
the Garbage Collection Bibliography

Richard Jones

R.E.Jones@kent.ac.uk

School of Computing

University of Kent

August 4, 2025

This bibliography may be freely used for non-commercial purposes. It may also be freely distributed

provided that this notice is included. I would be most grateful to receive additions, corrections and URLs

of electronically available papers. The bibliography is also available in BibTeX and HTML forms from

https://www.cs.kent.ac.uk/people/staff/rej/gcbib/gcbib.html

Copyright ©1999-2025, Richard Jones

[Aamodt et al., 2023] Tor M. Aamodt, Natalie Enright Jerger, and Michael Swift, editors. 28th Inter-

national Conference on Architectural Support for Programming Languages and Operating Systems,

Vancouver, Canada, March 2023. ACM Press.

[Aarts et al., 1991] Emile H.L. Aarts, Jan van Leeuwen, and Martin Rem, editors. Parallel Architectures

and Languages Europe (PARLE), volume 505/506 of Lecture Notes in Computer Science, Eindhoven,

The Netherlands, June 1991. Springer-Verlag.

[Abdullah and Edemenang, 1993] Saleh E. Abdullah and E.J.A. Edemenang. A comparative study of

dynamic memory management techniques. Advances in Modelling and Analysis, 15(2):17–31, 1993.

[Abdullah, 1992] Saleh E. Abdullah. Managing computer memory: Dynamic allocation and deallocation

strategies. In 2nd Conference on Information Technology and its Applications, pages 25–40, Leicester,

December 1992.

[Abdullah, 1994] Saleh E. Abdullah. Recycling garbage. In 3rd Conference on Information Technology

and its Applications, pages 192–197, Leicester, April 1994.

[Abdullahi and Ringwood, 1996a] Saleh E. Abdullahi and Graem A. Ringwood. Empirical studies of

distributed garbage collection: Parts I, II and III. Technical report, Queen Mary and Westfield College,

University of London, 1996.

[Abdullahi and Ringwood, 1996b] Saleh E. Abdullahi and Graem A. Ringwood. Garbage collecting the

Internet. Technical report, Queen Mary and Westfield College, University of London, 1996? Draft

version of [Abdullahi and Ringwood, 1998].

[Abdullahi and Ringwood, 1998] Saleh E. Abdullahi and Graem A. Ringwood. Garbage collecting

the Internet: a survey of distributed garbage collection. ACM Computing Surveys, 30(3):330–373,

September 1998.

[Abdullahi et al., 1992] Saleh E. Abdullahi, Eliot E. Miranda, and Graem A. Ringwood. Distributed

garbage collection. In Bekkers and Cohen [Bekkers and Cohen1992], pages 43–81.

[Abdullahi, 1995] Saleh E. Abdullahi. Empirical Studies of Distributed Garbage Collection. PhD thesis,

Queen Mary and Westfield College, December 1995.

[Abe et al., 2016] Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda1, and Kousuke Matsumoto. Re-

ducing state explosion for software model checking with relaxed memory consistency models.

arXiv:1608.05893, August 2016.

[Abelson et al., 1996] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Interpre-

tation of Computer Programs. MIT Press, second edition, 1996.

[Abhinav and Nasre, 2016] Abhinav and Rupesh Nasre. FastCollect: Offloading generational garbage

collection to integrated GPUs. In Proceedings of the International Conference on Compilers, Archi-

tectures and Synthesis for Embedded Systems (CASES’16), Pittsburgh, PA, 2016. ACM Press.

[Abraham and Patel, 1987] Santosh G. Abraham and Janak H. Patel. Parallel garbage collection on a

virtual memory system. In ICPP 1987 [ICPP 19871987], pages 243–246. Also technical report CSRD

620, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Develop-

ment.

[Abramowich, 1967] John Abramowich. Storage allocation in a certain iterative process. Communica-

tions of the ACM, 10(6):368–370, June 1967.

1



[Abuaiadh et al., 2004] Diab Abuaiadh, Yoav Ossia, Erez Petrank, and Uri Silbershtein. An efficient

parallel heap compaction algorithm. In OOPSLA 2004 [OOPSLA 20042004], pages 224–236.

[Acar et al., 2006] Umut A. Acar, Guy E. Blelloch, M. Blume, and K. Tangwongsan. An experimental

analysis of self-adjusting computation. In Schwartzbach and Ball [Schwartzbach and Ball2006], pages

96–107.

[Acar et al., 2015] Umut A. Acar, Guy E. Blelloch, Matthew Fluet, Stefan K. Muller, and Ram Raghu-

nathan. Coupling memory and computation for locality management. In Summit on Advances in

Programming Languages (SNAPL), volume 32 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 1–14. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, 2015.

[Accetta et al., 1986] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and

M. Young. Mach: A new kernel foundation for Unix development. In Usenix Summer Conference.

USENIX Association, July 1986.

[Aditya et al., 1994] Shail Aditya, Christine Flood, and James Hicks. Garbage collection for strongly-

typed languages using run-time type reconstruction. In LFP 1994 [LFP 19941994], pages 12–23.

[Adjih, 1996] Cédric Adjih. Mesure et caractérisation d’applications réparties. Master’s thesis, Univer-

sité Paris Sud, 1996.

[Adl-Tabatabai et al., 2004] Ali-Reza Adl-Tabatabai, Richard L. Hudson, Mauricio J. Serrano, and

Sreenivas Subramoney. Prefetch injection based on hardware monitoring and object metadata. In

Pugh and Chambers [Pugh and Chambers2004], pages 267–276.

[Adl-Tabatai et al., 1998] Ali-Reza Adl-Tabatai, Michal Cierniak, Guei-Yuan Leuh, Vihesh M. Parikh,

and James M. Stichnoth. Fast effective code generation in a Just-In-Time Java compiler. In PLDI

1998 [PLDI 19981998], pages 280–290.

[Adve and Gharachorloo, 1995] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency

models: A tutorial. WRL Research Report 95/7, Digital Western Research Laboratory, September

1995.

[Adve and Gharachorloo, 1996] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency

models: A tutorial. IEEE Computer, 29(12):66–76, December 1996.

[Aerts, 1981] J.P.H. Aerts. Implementing SASL without garbage collection. EUT Report 81–WSK–05,

Eindhoven University of Technology, 1981.

[Aftandilian and Guyer, 2008] Edward Aftandilian and Samuel Guyer. GC assertions: Using the garbage

collector to check heap properties. In Berger and Chen [Berger and Chen2008], pages 36–40.

[Aftandilian and Guyer, 2009] Edward Aftandilian and Samuel Guyer. GC assertions: Using the garbage

collector to check heap properties. In PLDI 2009 [PLDI 20092009], pages 235–244.

[Agaram et al., 2006] Kartik Agaram, Steve Keckler, Calvin Lin, and Kathryn McKinley. Decomposing

memory performance: Data structures and phases. In Petrank and Moss [Petrank and Moss2006],

pages 95–103.

[Agarwal et al., 1988] Anant Agarwal, Mark Horowitz, and John Hennessy. Cache performance of oper-

ating systems and multiprogramming workloads. ACM Transactions on Computer Systems, 6(4):393–

431, November 1988.

[Agarwal, 1987] Anant Agarwal. Analysis of Cache Performance for Operating Systems and Multipro-

gramming. PhD thesis, Stanford University, Palo Alto, CA, May 1987. Available as Technical Report

CSL-TR-87-332.

[Agesen and Detlefs, 1997] Ole Agesen and David Detlefs. Finding references in Java stacks. In Dick-

man and Wilson [Dickman and Wilson1997].

[Agesen and Garthwaite, 2000] Ole Agesen and Alex Garthwaite. Efficient object sampling via weak

references. In Chambers and Hosking [Chambers and Hosking2000], pages 121–136.

[Agesen et al., 1998] Ole Agesen, David Detlefs, and J. Eliot B. Moss. Garbage collection and local

variable type-precision and liveness in Java virtual machines. In PLDI 1998 [PLDI 19981998], pages

269–279.

[Agesen, 1998] Ole Agesen. GC points in a threaded environment. Technical Report SMLI TR-98-70,

Sun Microsystems Laboratories, Palo Alto, CA, 1998.

2



[Agesen, 1999] Ole Agesen. Space and time-efficient hashing of garbage-collected objects. Theory and

Practice of Object Systems, 5(2):119–124, April 1999.

[Aggarwal, 2002] Aneesh Aggarwal. Software caching vs. prefetching. In Boehm and Detlefs

[Boehm and Detlefs2002], pages 157–162.

[Aggoun and Beldiceanu, 1990] A. Aggoun and N. Beldiceanu. Time stamps techniques for the trailed

data in constraint logic programming systems. In Séminaire de Programmation Logique de Trégastel,

CNET, France, pages 487–509, 1990.

[Agha, 1986] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT

Press, 1986.

[Aho et al., 1986] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques

and Tools. Addison-Wesley, 1986.

[Aho et al., 1988] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The AWK Programming

Language. Addison-Wesley, 1988.

[Aigner and Kirsch, 2013] Martin Aigner and Christoph M. Kirsch. ACDC: Towards a universal mutator

for benchmarking heap management systems. In Petrank and Cheng [Petrank and Cheng2013].

[Aigner et al., 2010] Martin Aigner, Andreas Haas, Christoph Kirsch, Hannes Payer, Andreas

Schönegger, and Ana Sokolova. Short-term memory for self-collecting mutators. Technical Report

2010–03, University of Salzburg, April 2010.

[Aigner et al., 2011] Martin Aigner, Andreas Haas, Christoph M. Kirsch, Michael Lippautz, Ana

Sokolova, Stephanie Stroka, and Andreas Unterweger. Short-term memory for self-collecting mu-

tators. In Boehm and Bacon [Boehm and Bacon2011], pages 99–108.

[Aigner et al., 2014] Martin Aigner, Thomas Hütter, Christoph M. Kirsch, Alexander Miller, Hannes

Payer, and Mario Preishuber. ACDC-JS: Explorative benchmarking of JavasScript memory manage-

ment. In DLS 2014 [DLS 20142014], pages 67–78.

[Aiken et al., 1995a] Alex Aiken, Manuel Fähndrich, and Raph Levien. Better static memory manage-

ment: Improving region-based analysis of higher-order languages. Technical report, University of

California, Berkeley, 1995.

[Aiken et al., 1995b] Alex Aiken, Manuel Fähndrich, and Raph Levien. Better static memory manage-

ment: Improving region-based analysis of higher-order languages. In PLDI 1995 [PLDI 19951995],

pages 174–185.

[Ainsworth and Jones, 2020] Sam Ainsworth and Timothy M. Jones. Prefetching in functional lan-

guages. In Maas and Ding [Maas and Ding2020], pages 16–29.

[Aı̈t-Kaci, 1991] Hassan Aı̈t-Kaci. The WAM: A (real) tutorial. In Warren’s Abstract Machine: A

Tutorial Reconstruction. MIT Press, 1991. Also Technical report 5, DEC Paris Research Laboratory,

1990.

[AIX, version 32] Subroutines Overview, General Programming Concepts, AIX version 3.2 edition, ver-

sion 3.2.

[Akram et al., 2016] Shoaib Akram, Jennifer B. Sartor, Kenzo Van Craeynest, Wim Heirman, and Lieven

Eeckhout. Boosting the priority of garbage: Scheduling collection on heterogeneous multicore pro-

cessors. ACM Transactions on Architecture and Code Optimization, 13(1):4:1–4:25, March 2016.

[Akram et al., 2018a] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley, and Lieven Eeckhout.

Emulating hybrid memory on NUMA hardware. arXiv preprint, July 2018. arXiv:1808.00064.

[Akram et al., 2018b] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley, and Lieven Eeckhout.

Write-rationing garbage collection for hybrid memories. In PLDI 2018 [PLDI 20182018], pages 62–

77.

[Akram et al., 2019] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley, and Lieven Eeckhout.

Crystal gazer: Profile-driven write-rationing garbage collection for hybrid memories. In Abstracts of

the 2019 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling

of Computer Systems, pages 21–22, Phoenix, AZ, USA, 2019. ACM Press.

[Akyürek and Salem, 1995] Sedat Akyürek and Kenneth Salem. Adaptive block rearrangement. ACM

Transactions on Computer Systems, 13(2):95–121, May 1995.

3



[Al Hour, 2014] Ali Al Hour. Garbage Collection in Distributed Memory Systems: Mark and Copy

Garbage Collection (M&CGC) Algorithm. LAP LAMBERT Academic Publishing, April 2014.

[Albano and Morrison, 1992] Antonio Albano and Ronald Morrison, editors. 5th International Work-

shop on Persistent Object Systems (September, 1992), Workshops in Computing, San Miniato, Italy,

1992. Springer.

[Albert et al., 2007] Elvira Albert, Samir Genaim, and Miguel Gómez-Zamalloa. Heap space analysis

for Java bytecode. In Morrisett and Sagiv [Morrisett and Sagiv2007], pages 105–116.

[Albert et al., 2009] Elvira Albert, Samir Genaim, and Miguel Gómez-Zamalloa Gil. Live heap space

analysis for languages with garbage collection. In Kolodner and Steele [Kolodner and Steele2009],

pages 129–138.

[Albert et al., 2010] Elvira Albert, Samir Genaim, and Miguel Gómez-Zamalloa. Parametric inference

of memory requirements for garbage collected languages. In Vitek and Lea [Vitek and Lea2010],

pages 121–130.

[Ali, 1998] K.A.M. Ali. A simple generational real-time garbage collection scheme. Computing

Paradigms and Computational Intelligence (New Generation Computing), 16(2), 1998.

[Aljabri et al., 2014] Malak Aljabri, Hans Wolfgang Loidl, and Phil Trinder. Balancing shared and dis-

tributed heaps on NUMA architectures. In 15th International Symposium on Trends in Functional

Programming, Lecture Notes in Computer Science, Soesterberg, Netherlands, May 2014. Springer-

Verlag.

[Allard and Hawkinson, 1991] J.R. Allard and L.B. Hawkinson. Real-time programming in Common

Lisp. Communications of the ACM, 34(9):64–69, 1991.

[Allen and Terriberry, 2002] N. Allen and Timothy B. Terriberry. System description for a scalable,

fault-tolerant, distributed garbage collector. Computing Research Repository (CORR), cs.DC/0207,

2002.

[Allison, 1989] L. Allison. Circular programs and self-referential structures. Software: Practice and

Experience, 19(2):99–109, 1989.

[Almes et al., 1983] Guy Almes, A. Borning, and E. Messinger. Implementing a Smalltalk-80 system

on the Intel 432. In Krasner [Krasner1983], pages 175–187.

[Almes, 1980] Guy T. Almes. Garbage collection in an Object-Oriented System. PhD thesis, Carnegie

Mellon University, 1980.

[Alnowaiser and Singer, 2015] Khaled Alnowaiser and Jeremy Singer. Topology-aware parallelism for

NUMA copying collectors. In LCPC 2015: Revised Selected Papers of the 28th International Work-

shop on Languages and Compilers for Parallel Computing, volume 9519, pages 191–205, September

2015.

[Alnowaiser, 2014] Khaled Alnowaiser. A study of connected object locality in NUMA heaps. In MSPC

2014 [MSPC 20142014].

[Alnowaiser, 2016] Khaled Alnowaiser. Garbage Collection Optimization for NUMA Architectures.

PhD thesis, University of Glasgow, 2016.

[Alon et al., 1987] Noga Alon, Amnon Barak, and Udi Mander. On disseminating information reliably

without broadcasting. In 7th International Conference on Distributed Computing Systems ICDCS97,

Berlin, September 1987. IEEE Press.

[Alonso and Appel, 1990] Rafael Alonso and Andrew W. Appel. An advisor for flexible working sets. In

ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems,

pages 153–162, Boulder, CO, May 1990. ACM Press.

[Alpern et al., 1999] Bowen Alpern, C.R. Attanasio, Anthony Cocchi, Derek Lieber, Stephen Smith,

Ton Ngo, John J. Barton, Susan Flynn Hummel, Janice C. Sheperd, and Mark Mergen. Implementing

Jalapeño in Java. In OOPSLA 1999 [OOPSLA 19991999], pages 314–324.

[Alpern et al., 2000] Bowen Alpern, Dick Attanasio, John J. Barton, M. G. Burke, Perry Cheng, J.-D.

Choi, Anthony Cocchi, Stephen J. Fink, David Grove, Michael Hind, Susan Flynn Hummel, D. Lieber,

V. Litvinov, Mark Mergen, Ton Ngo, J.R. Russell, Vivek Sarkar, Manuel J. Serrano, Janice Shepherd,

S. Smith, V.C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño virtual machine. IBM Systems

Journal, 39(1), February 2000.

4



[Alpern et al., 2002] Bowen Alpern, Maria Butrico, Anthony Cocchi, Julian Dolby, Stephen Fink,

David Grove, and Ton Ngo. Experiences porting the Jikes RVM to Linux/IA32. In JVM 2002

[JVM 20022002], pages 51–64.

[Amadio et al., 2004] Roberto Amadio, Solange Coupet-Grimal, Silvano Dal Zilio, and Line Jakubiec.

A functional scenario for bytecode verification of space bounds. In SPACE 2004 [SPACE 20042004].

[Amamiya et al., 1983] M. Amamiya, R. Hasegawa, and H. Mikami. List processing with a data flow

machine. In RIMS Symposia on Software Science and Engineering, volume 147 of Lecture Notes in

Computer Science, pages 165–190, Kyoto, Japan, 1983. Springer-Verlag.

