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Preface

News that the 2005 Ascot horse-racing meeting would take place in York
not only guaranteed a week of traditionally exotic headgear in the city; it
also prompted a group of us, working on a software system called Hat, to
convene our own Hat Day.

The Hat System: Hat is a software toolkit for obtaining and examin-
ing traces of Haskell 98 programs. The traces Hat works with are called
augmented redex trails, and represent in detail how the results of a program
were derived, including cross references to the source. The source-to-source
transformation tool hat-trans [6] lifts programs to self-tracing variants
that write a trace to file as they run. Different trace-viewing programs, such
as hat-observe and hat-trail, support different ways of working with
traces [24]. Early versions of Hat (the 1.x series) worked with the nhc98
compiler, but subsequent versions (the 2.x series) are more portable, working
also with the widely-used ghc compiler. The current version, Hat 2.04, is
freely available from http://haskell.org/hat.

The Working Papers: Hat Day was an informal sequence of talks and
discussion, mainly of work still in progress, and sometimes of ideas only just
beginning to germinate. The short working papers in this report reflect the
topics of the day: most are about new ways of viewing and working with
traces, with or without results from prototype tools; but one paper describes
a new method for generating traces, and another looks at a possible semantic
model for tracing.

Acknowledgement: Our work on tracing functional programming has
been supported by EPSRC research grants at York (GR/K64334 Selective
tracing of functional computations using graph reduction with redex trails
and GR/M81953/01 Advanced redex trails: fully-fledged tracing technology
for functional programs), and at Kent (EP/C516605/1 A theory of tracing
pure functional programs). EPSRC training awards have also supported
some students doing Hat-related work.

Colin Runciman, York, October 2005
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Hat-Explore: Source-Based Trace
Exploration

Olaf Chitil, University of Kent

Abstract: Experience shows that users of the Hat viewing tools
find it hard to keep orientation and navigate to a point of interest
in the trace. Hence this paper describes a new viewing tool where
navigation through the trace is based on the program source.
The tool combines ideas from algorithmic debugging, traditional
stepping debuggers and dynamic program slicing.

1 Introduction

Hat [24] still has a number of shortcomings. One of these is that it is often
hard to navigate through large computations. By using the existing viewing
tools together and calling one tool from the other we can in principle quickly
reach any point in the trace. However, the questions: “where am I in the
trace?” and “how do I get to the point I want to see in the trace?” often
occur. We require orientation guides.

One candidate for an orientation structure immediately springs to mind:
the program source. We are likely to be familiar with the source, because we
wrote it, read it beforehand and/or will have to modify it. All expressions
in the trace originate from the source. Usually the source is far shorter than
the huge computation trace.

None of the existing viewing tools take advantage of the source. All Hat
viewing tools display only expressions and equations of the traced computa-
tion. The tools just allow opening a source browser with the cursor positioned
at the redex or at the definition of the function of current interest.

hat-explore is a new Hat viewing tool that allows simple, free nav-
igation through a trace while providing orientation based on the program
source. hat-explore combines ideas from algorithmic debugging, tradi-
tional stepping debuggers and dynamic program slicing.
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2 Functionality

The Screen Layout The display of hat-explore is divided into two
parts: the call stack and the source. The stack shows a sequence of re-
ductions, where each reduction called the function applied in the reduction
below. We say that function f calls function g, if the application of g appears
in the definition body of f; so this stack resembles the runtime stack of an
eager evaluator, not a lazy one. The last reduction on the call stack is called
the current reduction, the reduction that is currently in focus. In the source
the call site of the redex of the current reduction is underlined.

Navigation through the Computation We navigate through a compu-
tation via the cursor keys: up to the caller of the current reduction, down to
the first callee, and left and right to siblings. In the program source the call
sites of the siblings are highlighted (but not underlined).

Algorithmic Debugging hat-explore supports algorithmic debugging,
that is, error-location based on declarations by the user about which re-
ductions are correct. We can declare if the current reduction is correct or
incorrect with respect to our intentions and also change any previous such
declaration. hat-explore uses several colours for highlighting: correct re-
ductions are green , incorrect ones are yellow , unknown/undeclared ones are
blue . When the tool identifies a reduction as faulty, it is highlighted in red .

Example Let us work step by step through an example session for the
faulty insertion sort program. The tool starts with the reduction of main.
(There is no call site of main, hence its definition is underlined.)
==== Hat-Explore 2.04 ==== Call 1/1 ==========================
1. main = {IO}

---- Insert.hs ---- lines 1 to 3 -----------------------------
main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]
We cannot say if this reduction is correct, but only press cursor down to look
at the children:
==== Hat-Explore 2.04 ==== Call 1/2 ==========================
1. main = {IO}
2. putStrLn "os" = {IO}

---- Insert.hs ---- lines 1 to 3 -----------------------------
main = putStrLn ( sort "sort" )

sort :: Ord a => [a] -> [a]
The first child is a reduction of a trusted function and hence assumed to be
correct. So we press cursor right to look at the second child:
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==== Hat-Explore 2.04 ==== Call 2/2 ==========================
1. main = {IO}
2. sort "sort" = "os"

---- Insert.hs ---- lines 1 to 3 -----------------------------
main = putStrLn ( sort "sort" )

sort :: Ord a => [a] -> [a]

This reduction disagrees with our intentions and hence we press ‘w’ to declare
the reduction as wrong:

==== Hat-Explore 2.04 ==== Call 2/2 ==========================
1. main = {IO}
2. sort "sort" = "os"

---- Insert.hs ---- lines 1 to 3 -----------------------------
main = putStrLn ( sort "sort" )

sort :: Ord a => [a] -> [a]

To find out why the reduction is wrong we have to look at the children, so
we press cursor down:

==== Hat-Explore 2.04 ==== Call 1/2 ==========================
1. main = {IO}
2. sort "sort" = "os"
3. insert ’s’ "o" = "os"

---- Insert.hs ---- lines 3 to 5 -----------------------------
sort :: Ord a => [a] -> [a]
sort [] = []
sort (x:xs) = insert x (sort xs)

We press ‘c’ to declare the reduction as correct and then press cursor right
to look at the second child:

==== Hat-Explore 2.04 ==== Call 2/2 ==========================
1. main = {IO}
2. sort "sort" = "os"
3. sort "ort" = "o"

---- Insert.hs ---- lines 3 to 5 -----------------------------
sort :: Ord a => [a] -> [a]
sort [] = []
sort (x:xs) = insert x ( sort xs )

We press ‘w’ to declare the reduction as wrong and then press cursor down
to inquire further:
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==== Hat-Explore 2.04 ==== Call 1/2 ==========================
2. sort "sort" = "os"
3. sort "ort" = "o"
4. insert ’o’ "r" = "o"

---- Insert.hs ---- lines 3 to 5 -----------------------------
sort :: Ord a => [a] -> [a]
sort [] = []
sort (x:xs) = insert x (sort xs)

We press ‘w’ to declare the reduction as wrong:
==== Hat-Explore 2.04 ==== Call 1/2 ==========================
2. sort "sort" = "os"
3. sort "ort" = "o"
4. insert ’o’ "r" = "o"

---- Insert.hs ---- lines 3 to 5 -----------------------------
sort :: Ord a => [a] -> [a]
sort [] = []
sort (x:xs) = insert x ( sort xs )

So the reduction insert ’o’ "r" = "o" is faulty. We have located the fault,
it must be in the definition of insert. If we are not convinced, we can still
press cursor down to see that insert ’o’ "r" = "o" has only a single child,
a reduction of a trusted function, which is assumed to be correct:
==== Hat-Explore 2.04 ==== Call 1/1 ==========================
3. sort "ort" = "o"
4. insert ’o’ "r" = "o"
5. ’o’ <= ’r’ = True

---- Insert.hs ---- lines 7 to 9 -----------------------------
insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y:ys) = if x <= y then x : ys else y : (insert x ys)

Declaring the (in)correctness of the current reduction is separate from
navigation; it does not automatically navigate to a new reduction. Thus we
are free to declare (in)correctness of reductions in any order. In practice
it is often much easier to recognise an incorrect reduction than being sure
that a reduction is correct. hat-explore allows us to look at all children
of a redex, determine that one of them is incorrect, and continue exploring
that reduction, without having to consider the correctness of its siblings. We
might not even use algorithmic debugging at all but simply navigate freely
through the computation; we will do so in particular when there is no error
but we aim to understand how the traced program works.

