

type Contract a = a -> Maybe a

Portable library: hackage.haskell.org/package/Contract

Future

Dependent function contracts?

Contracts to express non-strictness properties?
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