[Amsaleg et al., 1994] Laurent Amsaleg, Michael Franklin, and Olivier Gruber. Efficient incremen-

tal garbage collection for workstation/server database systems. Technical report, Inria Paris-

Rocquencourt, November 1994. Also University of Maryland Institute for Advanced Computer Stud-

ies report UMIACS-TR-94-121.

[Amsaleg et al., 1995a] Laurent Amsaleg, Paulo Ferreira, Michael Franklin, and Marc Shapiro. Eval-

uating garbage collectors for large persistent stores. In OOPSLA’95 Workshop on Object Database

Behavior, Benchmarks, and Performance, Austin, TX, October 1995.

[Amsaleg et al., 1995b] Laurent Amsaleg, Michael Franklin, and Olivier Gruber. Efficient incremental

garbage collection for client-server object database systems. In Twenty-first International Conference

on Very Large Databases (VLDB95), Zurich, Switzerland, September 1995.

[Amsaleg et al., 1999] Laurent Amsaleg, Michael Franklin, and Olivier Gruber. Garbage collection for

a client-server persistent object store. ACM Transactions on Computer Systems, 17(3):153–201, 1999.

[Amsterdam, 2000] Jonathan Amsterdam. Use object pools to sidestep garbage collection. Java Report,

pages 120–119 (really), September 2000.

[Anand et al., 2024] Aditya Anand, Solai Adithya, Swapnil Rustagi, Priyam Seth, Vijay Sundaresan,

Daryl Maier, V. Krishna Nandivada, and Manas Thakur. Optimistic stack allocation and dynamic

heapification for managed runtimes. In PLDI 2024 [PLDI 20242024], pages 296–319.

[Anderson et al., 1987] Wayne Anderson, William Galway, Robert Kessler, Herbert Melenk, and Win-

fried Neun. The implementation and optimisation of Portable Standard Lisp for the Cray. In 20th

Annual Hawaii International Conference on Science Systems, January 1987.

[Anderson et al., 1991] Thomas E. Anderson, Henry M. Levy, Brian N. Bershad, and Edward D.

Lazowska. The interaction of architecture and operating systems design. In ASPLOS 1991

[ASPLOS 19911991], pages 108–120.

[Anderson et al., 2004] T. Anderson, M. Eng, N. Glew, B. Lewis, V. Menon, and J Stichnoth. Experience

integrating a new compiler and garbage collector into Rotor. In .NET Technologies’2004, pages 53–70,

2004.

[Anderson et al., 2015] Todd A. Anderson, Melissa O’Neill, and John Sarracino. Chihuahua:

A concurrent, moving, garbage collector using transactional memory. In TRANSACT 2015

[TRANSACT 20152015].

[Anderson et al., 2021] Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei. Concurrent deferred ref-

erence counting with constant-time overhead. In PLDI 2021 [PLDI 20212021].

[Anderson et al., 2022] Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei. Turning manual concur-

rent memory reclamation into automatic reference counting. In PLDI 2022 [PLDI 20222022], pages

61–75.

[Anderson, 2010] Todd A. Anderson. Optimizations in a private nursery-based garbage collector. In

Vitek and Lea [Vitek and Lea2010], pages 21–30.

[Andre, 1986] David L. Andre. Paging in Lisp programs. Master’s thesis, University of Maryland,

College Park, MD, 1986.

[Andreasson et al., 2002] Eva Andreasson, Frank Hoffmann, and Olof Lindholm. To collect or not to

collect? machine learning for memory management. In JVM 2002 [JVM 20022002].

[andThomas B. Preusser and Uhrig, 2010] Martin Schoeberl andThomas B. Preusser and Sascha Uhrig.

The embedded Java benchmark suite JemBench. In JTRES 2010 [JTRES 20102010].

[ANSI-C, 1989] American National Standards Institute. American National Standard for Information

Systems: Programming Language C, December 1989.

5



[ANSI-C++, 1995] ANSI document X3J16/95–0087, ISO document WG21/N0618. Draft Proposed

International Standard for Information SSystems: Programming Language C++, April 1995.

[Aonix, ] The PERC Virtual Machine.

[Appel and Bendiksen, 1988] Andrew W. Appel and Aage Bendiksen. Vectorized garbage collection.

Technical Report CS-TR-169-88, Department of Computer Science, Princeton University, July 1988.

[Appel and Bendiksen, 1989] Andrew W. Appel and Aage Bendiksen. Vectorized garbage collection.

The Journal of Supercomputing, 3:151–160, 1989.

[Appel and Gonçalves, 1993] Andrew W. Appel and Marcelo J.R. Gonçalves. Hash-consing garbage

collection. Technical Report CS-TR-412-93, Department of Computer Science, Princeton University,

February 1993.

[Appel and Hanson, 1988] Andrew W. Appel and David R. Hanson. Copying garbage collection in

the presence of ambiguous references. Technical Report CS-TR-162-88, Department of Computer

Science, Princeton University, 1988.

[Appel and Li, 1991] Andrew W. Appel and Kai Li. Virtual memory primitives for user programs. In

ASPLOS 1991 [ASPLOS 19911991], pages 96–107.

[Appel and Shao, 1994] Andrew W. Appel and Zhong Shao. An empirical and analytic study of stack vs.

heap cost for languages with closures. Technical Report CS–TR–450–94, Department of Computer

Science, Princeton University, March 1994.

[Appel and Shao, 1996] Andrew W. Appel and Zhong Shao. Empirical and analytic study of stack versus

heap cost for languages with closures. Journal of Functional Programming, 6(1):47–74, January 1996.

[Appel et al., 1988a] Andrew W. Appel, Bruce F. Duba, and David B. MacQueen. Profiling in the pres-

ence of optimization and garbage collection. Technical Report CS-TR-197-88, Department of Com-

puter Science, Princeton University, November 1988.

[Appel et al., 1988b] Andrew W. Appel, John R. Ellis, and Kai Li. Real-time concurrent collection on

stock multiprocessors. In PLDI 1988 [PLDI 19881988], pages 11–20.

[Appel, 1987] Andrew W. Appel. Garbage collection can be faster than stack allocation. Information

Processing Letters, 25(4):275–279, 1987.

[Appel, 1988] Andrew W. Appel. Allocation without locking. Technical Report CS-TR-182-88, Depart-

ment of Computer Science, Princeton University, September 1988.

[Appel, 1989a] Andrew W. Appel. Allocation without locking. Software: Practice and Experience,

19(7), 1989. Short Communication.

[Appel, 1989b] Andrew W. Appel. Runtime tags aren’t necessary. Lisp and Symbolic Computation,

2:153–162, 1989.

[Appel, 1989c] Andrew W. Appel. Simple generational garbage collection and fast allocation. Software:

Practice and Experience, 19(2):171–183, 1989.

[Appel, 1990] Andrew W. Appel. A runtime system. Lisp and Symbolic Computation, 3:343–380, 1990.

[Appel, 1991] Andrew W. Appel. Garbage collection. In Peter Lee, editor, Topics in Advanced Language

Implementation, pages 89–100. MIT Press, 1991.

[Appel, 1992a] Andrew W. Appel. The Runtime System, chapter 16, pages 205–214. Cambridge Uni-

versity Press, 1992.

[Appel, 1992b] Andrew W. Appel. Tutorial: Compilers and runtime systems for languages with garbage

collection. In PLDI 1992 [PLDI 19921992].

[Appel, 1994] Andrew W. Appel. Emulating write-allocate on a no-write-allocate cache. Technical

Report TR-459-94, Department of Computer Science, Princeton University, June 1994.

[Appel, 1997a] Andrew W. Appel. A better analytical model for the strong generational hypothesis,

November 1997. Cited by [Stefanović, 1999].

[Appel, 1997b] Andrew W. Appel. Modern Compiler Implementation in C: Basic Techniques. Cam-

bridge University Press, 1997.

[Appel, 1997c] Andrew W. Appel. Modern Compiler Implementation in Java: Basic Techniques. Cam-

bridge University Press, 1997.

6



[Appel, 1997d] Andrew W. Appel. Modern Compiler Implementation in ML: Basic Techniques. Cam-

bridge University Press, 1997.

[Appel, 1998a] Andrew W. Appel. Modern Compiler Implementation in C. Cambridge University Press,

1998.

[Appel, 1998b] Andrew W. Appel. Modern Compiler Implementation in Java. Cambridge University

Press, 1998.

[Appel, 1998c] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge University

Press, 1998.

[Appleby et al., 1988] Karen Appleby, Mats Carlsson, Seif Haridi, and Dan Sahlin. Garbage collection

for Prolog based on WAM. Communications of the ACM, 31(6):719–741, 1988.

[Arbel-Raviv and Brown, 2018] Maya Arbel-Raviv and Trevor Brown. Harnessing epoch-based recla-

mation for efficient range queries. In PPOPP 2018 [PPOPP 20182018], pages 14–27.

[Armbruster et al., 2007] Austin Armbruster, Jason Baker, Antonio Cunei, Chapman Flack, David

Holmes, Filip Pizlo, Edward Pla, Marek Prochazka, and Jan Vitek. A real-time Java virtual machine

with applications in avionics. ACM Transactions on Embedded Computer Systems, 7(1):5:1–5:49,

2007. Supersedes [Baker et al., 2006].

[Armstrong and Virding, 1995] Joe Armstrong and Robert Virding. One-pass real-time generational

mark-sweep garbage collection. In Baker [Baker1995b], pages 313–322.

[Armstrong et al., 1993] Joe Armstrong, Robert Virding, and Mike Williams. Concurrent Programming

in ERLANG. Prentice-Hall, 1993.

[Arnborg, 1972] Stefan Arnborg. Storage administration in a virtual memory simulation system. BIT,

12(2):125–141, 1972.

[Arnborg, 1974] Stefan Arnborg. Optimal memory management in a system with garbage collection.

BIT, 14(4):375–381, 1974.

[Arnold and Grove, 2005] Matthew Arnold and David Grove. Collecting and exploiting high-accuracy

call graph profiles in virtual machines. In CGO 2005 [CGO 20052005], pages 51–62.

[Arnold and Ryder, 2001] Matthew Arnold and Barbara G. Ryder. A framework for reducing the cost of

instrumented code. In PLDI 2001 [PLDI 20012001], pages 168–179.

[Arnold et al., 2000] Matthew Arnold, Stephen J. Fink, David Grove, Michael Hind, and Peter F.

Sweeney. Adaptive optimization in the Jalapeño JVM. In OOPSLA 2000 [OOPSLA 20002000],

pages 47–65.

[Arnold et al., 2002] Matthew Arnold, Michael Hind, and Barbara G. Ryder. Online feedback-directed

optimization of Java. In OOPSLA 2002 [OOPSLA 20022002], pages 111–129.

[Arora et al., 2021] Jatin Arora, Sam Westrick, and Umut A. Acar. Provably space-efficient parallel

functional programming. In POPL 2021 [POPL 20212021].

[Arvidsson et al., 2023] Ellen Arvidsson, Elias Castegren, Sylvan Clebsch, Sophia Drossopoulou, James

Noble, Matthew Parkinson, and Tobias Wrigstad. Reference capabilities for flexible memory manage-

ment. In OOPSLA 2023 [OOPSLA 20232023].

[Asati et al., 2014] Rahul Asati, Amitabha Sanyal, Amey Karkare, and Alan Mycroft. Liveness-based

garbage collection. In CC 2014 [CC 20142014], pages 85–106.

[Ashwin et al., 1998] S. Ashwin, P. Roy, S. Seshadri, A. Silberschatz, and S. Sudarshan. Garbage col-

lection in object-oriented databases using transactional cyclic reference counting. The VLDB Journal,

7(3):179–193, August 1998.

[Aslam et al., 2011] Faisal Aslam, Luminous Fennell, Christian Schindelhauer, Peter Thiemann, and

Zartash Afzal Uzmi. Offline GC: Trashing reachable objects on tiny devices. In Proceedings of the

9th International Conference on Embedded Networked Sensor Systems, SenSys 2011, Seattle, WA,

November 2011.

[ASPLOS 1982, 1982] 1st International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ACM SIGARCH Computer Architecture News 10(2), Palo Alto, CA,

March 1982. ACM Press.

7



[ASPLOS 1987, 1987] 2nd International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ACM SIGARCH Computer Architecture News 15(5), Palo Alto, CA,

October 1987. ACM Press.

[ASPLOS 1989, 1989] 3rd International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ACM SIGARCH Computer Architecture News 17(2), Boston, MA,

April 1989. ACM Press.

[ASPLOS 1991, 1991] 4th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ACM SIGARCH Computer Architecture News 19(2), Santa Clara,

CA, April 1991. ACM Press.

[ASPLOS 1992, 1992] 5th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ACM SIGPLAN Notices 27(9), Boston, MA, October 1992. ACM

Press.

[ASPLOS 1994, 1994] 6th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ACM SIGPLAN Notices 29(11), San Jose, CA, October 1994. ACM

Press.

[ASPLOS 1996, 1996] 7th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ACM SIGPLAN Notices 31(9), Cambridge, MA, October 1996. ACM

Press.

[ASPLOS 1998, 1998] 8th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ACM SIGPLAN Notices 33(11), San Jose, CA, October 1998. ACM

Press.

[ASPLOS 2000, 2000] 9th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ACM SIGPLAN Notices 35(11), Cambridge, MA, November 2000.

ACM Press.

[ASPLOS 2002, 2002] 10th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ACM SIGPLAN Notices 37(10), San Jose, CA, October 2002. ACM

Press.

[ASPLOS 2015, 2015] 20st International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, Istanbul, Turkey, 2015. ACM Press.

[Assenmacher et al., 1993] Holger Assenmacher, Thomas Breitbach, Peter Buhler, Volker Hübsch,

and Reinhard Schwarz. PANDA — supporting distributed programming in C++. In Nierstrasz

[Nierstrasz1993], pages 361–383.

[Atkey, 2004] Robert Atkey. A calculus for resource relationships. In SPACE 2004 [SPACE 20042004].

[Atkins and Nackman, 1988] Martin C. Atkins and Lee R. Nackman. The active deallocation of objects

in object-oriented systems. Software: Practice and Experience, 18(11):1073–1089, 1988.

[Atkins, 1989] Martin Atkins. Implementation Techniques for Object-Oriented Systems. PhD thesis,

University of York, June 1989.

[Atkinson and Morrison, 1985] Malcolm P. Atkinson and Ronald Morrison. Procedures as persistent

data objects. ACM Transactions on Programming Languages and Systems, 7(4):539–559, October

1985.

[Atkinson et al., 1983] Malcolm P. Atkinson, P.J. Bailey, K.J. Chisholm, W.P. Cockshott, and Ron Mor-

rison. An approach to persistent programming. Computer Journal, 26(4):360–365, December 1983.

[Atkinson et al., 1988] Malcolm P. Atkinson, Peter Buneman, and Ronald Morrison, editors. 1st Inter-

national Workshop on Persistent Object Systems (August, 1985), Data Types and Persistence, Appin,

Scotland, 1988. Springer-Verlag.

[Atkinson et al., 1989] Russ Atkinson, Alan Demers, Carl Hauser, Christian Jacobi, Peter Kessler, and

Mark Weiser. Experiences creating a portable Cedar. In PLDI 1989 [PLDI 19891989], pages 322–329.

[Atkinson et al., 1995] Malcolm P. Atkinson, David Maier, and Véronique Benzaken, editors. 6th Inter-

national Workshop on Persistent Object Systems (September, 1994), Workshops in Computing, Taras-

con, Provence, France, 1995. Springer and British Computer Society.

[Attanasio et al., 2001] Clement R. Attanasio, David F. Bacon, Anthony Cocchi, and Stephen Smith. A

comparative evaluation of parallel garbage collectors. In LCPC 2001 [LCPC 20012001].

8



[Attardi and Flagella, 1984] Giuseppe Attardi and Tito Flagella. A customisable memory management

framework. In ECOOP 1984 [ECOOP 19841984], pages 320–343.

[Attardi and Flagella, 1994] Giuseppe Attardi and Tito Flagella. A customisable memory management

framework. Technical Report TR-94-010, International Computer Science Institute, Berkeley, 1994.

Also USENIX C++ Conference, Cambridge, MA, 1994.

[Attardi and Flagella, 1996] Giuseppe Attardi and Tito Flagella. Memory management in the PoSSo

solver. Journal of Symbolic Computation, 21(3):293–311, 1996.

[Attardi et al., 1995] Giuseppe Attardi, Tito Flagella, and Pietro Iglio. Performance tuning in a cus-

tomizable collector. In Baker [Baker1995b], pages 179–196.

[Attardi et al., 1998] Giuseppe Attardi, Tito Flagella, and Pietro Iglio. A customisable memory manage-

ment framework for C++. Software: Practice and Experience, 28(11):1143–1183, November 1998.

[Attouchi et al., 2014] Koutheir Attouchi, Gaël Thomas, Gilles Muller, Julia Lawall, and André Bottaro.

Incinerator — eliminating stale references in dynamic OSGi applications. In EclipseCon Europe,

2014. Also Inria Research Report 8485.

[Auerbach et al., 2007a] Joshua Auerbach, David F. Bacon, Bob Blainey, Perry Cheng, Michael Daw-

son, Mike Fulton, David Grove, Darren Hart, and Mark Stoodley. Design and implementation of

a comprehensive real-time Java virtual machine. In 7th ACM & IEEE International Conference on

Embedded Software, pages 249–258, Salzburg, Austria, September 2007. ACM Press.