Program Slicing hat-explore optionally marks the definitions of all
functions within which the fault must be. These definitions comprise the
faulty slice. With increasing information about correct and incorrect reduc-
tions the faulty slice shrinks until the faulty reduction has been identified.
The shrinking of the faulty slice shows us that we are making progress, it
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may quickly exclude large parts of the program, possibly parts that had been
wrongly suspected, and when the faulty slice has become small we may spot
the fault straight away without even having to continue algorithmic debug-
ging to its end. In the preceding screen-shots the faulty slice is emphasised.

The faulty slice does not have to encompass whole definitions. When a
reduction f . . . = . . . is faulty, it is unnecessary to add the whole definition
of function f to the faulty slice. For a specific reduction usually only parts of
the definition body of the reduced function are evaluated because of pattern
matching, conditionals and lazy evaluation. The fault can only be in that
part of the definition.

Code Coverage By declaring the root reduction of the computation, main
= {IO}, as incorrect and asking hat-explore to mark only the evaluated
faulty slice, we can obtain the slice of the program that was evaluated at all
during the whole computation.

3 Conclusions

hat-explore is a new trace viewing tool for the Hat system that enables us
to navigate freely and intuitively through the trace of a Haskell 98 program.
The display of the source together with a stack of reductions for the con-
text give good orientation. The tool combines algorithmic debugging with
program slicing and the user interface of a traditional stepping debugger.

Feedback on the Hat-day was mostly positive. However, the user in-
terface was considered too complex: users might be confused by numerous
expressions highlighted in several colours. It was also considered confusing
that when the fault had been located, the call site was highlighted in red
in the source code, not the definition site which is faulty and needs to be
modified. Considering that slicing is too slow in practice for non-trivial com-
putations (it requires a traversal of most of the trace), this feature might best
be moved to a separate, non-interactive viewing tool.

hat-explore demonstrates that it is relatively easy to extend the Hat
system by a new viewing tool for which it was not designed originally. During
the development of hat-explore it became clear that the implementations
of most viewing tools include functionalities that are likely to be useful for
future tools and hence should be moved into separate libraries.

A more detailed description of hat-explore is given in [5].
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Hat-Delta — One Right Does Make
a Wrong

Thomas Davie & Olaf Chitil, University of Kent

Abstract: We outline two methods for locating bugs in a pro-
gram. This is done by comparing computations of the same pro-
gram with different input. At least one of these computations
must produce a correct result, while exactly one must exhibit
some erroneous behaviour. Firstly reductions that are thought
highly likely to be correct are eliminated from the search for the
bug. Secondly, a program slicing technique is used to identify ar-
eas of code that are likely to be correct. Both methods have been
implemented. In combination with algorithmic debugging they
provide a system that quickly and accurately identifies bugs.

1 Introduction

Program bugs often do not manifest themselves immediately. A user will
often execute a program several times with correct results, only to later find
a specific input that produces an erroneous behaviour. We aim to use the
information that can be gathered from correct computations of the program
to diagnose bugs in an erroneous computation.

We describe two new ways of exploiting information from correct com-
putations when debugging the program. The extra information narrows the
position of a bug and thus improves on earlier methods. The first method,
based on finding repeated reductions, eliminates small sections of program
computation from the search for bugs. After eliminating sections of com-
putation a second method based on a program slicing can be used. Both
methods provide heuristics which guide the debugger. The slicing method is
less reliable in its predictions, but can remove larger numbers of questions
when it is correct.

We use the two methods to locate bugs in Haskell programs. However,
the technique can be applied in any situation where algorithmic debugging
can be applied.
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sort [] = []
sort (x:xs) = insert x (sort xs)

insert x [] = [x]
insert x (y:ys)
| x < y = x:y:ys
| otherwise = insert x ys

Figure 1: Buggy program used in Figure 2

sort []⇓[] insert 2 []⇓[2]
sort [2]⇓[2] insert 1 [2]⇓[1,2]

sort [1,2]⇓[1,2]

sort []⇓[] insert 1 []⇓[1]
sort [1]⇓[1]

insert 2 []⇓[2]
insert 2 [1]⇓[2]

sort [2,1]⇓[2]

Figure 2: Computation graphs of program in Figure 1. The upper compu-
tation is correct, but the lower one is erroneous

2 Correct Subcomputations

When a computation produces a correct result, it is reasonable to assume
that all its subcomputations produce correct results. This statement is not
always true – it is possible that two bugs cancelled each other out. It is,
however, remarkably hard to come up with non-trivial examples in which
the statement is incorrect, and as such there is a very low chance of marking
incorrect reductions correct. With this in mind, it is immediately possible
to eliminate an area of computation graph from the search for a bug.

If a subcomputation appears in a correct computation graph, as well
as that of an erroneous computation, it is possible to label it as a correct
computation. The debugger can therefore eliminate it from the search for
a bug. Not only the root reduction is said to be correct, but also all sub-
computations involved in the reduction. In Figure 2 we can see that sort
[1,2] computing the correct result has caused the computation of sort [],
insert 2 [], sort [2] and insert 1 [2] to be considered correct as well.
At present we consider a computation having a correct result to be a good
indicator that all reductions within it are correct, and we label them as such
(although we will allow the user to disable this behaviour). Experimental
results will later tell us if such reductions should be trusted less.

Figure 2 shows both a correct and an erroneous computation of the pro-
gram shown in Figure 1. Computation that occurred in the correct trace is
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1 sort [] = []
2 sort (x:xs) = insert x (sort xs)
-
1 insert x [] = [x]
1 insert x (y:ys)
1 | x < y = x:y:ys
0 | otherwise = insert x ys

Figure 3: The program shown in Figure 1, labeled.

marked as coloured text. While this technique finds a few correct subcompu-
tations, and hence reduces the number of questions asked by an algorithmic
debugger, it does not give very much extra information. In the above ex-
ample, the number of questions asked by an algorithmic debugger is cut by
only one.

Finding extra correct reductions gains relatively little – each correct re-
duction found in the erroneous computation graph cuts the number of ques-
tions asked by at most one. Often finding a correct reduction does not cut
the number of questions at all.

3 Correct Program Slices

The ‘correct subcomputation’ method looks only at the computation graph,
and ignores a large amount of data available from looking at the program as
well. The source code used in executions that ran correctly is more likely to
be correct than code that has never been executed. If some slice of the code
was executed 50,000 times during the computation of the correct program,
then it is a good guess that this slice is correct. This heuristic allows a
significant narrowing of the area of the program in which the bug is likely to
be.

Each reduction in the computation arises from a program slice. If a
program slice is correct, then all reductions arising from this slice must be.
Algorithmic debugging is based on this property – if a reduction is erroneous,
then the program slice is incorrect. Our method uses the case where a
reduction is known to be correct – in this case a slice from which it aries is
likely though not certain to be correct. This method allows the debugger to
find a new set of reductions that are likely to be correct.

In the example used before (Figure 1), we can apply this process, and
arrive at the result shown in Figure 3. This figure adds labels indicating
the number of times each line has been executed in the correct computation.
This labeling suggests a buggy line, but a debugging session is needed to
confirm it. An algorithmic debugger may now order its questions differently
in the hope of finding the bug faster. Instead of traversing the graph in
a breadth first manner (looking only at children of erroneous nodes), the
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new algorithmic debugger will look at nodes in order of their likely erro-
neousness (based on the likely bugginess of the part of the program being
executed). If a node is found to be definitely erroneous, the system reapplies
the heuristic within that node’s children, rather than continuing in order of
likely erroneousness. This method results in this new debugging session:

insert 2 [1] is [2]
> No

Bug identified in ‘insert x (y:ys)’:
| otherwise = insert x ys

First, the most likely erroneous reduction is the computation of insert
2 [1] to [2], as there is no record that this section of the program has
ever been used to produce a correct result. Hence the first question the
algorithmic debugger asks. Second, the reduction of insert 2 [] to [2] is
known to be correct from the technique described in Section 2, so now the
bug can be identified. Compared to ordinary algorithmic debugging, there is
a clear advantage in using this technique. In this example, the total number
of questions asked is cut from 4 to only 1 (the normal ordering would cause
the algorithmic debugger to ask 4 questions). In more complex examples the
number of questions asked can be cut by an even greater factor.

An extension to this method would refine the estimates of program cor-
rectness as the debugger proceeded. To implement this method, each time
the user answers the algorithmic debugger with a ‘yes’, the system would gain
a new correct sub-program. The new correct sub-program in turn gives it a
new reduction that it knows to be correct, and adds to the total information
about correctly executing parts of the program.

4 Combination of Methods

Finding correct subcomputations is not very effective at cutting the number
of questions asked, however it can be used to greatly improve upon finding
correct program slices. In finding correct subcomputations we are able to
identify several reductions that are very likely to be correct. These reductions
can then be used to provide further program slices that have been executed
correctly, and provide more data for our second method to work with.