[Auerbach et al., 2007b] Joshua Auerbach, David F. Bacon, Florian Bömers, and Perry Cheng. Real-

time music synthesis in Java using the Metronome garbage collector. In International Computer

Music Conference, pages 103–110, Copenhagen, Denmark, 2007. University of Michigan Library.

[Auerbach et al., 2007c] Joshua Auerbach, David F. Bacon, Daniel T. Iercan, Christopher M. Kirsch,

V.T. Rajan, Harald Röck, and Rainer Trummer. Java takes flight: Time-portable real-time program-

ming with Exotasks. In ACM SIGPLAN Conference on Languages, Compilers, and Tools for Embed-

ded Systems, pages 31–62. ACM Press, 2007.

[Auerbach et al., 2008] Joshua Auerbach, David F. Bacon, Perry Cheng, David Grove, Ben Biron, Char-

lie Gracie, Bill McCloskey, Aleksandar Micic, and Ryan Sciampacone. Tax-and-spend: Democratic

scheduling for real-time garbage collection. In 8th ACM International Conference on Embedded Soft-

ware, pages 245–254, Atlanta, GA, 2008. ACM Press.

[Augenstein and Tenenbaum, 1986] Moshe J. Augenstein and Aaron M. Tenenbaum. Data Structures

using Pascal. Prentice-Hall, Englewood Cliffs, N.J., second edition, 1986.

[Augusteijn, 1987] Lex Augusteijn. Garbage collection in a distributed environment. In de Bakker et al.

[de Bakker et al.1987], pages 75–93.

[Augustsson, 1984] Lennart Augustsson. A compiler for lazy ML. In Steele [Steele1984], pages 218–

227.

[Auhagen et al., 2011] Sven Auhagen, Lars Bergstrom, Matthew Fluet, and John Reppy. Garbage col-

lection for multicore NUMA machines. In Vetter et al. [Vetter et al.2011], pages 51–57.

[Austin et al., 1994] Todd M. Austin, Scott E. Breachand, and Gurindar S. Sohi. Efficient detection of

all pointer and array access errors. In PLDI 1994 [PLDI 19941994], pages 290–301.

[Axford, 1990] Thomas H. Axford. Reference counting of cyclic graphs for functional programs. Com-

puter Journal, 33(5):466–470, 1990.

[Azagury et al., 1998] Alain Azagury, Elliot K. Kolodner, Erez Petrank, and Zvi Yehudai. Combin-

ing card marking with remembered sets: How to save scanning time. In Peyton Jones and Jones

[Peyton Jones and Jones1998], pages 10–19.

[Azagury et al., 1999] Alain Azagury, Elliot K. Kolodner, and Erez Petrank. A note on the implemen-

tation of replication-based garbage collection for multithreaded applications and multiprocessor envi-

ronments. Parallel Processing Letters, 9(3):391–399, 1999.

[Azatchi and Petrank, 2003] Hezi Azatchi and Erez Petrank. Integrating generations with advanced ref-

erence counting garbage collectors. In 12th International Conference on Compiler Construction,

volume 2622 of Lecture Notes in Computer Science, pages 185–199, Warsaw, Poland, May 2003.

Springer-Verlag.

9



[Azatchi and Petrank, 2006] Hezi Azatchi and Erez Petrank. Integrating generations with advanced

reference counting garbage collectors. Concurrency and Computation: Practice and Experience,

18(9):959–995, 2006.

[Azatchi et al., 2003] Hezi Azatchi, Yossi Levanoni, Harel Paz, and Erez Petrank. An on-the-fly mark

and sweep garbage collector based on sliding views. In OOPSLA 2003 [OOPSLA 20032003], pages

269–281.

[Azimi et al., 2007] Reza Azimi, Livio Soares, Michael Stumm, Thomas Walsh, and Angela Demke

Brown. PATH: Page access tracking to improve memory management. In Morrisett and Sagiv

[Morrisett and Sagiv2007], pages 31–42.

[Azul, 2008] Azul. Pauseless garbage collection. White paper AWP–005–020, Azul Systems Inc., July

2008.

[Azul, 2010] Azul. Comparison of virtual memory manipulation metrics. White paper, Azul Systems

Inc., 2010.

[Babaoglu and Ferrari, 1983] Ozalp Babaoglu and Domenico Ferrari. Two-level replacement decisions

in paging stores. IEEE Transactions on Computers, C-32(12):1151–1159, December 1983.

[Babaoglu and Marzullo, 1993] Ozalp Babaoglu and Keith Marzullo. Consistent global states of dis-

tributed systems: Fundamental concepts and mechanisms. In S. Mullender, editor, Distributed Sys-

tems, pages 55–96. Addison-Wesley, 1993.

[Babaoglu and Marzullo, 1996] Özalp Babaoglu and Keith Marzullo, editors. 10th International Work-

shop on Distributed Algorithms, volume 1151 of Lecture Notes in Computer Science, Bologna, Italy,

October 1996. Springer.

[Back et al., 1983] R.J.R. Back, Heikki Mannila, and Kari-Jouko Räihä. Derivation of efficient DAG

marking algorithms. In POPL 1983 [POPL 19831983], pages 20–27.

[Bacon and Diwan, 2004] David F. Bacon and Amer Diwan, editors. 4th ACM SIGPLAN International

Symposium on Memory Management, Vancouver, Canada, October 2004. ACM Press.

[Bacon and Rajan, 2001] David F. Bacon and V.T. Rajan. Concurrent cycle collection in reference

counted systems. In Knudsen [Knudsen2001], pages 207–235.

[Bacon and Sweeney, 1996] David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual

function calls. In OOPSLA 1996 [OOPSLA 19961996], pages 324–34.

[Bacon et al., 2001] David F. Bacon, Clement R. Attanasio, Han Bok Lee, V.T. Rajan, and Stephen E.

Smith. Java without the coffee breaks: A nonintrusive multiprocessor garbage collector. In PLDI 2001

[PLDI 20012001], pages 92–103.

[Bacon et al., 2002] David F. Bacon, Stephen Fink, and David Grove. Space- and time-efficient imple-

mentation of the Java object model. In Magnusson [Magnusson2002], pages 111–132.

[Bacon et al., 2003a] David F. Bacon, Perry Cheng, and V.T. Rajan. Controlling fragmentation and

space consumption in the Metronome, a real-time garbage collector for Java. In LCTES 2003

[LCTES 20032003], pages 81–92.

[Bacon et al., 2003b] David F. Bacon, Perry Cheng, and V.T. Rajan. The Metronome: A simpler ap-

proach to garbage collection in real-time systems. In On The Move to Meaningful Internet Systems

2003: OTM 2003 Workshops, volume 2889 of Lecture Notes in Computer Science, pages 466–478,

Catania, Sicily, Italy, November 2003. Springer-Verlag.

[Bacon et al., 2003c] David F. Bacon, Perry Cheng, and V.T. Rajan. A real-time garbage collector with

low overhead and consistent utilization. In POPL 2003 [POPL 20032003], pages 285–298.

[Bacon et al., 2004a] David F. Bacon, Perry Cheng, and David Grove. Garbage collection for embedded

systems. In International Conference on Embedded Software (EMSOFT’04), pages 125–136. ACM

Press, 2004.

[Bacon et al., 2004b] David F. Bacon, Perry Cheng, and V.T. Rajan. A unified theory of garbage collec-

tion. In OOPSLA 2004 [OOPSLA 20042004], pages 50–68.

[Bacon et al., 2005] David F. Bacon, Perry Cheng, David Grove, and Martin T. Vechev. Syncopation:

Generational real-time garbage collection in the Metronome. In LCTES 2005 [LCTES 20052005],

pages 183–192.

10



[Bacon et al., 2006] David F. Bacon, Perry Cheng, Daniel Frampton, David Grove, Matthias Hauswirth,

and V.T. Rajan. On-line visualization and analysis of real-time systems with TuningFork. In CC 2006

[CC 20062006], pages 96–100.

[Bacon et al., 2012a] David F. Bacon, Perry Cheng, and Sunil Shukla. And then there were none: a

stall-free real-time garbage collector for reconfigurable hardware. In PLDI 2012 [PLDI 20122012],

pages 23–34.

[Bacon et al., 2012b] David F. Bacon, Perry Cheng, and Sunil Shukla. A stall-free real-time garbage

collector for FPGAs. In The Second Workshop on the Intersections of Computer Architecture and

Reconfigurable Logic, 2012.

[Bacon et al., 2014] David F. Bacon, Perry Cheng, and Sunil Shukla. Parallel real-time garbage collec-

tion of multiple heaps in reconfigurable hardware. In Guyer and Grove [Guyer and Grove2014], pages

117–127.

[Bacon, 2005] David F. Bacon. Real-time garbage collection. ACM Queue, 5(1):40–49, February 2005.

[Baden, 1982] Scott B. Baden. High performance reclamation in an object-based memory system. Mas-

ter’s thesis, Computer Science Division, Department of EECS, University of California, Berkeley,

June 1982.

[Baden, 1983] Scott B. Baden. Low-overhead storage reclamation in the Smalltalk-80 virtual machine.

In Krasner [Krasner1983], pages 331–342.

[Baden, 1984] Scott B. Baden. High performance storage reclamation in an object-based memory sys-

tem. CSD 84-167, University of California, Berkeley, 1984.

[Baecker, 1970] H.D. Baecker. Implementing the Algol–68 heap. BIT, 10(4):405–414, 1970.

[Baecker, 1972] H.D. Baecker. Garbage collection for virtual memory computer systems. Communica-

tions of the ACM, 15(11):981–986, November 1972.

[Baecker, 1973] H.D. Baecker. Aspects of reference locality in list structures in virtual memory. Soft-

ware: Practice and Experience, 3(3):245–254, 1973.

[Baecker, 1975] H.D. Baecker. Areas and record classes. Computer Journal, 18(3):223–226, August

1975.

[Baer and Fries, 1977] Jean-Loup Baer and M. Fries. On the efficiency of some list marking algorithms.

In B. Gilchrist, editor, Information Processing 77, Toronto, pages 751–6. North-Holland, August 1977.

[Baer and Sager, 1976] Jean-Loup Baer and Gary R. Sager. Dynamic improvement of locality in virtual

memory systems. IEEE Transactions on Software Engineering, SE-2(1):54–62, March 1976.

[Bagherzadeh et al., 1991] Nader Bagherzadeh, S-l. Heng, and C-l. Wu. A parallel asynchronous

garbage collection algorithm for distributed systems. IEEE Transactions on Knowledge and Data

Engineering, 3(1):100–107, March 1991.

[Bagherzadeh, 1987] Nader Bagherzadeh. Distributed Resource Management: Garbage Collection.

PhD thesis, University of Texas at Austin, 1987.

[Baker and Hewitt, 1977a] Henry G. Baker and Carl E. Hewitt. The incremental garbage collection of

processes. AI memo 454, MIT Press, December 1977.

[Baker and Hewitt, 1977b] Henry G. Baker and Carl E. Hewitt. The incremental garbage collection of

processes. ACM SIGPLAN Notices, 12(8):55–59, August 1977.

[Baker et al., 1985] Brenda Baker, E.G. Coffman, and D.E. Willard. Algorithms for resolving conflicts

in dynamic storage allocation. Journal of the ACM, 32(2):327–343, April 1985.

[Baker et al., 2006] Jason Baker, Antonio Cunei, Chapman Flack, Filip Pizlo, Marek Prochazka, Jan

Vitek, Austin Armbruster, Edward Pla, and David Holmes. A real-time Java virtual machine for

avionics — an experience report. In 12th IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), pages 384–396, San Jose, CA, April 2006.

[Baker et al., 2007] Jason Baker, Antonio Cunei, Filip Pizlo, and Jan Vitek. Accurate garbage collection

in uncooperative environments with lazy pointer stacks. In International Conference on Compiler

Construction, volume 4420 of Lecture Notes in Computer Science, Braga, Portugal, March 2007.

Springer-Verlag.

11



[Baker et al., 2009] Jason Baker, Antonio Cunei, Tomas Kalibera, Filip Pizlo, and Jan Vitek. Accurate

garbage collection in uncooperative environments revisited. Concurrency and Computation: Practice

and Experience, 21(12):1572–1606, 2009. Supersedes [Baker et al., 2007].

[Baker-Finch, 1992] C.A. Baker-Finch. Relevance and contraction: A logical basis for strictness and

sharing analysis. Submitted to Journal of Functional Programming, 1992.

[Baker, 1978a] Henry G. Baker. Actor systems for real-time computation. Technical Report MIT Rep.

TR–197, Laboratory for Computer Science, March 1978.

[Baker, 1978b] Henry G. Baker. List processing in real-time on a serial computer. Communications of

the ACM, 21(4):280–294, 1978. Also AI Laboratory Working Paper 139, 1977.

[Baker, 1979] Henry G. Baker. Optimizing allocation and garbage collection of spaces in MaclLisp. In

Winston and Brown, editors, Artificial Intelligence: An MIT Perspective. MIT Press, 1979.

[Baker, 1980] Henry G. Baker. The paging behavior of the Cheney list copying algorithm. Technical

report, University of Rochester Computer Science Department, 1980.

[Baker, 1989] Henry G. Baker. Garbage collection in Ada. Ada-9X Revision Request 643, Ada Joint

Program Office, October 1989.

[Baker, 1990] Henry G. Baker. Unify and conquer (garbage, updating, aliasing, . . . ) in functional lan-

guages. In LFP 1990 [LFP 19901990], pages 218–226.

[Baker, 1991] Henry G. Baker. Cache-conscious copying collection. In Wilson and Hayes

[Wilson and Hayes1991a].

[Baker, 1992a] Henry G. Baker. The buried binding and dead binding problems of Lisp 1.5: Sources of

incomparability in garbage collector measurements. Lisp Pointers, 4(2):11–19, April 1992.

[Baker, 1992b] Henry G. Baker. CONS should not CONS its arguments, or a lazy alloc is a smart alloc.

ACM SIGPLAN Notices, 27(3), March 1992.

[Baker, 1992c] Henry G. Baker. Lively linear Lisp — ‘look Ma, no garbage!’. ACM SIGPLAN Notices,

27(9):89–98, August 1992.

[Baker, 1992d] Henry G. Baker. NREVERSAL of fortune — thermodynamics of garbage collection. In

Bekkers and Cohen [Bekkers and Cohen1992], pages 507–524.

[Baker, 1992e] Henry G. Baker. The Treadmill, real-time garbage collection without motion sickness.

ACM SIGPLAN Notices, 27(3):66–70, March 1992.

[Baker, 1993a] Henry G. Baker. The boyer benchmark meets linear logic. Lisp Pointers, 6(4):3–10,

October 1993.

[Baker, 1993b] Henry G. Baker. ‘Infant mortality’ and generational garbage collection. ACM SIGPLAN

Notices, 28(4):55–57, April 1993.

[Baker, 1993c] Henry G. Baker. Safe and leak-proof resource management using Ada83 limited types.

ACM Ada Leters, 13(5):32–42, September 1993.

[Baker, 1994] Henry G. Baker. Minimising reference count updating with deferred and anchored point-

ers for functional data structures. ACM SIGPLAN Notices, 29(9), September 1994.

[Baker, 1995a] Henry G. Baker. CONS should not CONS its arguments, part ii: Cheney on the m.t.a.

ACM SIGPLAN Notices, 30(9), September 1995.

[Baker, 1995b] Henry G. Baker, editor. International Workshop on Memory Management, volume 986

of Lecture Notes in Computer Science, Kinross, Scotland, 27–29 September 1995. Springer.

[Baker, 1995c] Henry G. Baker. Use-once variables and linear objects — storage management, reflection

and multi-threading. ACM SIGPLAN Notices, 30(1), 1995.

[Bakewell and Runciman, 2000] Adam Bakewell and Colin Runciman. A model for comparing the

space usage of lazy evaluators. In 2nd International Conference on Principles and Practice of Declar-

ative Programming, Montreal, September 2000.

[Bakewell, 2001] Adam Bakewell. Looking for leaks. In SPACE 2001 [SPACE 20012001].

[Bal and Tanenbaum, 1991] Henri E. Bal and Andrew S. Tanenbaum. Distributed programming with

shared data. Computer Languages, 16(2):129–146, 1991.

12



[Bal et al., 1992] Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. Orca: A language for

parallel programming of distributed systems. ACM Transactions on Software Engineering, 18(3):190–

205, 1992.

[Balakrishnan et al., 2005] Saisanthosh Balakrishnan, Ravi Rajwar, Mike Upton, and Konrad Lai.

The impact of performance asymmetry in emerging multicore architectures. In ISCA 2005

[ISCA 20052005], pages 506–517.

[Ball and Larus, 1992] Thomas Ball and James Larus. Optimal profiling and tracing of programs. In

POPL 1992 [POPL 19921992], pages 59–70.

[Ballard and Shirron, 1983] Stoney Ballard and Stephen Shirron. The design and implementation of

VAX/Smalltalk-80. In Krasner [Krasner1983], pages 127–150.

[Banach, 1994] R Banach. Term graph rewriting and garbage collection using opfibrations. Theoretical

Computer Science, 131(1):29–94, August 1994.

[Banerjee et al., 1999] A. Banerjee, N. Heintze, and J.G. Riecke. Region analysis and the polymorphic

lambda calculus. In 14th IEEE Symposium on Logic in Computer Science, pages 88–97, Trento, Italy,

July 1999. IEEE Press.

[Banerjee et al., 2020] Subarno Banerjee, David Devecsery, Peter M. Chen, and Satish Narayanasamy.

Sound garbage collection for C using pointer provenance. In OOPSLA 2020 [OOPSLA 20202020].

[Bansal et al., 2020] Aman Bansal, Saksham Goel, Preey Shah, Amitabha Sanyal, and Prasanna Kumar.

Garbage collection using a finite liveness domain. In Maas and Ding [Maas and Ding2020], pages

1–15.

[Barabash and Petrank, 2010] Katherine Barabash and Erez Petrank. Tracing garbage collection on

highly parallel platforms. In Vitek and Lea [Vitek and Lea2010], pages 1–10.

[Barabash et al., 2001] Katherine Barabash, N. Buchbinder, Tamar Domani, Elliot Kolodner, Yoav Os-

sia, S.S. Pinter, J. Shepherd, R.Sivan, and V. Umansky. Mostly accurate stack scanning. In JVM 2001

[JVM 20012001], pages 153–170.

[Barabash et al., 2003] Katherine Barabash, Yoav Ossia, and Erez Petrank. Mostly concurrent garbage

collection revisited. In OOPSLA 2003 [OOPSLA 20032003], pages 255–268.

[Barabash et al., 2005] Katherine Barabash, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner, Victor

Leikehman, Yoav Ossia, Avi Owshanko, and Erez Petrank. A parallel, incremental, mostly con-

current garbage collector for servers. ACM Transactions on Programming Languages and Systems,

27(6):1097–1146, November 2005.

[Barach et al., 1982] David R. Barach, David H. Taenzer, and Robert E. Wells. A technique for finding

storage allocation errors in C-language programs. ACM SIGPLAN Notices, 17(5):16–23, May 1982.

[Barany, 2014] Gergö Barany. Python interpreter performance deconstructed. In Proceedings of the

Workshop on Dynamic Languages and Applications, pages 1–9, Edinburgh, United Kingdom, 2014.

ACM Press.

[Barbacci, 1971] M. Barbacci. A LISP processor for C.ai. Memo CMU-CS-71-103, Carnegie Mellon

University, 1971.

[Barklund and Millroth, 1986a] Jonas Barklund and Høakan Millroth. Garbage cut. Technical Report 38,

Uppsala University, 1986.

[Barklund and Millroth, 1986b] Jonas Barklund and Høakan Millroth. Garbage cut for garbage collec-

tion of iterative Prolog programs. In Symposium on Logic Programming, pages 276–283, Salt Lake

City, UT, September 1986. IEEE Computer Society Press.

[Barklund, 1987] Jonas Barklund. A garbage collection algorithm for Tricia. Technical Report 37B,

Uppsala University, 1987.

[Barnes et al., 1997] Nick Barnes, Richard Brooksby, David Jones, Gavin Matthews, Pekka P. Pirinen,

Nick Dalton, and P. Tucker Withington. A proposal for a standard memory management interface. In

Dickman and Wilson [Dickman and Wilson1997].

[Barnett, 1979] Jeff A. Barnett. Garbage collection versus swapping. ACM SIGOPS Operating Systems

Review, 13(3), 1979.

[Barrett and Zorn, 1993a] David A. Barrett and Benjamin Zorn. Garbage collection using a dynamic

threatening boundary. Computer Science Technical Report CU-CS-659-93, University of Colorado,

July 1993.

13



[Barrett and Zorn, 1993b] David A. Barrett and Benjamin G. Zorn. Using lifetime predictors to improve

memory allocation performance. In PLDI 1993 [PLDI 19931993], pages 187–196.

[Barrett and Zorn, 1995] David A. Barrett and Benjamin Zorn. Garbage collection using a dynamic

threatening boundary. In PLDI 1995 [PLDI 19951995], pages 301–314.

[Barrett et al., 2017] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount, and Lau-

rence Tratt. Virtual machine warmup blows hot and cold. In OOPSLA 2017 [OOPSLA 20172017],

pages 52:1–52:27.

[Barroso et al., 1998] L.A. Barroso, K. Gharachorloo, and E. Bugnion. Memory system characterization

of commercial workloads. In ISCA 1998 [ISCA 19981998], pages 3–14.

[Barth, 1977] Jeffrey M. Barth. Shifting garbage collection overhead to compile time. Communications

of the ACM, 20(7):513–518, July 1977.

[Bartlett, 1988a] Joel F. Bartlett. Compacting garbage collection with ambiguous roots. WRL Research

Report 88/2, DEC Western Research Laboratory, Palo Alto, CA, February 1988. Also appears as

[Bartlett, 1988b].

[Bartlett, 1988b] Joel F. Bartlett. Compacting garbage collection with ambiguous roots. Lisp Pointers,

1(6):3–12, April 1988.

[Bartlett, 1989a] Joel F. Bartlett. Mostly-Copying garbage collection picks up generations and C++.

Technical Note TN–12, DEC Western Research Laboratory, Palo Alto, CA, October 1989.

[Bartlett, 1989b] Joel F. Bartlett. SCHEME->C: a portable Scheme-to-C compiler. WRL Research

Report 89/1, DEC Western Research Laboratory, Palo Alto, CA, January 1989.

[Bartlett, 1990] Joel F. Bartlett. A generational, compacting collector for C++. In Jul and Juul

[Jul and Juul1990].

[Basanta-Val and Garcia-Valls, 2014] Pablo Basanta-Val and Marisol Garcia-Valls. A simple distributed

garbage collector for distributed real-time Java. The Journal of Supercomputing, 12 2014.

[Basanta-Val et al., 2005] Pablo Basanta-Val, Marisol Garcia-Valls, and I. Estevez-Ayres. Towards dis-

tributed garbage collection in distributed real-time Java. In ISORC 2005 [ISORC 20052005], pages

382–389.

[Bastani et al., 1988] F.B. Bastani, S.S. Iyengar, and I.L. Yen. Concurrent maintenance of data-structures

in a distributed environment. Computer Journal, 31(2):165–174, 1988.

[Bates et al., 1982] Raymond L. Bates, David Dyer, and Johannes A.G.M. Koomen. Implementation of

Interlisp on VAX. In LFP 1982 [LFP 19821982], pages 81–87.

[Batson and Brundage, 1977] Alan P. Batson and R.E. Brundage. Segment sizes and lifetimes in AL-

GOL 60 programs. Communications of the ACM, 20(1):36–44, January 1977.

[Batson, 1976] Alan Batson. Program behavior at the symbolic level. IEEE Computer, pages 21–26,

November 1976.

[Bauer and Wössner, 1982] F.L. Bauer and H. Wössner. Algorithmic Language and Program Develop-

ment. Springer-Verlag, 1982.

[Baumann and Kasikci, 2020] Andrew Baumann and Baris Kasikci, editors. 16th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environments, Lausanne, Switzerland,

March 2020. ACM Press.

[Baumgartner and Wah, 1991] K.M. Baumgartner and B.W. Wah. Computer scheduling algorithms —

past, present, and future. Information Sciences, pages 319–345, September 1991.

[Bawden et al., 1977] A. Bawden, Richard Greenblatt, J. Holloway, T. Knight, David A. Moon, and

D. Weinreb. Lisp machine progress report. Technical Report Memo 444, A.I. Lab, MIT, Cambridge,

MA, August 1977.

[Baylor et al., 2000] S.J. Baylor, M. Devarakonda, S. Fink, E. Gluzberg, M. Kalantar, P. Muttineni,

E. Barsness, S. Munroe, R. Arora, and R. Dimpsey. Java server benchmarks. IBM Systems Jour-

nal, 39(1), 2000.

[Bays, 1977] C. Bays. A comparison of next-fit, first-fit and best-fit. Communications of the ACM,

20(3):191–192, March 1977.

[Beaudoing, 1991] Barbara Beaudoing. Recycler-en-Marquant: Un Algorithme de Gestion de Mémoire

en Temps Réel, Étude et Implantation. PhD thesis, Université de Paris VI, 1991.

14



[Becerra et al., 2003] Yolanda Becerra, Toni Cortes, Jordi Garcia, and Nacho Navarro. Evaluating the

importance of virtual memory for Java. In ISPASS 2003 [ISPASS 20032003], pages 101–110.

[Beck, 1982] Leland L. Beck. A dynamic storage allocation technique based on memory residence time.

Communications of the ACM, 25(10):714–724, October 1982.

[Beckerle and Ekanadham, 1986] Michael J. Beckerle and Kattamuri Ekanadham. Distributed garbage

collection with no global synchronisation. Research Report RC 11667 (#52377), IBM Corp., January

1986.

[Beebee, Jr. and Rinard, 2001] William S. Beebee, Jr. and Martin Rinard. An implementation of scoped

memory for real-time Java. In Henzinger and Kirsch [Henzinger and Kirsch2001], pages 289–305.

[Beemster, 1990] Marcel Beemster. Back-end aspects of a portable POOL–X implementation. In Pierre

America, editor, Parallel Database Systems PRISMA Workshop, volume 503 of Lecture Notes in Com-

puter Science, pages 193–228, Noordwijk, The Netherlands, September 1990. Springer-Verlag.

[Beg and van Beek, 2010] Mirza Beg and Peter van Beek. A graph theoretic approach to cache-

conscious placement of data for direct mapped caches. In Vitek and Lea [Vitek and Lea2010], pages

113–120.

[Bekkers and Cohen, 1992] Yves Bekkers and Jacques Cohen, editors. International Workshop on Mem-

ory Management, volume 637 of Lecture Notes in Computer Science, St Malo, France, 17–19 Septem-

ber 1992. Springer.

[Bekkers and Ungaro, 1991] Yves Bekkers and L. Ungaro. Implementing parallel garbage collection for

Prolog. In A. Voronkov, editor, Russian Conference on Logic Programming, volume 592 of Lecture

Notes in Computer Science. Springer-Verlag, 1991.

[Bekkers et al., 1983] Yves Bekkers, B. Canet, Olivier Ridoux, and L. Ungaro. A short note on garbage

collection in Prolog interpreters. Logic Programming Newsletter, 5, 1983.

[Bekkers et al., 1984] Yves Bekkers, B. Canet, Olivier Ridoux, and L. Ungaro. A memory management

machine for Prolog interpreters. In Tärnlund [Tärnlund1984], pages 343–351.

[Bekkers et al., 1985] Yves Bekkers, B. Canet, Olivier Ridoux, and L. Ungaro. A memory management

machine for Prolog. Informatique–85, Symposium Soviéto-Français, Tallin, pages 111–117, 1985.

[Bekkers et al., 1986] Yves Bekkers, B. Canet, Olivier Ridoux, and L. Ungaro. MALI: A memory with

a real-time garbage collector for implementing logic programming languages. In 3rd Symposium on

Logic Programming. IEEE Press, 1986.

[Bekkers et al., 1992] Yves Bekkers, Olivier Ridoux, and L. Ungaro. Dynamic memory management

for sequential logic programming languages. In Bekkers and Cohen [Bekkers and Cohen1992], pages

82–102.

[Belay et al., 2012] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and

Christos Kozyrakis. Dune: Safe user-level access to privileged CPU features. In Chandu Thekkath and

Amin Vahdat, editors, 10th USENIX Symposium on Operating Systems Design and Implementation,

pages 335–348, Hollywood, California, October 2012.

[Belotsky, 2003] George Belotsky. C++ memory management: From fear to triumph. O’Reilly linuxde-

vcenter.com, July 2003.

[Ben-Ari, 1982] Mordechai Ben-Ari. On-the-fly garbage collection: New algorithms inspired by pro-

gram proofs. In M. Nielsen and E.M. Schmidt, editors, Automata, languages and programming. Ninth

colloquium, pages 14–22, Aarhus, Denmark, July 12–16 1982. Springer-Verlag.

[Ben-Ari, 1984] Mordechai Ben-Ari. Algorithms for on-the-fly garbage collection. ACM Transactions

on Programming Languages and Systems, 6(3):333–344, July 1984.

[Ben-David et al., 2019] Naama Ben-David, Guy E. Blelloch, Yihan Sun, and Yuanhao Wei. Mul-

tiversion concurrency with bounded delay and precise garbage collection. In SPAA 2019

[SPAA 20192019].

[Ben-David et al., 2021] Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou, Eric Ruppert, Yihan

Sun, and Yuanhao Wei. Space and time bounded multiversion garbage collection. In 35th International

Symposium on Distributed Computing (DISC), Freiburg, Germany, October 2021.

[Ben-Yitzhak et al., 2002] Ori Ben-Yitzhak, Irit Goft, Elliot Kolodner, Kean Kuiper, and Vic-

tor Leikehman. An algorithm for parallel incremental compaction. In Boehm and Detlefs

[Boehm and Detlefs2002], pages 100–105.

15



[Bendersky and Petrank, 2010] Anna Bendersky and Erez Petrank. Space overhead bounds for dynamic

memory management with partial compaction. Technical report, Technion, Israel, July 2010. Full

version of [Bendersky and Petrank, 2011].

[Bendersky and Petrank, 2011] Anna Bendersky and Erez Petrank. Space overhead bounds for dynamic

memory management with partial compaction. In POPL 2011 [POPL 20112011], pages 475–486.

[Bendersky and Petrank, 2012] Anna Bendersky and Erez Petrank. Space overhead bounds for dynamic

memory management with partial compaction. ACM Transactions on Programming Languages and

Systems, 34(3):13, 2012.

[Benes, 1981] V.E. Benes. Models and problems of dynamic storage allocation. In Applied Probability

and Computer Science — the Interface. Institute of Management Science and Operations Research

Society of America, January 1981.

[Bengtsson and Magnusson, 1990] Mats Bengtsson and Boris Magnusson. Real-time compacting

garbage collection. In Jul and Juul [Jul and Juul1990].

[Bengtsson, 1990] Mats Bengtsson. Real-time compacting garbage collection algorithms. Licentiate

thesis, Department of Computer Science, Lund University, 1990.

[Bennet et al., 1990] J. Bennet, J. Carter, and W. Zwaenepoel. Munin: Distributed shared memory based

on type-specific memory coherence. In PPOPP 1990 [PPOPP 19901990], pages 168–176.

[Bennett, 1987] J.K. Bennett. The design and implementation of distributed Smalltalk. In OOPSLA

1987 [OOPSLA 19871987], pages 318–330.

[Benson, 1997] Peter Benson. The memory manager for the Aurora Java Virtual Machine testbed. In

Dickman and Wilson [Dickman and Wilson1997].

[Benton and Torp-Smith, 2006] Nick Benton and Noah Torp-Smith. Abstracting allocation: The New

new thing. In SPACE 2006 [SPACE 20062006], pages 108–110.

[Berger and Blumofe, 1999] Emery D. Berger and Robert D. Blumofe. Hoard: A fast, scalable, and

memory-efficient allocator for shared-memory multiprocessors. Technical Report UTCS TR99-22,

University of Texas at Austin, November 1999.

[Berger and Chen, 2008] Emery Berger and Brad Chen, editors. Workshop on Memory System Perfor-

mance and Correctness, Seattle, WA, March 2008.

[Berger et al., 2000] Emery Berger, Kathryn McKinley, Robert Blumofe, and Paul Wilson. Hoard: A

scalable memory allocator for multithreaded applications. In ASPLOS 2000 [ASPLOS 20002000],

pages 117–128.

[Berger et al., 2001] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. Composing high-

performance memory allocators. In PLDI 2001 [PLDI 20012001], pages 114–124.

[Berger et al., 2002] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. Reconsidering

custom memory allocation. In OOPSLA 2002 [OOPSLA 20022002].

[Bergstein, 1988] Steven H. Bergstein. Best-case caching in a symbolic multiprocessor. Bachelor’s

thesis, Massachusetts Institute of Technology EECS Department, Cambridge, MA, February 1988.

[Berkeley and Bobrow, 1974] E.C. Berkeley and Daniel G. Bobrow, editors. The Programming Lan-

guage LISP: Its Operation and Applications. Information International, Inc., Cambridge, MA, fourth

edition, 1974.

[Berlea et al., 2000] Alexandru Berlea, Sorin Cotofana, Irina Athanasiu, John Glossner, and Stamatis

Vassiliadis. Garbage collection for the Delft Java processor. In 18th IASTED International Conference,

Applied Informatics, Innsbruck, 2000.

[Beronić et al., 2022] D. Beronić, N. Novosel, B. Mihaljević, and A. Radovan. Assessing contemporary

automated memory management in Java — Garbage First, Shenandoah, and Z garbage collectors

comparison. In 45th Jubilee International Convention on Information, Communication and Electronic

Technology (MIPRO), pages 1495–1500, 2022.

[Berry et al., 1978] D.M. Berry, L.M. Chirica, J.B. Johnston, D.F. Martin, and Sorkin A. Time required

for garbage collection in retention block-structured languages. Journal of Computer Information Sci-

ence, 7(1):361–404, 1978.

[Berry, 2002] Robert F. Berry. The business importance of Java garbage collection. Invited talk., June

2002.

16



[Bertziss, 1965] A.T. Bertziss. A note on the storage of strings. Communications of the ACM, 8(8):512–

513, August 1965.