5 Related Work

Delta Debugging has been developed for imperative languages by Zeller and
Cleve [9]. Their approach uses comparisons of two execution states at differ-
ent points in time. The approach is hard to transfer directly to functional
languages as it relies on comparing program state. Delta debugging was
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however the inspiration for our comparative debugger. In Scalable Statistical
Bug Isolation [15], the authors describe a method of performing statistical
analysis on multiple program runs to identify the causes of program failure.
The approach looks at the computation of predicates within programs and
isolates predicates which appear to be good indicators of a certain bug oc-
curring. This in turn allows them to isolate control flow patterns that cause
erroneous behaviour.

6 Discussion and Future Work

Initial Implementation The two methods described in this paper have
been implemented on top of the Hat tracer. First the hat-detect de-
bugger was re-written, allowing it to work correctly with the current Hat
trace file format. After this, the new hat-detect was used as a basis
for the hat-delta debugger. Experiments comparing hat-delta with the
original hat-detect have so far shown that the number of questions asked
is reduced by a vastly varying amount depending on the program, and the
executions of that program. In some experiments, the number of questions
is not cut at all, while in others the number is cut by a factor of ten. So
although an initial implementation has been completed, there is still signifi-
cant work to do in determining the best heuristics to use in order to provide
a short search path in as many cases as possible.

Combination With Other Views The algorithmic debugging process
consistently finds bugs, however it can often ask large numbers of questions,
or questions the user finds difficult to answer. We have presented two meth-
ods for reducing the number of questions asked by an algorithmic debugger.
However, the information gathered from the traces is independent of the al-
gorithm used to view it. The information can be combined with other views,
and provide the user with more information. Olaf Chitil has described a
method of improving algorithmic debugging by allowing the user to navi-
gate freely (and thus choose the most likely position of the bug themselves)
[5]. The information gathered by comparative debugging could be combined
with this view to provide hints to the user about what is buggy. In a similar
way, the information can be combined with an observation based view. This
view mechanism presents a listing of function applications and their results.
An extension could highlight the likely erroneousness of these applications.

7 Conclusion

Large amounts of extra information can be gained by examining traces of
programs that evaluate correctly. This information can be used to lower the
number of questions asked by an algorithmic debugger using the methods
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described in this paper. The proportion of questions removed from the de-
bugging session can be as great as 90%, but it can be as little as 0%. There
have been no observations made of what conditions are needed for delta
debugging using this technique to be effective.
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Using Trace Data to Diagnose
Non-Termination Errors

Mike Dodds & Colin Runciman, University of York

Abstract: This paper discusses black-hat and hat-nonterm,
two tools for locating and diagnosing non-termination errors in
Haskell programs. Both of these tools give a small trace which
is intended to illuminate the cause of the non-termination er-
ror. black-hat analyses programs which contain black holes, a
particularly restricted kind of non-termination error, while hat-
nonterm applies the approach used in black-hat to more gen-
eral non-terminating programs. This paper discusses the traces
generated by black-hat and hat-nonterm, as well as the ap-
proach used to generate these traces.

1 Introduction

Non-termination errors are one of the two kinds of error that can cause
Haskell programs to fail. In general, non-termination errors cannot be de-
tected at run time, and non-terminating programs must be terminated by
hand. The source of the error may also be difficult to locate and fix in a
large program. Section 3 below discusses discuss hat-nonterm, a tool for
generating traces from non-terminating programs.

Black holes are a kind of simple non-termination error that can be de-
tected at run time. A black hole occurs when the process of reducing a
variable1 to its value results in an expression which contains the same vari-
able and strictly needs its value. Black holes can be extremely simple, as
can be seen from this example:

a = b + 2
b = a * 3

It should be clear why the variable a cannot be reduced to a final result:
getting the value of a requires a value for b, which requires the value of a.
Section 2 below discusses Black Hat, which is intended to locate and diagnose
these black hole errors.

1that is, a value-name defined with arity zero
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2 Tracing Black Holes

black-hat is a tool for analysing programs that have failed as a result of a
black hole. Programs compiled with Hat support generate an Augmented
Redex Trail (ART) file which describes the execution of a program. black-
hat uses this ART file to locate and diagnose the causes of black holes, by
giving the series of reductions which lead to the reoccurrence of a variable.
To begin with a simple example, let us consider the definition of a, discussed
above. black-hat gives us the following analysis:

---- black-hat: simple-bh ----
> print a
> b + fromInteger 2
> a * fromInteger 3

black-hat’s output shows a series of expressions generated by the pro-
gram. Each line holds the result of rewriting one of the previous line’s subex-
pressions. The rewritten subexpression is highlighted in each expression. We
call this series of reductions and subexpressions the black-hole path.

The analysis for the ab program shows that a reduces to an expression
containing b, which then reduces to an expression containing a again.

For small programs the black-hole path can be constructed quite easily
by hand, so let us consider slightly more complicated example. The program
below is a faulty program for generating Hamming numbers:

ham = merge ham’ ham’’
ham’ = map (3*) ham
ham’’ = map (2*) ham

It should be clear that there are in fact two black-hole paths for ham
— one from evaluating ham’, and one from ham”. Which one will result in
the error depends on the order of reduction in the program. black-hat
generates the following analysis when applied to this program:

---- black-hat: ham-bh ----
> print ham
> merge ham’ ham’’
> map (fromInteger 2 *) ham

Because black-hat works with the ART graph, which is generated from
the execution of the program, it can work out which of the two potential
black holes actually caused the error. The analysis makes it clear that the
black hole occurs through ham” — through the right-hand path through the
result-subexpression graph.

black-hat successfully locates black hole errors in all examples on which
it has been tested. With simpler programs, such as the ones discussed above,
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black-hat also makes the source of the error obvious immediately. More
complicated programs make this more difficult, as it becomes harder to fol-
low the sequence of reductions and subexpressions. Also, programs that
use Haskell’s list comprehension can be difficult to understand, as they are
transformed during compilation.

2.1 Black Holes in the ART Graph

The ART file produced by Hat corresponds to a rooted graph with the
intermediate expressions generated while executing the program as nodes.
Several different kinds of edges exist between expression nodes, but black-
hat uses two in particular: the result edge which point from an expression
to its result, and subexpression edges, which point from an expression to its
subexpressions.

An expression node in an ART files is generated when an expression
is evaluated at run-time. When an expression is being evaluated, before
it’s result has been generated, the expression’s result pointer has a value of
entered. However, in the case of a black hole, the execution terminates
because an expression has been reduced to a variable which has also been
entered. This means that the result pointer for the final executed expression
points back to the variable which caused the black hole, and so the graph will
contain a loop in the result and sub-expression edges. This loop corresponds
to the black-hole path displayed by black-hat, and it can be located by a
simple search of the ART graph.

3 Tracing Non-Termination Errors

hat-nonterm applies the same approach as black-hat to more general
non-termination problems involving functions with an arity greater than
zero. That is, it generates a small trace from the ART which illuminates
the source of the non-termination error.

hat-nonterm assumes that the execution of a non-terminating program
will consist of two general phases. Firstly, a non-terminating program will
execute the bug-free ‘head’ of the program. Then the faulty, non-terminating
‘tail’ of the program will execute until the program is interrupted by the user.
Because a non-terminating program can be run for an arbitrary amount of
time in the faulty section of the computation, the tail of the computation
can always be made large relative to the head. For the same reason, in any
non-terminating program, a trace can be generated where the number of
function applications is much larger than the number of defined functions.

Because of these two facts, a non-termination will contain large numbers
of calls to the same functions. These calls will be recursive calls originating
from previous instances of this function, although the function arguments
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may be different. This presents a way of displaying non-terminating func-
tions. If the suspicious function involved in the non-termination can be
identified, then the path from one instance of the function to the next can
be displayed. The path between two calls to the same function may not al-
ways be the same, and so it would be a good idea to show the path between
several calls to the function. We call this the non-termination path. For
example, consider this faulty Fibonacci-number program:

fib 0 = 1
fib 1 = 1
fib n = fib n + fib (n-1)

hat-nonterm gives us the following analysis:

---- Hat Non-Term: fib-nt ----
suspicious function is fib in module Main
> print (fib (fromInteger 5))

> fib (fromInteger 5) | False

> fib (fromInteger 5) | False | False

> fib (fromInteger 5) + fib (fromInteger 5 - fromInteger 1)

> fib (fromInteger 5) | False

> fib (fromInteger 5) | False | False

> fib (fromInteger 5) + fib (fromInteger 5 - fromInteger 1)

This non-termination path correctly identifies the fib function as the
faulty function, and displays the responsible sequence of subexpressions and
results.