[Berztiss, 1975] A.T. Berztiss. Data Structures Theory and Practice. Academic Press, second edition,

1975.

[Besson et al., 2007] Frédéric Besson, Thomas Jensen, and Tiphaine Turpin. Computing stack maps

with interfaces. Research report PI 1879, INRIA, Université Rennes I, Institut National des Sciences

Appliquées de Rennes, 2007.

[Besson et al., 2008] Frédéric Besson, Thomas Jensen, and Tiphaine Turpin. Computing stack maps

with interfaces. In Vitek [Vitek2008].

[Betteridge, 1973] Terry Betteridge. An analytical storage allocation model. Acta Informatica, 3:101–

122, 1973.

[Betteridge, 1982] Terry Betteridge. An Algebraic Analysis of Storage Fragmentation. UMI Research

Press, Ann Arbor, Michigan, 1982.

[Bevan, 1987] David I. Bevan. Distributed garbage collection using reference counting. In de Bakker

et al. [de Bakker et al.1987], pages 176–187.

[Bevan, 1989] David I. Bevan. An efficient reference counting solution to the distributed garbage col-

lection problem. Parallel Computing, 9(2):179–192, January 1989.

[Bevemyr and Lindgren, 1994] Johan Bevemyr and Thomas Lindgren. A simple and efficient copying

garbage collector for Prolog. In PLILP94 International Symposium on Programming Language Im-

plementation and Logic Programming, pages 88–101, 1994.

[Bevemyr, 1995] Johan Bevemyr. A generational parallel copying garbage collector for shared memory

Prolog. Technical Report 117, Uppsala University, October 1995.

[Beyer and Buneman, 1979] Eric Beyer and Peter Buneman. A space efficient dynamic allocation algo-

rithm for queuing messages. ACM Transactions on Programming Languages and Systems, 1(2):287–

294, October 1979.

[Bézivin et al., 1987] J. Bézivin, J.-M. Hullot, P. Cointe, and Henry Lieberman, editors. European Con-

ference on Object-Oriented Programming, volume 276 of Lecture Notes in Computer Science, Paris,

France, June 1987. Springer-Verlag.

[Bhandari et al., 2016] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-Juergen Boehm. Makalu:

Fast recoverable allocation of non-volatile memory. In OOPSLA 2016 [OOPSLA 20162016], pages

677–694.

[Bhatia et al., 2006] Sapan Bhatia, Charles Consel, and Julia Lawall. Memory-manager/scheduler

co-design: Optimizing event-driven servers to improve cache behavior. In Petrank and Moss

[Petrank and Moss2006], pages 104–114.

[Biagioni et al., 1994] Edoardo Biagioni, Robert Harper, Peter Lee, and Brian Milnes. Signatures for a

network protocol stack: A systems application of Standard ML. In LFP 1994 [LFP 19941994].

[Bielak and Sarkis, 1999] Richard Bielak and Jean-Pierre Sarkis. Implementing a distributed garbage

collector for OO databases. In TOOLS USA ’99 Technology of Object-Oriented Languages and Sys-

tems, Santa Barbara, CA, August 1999.

[Bigler et al., 1985] B.M. Bigler, S.J. Allan, and Rod R. Oldehoeft. Parallel dynamic storage allocation.

In ICPP 1985 [ICPP 19851985], pages 272–275.

[Biliris, 1992] Alexandros Biliris. An efficient database storage structure for large dynamic objects. In

8th International Conference on Data Engineering, pages 301–308, Tempe, AZ, February 1992. IEEE

Press.

[Binder and Merseguer, 2014] Walter Binder and José Merseguer, editors. 5th ACM/SPEC on Interna-

tional Conference on Performance Engineering (ICPE’14), Dublin, 2014. ACM Press.

[Bingham et al., 1993] Tim Bingham, Nancy Hobbs, and Dave Husson. Experiences developing and

using an object-oriented library for program manipulation. In OOPSLA 1993 [OOPSLA 19931993].

[Birkedal et al., 1996] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inference to von

Neumann machines via region representation inference. In POPL 1996 [POPL 19961996].

[Birkedal et al., 2004] Lars Birkedal, Noah Torp-Smith, and John C. Reynolds. Local reasoning about a

copying garbage collector. In POPL 2004 [POPL 20042004], pages 220–231.

17



[Birman, 1987] K. Birman. Exploiting virtual synchrony in distributed systems. ACM SIGOPS Operat-

ing Systems Review, 21(5):123–138, November 1987.

[Birrell and Needham, 1978] Andrew D. Birrell and Roger M. Needham. An asynchronous garbage

collector for the CAP filing system. ACM SIGOPS Operating Systems Review, 12(2):31–33, April

1978.

[Birrell et al., 1993] Andrew Birrell, David Evers, Greg Nelson, Susan Owicki, and Edward Wobber.

Distributed garbage collection for network objects. Technical Report 116, DEC Systems Research

Center, 130 Lytton Avenue, Palo Alto, CA 94301, December 1993.

[Birrell et al., 1994a] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network ob-

jects. Technical Report 115, DEC Systems Research Center, Palo Alto, CA, February 1994.

[Birrell et al., 1994b] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network ob-

jects. In 14th ACM SIGOPS Symposium on Operating Systems Principles, pages 217–230, Asheville,

NC, December 1994. ACM Press.

[Birrell et al., 1995] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network objects.

Software: Practice and Experience, 25(4):87–130, December 1995. Also appeared as SRC Research

Report 115.

[Bishop, 1975] Peter B. Bishop. Garbage collection in a very large address space. Working paper 111,

AI Laboratory, MIT, Cambridge, MA, September 1975.

[Bishop, 1977] Peter B. Bishop. Computer Systems with a Very Large Address Space and Garbage

Collection. PhD thesis, MIT Laboratory for Computer Science, May 1977. Technical report

MIT/LCS/TR–178.

[Björnerstedt, 1989] Anders Björnerstedt. Secondary storage garbage collection for decentralized

object-based systems. In D. Tsichritzis, editor, Object Oriented Development, pages 277–319. Centre

Universitaire d’Informatique, University of Geneva, July 1989.

[Björnerstedt, 1990] Anders Björnerstedt. Secondary Storage Garbage Collection for Decentralized

Object-Based Systems. PhD thesis, Royal Institute of Technology and Stockholm University, Swe-

den, June 1990. Technical Report 77.

[Bjornsson and Shrira, 2002] Magnus Bjornsson and Liuba Shrira. BuddyCache: High performance

object storage for collaborative strong-consistency applications in a WAN. In OOPSLA 2002

[OOPSLA 20022002].

[Black et al., 1986] Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object structure in

the Emerald system. In OOPSLA 1986 [OOPSLA 19861986], pages 78–86.

[Black et al., 1987] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter. Dis-

tribution and abstract types in Emerald. ACM Transactions on Software Engineering, 13(1):65–76,

January 1987.

[Black, 2005] Andrew P. Black, editor. 19th European Conference on Object-Oriented Programming,

volume 3586 of Lecture Notes in Computer Science, Glasgow, Scotland, July 2005. Springer-Verlag.

[Blackburn and Hosking, 2004] Stephen M. Blackburn and Antony L. Hosking. Barriers: Friend or foe?

In Bacon and Diwan [Bacon and Diwan2004], pages 143–151.

[Blackburn and McKinley, 2002] Stephen M. Blackburn and Kathryn S. McKinley. In or out? putting

write barriers in their place. In Boehm and Detlefs [Boehm and Detlefs2002], pages 175–184.

[Blackburn and McKinley, 2003] Stephen M. Blackburn and Kathryn S. McKinley. Ulterior reference

counting: Fast garbage collection without a long wait. In OOPSLA 2003 [OOPSLA 20032003], pages

344–458.

[Blackburn and McKinley, 2008] Stephen Blackburn and Kathryn S. McKinley. Immix: a mark-region

garbage collector with space efficiency, fast collection, and mutator performance. In Gupta and Ama-

rasinghe [Gupta and Amarasinghe2008], pages 22–32.

[Blackburn and Petrank, 2023] Stephen M. Blackburn and Erez Petrank, editors. 22nd ACM SIGPLAN

International Symposium on Memory Management. ACM Press, June 2023.

[Blackburn et al., 2001] Stephen M. Blackburn, Sharad Singhai, Matthew Hertz, Kathryn S. McKinley,

and J. Eliot B. Moss. Pretenuring for Java. In OOPSLA 2001 [OOPSLA 20012001], pages 342–352.

18



[Blackburn et al., 2002] Stephen M. Blackburn, Richard E. Jones, Kathryn S. McKinley, and J. Eliot B.

Moss. Beltway: Getting around garbage collection gridlock. In PLDI 2002 [PLDI 20022002], pages

153–164.

[Blackburn et al., 2003] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. A garbage

collection design and bakeoff in JMTk: An extensible Java memory management toolkit. Technical

Report TR–CS–03–02, Australian National University, February 2003.

[Blackburn et al., 2004a] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Myths and

realities: The performance impact of garbage collection. In ACM SIGMETRICS International Confer-

ence on Measurement and Modeling of Computer Systems, ACM SIGMETRICS Performance Evalu-

ation Review 32(1), pages 25–36. ACM Press, June 2004.

[Blackburn et al., 2004b] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Oil and water?

High performance garbage collection in Java with MMTk. In ICSE 2004 [ICSE 20042004], pages

137–146.

[Blackburn et al., 2006a] Stephen M. Blackburn, Robin Garner, Chris Hoffman, Asjad M. Khan,

Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.

Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,

Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The DaCapo

benchmarks: Java benchmarking development and analysis. In OOPSLA 2006 [OOPSLA 20062006],

pages 169–190.

[Blackburn et al., 2006b] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan,

Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.

Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,

Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The DaCapo

benchmarks: Java benchmarking development and analysis (extended version). Technical report, The

DaCapo Group, 2006.

[Blackburn et al., 2007] Stephen M. Blackburn, Matthew Hertz, Kathryn S. Mckinley, J. Eliot B. Moss,

and Ting Yang. Profile-based pretenuring. ACM Transactions on Programming Languages and Sys-

tems, 29(1):1–57, 2007.

[Blackburn et al., 2008] S.M. Blackburn, K.S. McKinley, R. Garner, C. Hoffmann, A.M. Khan,

R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S.Z. Guyer, M. Hirzel, A. Hosking, M. Jump,

H. Lee, J.E.B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wieder-

mann. Wake up and smell the coffee: Evaluation methodology for the 21st century. Communications

of the ACM, 51(8):83–89, 2008.

[Blackburn et al., 2016] Stephen M. Blackburn, Amer Diwan, Matthias Hauswirth, Peter F. Sweeney,

José Nelson Amaral, Tim Brecht, Lubomr Bulej, Cliff Click, Lieven Eeckhout, Sebastian Fischmeister,

Daniel Frampton, Laurie J. Hendren, Michael Hind, Antony L. Hosking, Richard E. Jones, Tomas

Kalibera, Nathan Keynes, Nathaniel Nystrom, and Andreas Zeller. The truth, the whole truth, and

nothing but the truth: A pragmatic guide to assessing empirical evaluations. ACM Transactions on

Programming Languages and Systems, 38(4):15:1–15:20, October 2016.

[Blackburn, 2019] Stephen M. Blackburn. Design and analysis of field-logging write barriers. In Xu and

Singer [Xu and Singer2019], pages 103–114.

[Blackburn, 2022] Stephen M. Blackburn. We live in interesting times. Keynote talk, June 2022.

[Blanchet, 1996] Bruno Blanchet. Garbage collection statique. Dea report, INRIA, Rocquencourt,

September 1996.

[Blanchet, 1998] Bruno Blanchet. Escape analysis: Correctness proof, implementation and experimental

results. In POPL 1998 [POPL 19981998], pages 25–37.

[Blanchet, 1999] Bruno Blanchet. Escape analysis for object oriented languages: Application to Java.

In OOPSLA 1999 [OOPSLA 19991999], pages 20–34.

[Blanchet, 2003] Bruno Blanchet. Escape analysis for Java: Theory and practice. ACM Transactions on

Programming Languages and Systems, 25(6):712–775, November 2003.

[Blau, 1983] Ricki Blau. Paging on an object-oriented personal computer for Smalltalk. In ACM SIG-

METRICS International Conference on Measurement and Modeling of Computer Systems, pages 44–

54, Minneapolis, MN, August 1983. ACM Press. Also appears as Technical Report UCB/CSD 83/125,

University of California, Berkeley, Computer Science Division (EECS).

19



[Blelloch and Cheng, 1999] Guy E. Blelloch and Perry Cheng. On bounding time and space for multi-

processor garbage collection. In PLDI 1999 [PLDI 19991999], pages 104–117.

[Blelloch and Wei, 2020] Guy E. Blelloch and Yuanhao Wei. Concurrent reference counting and re-

source management in wait-free constant time, 2020.

[Blelloch et al., 2001] Guy E. Blelloch, Perry Cheng, and Phillip B. Gibbons. Room synchronizations.

In 13th ACM Symposium on Parallel Algorithms and Architectures, pages 122–133, Heraklion, Crete,

Greece, July 2001. ACM Press.

[Blelloch et al., 2003] Guy E. Blelloch, Perry Cheng, and Phillip B. Gibbons. Scalable room synchro-

nizations. Theory of Computing Systems, 36(5):397–430, September 2003.

[Blondel et al., 1997] Xavier Blondel, Paulo Ferreira, and Marc Shapiro. PerDIS PPF case study: Fitting

a distributed garbage collection algorithm to a persistent distributed store architecture. In Dickman

and Wilson [Dickman and Wilson1997].

[Blondel et al., 1998] Xavier Blondel, Paulo Ferreira, and Marc Shapiro. Implementing garbage collec-

tion in the PerDiS system. Submitted for publication, 1998.

[Blondel, 1999] Xavier Blondel. Report on the scalability of garbage collection. Technical report, Esprit,

1999. Deliverable TC.1.3-B, PerDiS project.

[Blondel, 2000] Xavier Blondel. Gestion de Méta-donneés de la Mémoire dans un Environment Réparti

Persistant Transactionnel à Grande Échelle: l’Exemple de PerDiS. PhD thesis, Conservatoire Na-

tional des Arts et Métiers, September 2000.

[Bobrow and Clark, 1979] Daniel G. Bobrow and Douglas W. Clark. Compact encodings of list struc-

ture. ACM Transactions on Programming Languages and Systems, 1(2):266–286, October 1979.

[Bobrow and Murphy, 1967] Daniel G. Bobrow and Daniel L. Murphy. Structure of a LISP system using

two-level storage. Communications of the ACM, 10(3):155–159, March 1967.

[Bobrow and Murphy, 1968] Daniel G. Bobrow and Daniel L. Murphy. A note on the efficiency of a

LISP computation in a paged machine. Communications of the ACM, 11(8):558–560, August 1968.

[Bobrow and Raphael, 1964] Daniel G. Bobrow and Bertram Raphael. A comparison of list-processing

computer languages. Communications of the ACM, 7(4):231–240, April 1964.

[Bobrow, 1968] Daniel G. Bobrow. Storage management in Lisp. Symbol manipulation languages and

techniques, 1968.

[Bobrow, 1975] Daniel G. Bobrow. A note on hash linking. Communications of the ACM, 18(7):413–15,

July 1975.

[Bobrow, 1980] Daniel G. Bobrow. Managing re-entrant structures using reference counts. ACM Trans-

actions on Programming Languages and Systems, 2(3):269–273, July 1980.

[Bode et al., 1993] Arndt Bode, Mike Reeve, and Gottfried Wolf, editors. Parallel Architectures and

Languages Europe (PARLE), volume 694 of Lecture Notes in Computer Science, Munich, June 1993.

Springer-Verlag.

[Boehm and Adve, 2008] Hans-Juergen Boehm and Sarita V. Adve. Foundations of the C++ concurrency

memory model. In Gupta and Amarasinghe [Gupta and Amarasinghe2008], pages 68–78.

[Boehm and Bacon, 2011] Hans Boehm and David Bacon, editors. 10th ACM SIGPLAN International

Symposium on Memory Management, San Jose, CA, June 2011. ACM Press.

[Boehm and Chase, 1992] Hans-Juergen Boehm and David R. Chase. A proposal for garbage-collector-

safe C compilation. Journal of C Language Translation, 4(2):126–141, December 1992.

[Boehm and Demers, 1985] Hans-Juergen Boehm and Alan Demers. Implementing Russell. Technical

Report COMP TR85-25, Rice University, 1985.

[Boehm and Detlefs, 2002] Hans-J. Boehm and David Detlefs, editors. 3rd ACM SIGPLAN Interna-

tional Symposium on Memory Management, ACM SIGPLAN Notices 38(2 supplement), Berlin, Ger-

many, June 2002. ACM Press.

[Boehm and Grove, 2006] Hans-J. Boehm and David Grove, editors. 2nd ACM SIGPLAN/SIGOPS In-

ternational Conference on Virtual Execution Environments, Ottawa, Canada, June 2006. ACM Press.

[Boehm and Hederman, 1988] Hans-Juergen Boehm and Lucy Hederman. Storage allocation optimiza-

tion in a compiler for Russell. Submitted for publication, July 1988.

20



[Boehm and Shao, 1993] Hans-Juergen Boehm and Zhong Shao. Inferring type maps during garbage

collection. In Moss et al. [Moss et al.1993].