3.1 Non-Terminations in the ART Graph

The ART file explicitly records the fact that a program was interrupted by
the user, rather than terminating normally. As with black holes, nodes that
are being evaluated, or with subexpressions that are evaluating are marked
entered. When a computation is interrupted by the user, all of the nodes
that are marked entered are re-marked interrupted. There will also be
a large number of other nodes with a result pointer which points through
to an entered if the pointer is followed repeatedly. Taken together, these
nodes will form a chain of expressions from the ART root to the expression
which was interrupted by the user.

As was discussed above, the tail of a non-termination will consist of a
large number of reductions involving a small set of functions. Some of these
may be terminating functions, but unless the computation is interrupted
inside one of these functions, the corresponding nodes will not be marked
interrupted. This means that the majority of nodes which are marked
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interrupted will be the functions involved with the non-termination loop.
The set of suspicious functions which are involved in the non-termination
can therefore be identified by the search process.

This method of selecting suspicious functions can be complicated by non-
terminating programs that call expensive terminating functions. If the pro-
gram is interrupted, it is likely to be interrupted during the execution of
the expensive function, and so this function will be marked as interrupted,
even though the function is not part of the non-termination path.

Once the set of suspicious functions have been identified, hat-nonterm
selects a single function for tracing. Several heuristics are possible. The
simplest is to select the interrupted function that appears last in the ART
file. Another possibility is to take the interrupted function that appears
most often in the ART file. Unfortunately, both of these ideas will fail with
non-terminations that call expensive terminating functions. The execution
of such a program is likely to be interrupted inside an instance of the expen-
sive function. This means that the last-interrupted heuristic will incorrectly
select it as the suspicious function. Similarly, if the expensive function is
heavily recursive its applications may occur more often in the file than those
of non-terminating recursive functions. The most-common heuristic would
then also incorrectly select this function.

The solution used by hat-nonterm is to select the function whose ap-
plications appear furthest apart in the ART file. The functions involved in
the non-termination will not only be marked interrupted at the point of
interruption; they will also be interrupted all the way through the non-
terminating program tail. This is in contrast to an expensive terminating
function called by the non-terminating loop, which will terminate in all but
the final case, and so will only be marked interrupted right at the end of
the ART.

Once a suspicious function has been selected, hat-nonterm looks for a
path through the ART graph which contains the required number of inter-
rupted instances of the selected function.

3.2 Evaluating hat-nonterm

hat-nonterm generally deals well with simple non-terminations. However,
it is quite easy to come up with examples where the tool’s analysis is obscure
or nonexistent. hat-nonterm suffers from the same problem as black-
hat, in that the sequence of subexpressions and reductions can be difficult
to follow. The tool can also have problems with functions that are passed
infinite data structures — if a normal function is passed an infinite data
structure, it may not terminate, but hat-nonterm will give no indication
of why the data structure is infinite.

Another problem with hat-nonterm’s approach is that it fails to cor-
rectly analyse non-terminating programs that generate data-structures as
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they run. This is because these programs do not produce large numbers of
interrupted nodes in the ART, as functions are constantly begin reduced
to constructors. For example, consider the program:

repeat a = a : repeat a

Almost all of the instances of repeat will evaluate to a result where the
constructor is a ‘:’ node. Only the final instance of repeat will be interrupted
when the program terminates. This means that hat-nonterm will fail to
locate the non-termination in this program. One solution may be to follow
the parent edges from the terminated expression up towards the ART root,
and record the functions which are found along this path, but this approach
has not yet been investigated.

It is interesting that hat-nonterm fails on ‘structure-generating’ non-
terminating functions. These are quite different from non-terminating func-
tions which do not generate data structures, and which therefore cause any
function that evaluates them to fail. In contrast, Haskell’s laziness means
that structure-generating non-terminating functions can sometimes be used
safely in terminating programs. For this reason, it may be inaccurate to
always describe such functions as erroneous.

4 Conclusions

black-hat is generally successful in locating the causes of black holes in
test programs. However, it can be difficult to interpret the trace data that it
produces for complicated programs. hat-nonterm successfully locates and
traces some simple non-terminating programs, but it is quite easy to find
programs for which it generates poor or nonexistent analysis. Much more
detail and analysis of black-hat and hat-nonterm can be found in [11],
along with a number of larger examples.
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A Natural Semantics for Tracing in
Haskell

Yong Luo, University of Kent

Abstract: In this short paper, I present the early stage develop-
ment of a natural semantics for tracing in Haskell. The semantics
is deterministic and captures the essence of lazy evaluation. The
output of a program in the semantics is the “same” as the out-
put in Haskell. More precisely, if the output in the semantics
is a value, then the output in Haskell is the same value. If the
output in the semantics is an error message, then the output in
Haskell is also an error message albeit two error messages are
different. Since the semantics is deterministic, we can, in theory,
always trace back to find the bugs when the result of a program
is unexpected.

1 Introduction

The purpose of the paper is to give a deterministic semantics to capture
the lazy computation in Haskell, and also to debug Haskell programs. The
semantics have a clear and unique reduction order. The output of a program
in the semantics is the “same” as the output in Haskell. More precisely, if the
output in the semantics is a value, then the output in Haskell is the same
value. If the output in the semantics is an error message, then the output in
Haskell is also an error message albeit two error messages are different. In
principle, one can follow the reductions and find bugs.

2 Basic Definitions

In this section, we define the language.

Arity

• The arity of a term is the maximum number of arguments that the
term can have.
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Patterns

• a variable is a pattern;

• cp1...pn is a pattern if c is a constructor with arity n and p1, ..., pn are
patterns.

Terms

• a variable is a term;

• a constructor is a term;

• λx.M is a term if x is a variable and M is a term;

• MN is a term if M and N are terms;

• case N of < p1 = M1, ..., pn = Mn > is a term if N , M1,..., Mn

(n > 0) are terms and p1,..., pn are patterns.

i.e.
M ::= V | C | λV.M |MM | case M of < P = M >

Weak head normal form and Normal form

The definitions of weak head normal form and normal form are slightly differ-
ent from the standard ones. A weak head normal form is of the form ca1...an
where c is a constructor. A normal form is of the form ca1...an where c is a
constructor and a1...an are in normal form.

Note that λx.M is not a weak head normal form, nor a normal form. It is
a function and must be applied. Otherwise it will reduce to an error message
error1. A case-expression of the form case N of < p1 = M1, ..., pn = Mn >
is neither a weak head normal form nor a normal form.

A normal form of a term is also called the output of the term.

Reduction rules

There are two kinds of reduction rules. One is β-reduction, and the other is
case-reduction. The β-reduction rule is the standard one.

(β) (λx.M)N −→M [N/x]

Now we analyse how to reduce a case-expression, case N of < p1 =
M1, ..., pn = Mn >. When N does not match any patterns p1, ..., pi−1 but
matches the pattern pi with a sequence of equations < x1 = b1, ..., xk = bk >,
then

case N of < p1 = M1, ..., pn = Mn >−→Mi[b1/x1, ..., bk/xk]

When N does not match any of the patterns, then it reduce to an error
message error2.
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3 Weak head normal form and Pattern matching

This section shows how a weak head normal form of a term is derived, and
how pattern-matching works. The rules for pattern matching and weak head
normal form are simultaneously presented.

Weak head normal form

ca1...an ⇓w ca1...an

where c is a constructor.

(M [a1/x1, ..., am/xm])am+1...an ⇓w h
(λx1.....λxm.M)a1...amam+1...an ⇓w h

where M is not a λ-abstraction.

M matches pi with x = b

(Ni[b/x])a1...an ⇓w h
(case M of p = N)a1...an ⇓w h

where the sentence,M matches pi with x = b, means thatM does not match
p1, ..., pi−1 but matches the pattern pi with a sequence of equations < x1 =
b1, ..., xk = bk >

M doesn’t match any pi
(case M of p = N)a1...an ⇓w error2

Pattern Matching

p = x

M matches p with < x = M >

This rule says that if p is a variable, then M matches p with < p = M >.

M ⇓w error2 p 6= x

M doesn’t match p

where p 6= x means p is not a variable.

M ⇓w ca1...an p = cq1...qn
a1, ..., ai−1 matches q1, ..., qi−1 with l1, ..., li−1

ai doesn’t match qi
M doesn’t match p

where lj is a sequence of equations.
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M ⇓w ca1...an p = c′q1...qn c 6= c′

M doesn’t match p

M ⇓w ca1...an p = cq1...qn
a match q with l

M matches p with
⋃
l

where lj is a sequence of equations. Note that when n = 0,
⋃
l = [].