[Boehm and Spertus, 2005] Hans-Juergen Boehm and Michael Spertus. Transparent garbage collection

for C++. Technical Report WG21/N1833=05-0093, ISO/IEC JTC1/SC22/WG21 - The C++ Standards

Committee, June 2005.

[Boehm and Spertus, 2009] Hans-Juergen Boehm and Mike Spertus. Garbage collection in the next C++

standard. In Kolodner and Steele [Kolodner and Steele2009], pages 30–38.

[Boehm and Weiser, 1988] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooper-

ative environment. Software: Practice and Experience, 18(9):807–820, 1988.

[Boehm et al., 1991a] Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel

garbage collection. In PLDI 1991 [PLDI 19911991], pages 157–164.

[Boehm et al., 1991b] Hans-Juergen Boehm, Eliot Moss, Joel Bartlett, and David R. Chase.

Panel discussion: Conservative vs. accurate garbage collection. In Wilson and Hayes

[Wilson and Hayes1991a]. Summary appears in Wilson and Hayes’ OOPSLA’91 GC workshop re-

port.

[Boehm, 1991a] Hans-Juergen Boehm. Hardware and operating system support for conservative garbage

collection. In Cabrera et al. [Cabrera et al.1991], pages 61–67.

[Boehm, 1991b] Hans-Juergen Boehm. Simple GC-safe compilation. In Wilson and Hayes

[Wilson and Hayes1991a].

[Boehm, 1993] Hans-Juergen Boehm. Space efficient conservative garbage collection. In PLDI 1993

[PLDI 19931993], pages 197–206.

[Boehm, 1995] Hans-Juergen Boehm. Dynamic memory allocation and garbage collection. Computers

in Physics, 9(3):297–303, May/June 1995.

[Boehm, 1996] Hans-Juergen Boehm. Simple garbage-collector safety. In PLDI 1996 [PLDI 19961996],

pages 89–98.

[Boehm, 2000a] Hans-Juergen Boehm. Fast multiprocessor memory allocation and garbage collection.

Technical Report HPL-2000-165, HP Laboratories, Palo Alto, December 2000.

[Boehm, 2000b] Hans-Juergen Boehm. Reducing garbage collector cache misses. In Chambers and

Hosking [Chambers and Hosking2000], pages 59–64.

[Boehm, 2002] Hans-Juergen Boehm. Bounding space usage of conservative garbage collectors. In

POPL 2002 [POPL 20022002].

[Boehm, 2003] Hans-Juergen Boehm. Destructors, finalizers, and synchronization. In POPL 2003

[POPL 20032003], pages 262–272.

[Boehm, 2004] Hans-Juergen Boehm. The space cost of lazy reference counting. In POPL 2004

[POPL 20042004], pages 210–219.

[Bogda and Hölzle, 1999] Jeff Bogda and Urs Hölzle. Removing unnecessary synchronization in Java.

In OOPSLA 1999 [OOPSLA 19991999], pages 35–46.

[Bogda and Singh, 2001] Jeff Bogda and Ambuj Singh. Removing unnecessary synchronization in Java.

In JVM 2001 [JVM 20012001].

[Boizumault, 1986] P. Boizumault. A general model to implement dif and freeze. In Schapiro

[Schapiro1986].

[Bond and Hosking, 2015] Mike Bond and Tony Hosking, editors. 14th ACM SIGPLAN International

Symposium on Memory Management, Portland, OR, June 2015. ACM Press.

[Bond and McKinley, 2006] Michael Bond and Kathryn McKinley. Bell: Bit-encoding online memory

leak detection. In Shen and Martonosi [Shen and Martonosi2006], pages 61–72.

[Bond and McKinley, 2008] Michael Bond and Kathryn McKinley. Tolerating memory leaks. In OOP-

SLA 2008 [OOPSLA 20082008], pages 109–126.

[Bond et al., 2024] Michael D. Bond, Jae W. Lee, and Hannes Payer, editors. 23rd ACM SIGPLAN

International Symposium on Memory Management. ACM Press, June 2024.

[Boquist, 1999] U. Boquist. Code Optimisation Techniques for Lazy Functional Languages. PhD thesis,

Chalmers University of Technology, Gothenburg, Sweden, April 1999.

21



[Borg and Wellings, 2003] Andrew Borg and Andy J. Wellings. Reference objects for RTSJ memory

areas. In OTM Workshops 2003, number 2889 in Lecture Notes in Computer Science, pages 397–410,

2003.

[Borg et al., 2006] Andrew Borg, Andy J. Wellings, Christopher Gill, and Ron K. Cytron. Real-

time memory management: Life and times. In 18th Euromicro Conference on Real-Time Systems

(ECRTS’06), pages 237–250, Dresden, Germany, July 2006.

[Borman, 2002a] Sam Borman. Sensible sanitation — understanding the IBM Java garbage collector,

part 1: Object allocation. IBM developerWorks, August 2002.

[Borman, 2002b] Sam Borman. Sensible sanitation — understanding the IBM Java garbage collector,

part 2: Garbage collection. IBM developerWorks, August 2002.

[Borman, 2002c] Sam Borman. Sensible sanitation — understanding the IBM Java garbage collector,

part 3: verbosegc and command-line. IBM developerWorks, September 2002.

[Bornat et al., 2004] Richard Bornat, Cristiano Calcagno, and Peter O’Hearn. Local reasoning, separa-

tion, and aliasing. In SPACE 2004 [SPACE 20042004].

[Böttcher et al., 2019] Jan Böttcher, Viktor Leis, Thomas Neumann, and Alfons Kemper. Scalable

garbage collection for in-memory MVCC systems. Proceedings of the VLDB Endowment, 13(2):128–

141, October 2019.

[Bowman et al., 1993] Howard Bowman, John Derrick, and Richard E. Jones. Modelling garbage collec-

tion algorithms. In International Workshop on Concurrency in Computational Logic, City University,

London, 13 December 1993, December 1993.

[Boyapati et al., 2003] Chandrasekhar Boyapati, Alexandru Salcianu, William Beebee, Jr., and Martin

Rinard. Ownership types for safe region-based memory management in Real-Time Java. In PLDI

2003 [PLDI 20032003], pages 324–337.

[Boyer and Moore, 1972] R.S. Boyer and J.S. Moore. The sharing of structure in theorem-proving pro-

grams. In B. Meltzer and Donald Michie, editors, Machine Intelligence, pages 101–116. Edinburgh

University Press, 1972.

[Boysen and Shah, 1993] P. Boysen and P. Shah. Reducing object storage requirements in a multi-user

environment. Software: Practice and Experience, 23(2):243–253, March 1993.

[Bozman et al., 1984] G. Bozman, W. Buco, T.P. Daly, and W.H. Tetzlaff. Analysis of free storage

algorithms — revisited. IBM Systems Journal, 23(1):44–64, 1984.

[Bozman, 1984] Gerald Bozman. The software lookaside buffer reduces search overhead with linked

lists. Communications of the ACM, 27(3):222–227, March 1984.

[Braberman et al., 2008] Vı́ctor Braberman, Federico Fernández, Diego Garbervetsky, and Sergio

Yovine. Parametric prediction of heap memory requirements. In Jones and Blackburn

[Jones and Blackburn2008], pages 141–150.

[Braginsky et al., 2013] Anastasia Braginsky, Alex Kogan, and Erez Petrank. Drop the anchor:

Lightweight memory management for non-blocking data structures. In SPAA 2013 [SPAA 20132013],

pages 33–42.

[Brandt et al., 2014] Steven R. Brandt, Hari Krishnan, Gokarna Sharma, and Costas Busch. Concurrent,

parallel garbage collection in linear time. In Guyer and Grove [Guyer and Grove2014], pages 47–58.

[Brandt et al., 2018] Steven R. Brandt, Hari Krishnan, Costas Busch, and Gokarna Sharma. Distributed

garbage collection for general graphs. In Payer and Sartor [Payer and Sartor2018], pages 29–44.

[Branquart and Lewi, 1971] P. Branquart and J. Lewi. A scheme of storage allocation and garbage col-

lection for Algol–68. In Peck [Peck1971], pages 198–238.

[Brecht et al., 2001] Tim Brecht, Eshrat Arjomandi, Chang Li, and Hang Pham. Controlling garbage

collection and heap growth to reduce the execution time of Java applications. In OOPSLA 2001

[OOPSLA 20012001], pages 353–366.

[Brecht et al., 2006] Tim Brecht, Eshrat Arjomandi, Chang Li, and Hang Pham. Controlling garbage

collection and heap growth to reduce the execution time of Java applications. ACM Transactions on

Programming Languages and Systems, 28(5):908–941, September 2006.

[Brega and Rivera, 2000] Roberto Brega and Gabrio Rivera. Dynamic memory management with

garbage collection for embedded applications. In Proc. of the USENIX Workshop on Industrial Expe-

riences with Systems Software (WIESS 2000), San Diego, CA, October 2000.

22



[Brent, 1989] R.P. Brent. Efficient implementation of the first-fit strategy for dynamic storage allocation.

ACM Transactions on Programming Languages and Systems, 11(3):388–403, July 1989.

[Briot, 2012a] Emmanuel Briot. Gem #100: Reference counting in Ada — part 3: Weak references.

SIGADA Ada Letters, 32(2):33–34, August 2012.

[Briot, 2012b] Emmanuel Briot. Gem #97: Reference counting in Ada — part 1. SIGADA Ada Letters,

32(2):24–27, January 2012.

[Briot, 2012c] Emmanuel Briot. Gem #99: Reference counting in Ada — part 2: task safety. SIGADA

Ada Letters, 32(2):31–32, August 2012.

[Brisset, 1992] P. Brisset. Compilation de λProlog. PhD thesis, Université de Rennes, 1992.

[Britton, 1975] Dianne Ellen Britton. Heap storage management for the programming language Pascal.

Master’s thesis, University of Arizona, 1975.

[Broberg et al., ] Magnus Broberg, Daniel Häggander, Per Lidén, and Lars Lundberg. Improving the

performance of multiprocessor memory management in Java. Java Report. To appear.

[Brodie-Tyrrell et al., 2004] William Brodie-Tyrrell, Henry Detmold, Katrina E. Falkner, and David S.

Munro. Garbage collection for storage-oriented clusters. In Vladimir Estivill-Castro, editor, Australian

Computer Science Conference, volume 26 of CRPIT, pages 99–108, Dunedin, New Zealand, January

2004. Australian Computer Society.

[Bromley, 1980] A.G. Bromley. Memory fragmentation in buddy methods for dynamic storage alloca-

tion. Acta Informatica, 14(2):107–117, August 1980.

[Brooks et al., 1982] Rodney A. Brooks, Richard P. Gabriel, and Guy L. Steele. S–1 Common Lisp

implementation. In LFP 1982 [LFP 19821982], pages 108–113.

[Brooks et al., 1983] Rodney A. Brooks, Richard P. Gabriel, and Guy L. Steele. LISP-in-LISP: High

performance and portability. In International Joint Conference on Artifical Intelligence, volume 2,

pages 845–849. IJCAI, 1983.

[Brooks, 1984] Rodney A. Brooks. Trading data space for reduced time and code space in real-time

garbage collection on stock hardware. In Steele [Steele1984], pages 256–262.

[Brooksby, 2002] Richard Brooksby. The Memory Pool System: Thirty person-years of memory man-

agement development goes open source. Technical report, Ravenbrook Limited, January 2002.

[Brownbridge, 1984] David R. Brownbridge. Recursive Structures in Computer Systems. PhD thesis,

University of Newcastle upon Tyne, September 1984.

[Brownbridge, 1985] David R. Brownbridge. Cyclic reference counting for combinator machines. In

Jouannaud [Jouannaud1985], pages 273–288.

[Broy and Pepper, 1982] Manfred Broy and Peter Pepper. Combining algebraic and algorithmic reason-

ing: An approach to the Schorr–Waite algorithm. ACM Transactions on Programming Languages and

Systems, 4(3):362–381, July 1982.

[Bruha, 1987] Ivan Bruha. Representation of structures and garbage collection in McMaster POPLOG.

Technical Report 88-01, McMaster University, Department of Computer Science and Systems,Canada,

1987.

[Bruno and Ferreira, 2017] Rodrigo Bruno and Paulo Ferreira. POLM2: Automatic profiling for object

lifetime-aware memory management for Hotspot big data applications. In Proceedings of the 18th

ACM/IFIP/USENIX Middleware Conference, pages 147–160, Las Vegas, Nevada, 2017.

[Bruno and Ferreira, 2018] Rodrigo Bruno and Paulo Ferreira. A study on garbage collection algorithms

for big data environments. ACM Computing Surveys, 51(1):35, January 2018.

[Bruno et al., 2017] Rodrigo Bruno, Luı́s Picciochi Oliveira, and Paulo Ferreira. NG2C: Pretenuring

garbage collection with dynamic generations for HotSpot big data applications. In Kirsch and Titzer

[Kirsch and Titzer2017], pages 2–13.

[Bruno et al., 2018] Rodrigo Bruno, Paulo Ferreira, Ruslan Synytsky, Tetiana Fydorenchyk, Jia Rao,

Hang Huang, and Song Wu. Dynamic vertical memory scalability for OpenJDK cloud applications.

In Payer and Sartor [Payer and Sartor2018], pages 59–70.

[Bruno et al., 2019] Rodrigo Bruno, Duarte Patricio, José Sim ao, Luis Veiga, and Paulo Ferreira. Run-

time object lifetime profiler for latency sensitive big data applications. In EuroSys19, pages 1–16,

2019.

23



[Brunthaler, 2010] Stefan Brunthaler. Efficient interpretation using quickening. In Clinger

[Clinger2010], pages 1–10.

[Brus et al., 1987] T. Brus, M.J.C.D. van Eekelen, M.J. Plasmeijer, and H.P. Barendregt. Clean: A

language for functional graph rewriting. In Kahn [Kahn1987], pages 364–384.

[Bruynooghe and Janssens, 1988] Maurice Bruynooghe and G. Janssens. An instance of abstract inter-

pretation integrating type and mode inferencing. In 5th International Conference and Symposium on

Logic Programming, pages 669–683. MIT Press, 1988.

[Bruynooghe and Wirsing, 1992] Maurice Bruynooghe and Martin Wirsing, editors. 4th International

Symposium on Programming Language Implementation and Logic Programming, volume 631 of Lec-

ture Notes in Computer Science, Leuven, Belgium, August 1992. Springer-Verlag.

[Bruynooghe, 1980] Maurice Bruynooghe. Garbage collection in Prolog implementations. Logic Pro-

gramming, pages 83–98, 1980. Also in Workshop on Logic Programming, Debrecen, Hungary, 1980.

[Bruynooghe, 1982] Maurice Bruynooghe. A note on garbage collection in Prolog interpreters. In ICLP

1982 [ICLP 19821982], pages 52–55.

[Bruynooghe, 1984] Maurice Bruynooghe. Garbage collection in Prolog implementations. In J.A.

Campbell, editor, Implementations of Prolog, pages 259–267. Ellis-Horwood, 1984.

[Bruynooghe, 1986] Maurice Bruynooghe. Compile-time garbage collection. Report CW43, Katholieke

Universiteit of Leuven, 1986.

[Bruynooghe, 1987] Maurice Bruynooghe. Compile-time garbage collection or How to transform pro-

grams in an assignment-free language into code with assignments. In L.G.L.T. Meertens, editor,

Program specification and transformation. The IFIP TC2/WG 2.1 Working Conference, Bad Tolz,

Germany, pages 113–129. North-Holland, Amsterdam, April 15–17, 1986 1987.

[Bu et al., 2013] Yingyi Bu, Vinayak Borkar, Guoqing Xu, and Michael J. Carey. A bloat-aware design

for big data applications. In Petrank and Cheng [Petrank and Cheng2013].

[Budimlic et al., 2009] Zoran Budimlic, Aparna M. Chandramowlishwaran, Kathleen Knobe, Geoff N.

Lowney, Vivek Sarkar, and Leo Treggiari. Declarative aspects of memory management in the Con-

current Collections parallel programming model. In DAMP 2009: Workshop on Declarative Aspects

of Multicore Programming, Savannah, GA, January 2009.

[Bull et al., 2000] J.M. Bull, L.A. Smith, M.D. Westhead, D.S. Henty, and R.A. Davey. A benchmark

suite for high performance Java. Concurrency and Computation: Practice and Experience, 12(6):375–

388, 2000.

[Burdy, 2001] Lilian Burdy. B vs. Coq to prove a garbage collector. In R.J. Boulton and P.B. Jackson,

editors, 14th International Conference on Theorem Proving in Higher Order Logics: Supplemental

Proceedings, pages 85–97, September 2001. Report EDI–INF–RR–0046, Division of Informatics,

University of Edinburgh.

[Burgess et al., 1999] Peter Burgess, Nigel Perry, and Robert Pointon. The concurrent Massey Hope+C

functional language system. Report, Massey University, 1999. Available on request from Nigel Perry.

[Burnett, 1987] T.D. Burnett. Parallel reduction architecture. In IFIP WG 10.3 Working Conference for

Numerical and Signal Processing Applications on Highly Parallel Computers, pages 41–57, Sophia

Antipolis, France, March 1987. North-Holland.

[Burton and Simpson, 2000] F. Warren Burton and David J. Simpson. Memory requirements for parallel

programs. Parallel Computing, 26(13—14):1739—1763, 2000.

[Burton, 1976] F. Warren Burton. A buddy system variation for disk storage allocation. Communications

of the ACM, 19(7):416–417, July 1976.