4 Normal form

This section contains the rules which show how the final result of a term is
derived, in particular, how error messages are handled.

arity(c) = n a1 ⇓ v1, ..., an ⇓ vn v 6= error

ca1...an ⇓ cv1...vn

where c is a constructor and v 6= error means none of the values viis an
error.

(M [a1/x1, ..., am/xm])am+1...an ⇓ v
(λx1.....λxm.M)a1...amam+1...an ⇓ v

where M is not a λ-abstraction.
M matches pi with x = b

(Ni[b/x])a1...an ⇓ v
(case M of p = N)a1...an ⇓ v

Error handling

There are two types of error messages; one is for the terms which are not
fully applied, and another is for the failure of pattern matching.

λx.M ⇓ error1

arity(c) > n

ca1...an ⇓ error1

Note that when arity(c) < n, type-checking will detect the error.

arity(c) = n
a1 ⇓ v1, ..., ai−1 ⇓ vi−1, ai ⇓ errorj v1, ..., vi−1 6= error

ca1...an ⇓ errorj
where j = 1, 2.

M doesn’t match any pi
(case M of p = N)a1...an ⇓ error2
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5 Conclusion

This paper has presented a deterministic semantics for simple functional
programs with lazy evaluation. The result of a program according to the
semantics agrees with results obtained from the corresponding program in
Haskell. In principle, one could follow the reduction sequence derived from
the semantics to investigate the cause when a result is not expected. The
semantic rules sketched here also represent a first step towards the develop-
ment of a semantic model for a simplified version of Hat traces.
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Visual Hat

Neil Mitchell, University of York

Abstract: This paper describes a new approach to visualizing
the data contained in Hat traces. The aim is to cater for Win-
dows users who are more familiar with graphical debugging tools.

1 Introduction and Motivation

My motivation with respect to Hat is very different from that of the other
contributors. I am not a Hat developer, nor even a regular Hat user, but
would very much like some additional help with debugging my Haskell code.
I am exclusively a Windows user, and as a fan of visual interaction tools I
use a console only rarely. The best debugger I have ever used is that which
comes with Microsoft Visual Studio.

My typical Hat interaction goes along the following lines:
Compile with Hat Often the program needs modification before it will
compile for tracing. Typically numeric literals need to be explicitly typed.
Create the trace This is usually pain free. I do not usually have a problem
with 50 times slower execution (although faster would be better).
View the trace This is the stage at which I usually fail. A combination of
interfaces I am not experienced with, along with a disconcerting text-mode,
make it hard for me to extract the data that I know is in the trace. Having
many tools to use makes it harder to know where to start.

The issues of compiling with Hat and creating the trace are being ad-
dressed by Tom Shackell. This paper is concerned with the final issue of
viewing the trace, and argues for a radical direction change. What I pro-
pose will probably appeal more to Haskell beginners and less to experienced
programmers.

While other people have developed graphical tools for Haskell develop-
ment, most have focused on an environment for source code editing and
compilation [2], or on graphical programming [12] – with little reference to
debugging.
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2 Graphical User Interfaces

2.1 General Requirements

The new tool should have a proper native Windows GUI that follows the
standard conventions of Windows as much as possible. All modern graphical
environments provide standard user interface elements such as scroll bars,
and emphasize the mouse in favour of the keyboard. A console is not a
suitable user interface.

The interface should allow the user to explore the trace in many ways.
Anything that is visible and can sensibly be clicked should be a link. It
should be possible for the user to go forward and backward through their
interaction, without losing information they may have once found.

2.2 Graphical User Interfaces for Existing Tools

The tool I propose has two goals: to introduce a new way of working with
the trace, and to use a proper graphical interface. While the new way of
viewing the trace is not appropriate for a console tool, the existing console
tools could have a graphical interface added to them.

The existing tools already have interface concepts that exist in GUI toolk-
its. For example, the screen is split into various panels which can be scrolled,
and it is possible to cycle through options with the arrow keys. These fea-
tures could be captured in a GUI providing an alternative interface on the
existing tools.

It is possible to use Haskell to write a GUI for these elements. Unfortu-
nately a compiled binary for Windows for Hello World in a GUI toolkit such
as wxHaskell [14] is 8Mb. At this size, it is probably unreasonable to supply
a toolset consisting of 6 separate viewers.

3 Concept and Examples

A functional program is all about an expression which evaluates to a result.
In most programs this expression is main and the result is {IO}. The interface
of the tool will show redexes at the top and values at the bottom. The user
can click on either the top or the bottom to see more detail about a particular
expression.

When clicking on a redex such as main, this might expand to putStrLn
"Hello World!". Clicking on a value such as "Hello World!" might give
the expression "Hello " ++ "World!". Every level of expression can be
selected and viewed in more detail.

3.1 Values

Examples of values are:
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• "hello"

• [’h’,’e’,’l’,’l’,’o’]

• (’h’:’e’:’l’:’l’:’o’:[])

• {IO}

• Just True

If a value is currently shown in the top part of the display, and it is
clicked, then that value moves to the bottom and the top displays the path
by which that value was derived.

If syntactic sugar has been applied to a value, then clicking it will remove
the sugar. For example, "ab" goes to [’a’,’b’], then on to (’a’:’b’:[]).
If a part of a value is clicked, for example if True is clicked within Just
True, then the True is put to the bottom and the source of this particular
True is placed at the top.

{IO} is a special type of value, and the behaviour on selecting it has not
been considered in detail. One possible option would be to decompose the
value into the actions that occurred.

3.2 Redexes

Some examples of redexes are:

• main

• map (+1) [1,2,3]

When these are clicked, a single reduction is performed. For example
main might be reduced to putStrLn "Hello World!". The second example
would be reduced to (+1) 1 : map (+1) [2,3].

3.3 Collapsing

When a value is too large to fit on the screen, ellipses can be used as an
indicator. By clicking the ellipses, further information will be displayed.

3.4 Selecting Using a Mouse

One of the hardest operations with the existing tools is selecting a sub-
expression. The current solution is to use the left and right keys to cycle
through the possible options. Unfortunately, these options are presented in
an order which some users find unintuitive.

One possible solution is the use of underlines. Consider the list (1:2:[])
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1 : 2 : []

The underlines clearly delimit the different sub-expressions. Admittedly,
a large number of underlines might confuse the user, and some constraints
may be needed to limit the number that appear.

4 Feedback from Hat Day

It was mentioned that the original redex-trail browser (a predecessor to Hat)
had several of the design features proposed here. In an attempt to learn from
the mistakes of the past, some of the flaws that were mentioned as having
caused problems in the previous GUI tool were:

Java The original tool was written in Java [22], which at the time was
not a mature programming language for GUI programming. Fortunately
since this time GUI programming languages have matured as GUIs have
become more and more common. In particular, Java now has several mature
GUI frameworks including Swing. C# is also available, which has major
commercial backing along with friendly development tools, and has turned
creating a GUI into an easy task.

Complexity The original tool had many features, leaving the users con-
fused. By moving to more individual tools that were more tightly focused it
was felt that the user could regain control. Certainly complexity is an issue
that will have to be kept in mind while designing the tool, preferring fewer
more easily accessible features over a complicated user interface.

GUI Not everyone is convinced that graphical interfaces are a good inter-
action method for debugging. I believe graphical interfaces can be highly
beneficial, having used several good visual debuggers. Only time will tell if
this method suits Haskell.

5 Conclusion

It is hard to determine whether a tool of the kind proposed here would be
useful in practice without a working implementation.

There has been some progress on writing the tool described in this paper.
An initial implementation in C# has been started, but has not been finished.
The main disadvantage of the current implementation is that it does not
reuse the existing Haskell and C routines for handling Hat traces.
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Deriving Program Coverage from
Hat Traces

Colin Runciman, University of York

Abstract: This note describes a small addition to the Hat
toolkit, a program called hat-cover which reports the source-
program coverage of a run recorded in a Hat trace.

1 Introduction

There were two reasons for writing hat-cover. First, it meets a practi-
cal need. Surprisingly, there is no currently distributed tool that reports
source coverage for test runs of Haskell programs. The most widely used
tool for testing Haskell programs is QuickCheck, and “the major limitation
of QuickCheck is that there is no measurement of test coverage” [7]. As a
Hat trace is a source-linked record of all the evaluation that occurs in a
program run, it contains information about which parts of the program have
been used. Although QuickCheck and Hat have been combined before [8],
tracing was only used to investigate failing test-cases. If instead we trace
the execution of all test cases, we should be able to derive information from
the trace about which parts of the program have been covered by the tests.

The second reason for writing hat-cover was to investigate, by a small
case-study, the claim that a Hat trace can readily be put to uses other
than those for which it was originally designed. Part of the mantra for
Hat is “multiple views” [24], and one way of thinking about hat-cover
is that it gives another view, albeit a rather restricted one, of the trace
information. The hat-cover program ought to be straightforward to write.
Its intended output is just a source listing highlighting parts of the traced
program actually used. But do the structure of the trace, and the library
of basic routines for accessing traces, allow a short simple program to be
written? And can a simply designed program also be efficient enough to
process even large traces rapidly and without excessive demands for heap
memory?

Section 2 describes hat-cover from a user’s perspective. Section 3 ex-
plains how the program works. Section 4 evaluates its effectiveness. Section 5
concludes.

27



2 Using hat-cover

This section describes hat-cover from a user’s perspective. It is based on
the hat-cover manual page, with the addition of an example.

Synopsis

$ hat-cover option. . . tracefile sourcefile. . .
Following usual Hat convention, a tracefile may be specified with or without
a .hat extension, and each sourcefile may be specified with or without a .hs
extension.

Description

hat-cover prints to standard output a listing of each Haskell sourcefile,
highlighting expressions for which at least one source reference occurs in the
Hat tracefile. If no sourcefile is specified then hat-cover lists all sources
in which there are traced expressions.

The highlighted expressions in the output are maximal expressions to
which there are source references in tracefile. However, case-expressions and
conditionals are deliberately not treated as candidates for highlighting, and
there is no trace representation for entire let-expressions (or right-hand sides
including a where-clause). These exclusions ensure that hat-cover decides
separately whether to highlight each alternative, branch or local-definition
body — unless the case-expression, conditional or let-expression to which
it belongs is a subexpression of a larger expression that is a candidate for
highlighting.

In general, one cannot infer from the highlighting of an expression that
every subexpression within it was needed at some point in the traced com-
putation. Extra detail in coverage information can be obtained if necessary
by lifting out key subexpressions as the right-hand-sides of local definitions.

Options

-hion=onchars, -hioff=offchars
These options reset the character-sequence codes used to switch highlighting
on and off in the output.

Bugs and Limitations

Some uses of variables as expressions are not available as candidates for
highlighting — though any entire right-hand-side, or any alternative, branch
or let-body is always a candidate. Some trailing brackets in expressions are
not included in highlighting. These problems are consequences of unavailable
or inaccurate information in current Hat traces.
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Example

Figure 1 shows an example of a listing produced by hat-cover. The listed
program tests whether a proposition is a tautology, and it works by interleav-
ing simplification and case analysis of the left-most variable. Notice some
parts of the program that are not covered: the equations defining eval,
varOf and subst for negated arguments are never used. Even though eg
contains three implications, and in one alternative eval simplifies implica-
tions to negations, that alternative is itself never used.

3 How hat-cover works

Any expression in a program can be specified by the source-file it belongs
to and the character positions (line and column) where it begins and ends.
This is exactly the information encoded in each source-reference node of a
Hat trace. The essence of what hat-cover needs to compute is the cover
set of maximal source references attached to traced expressions, restricted
to specified modules and excluding case-expressions and conditionals. The
relevant modules can then be listed, with highlighting controlled by the cover
set.

After hat-cover has interpreted its arguments to obtain moduleNames,
and performed openHatFile, it computes the cover set by a straightforward
linear scan inspecting every trace-node and accumulating relevant source
references:

do
nodes <- nodeSequence
let srs =
[ sr |
(fn, nt) <- nodes, isCover nt,
let srn = getSrcRef fn, srn /= Filenode 0,
let sr = readSrcRef srn, line sr /= 0,
null moduleNames || filename sr ‘elem‘ moduleNames ]

printCover (hiOn, hiOff) (addAll srs [])

All kinds of applications, variables and constants explicit in the source satisfy
isCover, but case-expressions and conditionals do not.

The application addAll srs [] inserts successive source references into
an initially empty cover set. The set is a forest of intervals of line-column
pairs, with a simple binary search-tree for each source file.

type Cover = [(String, Tree (Interval LineColumn))]
data Tree = Leaf | Fork (Tree a) a (Tree)
type Interval a = (a,a)
type LineColumn = (Int,Int)

It is tempting to define addAll srs cvr = foldr add cvr srs and to
define add in the most obvious way using explicit list- and tree-recursion.
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data Prop = Lit Bool | Var Char | Not Prop | Prop :=> Prop
infixr :=>

eg = Var ’p’ :=> (Var ’p’ :=> Var ’q’) :=> Var ’q’

eval :: Prop -> Prop
eval (Lit b) = Lit b
eval (Var v) = Var v
eval (Not p) = case eval p of

Lit b -> Lit (not b)
p’ -> Not p’

eval (p :=> q) = case (eval p, eval q) of
(Lit b, q’) -> if b then q’

else Lit True
(p’, Lit b) -> if b then Lit True

else Not p’
(p’, q’) -> p’ :=> q’

varOf :: Prop -> Char
varOf (Var v) = v
varOf (Not p) = varOf p
varOf (p :=> _) = varOf p

subst :: Char -> Bool -> Prop -> Prop
subst _ _ (Lit b) = Lit b
subst v b (Var w) = if v==w then Lit b

else Var w
subst v b (Not p) = Not (subst v b p)
subst v b (p :=> q) = subst v b p :=> subst v b q

taut :: Prop -> Bool
taut p = case eval p of

Lit b -> b
p’ -> let v = varOf p’ in

taut (subst v True p’) &&
taut (subst v False p’ )

main = print (taut eg )

Figure 1: An example of hat-cover output.
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But if addAll is so-defined hat-cover takes ages to run for all but small
traces and it exhausts memory if applied to large traces. For stack economy
tail recursion is essential, and for heap economy the forest must be kept in
normal form to avoid chains of suspended updates.

addAll srs cvr | normal cvr =
case srs of
[] -> cvr
(sr:srs’) -> addAll srs’ (add sr cvr)

Use of a non-recursive normal predicate as a guard, and normalising con-
structors in a function like add is a more flexible and earlier alternative to
strictness annotations [20].

4 Evaluation and Future Work

The opening motivation suggests two questions: Is hat-cover concise and
efficient? Does it provide the coverage information needed?

Conciseness and Efficiency

The current hat-cover program is about 200 lines of Haskell — in addition
to a few pre-existing routines from the LowLevel Hat library and the stan-
dard Haskell libraries. Despite an unsophisticated data representation, it
handles even quite big traces with tolerable efficiency. For example, running
the mate chess-end-game solver on a tough two-move problem generates a
235MB binary trace file, with over 15 million nodes in the trace graph; hat-
cover computes a coverage listing for the Move module (the largest and
very heavily used) in about 3 minutes on a slowish PC.

If one wanted to make hat-cover more efficient, apart from rewriting
it in C, options include:
Use more sophisticated data structures for a finite map from strings
to ordered sets — eg. balanced trees of some kind [1]. Cautions: typically
there are very few source modules so fancy finite maps may not repay their
overheads; inserting an interval that encloses one already in the set requires
pruning and grafting yet must preserve the balance invariant.
Use integer codes instead of full strings and source-reference information
— for faster comparisons. Caution: although addresses of module nodes and
source-reference nodes in the trace provide a natural integer reference, they
do not directly support appropriate ordering and inclusion tests.
Guarantee once-only insertion of references in cover sets by setting mark
bits directly in the trace file. Cautions: this cannot be done using only
routines currently in the Hat library; also, the I/O costs might be greater
than the savings in cover-set processing.
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Level of Information

The coverage information that hat-cover provides could fairly be described
as rudimentary. In the trade-off between the refinement of results and the
complexity and cost of computing them, simpler options have almost always
been preferred.

The slicing method of hat-explore [5] can give a more refined view of
needed parts, for example distinguishing between evaluated and unevaluated
arguments at the point of call. But slicing may be too expensive as a routine
method for deriving coverage from large traces. A hat-cover user can force
finer distinctions by making local definitions for critical expressions.

If one wanted to make hat-cover more informative, without abandoning
the simple linear-scan approach, options include:
Derive a summary measure of coverage in each module — ie. 100%
coverage of module A but only 60% of module B. The measure could be
based on comparison with an upper bound for the cover set of a module
determined directly from the source. (Remember that “measurement of test
coverage” is what the QuickCheck authors really wanted.)
Distinguish different frequencies of coverage, generalising a single form
of highlighting to a range of intensities or colours indicating the relative
frequency of trace references to different expressions. Computing multisets
rather than sets is easy; the trickier part may be determining the most helpful
scale of values.