[Burton, 2000] Joshua W. Burton. Garbage collection on the run. Dr. Dobb’s Journal, 311:46–53, April

2000.

[Butler, 1986] Margaret H. Butler. Storage reclamation for object oriented database systems: a summary

of the expected costs. In International Workshop on Object-Oriented Database Systems, pages 210–

211, Pacific Grove, CA, September 1986. IEEE Press.

[Butler, 1987] Margaret H. Butler. Storage reclamation in object oriented database systems. In ACM

SIGMOD International Conference on Management of Data, pages 410–425, San Francisco, CA,

May 1987.

24



[Butters, 2007] Albin M. Butters. Total cost of ownership: A comparison of C/C++ and Java. Technical

report, Evans Data Corporation, June 2007.

[Buytaert et al., 2004] Dries Buytaert, Kris Venstermans, Lieven Eeckhout, and Koen De Bosschere.

Garbage collection scheduling. In Program Acceleration through Application and Architecture Driven

Code Transformations: Symposium Proceedings, pages 47–49, 2004.

[Buytaert et al., 2005] Dries Buytaert, Kris Venstermans, Lieven Eeckhout, and Koen De Bosschere.

Garbage collection hints. In HiPEAC 2005 International Conference on High Performance Embedded

Architectures and Compilers, Barcelona, November 2005.

[Byma and Larus, 2018] Stuart Byma and James R. Larus. Detailed heap profiling. In Payer and Sartor

[Payer and Sartor2018], pages 1–13.

[Cabrera et al., 1991] Luis-Felipe Cabrera, Vincent Russo, and Marc Shapiro, editors. International

Workshop on Object Orientation in Operating Systems, Palo Alto, CA, October 1991. IEEE Press.

[Cabrera et al., 1992] Luis-Felipe Cabrera, Vince Russo, and Marc Shapiro, editors. International Work-

shop on Object Orientation in Operating Systems, Paris, September 1992. IEEE Press.

[Cahill et al., 1993] Vinny Cahill, Seán Baker, Chris Horn, and Gradimir Stavovic. The Amadeus

GRT — generic runtime support for distributed persistent programming. In OOPSLA 1993

[OOPSLA 19931993]. Technical report TCD–CS–93–37.

[Cai and Wellings, 2003] Hao Cai and Andy J. Wellings. Towards a high-integrity real-time Java virtual

machine. In On the Move to Meaningfull Internet Systems 2003: Workshop on Java Technologies

for Real-Time and Embedded Systems, volume 2889 of Lecture Notes in Computer Science, pages

319–334. Springer-Verlag, 2003.

[Cai et al., 2020] Wentao Cai, Haosen Wen, H. Alan Beadle, Chris Kjellqvist, Mohammad Hedayati,

and Michael L. Scott. Understanding and optimizing persistent memory allocation. In Maas and Ding

[Maas and Ding2020], pages 60–73.

[Cai et al., 2021] Zixian Cai, Stephen M. Blackburn, Michael D. Bond, and Martin Maas. An empirical

lower bound on the overheads of production garbage collectors. https://arxiv.org/pdf/2112.07880.pdf,

December 2021.

[Cai et al., 2022] Zixian Cai, Stephen M. Blackburn, Michael D. Bond, and Martin Maas. Distilling the

real cost of production garbage collectors. In ISPASS 2022 [ISPASS 20222022].

[Calcagno et al., 2003] Cristiano Calcagno, Peter O’Hearn, and Richard Bornat. Program logic and

equivalence in the presence of garbage collection. Theoretical Computer Science, 298(3), 2003.

[Calcagno, 2001] Cristiano Calcagno. Program logics in the presence of garbage collection. In SPACE

2001 [SPACE 20012001].

[Calder and Zorn, 2005] Brad Calder and Benjamin G. Zorn, editors. Workshop on Memory System

Performance, Chicago, IL, June 2005.

[Calder et al., 1994] Brad Calder, Dirk Grunwald, and Benjamin Zorn. Quantifying behavioral differ-

ences between C and C++ programs. Journal of Programming Languages, 2(4):313–351, 1994.

[Calder et al., 1998] Brad Calder, Chandra Krintz, S. John, and T. Austin. Cache-conscious data place-

ment. In ASPLOS 1998 [ASPLOS 19981998], pages 139–149.

[Cameron and Singer, 2014] Callum Cameron and Jeremy Singer. We are all economists now: Economic

utility for multiple heap sizing. In Proceedings of the 9th Implementation, Compilation, Optimization

of OO Languages, Programs and Systems Workshop, 2014.

[Cameron et al., 2015] Callum Cameron, Jeremy Singer, and David Vengerov. The judgment of

Forseti: Economic utility for dynamic heap sizing of multiple runtimes. In Bond and Hosking

[Bond and Hosking2015], pages 143–156.

[Campbell, 1971] John A. Campbell. A note on an optimal-fit method for dynamic allocation of storage.

Computer Journal, 14(1):7–9, February 1971.

[Campbell, 1974] John A. Campbell. Optimal use of storage in a simple model of garbage collection.

Information Processing Letters, 3(2):374, November 1974.

[Campbell, 2014] Matthew Campbell. Automatic Reference Counting, pages 147–151. Apress, Berkeley,

CA, 2014.

25



[Campin and Atkinson, 1986] J. Campin and Malcolm Atkinson. A persistent store garbage collector

with statistical facilities. Technical report, Universities of Glasgow and St Andrews, 1986.

[Campos and Hanson, 1993] Alvaro E. Campos and David R. Hanson. Garbage collection in EZ. In

R. Baeza-Yates, editor, 13th International Conference on Computer Science, La Serena, Chile, 1993.

Plenum Press.

[Campos, 1993] Alvaro E. Campos. Distributed, Garbage-Collected, Persistent, Virtual Address Spaces.

PhD dissertation, Princeton University, Department of Computer Science, June 1993. Maybe at

http://ncstrl.cs.princeton.edu/reports/1993/419.ps.Z.

[Cann and Oldehoeft, 1988] D.C. Cann and Rod R. Oldehoeft. Reference count and copy elimination

for parallel applicative computing. Technical Report CS–88–129, Department of Computer Science,

Colorado State University, Fort Collins, CO, 1988.

[Cann et al., 1992] D.C. Cann, J.T. Feo, A.D.W. Bohoem, and Rod R. Oldehoeft. SISAL Reference

Manual: Language Version 2.0, 1992.

[Cannarozzi et al., 2000] Dante Cannarozzi, Michael P. Plezbert, and Ron Cytron. Contaminated

garbage collection. In PLDI 2000 [PLDI 20002000], pages 264–273.

[Cansella and Méry, 2006] Dominique Cansella and Dominique Méry. Formal and incremental con-

struction of distributed algorithms: On the distributed reference counting algorithm. Theoretical

Computer Science, 363(3):318–337, November 2006.

[Cao et al., 2011] Ting Cao, Stephen M. Blackburn, Tiejun Gao, and Kathryn S. McKinley. Virtual

machine services: An opportunity for hardware customization. In Workshop on Energy-efficient Com-

puting for a Sustainable World (EESC), Porto Alegre, Brazil, December 2011. Held in conjunction

with MICRO-44.

[Cao et al., 2012a] Ting Cao, Stephen M. Blackburn, Tiejun Gao, and Kathryn S. McKinley. The yin

and yang of power and performance for asymmetric hardware and managed software. In ISCA 2012

[ISCA 20122012].

[Cao et al., 2012b] Ting Cao, Stephen M. Blackburn, and Kathryn S. McKinley. System design for

heterogeneity: The virtual machine services test case. Technical Report TR–CS–12–01, Australian

National University, 2012.

[Caplinger, 1988] Michael Caplinger. A memory allocator with garbage collection for C. In USENIX

Winter Conference, pages 323–323. USENIX Association, 1988.

[Car, 2010] David Car. A reference counting implementation in Fortran 95/2003. SIGPLAN Fortran

Forum, 29(1):2128, April 2010.

[Cardelli et al., 1988] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and

Greg Nelson. Modula-3 report (revised). Research Report PRC–131, DEC Systems Research Center

and Olivetti Research Center, 1988.

[Cardelli et al., 1992] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and

Greg Nelson. Modula-3 language definition. ACM SIGPLAN Notices, 27(8):15–42, August 1992.

[Cardelli, 1984] Luca Cardelli. Compiling a functional language. In Steele [Steele1984], pages 208–

217.

[Cardelli, 1991] Luca Cardelli. Typeful programming. In E.J. Neuhold and M. Paul, editors, Formal

Description of Programming Concepts. Springer-Verlag, 1991. Revised 1 January, 1993.

[Cardelli, 2003] Luca Cardelli, editor. 17th European Conference on Object-Oriented Programming,

volume 2743 of Lecture Notes in Computer Science, Darmstadt, Germany, June 2003. Springer-Verlag.

[Carlini and Rendina, 1992] Giuliano Carlini and Susan Rendina. Garbage collection for C programs.

Dr. Dobb’s Journal, 17(11), November 1992.

[Carlsson et al., 1990] Svante Carlsson, Christer Mattsson, and Mats Bengtsson. A fast expected-time

compacting garbage collection algorithm. In Jul and Juul [Jul and Juul1990].

[Carlsson et al., 1991] Svante Carlsson, Christer Mattsson, Mats Bengtsson, and Patricio Poblete. A new

compacting garbage collection algorithm with a good average-case performance. In STACS-91, 1991.

[Carlsson, 1987] M. Carlsson. Freeze, indexing and other implementation issues in the WAM. In Lassez

[Lassez1987], pages 40–58.

26



[Carpen-Amarie et al., 2015a] Maria Carpen-Amarie, Dave Dice, Patrick Marlier, Gaël Thomas, and

Pascal Felber. Evaluating HTM for pauseless garbage collectors in Java. In The 13th IEEE Inter-

national Symposium on Parallel and Distributed Processing with Applications (ISPA-15), Helsinki,

Finland, 2015.

[Carpen-Amarie et al., 2015b] Maria Carpen-Amarie, Patrick Marlier, Pascal Felber, and Gaël Thomas.

A performance study of Java garbage collectors on multicore architectures. In Proceedings of the Sixth

International Workshop on Programming Models and Applications for Multicores and Manycores

(PMAM’15), pages 20–29, San Francisco, CA, 2015. ACM Press.

[Carpen-Amarie et al., 2016] Maria Carpen-Amarie, Dave Dice, Gaël Thomas, and Pascal Felber. Trans-

actional pointers: Experiences with HTM-based reference counting in C++. In Networked Systems

(NETSYS), volume 9944 of Lecture Notes in Computer Science. Springer, 2016.

[Carpen-Amarie et al., 2017] Maria Carpen-Amarie, Yaroslav Hayduk, Pascal Felber, Christof Fetzer,

Gaël Thomas, and Dave Dice. Towards an efficient pauseless Java GC with selective HTM-based

access barriers. In Proceedings of the 14th International Conference on Managed Languages and

Runtimes, pages 85–91. ACM Press, 2017.

[Carpen-Amarie et al., 2023] Maria Carpen-Amarie, Georgios Vavouliotis, Konstantinos Tovletoglou,

Boris Grot, and Rene Mueller. Concurrent GCs and modern Java workloads: A cache perspective. In

Blackburn and Petrank [Blackburn and Petrank2023], pages 71–84.

[Carpen-Amarie, 2017] Maria Carpen-Amarie. Efficient Memory management with Hardware Transac-

tional Memory: a Focus on Java Garbage Collectors and C++ Smart Pointers. PhD thesis, Université

de Neuchâtel, 2017.

[Carrick and Cooper, 1987] Raymund Carrick and Richard Cooper, editors. 2nd International Workshop

on Persistent Object Systems, Appin, Scotland, August 1987. Universities of Glasgow and St Andrews.

[Carter, 1989] A.M. Carter. Cascade: Hardware for high/variable precision arithmetic. In 9th Symposium

on Computer Arithmetic, pages 184–191, Santa Monica, CA, September 1989. IEEE Press.

[Case, 1991] Brian Case. PA–RISC provides rich instruction set within RISC framework. Microproces-

sor Report, 5(6), April 1991.

[Caudill and Wirfs-Brock, 1986] Patrick J. Caudill and Allen Wirfs-Brock. A third-generation

Smalltalk-80 implementation. In OOPSLA 1986 [OOPSLA 19861986], pages 119–130.

[CC 2000, 2000] 9th International Conference on Compiler Construction, volume 2027 of Lecture Notes

in Computer Science, Berlin, April 2000. Springer-Verlag.

[CC 2001, 2001] 10th International Conference on Compiler Construction, volume 1781 of Lecture

Notes in Computer Science, Genova, Italy, April 2001. Springer-Verlag.

[CC 2005, 2005] 14th International Conference on Compiler Construction, volume 3443 of Lecture

Notes in Computer Science, Edinburgh, April 2005. Springer-Verlag.

[CC 2006, 2006] 15th International Conference on Compiler Construction, volume 3923 of Lecture

Notes in Computer Science, Vienna, April 2006. Springer-Verlag.

[CC 2007, 2007] 16th International Conference on Compiler Construction, volume 4420 of Lecture

Notes in Computer Science, Braga, Portugal, March 2007. Springer-Verlag.

[CC 2014, 2014] 23rd International Conference on Compiler Construction, volume 8409 of Lecture

Notes in Computer Science, Grenoble, France, March 2014. Springer-Verlag.

[CC 2016, 2016] 25th International Conference on Compiler Construction, Barcelona, Spain, March

2016. ACM.

[Cen et al., 2020] Lujing Cen, Ryan Marcus, Hongzi Mao, Justin Gottschlich, Mohammad Alizadeh,

and Tim Kraska. Learned garbage collection. In Proceedings of the 4th ACM SIGPLAN International

Workshop on Machine Learning and Programming Languages (MAPL), pages 38–44. ACM Press,

2020.

[CenterLine, 1992] CenterLine Software, Cambridge, MA. CodeCenter, The Programming Environ-

ment, 1992.

[CGO 2003, 2003] 1st International Symposium on Code Generation and Optimization (CGO), San

Francisco, CA, March 2003. IEEE Computer Society Press.

27



[CGO 2004, 2004] 2nd International Symposium on Code Generation and Optimization (CGO), San

Jose, CA, March 2004. IEEE Computer Society Press.

[CGO 2005, 2005] 3rd International Symposium on Code Generation and Optimization (CGO), San

Jose, CA, March 2005. IEEE Computer Society Press.

[CGO 2006, 2006] 4th International Symposium on Code Generation and Optimization (CGO), New

York, NY, March 2006. IEEE Computer Society Press.

[CGO 2007, 2007] 5th International Symposium on Code Generation and Optimization (CGO), San

Jose, CA, March 2007. IEEE Computer Society Press.

[CGO 2008, 2008] 6th International Symposium on Code Generation and Optimization (CGO), Boston,

MA, April 2008. ACM Press.

[CGO 2009, 2009] 7th International Symposium on Code Generation and Optimization (CGO), Seattle,

WA, March 2009. IEEE Computer Society Press.

[CGO 2010, 2010] 8th International Symposium on Code Generation and Optimization (CGO), Toronto,

Canada, April 2010. ACM Press.

[Chaiken et al., 1990] David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant Agarwal. Directory-

based cache coherence in large-scale multiprocessors. IEEE Computer, 23(6):49–58, June 1990.

[Chailloux et al., 1984] Jérome Chailloux, Matthieu Devin, and Jean-Marie Hullot. Le Lisp: A portable

and efficient Lisp system. In Steele [Steele1984], pages 113–122.

[Chailloux, 1991] Emmanuel Chailloux. Compilation des Langages Fonctionnels: CeML un Traducteur

ML vers C. PhD thesis, Université de Paris VII, November 1991.

[Chailloux, 1992a] Emmanuel Chailloux. A conservative garbage collector with ambiguous roots for

static typechecking languages. In Bekkers and Cohen [Bekkers and Cohen1992], pages 218–229.

[Chailloux, 1992b] Emmanuel Chailloux. An efficient way of compiling ML to C. In David MacQueen,

editor, ACM SIGPLAN Workshop on ML and its Applications, San Francisco. ACM Press, June 1992.

[Chambers and Hosking, 2000] Craig Chambers and Antony L. Hosking, editors. 2nd ACM SIGPLAN

International Symposium on Memory Management, ACM SIGPLAN Notices 36(1), Minneapolis,

MN, October 2000. ACM Press.

[Chambers and Ungar, 1989] Craig Chambers and David M. Ungar. Customization: Optimizing

compiler technology for Self, a dynamically-typed object-oriented language. In PLDI 1989

[PLDI 19891989], pages 146–160.

[Chambers et al., 1989] Craig Chambers, David M. Ungar, and Elgin Lee. An efficient implementa-

tion of SELF, a dynamically-typed object-oriented language based on prototypes. In OOPSLA 1989

[OOPSLA 19891989], pages 48–70.

[Chambers et al., 1991] Craig Chambers, David M. Ungar, and Elgin Lee. An efficient implementa-

tion of SELF, a dynamically-typed object-oriented language based on prototypes. Lisp and Symbolic

Computation, 4(3):243–281, 1991.

[Chambers, 1992] Craig Chambers. The Design and Implementation of the SELF Compiler, an Opti-

mizing Compiler for an Objected-Oriented Programming Language. PhD thesis, Stanford University,

March 1992.