5 Conclusions

It is rather straightforward to extract basic coverage information from Hat
traces. The exercise can be completed using only a few already available rou-
tines to access the trace from a short Haskell program. An unsophisticated
prototype, based on a linear scan of the trace to extract source references,
is in most respects quite workable; but it is essential to define some parts of
the program carefully to avoid excessive memory demands. There is scope
for further refinement of the linear-scan approach to improve both efficiency
and the quality of information obtained.

hat-cover as described in this note is available as part of Hat 2.04.
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The Hat G-Machine

Tom Shackell & Colin Runciman, University of York

Abstract: The Hat system provides a method for tracing a
lazy functional program. However Hat works by transforming
the source program into a much larger self-tracing variant that
runs between 15 and 100 times slower and uses several times as
much memory. We show how equivalent traces can be generated
much more efficiently by modifying the underlying abstract ma-
chine. Our approach shows that it is only necessary to add a
few extra machine instructions and change the interpretation of
a few others in order to generate Hat traces efficiently.

1 Introduction

It is often said that an advantage of functional languages is that they make
it more likely that programmers will write correct code. However, even
functional programs sometimes have bugs. In order to correct them it is often
necessary to know why the program gave a particular answer. It can also
be useful to understand why a program gave a particular answer for reasons
other than debugging, for example, in order to gain a better understanding
of the program. This can be particularly important for people modifying
code that they did not write.

One method to debug and understand a program is to produce a trace of
everything that the program did. Such an approach is used in systems such
as Hat [24] as well as in algorithmic debugging systems such as Freja [16]
and Buddha [18]. This paper will look principally at the Hat system.

Hat produces traces in way that is portable across different compilers, but
the traced computation uses much more memory and typically runs between
15 and 100 times slower than the untraced case. This paper describes how
the same traces can be produced much more efficiently by modifying the
underlying abstract machine.

1.1 The difficulties of tracing lazy functional languages

The method traditionally used for tracing and debugging in strict functional
and imperative languages is to step through the execution sequentially and
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examine the runtime state of the system, such as the contents of the heap
and values of variables on the stack [23]. Such an approach is less effective
for lazy functional languages, however, as the order of evaluation is demand
driven and so is often un-intuitive to the programmer. In a lazy language
the execution of a piece of work is suspended until its evaluation is necessary
in forming the output of the program.

Producing a complete trace of the execution of the program means that
debugging becomes a post-mortem activity. The advantage of this approach
is that it allows the execution to be explored independently of evaluation
order. It also means that the runtime state of the program cannot be altered
during the tracing process, which is in keeping with the declarative nature
of functional programs.

Hat works by using source level transformation: the original Haskell
program is translated into a new Haskell program. When this new program
is evaluated it does the same computation as the original but as a side effect
also produces a trace of the evaluation. Such an approach has the advan-
tage of being portable across different compilers and platforms. However,
it also makes the source code several times larger, increases compile times,
can greatly increase the memory usage and can greatly reduce the runtime
performance of the program. For some large applications such a performance
loss makes tracing impractical.

1.2 Tracing using a modified abstract machine

An alternative approach to transforming the program source is to use a
modified compiler and abstract machine. The program is compiled with
additional debugging information and then as execution proceeds the ab-
stract machine generates a trace of the computation. Such an approach is
not portable across different compilers but it has the advantage that it has
much less interpretive overhead when compared with tracing by program
transformation.

2 The G-Machine

The G-Machine is an abstract machine for implementing lazy functional lan-
guages by graph rewriting and is described by Augustsson and Johnsson in
[13]. Suspended computations are represented in the heap as graphs. When
the value of the suspended computation becomes necessary the function de-
scribed by the graph is executed and the graph is rewritten with its result.
This process continues until the final result of the computation has been
obtained.

Results reported in this paper concern a modified version of the nhc
compiler [19], which is implemented based on the Spineless G-Machine [4].
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Functions are compiled as supercombinators, which are top level function
definitions with no free variables. The definition for a function is compiled
into a series of SG-Machine instructions. When a closure is evaluated the
SG-code builds a graph representing the body of the function in the heap
and then returns and updates the closure.

3 The Hat trace structure

The Hat trace is a graph that provides a detailed record of the graph reduc-
tion process when a program is executed. A trace can be viewed by the Hat
tools to examine what the computation did [8]. The trace principally records
applications of functions to particular arguments. The trace also records the
parent application, in whose body this one was created, and what the result
of this application is.

4 Modifying the SG-Machine for tracing

The correspondence between the Hat traces and the graph rewriting seman-
tics strongly suggests that a Hat trace could be generated by a modified
SG-Machine. The basic idea is that when new nodes are built in the heap
a corresponding node is built in the trace. Similarly whenever a heap nodes
is updated with a result, the corresponding trace node is updated with the
corresponding result. For updates to be possible every heap node needs to
know what its corresponding trace node is; this is achieved by adding a field
for the file position of the trace node in the heap node.

4.1 The trace stack

Although the trace of a function closely matches its representation in the
heap there are things recorded in the trace which have no representation
in the heap, for example case expressions. In order to accommodate these
features an extra stack is added to the abstract machine, the trace stack.

5 Results

The back end of the nhc compiler has been modified to generate the new
instructions and to add extra information such as function names and source
code positions.

The performances of Untraced nhc, Hat G-Machine and hat-trans are
compared using the following programs from the no-fib benchmark suite 2.

2http://www.dcs.gla.ac.uk/fp/software/ghc/nofib.html
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Table 1: Performance results

Program Compile-time measures Run-time measures
Object Code(KB) Time(s) Mem(KB) Time(s) GCs

Primes-NT 282 0.47 3 0.88 121
Primes-HGM 709 0.53 6 1.91 220
Primes-HT 1753 10.43 20 66.92 9065

Queens-NT 207 0.49 8 0.17 27
Queens-HGM 488 0.55 14 0.61 48
Queens-HT 1755 10.80 103 8.86 1147

WheelSieve-NT 283 0.54 7 0.16 22
WheelSieve-HGM 713 0.66 13 0.47 41
WheelSieve-HT 1764 11.20 23 9.30 1234

Queens A program to solve the n-queens puzzle (n=8).
Wheel1 An efficient program to list the first n primes (n=1000).
Primes A naïve program to find the nth prime (n=500).

5.1 Compile-time results

The compile-time results are shown in the first part of Table 1. Results are
shown for two indicators: the size of the final binary and the time to compile
the program.

Table 1 shows that the object code size for the Hat G-Machine is always
within a factor of 3 of the untraced case, which is substantially smaller than
the code generated by hat-trans.

5.2 Run-time results

Run-time results are shown in the second part of Table 1. The results are
shown for a number of key performance indicators.

Mem peak live heap memory after a garbage collection
Time complete program runtime in seconds
GCs number of garbage collections

The memory usage of Hat G-Machine programs is always within a factor
of two of the untraced program; in comparison programs generated by hat-
trans use between 3 and 12 times the memory needed in the untraced case.
In terms of run-time performance the Hat G-Machine is between a factor
of two and four slower than the untraced program; programs generated by
hat-trans typically being around a factor of 50 slower.
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6 Related work

The most closely related work is that of Henrik Nilsson in his Freja system
[16, 17]. Like the Hat G-Machine, Freja generates a trace of a lazy functional
language by modifying the abstract machine. However there are a number
of key differences: Freja generates simpler EDT structures rather than the
richer Hat trace structure; Freja generates the traces ‘piecemeal’ in memory
rather than in a file as Hat does; Freja is based on the standard G-Machine
rather than the spineless G-Machine of nhc.

Many of the same ideas are present. For example Nilsson also augments
the heap nodes with additional information, although the information Freja
stores is quite different.

7 Conclusions and further work

7.1 Conclusions

The work on the Hat G-Machine has shown that by making minor changes
to the SG-Machine code generated, and by extending the interpretation of
SG-Machine code, it is indeed possible to generate Hat traces. With some
additional effort this scheme can be extended to deal with the computations
over trusted functions.

The expected efficiency gains from tracing at the abstract machine level
are indeed realised. The Hat G-Machine produces traces more than an order
of magnitude faster than corresponding programs generated by hat-trans,
with only a 2 to 4 fold increase in execution time compared to untraced
code. It also substantially reduces the memory consumption, compile time
and object code size when compared to the hat-trans approach.

7.2 Further work

This paper is an abbreviated version of the paper [21]. The full paper gives
examples of SG-Machine instructions, the exact structure of the Hat trace,
more motivating examples as well as the full operational semantics of the
new and modified instructions.

The unwanted differences between the traces produced by hat-trans
and those produced by the Hat G-Machine need to be resolved. It will
be necessary to characterise more precisely the expected correspondence be-
tween the traces generated by the two methods. The traces generated by
the Hat G-Machine have not yet been checked extensively against the full
range of viewing tools.

In due course it is our aim to merge the Hat G-Machine work into the
released nhc98 system.
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Story and History — a Value-Based
View of Hat Traces

Malcolm Wallace, University of York

Abstract: Most views of Hat traces are either expression- or
reduction-oriented. They show (either forwards or backwards)
how computation proceeded, and which computations depended
on which other computations. This paper suggests a comple-
mentary view, fixing on a particular value, and examining what
happens to it throughout its lifetime. This view will turn out to
be particularly useful when tracing ‘difficult’ or ‘para-functional’
features of a program, such as I/O and concurrency.

1 Introduction

The Hat system provides a number of different views of the trace of a Haskell
program [24]. For instance, hat-observe shows function applications and
their ultimate results; hat-trail allows backward exploration through the
reduction graph of expressions; hat-detect performs algorithmic debug-
ging by traversing the evaluation dependency tree of an expression; hat-
anim animates the forward sequence of the reduction of an expression [10].

All of these views are based around expressions and reductions. They
follow the flow of the computation, in some sense concentrating on the arrows
of the graph, and where they take us – the viewer’s focus moves around the
trace graph. This paper suggests an alternative view, based more on values.
Values in a pure functional language are immutable – fixed – so in that sense,
the camera is fixed on a single node of the graph, and what is of interest
in the movie is what happens to that node over time — its creation, the
attachment of dependency arrows to it, and its eventual quiescence when it
no longer plays a part in the computation.

2 The Idea

Consider this trivial program:

main = print (select (simple 3))
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select (_:x:_) = x
simple n = (n-1) : n : (n+1) : []

The requirement is to view the sequence of all activity involving the par-
ticular value 3. Now, because here the program does in fact print 3 as its
output, one might expect hat-trail to give us exactly what we want, albeit
backwards:

Output: --------------------------------------------------
3
Trail: ---------------------------------------------------
<- print 3 = IO
<- select [_,3,_] = 3
<- fromInteger 3 = 3
<- main = IO

But in fact, there is quite a lot of information missing here, and some of the
apparent connections between lines may be less than they seem. The actual
backward sequence (or history) we would like to have found is as follows:

1. argument of: print

2. result of: select

3. pattern-match in: select

4. argument of: cons (:)

5. argument of: simple

6. parented by: main

hat-trail has only been able to reveal (for definite) the first, third, and
sixth items. More exploration would be required to confirm the second and
fourth items, and the fifth item cannot be found directly at all! (This last
problem is due to a projection node in the trace.)

If we think about the forward sequence (or story), it is not just the
linear reversal of the history, but has a branching structure. In the reverse
of the sequence above, after becoming the argument to simple, the value 3
then has three independent things happen to it. In addition to becoming
an argument of a cons, it also becomes an argument in the two expressions
(3-1) and (3+1), and in each of these arithmetic branches of the story, the
value 3 ceases to take any further part. Once again, hat-trail does not
easily reveal this information.

Other viewers, e.g. hat-anim and hat-observe, are no better at gath-
ering the story/history information quickly and coherently. In principle, all
the information is already available in the trace, but it currently requires
considerable skill to use the trace-viewing tools to recover it.
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So, I propose a new viewer, based on the central concept of a value and
its story/history.

The activities noted in the trace that are potentially of interest within a
story/history are:

• parented by: the creation of a value

• argument of: the value is passed to a function

• applied to: the value is a function (possibly anonymous), and is applied
to some argument(s) with some result

• reduced to/from: the value undergoes some evaluation

• pattern-match in: the value is either decomposed, or bound to a vari-
able, within a pattern-match arising on the lhs of a function, a lambda
binding, or a case expression

• result of: the value is returned as the result of a function – either as a
projection, or subsequent to being ‘parented by’ that function.

3 Motivating Examples

Here are two motivating examples to show that value-based views can provide
interesting and useful information.

3.1 I/O

Generally speaking, I/O is difficult to trace. The result of either an output
or input action is itself rather uninteresting – usually just a placeholder
indicating an opaque monadic value. In order to be of any use at all, Hat
currently records all character output separately from the trace proper, with
a link backward from each character to the traced I/O action that produced
it. Input characters can be found within the trace, although not directly
as the result of the I/O action, and only if the input is in fact used by
the computation. They appear as the arguments of some other functions,
subsequent to their retrieval by the I/O action, and can be identified only
because their parent redex is a redex whose result included the I/O action –
a complicated indirection forced by the monadic nature of I/O.

There are several unfortunate consequences of this model. If an I/O ac-
tion produces no visible output, e.g. putStr "", it can be almost impossible
to navigate to it within a viewer. Even worse, the action may have a side
effect on the environment, yet produce no discernible input or output, e.g.
hSetBuffering NoBuffering.
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But value-based tracing provides a solution! A large number of I/O
actions either use or return an opaque handle on the external resource being
manipulated.

For instance, opening a file or socket creates a handle, reading from or
writing to the resource is mediated by the handle, and often the handle is
closed explicitly too. By examining the story of the handle itself, we are
able to see all of these events in sequence, including any empty writes, or
side-effecting actions like changing the buffer size.

I/O handles are not only used to mediate external resources – they are
also commonly used for internal resources, in the form of global variables.
An IORef (or STRef) is, for our purposes, exactly a handle on a mutable
memory location, whose story and history can be examined, to discover
the value stored there at different times. Likewise for mutable arrays, and
any other mutable data structure whose access pattern must be constrained
through references and a monad.

As a special case of I/O, concurrent programs tend to have bugs that
are unique to the non-sequential nature of the paradigm, e.g. deadlock and
livelock. These arise through faults in locking and signalling protocols. Until
now, Hat has had no facilities to address finding such faults (see [3]). But
an MVar, the basic unit for concurrent communication in Haskell, is once
again just an opaque handle on a resource, and again, its story (perhaps
interleaved with the story of other MVars) can perhaps usefully reveal the
behaviour of the protocol, illuminating the causes of concurrency problems.

3.2 Compilers

The following example has a rather different flavour. Consider a compiler,
built in the traditional way with multiple passes. To better understand how
the compiler works, a student may want to trace the compiler running over
a small program, and for example, to watch the symbol table as entries are
added to it during the identification phase, then as those entries are updated
later during type checking. Or perhaps they want to see how the original
text is lexed into chunks, parsed into an AST, then how some fragment of
the AST is changed by various translation and optimisation phases, before
finally being flattened to assembly or binary output. In each case, the ob-
jective is to follow the story of what happens to a value. However, unlike
the I/O scenario, here the focus jumps from one immutable value to a differ-
ent immutable value as the computation progresses, transforming one data
structure into another.

As a smaller illustration of the same idea, consider the following trivial
program:

main = print (jam 3)
jam x = filter (== x) [1,2,3,4,5]
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Once again, we are interested in following what happens to the value 3 from
the first line. Its full story is this:

1. parented by: main

2. argument of: jam

3. argument of: (==)

Intuitively, we know that 3 is used many more times within the filter.
What has happened is that the value has become fused inside another value
(a partial application of the equality operator), and it is the larger value we
now want to follow. So, a sideways step is required from viewing the story
of 3 to viewing the story of (==3), which is this:

1. parented by: jam

2. argument of: filter

3. applied to : 1 (with result False)

4. applied to : 2 (with result False)

5. applied to : 3 (with result True)

6. applied to : 4 (with result False)

7. applied to : 5 (with result False)

4 Conclusions

There is considerable scope for new views of the Hat trace, based solely
on the information already available, but taking a different approach to the
existing browsers. I have outlined one possible new view, where the life story
of a value is of central interest, as opposed to the flow of reduction common
to most current views.

Many issues remain open for discussion:

• Nodes in the trace have identity, unlike computational values. That is,
there can be multiple trace nodes denoting the same value, yet these
nodes will be treated as separate values for the purposes of the viewer.
This abandonment of referential transparency can be justified. Each
node in the trace file corresponds to a unique parentage, and therefore
a different lifestory. Although two values may be the same, their life
stories throughout the computation can be different, and so it would be
confusing to interleave their timelines arbitrarily, as if they were one.
It also more closely reflects the lazy sharing model of the underlying
implementation.
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• No thought has yet been given to a user interface for such a viewer. To
what extent should it use expressions, and to what extent descriptions
(e.g. “argument of”)? How will a branching story be represented to
the user? Is it better to tell a story or a history, or some combination
of both?

• As in the compiler example, it may turn out that following the story
of a single value from start to finish is uninteresting. It will probably
be useful to have the ability to jump from one value’s story to an-
other, following the value’s transformation from argument to result of
a function.
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