[Chambers, 1993] Craig Chambers. Cost of garbage collection in the SELF system. In Moss et al.

[Moss et al.1993].

[Chang and Daugherty, 2000] J. Morris Chang and Charles H. Daugherty. An efficient data structure for

dynamic memory management. Journal of Systems and Software, 54(3):219–226, November 2000.

[Chang and Gehringer, 1993a] J. Morris Chang and Edward F. Gehringer. Evaluation of an object-

caching coprocessor design for object-oriented systems. In International Conference on Computer

Design, pages 132–139, Cambridge, MA, October 1993. IEEE Press.

[Chang and Gehringer, 1993b] J. Morris Chang and Edward F. Gehringer. Performance of object caching

for object-oriented systems. In IFIP TC10/WG10.5 International Conference on Very Large Scale

Integration, pages 83–91, Grenoble, France, September 1993.

[Chang and Gehringer, 1996] J. Morris Chang and Edward F. Gehringer. A high-performance memory

allocator for object-oriented systems. IEEE Transactions on Computers, pages 357–366, March 1996.

28



[Chang and Katz, 1989] Ellis E. Chang and Randy H. Katz. Exploiting inheritance and structure se-

mantics for effective clustering and buffering in an object-oriented DBMS. In SIGMOD 1989

[SIGMOD 19891989], pages 348–357.

[Chang and Kuo, 2002] Li-Pin Chang and Tei-Wei Kuo. A real-time garbage collection mechanism for

flash-memory storage systems in embedded systems. In RTCSA 2002 [RTCSA 20022002].

[Chang and Lee, 1998] J. Morris Chang and Woo Hyong Lee. A study on memory allocations in C++.

In 14th International Conference on Advanced Science and Technology, pages 53–62, Naperville, IL,

April 1998.

[Chang and Maxemchuk, 1984] J. Chang and N.F. Maxemchuk. Reliable broadcast protocols. ACM

Transactions on Computer Systems, 2:251–273, August 1984.

[Chang and Wellings, 2005] Yang Chang and Andy J. Wellings. Integrating hybrid garbage collection

with dual priority scheduling. In RTCSA 2005 [RTCSA 20052005], pages 185–188.

[Chang and Wellings, 2006a] Yang Chang and Andy J. Wellings. Hard real-time hybrid garbage col-

lection with low memory requirements. In 27th IEEE Real-Time Systems Symposium, pages 77–86,

December 2006.

[Chang and Wellings, 2006b] Yang Chang and Andy J. Wellings. Low memory overhead real-time

garbage collection for Java. In 4th International Workshop on Java Technologies for Real-time and

Embedded Systems, Paris, France, October 2006.

[Chang and Wellings, 2010] Yang Chang and Andy J. Wellings. Garbage collection for flexible hard

real-time systems. IEEE Transactions on Computers, 59(8):1063–1075, August 2010.

[Chang et al., 1999a] J. Morris Chang, Woo Hyong Lee, and Yusuf Hasan. Measuring dynamic memory

invocations in object-oriented programs. In 18th IEEE International Performance Conference on

Computers and Communications, pages 268–274, Phoenix, AZ, February 1999.

[Chang et al., 1999b] J. Morris Chang, Witiwas Srisa-an, and Chia-Tien Dan Lo. DMMX (dynamic

memory management extensions): An introduction. In Workshop notes of ICCD workshop on Hard-

ware Support for Objects and Microarchitectures for Java, pages 11–14, Austin, TX, October 1999.

[Chang et al., 1999c] J. Morris Chang, Witiwas Srisa-an, and Chia-Tien Dan Lo. OMeX: Object man-

agement extensions for embedded systems. In 2nd International Workshop on Compiler and Archi-

tecture Support for Embedded Systems, Washington, DC, October 1999.

[Chang et al., 2000a] J. Morris Chang, Yusuf Hasan, and Woo Hyong Lee. High-performance memory

allocator for memory intensive applications. In 4th IEEE International Conference on High Perfor-

mance Computing in Asia-Pacific Region, pages 6–12, Beijing, China, May 2000.

[Chang et al., 2000b] J. Morris Chang, Chia-Tien Dan Lo, and Edward F. Gehringer. Hardware support

for dynamic memory management. In Workshop notes of ACM/IEEE International Symposium on

Computer Architecture Workshop on Solving the Memory Wall Problem, Vancouver, June 2000.

[Chang et al., 2000c] J. Morris Chang, Witiwas Srisa-an, and C.D. Lo. Hardware support for concurrent

garbage collection in SMP systems. In 4th IEEE International Conference on High Performance

Computing in Asia-Pacific Region, pages 513–517, Beijing, China, May 2000.

[Chang et al., 2000d] J. Morris Chang, Witiwas Srisa-an, and Chia-Tien Dan Lo. Architectural support

for dynamic memory management. In IEEE International Conference on Computer Design, pages

99–104, Austin, TX, September 2000.

[Chang et al., 2000e] J. Morris Chang, Witiwas Srisa-an, and Chia-Tien Dan Lo. Architectural support

for dynamic memory management. In IEEE International Conference on Computer Design, pages

99–104, Austin, TX, September 2000.

[Chang et al., 2001] J. Morris Chang, W.H. Lee, and Witiwas Srisa-an. A study of the allocation behav-

ior of C++ programs. Journal of Systems and Software, 2001. accepted for publication, Fall 2001.

[Chang et al., 2002] J. Morris Chang, Witawas Srisa-an, Chia-Tien Dan Lo, and Edward F. Gehringer.

DMMX: Dynamic memory management extensions. Journal of Systems and Software, 63(3):187–

199, September 2002.

[Chang et al., 2004] Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo. Real-time garbage collection for flash-

memory storage systems of real-time embedded systems. ACM Transactions on Embedded Computer

Systems, 3(4):837–863, November 2004.

29



[Chang et al., 2012] J. Morris Chang, Wei-Mei Chen, Paul A. Griffin, and Ho-Yuan Cheng. Cyclic

reference counting by typed reference fields. Computer Languages, Systems & Structures, 38(1):98–

107, 2012.

[Chang, 1997] J. Morris Chang. An optimized two-dimensional buddy system for dynamic resource

allocation. Journal of High Performance Computing, 4(1):47–55, December 1997.

[Chang, 2005] Yang Chang. Integrating hybrid garbage collection with dual priority scheduling. Tech-

nical Report YCS388(2005), University of York, 2005.

[Chang, 2006] Yang Chang. Hard real-time hybrid garbage collection with low memory requirement.

Technical report, University of York, 2006.

[Chang, 2007] Yang Chang. Garbage Collection for Flexible Hard Real-time Systems. PhD thesis,

University of York, 2007.

[Chansler, 1986] R.J. Chansler. Efficient Use of Systems with Many Processors. Number 6 in Computer

science: computer architecture and design. University of Michigan Press, Ann Arbor, MI, 1986.

[Chase et al., 1990] David R. Chase, Wegman, and Zadeck. Analysis of pointers and structures. ACM

SIGPLAN Notices, 25(6), 1990.

[Chase et al., 1992a] Jeffrey S. Chase, Henry M. Levy, Miche Baker-Harvey, and Edward D. Lazowska.

How to use a 64-bit virtual address space. Technical Report 92-03-02, University of Washington,

Seattle, WA, February 1992.

[Chase et al., 1992b] Jeffrey S. Chase, Henry M. Levy, Edward D. Lazowska, and Miche Baker-Harvey.

Lightweight shared objects in a 64-bit operating system. In OOPSLA 1992 [OOPSLA 19921992].

[Chase, 1987] David R. Chase. Garbage Collection and Other Optimizations. PhD thesis, Rice Univer-

sity, August 1987.

[Chase, 1988] David R. Chase. Safety considerations for storage allocation optimizations. In PLDI 1988

[PLDI 19881988], pages 1–10.

[Chatterjee et al., 2015] Nachiketa Chatterjee, Saurabh Singh Thakur, and Partha Pratim Das. Resource

management in native languages using dynamic binary instrumentation (PIN). In Advanced Comput-

ing and Systems for Security, volume 395 of Advances in Intelligent Systems and Computing, Novem-

ber 2015. Second International Doctoral Symposium on Applied Computation and Security Systems

(ACSS 2015).

[Chawla, 2003] Sumit Chawla. Fine-tuning Java garbage collection performance: How to detect and

troubleshoot garbage collection issues with the IBM Java virtual machine. IBM developerWorks,

January 2003.

[Cheadle et al., 2000] Andrew M. Cheadle, Anthony J. Field, Simon Marlow, Simon L. Peyton Jones,

and R.L While. Non-stop Haskell. In ICFP 2000 [ICFP 20002000], pages 257–267.

[Cheadle et al., 2004] Andrew M. Cheadle, Anthony J. Field, Simon Marlow, Simon L. Peyton Jones,

and Lyndon While. Exploring the barrier to entry — incremental generational garbage collection for

Haskell. In Bacon and Diwan [Bacon and Diwan2004], pages 163–174.

[Cheadle et al., 2006] Andrew Cheadle, Tony Field, John Ayres, Neil Dunn, Richard Hayden,

and Johan Nystrom-Persson. Visualising dynamic memory allocators. In Petrank and Moss

[Petrank and Moss2006], pages 115–125.

[Cheadle et al., 2008] A.M. Cheadle, A.J. Field, and J. Nyström-Persson. A method specialisation and

virtualised execution environment for Java. In Gregg et al. [Gregg et al.2008], pages 51–60.

[Chen et al., 2002a] Guangyu Chen, R. Shetty, Mahmut T. Kandemir, Narayanan Vijaykrishnan,

Mary Jane Irwin, and Mario Wolczko. Influence of garbage collection on memory system energy.

ACM Transactions on Embedded Computer Systems, 1(1), November 2002.

[Chen et al., 2002b] Gungyu Chen, Mahmut T. Kandemir, Narayanan Vijaykrishnan, Mary Jane Irwin,

and Mario Wolczko. Adaptive garbage collection for battery-operated environments. In JVM 2002

[JVM 20022002], pages 1–12.

[Chen et al., 2002c] Gungyu Chen, R. Shetty, Mahmut T. Kandemir, Narayanan Vijaykrishnan,

Mary Jane Irwin, and Mario Wolczko. Tuning garbage collection for reducing memory system energy

in an embedded Java environment. ACM Transactions on Embedded Computer Systems, 1(1):6–26,

November 2002.

30



[Chen et al., 2002d] Gungyu Chen, R. Shetty, Mahmut T. Kandemir, Narayanan Vijaykrishnan,

Mary Jane Irwin, and Mario Wolczko. Tuning garbage collection in an embedded Java environment.

In 8th Annual Symposium on High-Performance Computer Architecture, pages 92–103, Boston, MA,

February 2002. IEEE Computer Society Press.

[Chen et al., 2003a] D. Chen, A. Messer, D. Milojicic, and S. Dwarkadas. Garbage collector assisted

memory offloading for memory constrained devices. In 5th IEEE Workshop on Mobile Computing

Systems and Applications. IEEE Press, 2003.

[Chen et al., 2003b] Guangyu Chen, Mahmut Kandemir, Naraya Vijaykrishnan, Mary Jane Irwin, Bernd

Mathiske, and Mario Wolczko. Heap compression for memory-constrained Java environments. In

OOPSLA 2003 [OOPSLA 20032003], pages 282–301.

[Chen et al., 2004] Guangyu Chen, Mahmut Kandemir, Narayanan Vijaykrishnan, and Mary Jane Irwin.

Field level analysis for heap space optimization in embedded Java environments. In Bacon and Diwan

[Bacon and Diwan2004], pages 131–142.

[Chen et al., 2005] Guangyu Chen, Mahmut Kandemir, and Mary J. Irwin. Exploiting frequent field val-

ues in Java objects for reducing heap memory requirements. In Hind and Vitek [Hind and Vitek2005],

pages 68–78.

[Chen et al., 2006] Wen-Ke Chen, Sanjay Bhansali, Trishul M. Chilimbi, Xiaofeng Gao, and Weihaw

Chuang. Profile-guided proactive garbage collection for locality optimization. In Schwartzbach and

Ball [Schwartzbach and Ball2006], pages 332–340.

[Chen et al., 2011] Kuo-Yi Chen, J. Morris Chang, and Ting-Wei Hou. Multithreading in Java: Perfor-

mance and scalability on multicore systems. IEEE Transactions on Computers, 60(11), 2011.

[Cheney, 1970] C.J. Cheney. A non-recursive list compacting algorithm. Communications of the ACM,

13(11):677–8, November 1970.

[Cheng and Blelloch, 2001] Perry Cheng and Guy Blelloch. A parallel, real-time garbage collector. In

PLDI 2001 [PLDI 20012001], pages 125–136.

[Cheng et al., 1998] Perry Cheng, Robert Harper, and Peter Lee. Generational stack collection and

profile-driven pretenuring. In PLDI 1998 [PLDI 19981998], pages 162–173.

[Cheng, 2001] Perry Sze-Din Cheng. Scalable Real-Time Parallel Garbage Collection for Symmetric

Multiprocessors. PhD thesis, Carnegie Mellon University, September 2001. SCS Technical Report

CMU-CS-01-174.

[Cheong, 1992] Fah-Chun Cheong. Almost tag-free garbage collection for strongly-typed object-

oriented languages. Technical Report CSE-TR-126-92, University of Michigan, 1992.

[Cher and Gschwind, 2008] C.-Y. Cher and M. Gschwind. Cell GC: Using the Cell synergistic processor

as a garbage collection coprocessor. In Gregg et al. [Gregg et al.2008].

[Cher et al., 2004] Chen-Yong Cher, Antony L. Hosking, and T.N. Vijaykumar. Software prefetching

for mark-sweep garbage collection: Hardware analysis and software redesign. In Mukherjee and

McKinley [Mukherjee and McKinley2004], pages 199–210.

[Cherem and Rugina, 2004] Sigmund Cherem and Radu Rugina. Region analysis and transformation for

Java programs. In Bacon and Diwan [Bacon and Diwan2004], pages 85–96.

[Cherem and Rugina, 2006] Sigmund Cherem and Radu Rugina. Compile-time deallocation of individ-

ual objects. In Petrank and Moss [Petrank and Moss2006], pages 138–149.

[Cherem and Rugina, 2007] Sigmund Cherem and Radu Rugina. Uniqueness inference for compile-time

object deallocation. In Morrisett and Sagiv [Morrisett and Sagiv2007], pages 117–128.

[Cherem et al., 2007] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. Practical memory leak

detection using guarded value-flow analysis. In Ferrante and McKinley [Ferrante and McKinley2007],

pages 480–491.

[Chevalier et al., 2002] K. Chevalier, J. Kodumal, and X. Jiang. Memory subsystem optimization for

functional languages: A case study. Technical report, Computer Science Division, University of

California, Berkeley, May 2002.

[Chicha and Watt, 2006] Yannis Chicha and Stephen M. Watt. A localized tracing scheme applied to

garbage collection. In Naoki Kobayashi, editor, 4th Asian Symposium on Programming Languages

and Systems, volume 4279 of Lecture Notes in Computer Science, pages 323–349, Sydney, Australia,

November 2006. Springer-Verlag.

31



[Chicha, 2002] Yannis Chicha. Practical Aspects of Interacting Garbage Collectors. PhD thesis, Uni-

versity of Western Ontario, 2002.

[Chihaia and Gross, 2004] Irina Chihaia and Thomas Gross. An analytical model for software-only main

memory compression. In 3rd Workshop on Memory Issues, pages 107–113, Munich, Germany, June

2004. ACM Press.

[Chikayama and Kimura, 1987] T. Chikayama and Y. Kimura. Multiple reference management in Flat

GHC. In 4th International Conference on Logic Programming, pages 276–293, 1987.

[Chilimbi and Larus, 1998] Trishul M. Chilimbi and James R. Larus. Using generational garbage

collection to implement cache-conscious data placement. In Peyton Jones and Jones

[Peyton Jones and Jones1998], pages 37–48.

[Chilimbi et al., 1999a] Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Cache-conscious

structure definition. In PLDI 1999 [PLDI 19991999], pages 13–24.

[Chilimbi et al., 1999b] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-conscious struc-

ture layout. In PLDI 1999 [PLDI 19991999], pages 1–12.

[Chilimbi et al., 2000] Trishul Chilimbi, Richard E. Jones, and Benjamin Zorn. Designing a trace format

for heap allocation events. In Chambers and Hosking [Chambers and Hosking2000], pages 35–49.

[Chilimbi, 2001] Trishul M. Chilimbi. Efficient representations and abstractions for quantifying and

exploiting data reference locality. In PLDI 2001 [PLDI 20012001], pages 191–202.

[Chin et al., 2003] Wei-Ngan Chin, Florin Craciun, Shengchao Qin, and Martin Rinard. Region infer-

ence for an object-oriented language. Technical report, National University of Singapore, November

2003.

[Chin et al., 2004] Wei-Ngan Chin, Florin Craciun, Shengchao Qin, and Martin C. Rinard. Region in-

ference for an object-oriented language. In Pugh and Chambers [Pugh and Chambers2004], pages

243–254.

[Chin et al., 2008] Wei-Ngan Chin, Huu Hai Nguyen, Corneliu Popeea, and Shengchao Qin. Analysing

memory resource bounds for bytecode programs. In Jones and Blackburn [Jones and Blackburn2008],

pages 151–160.

[Chinta, 1992] Ramakrishna Chinta. Hardware-assisted garbage collection for the Icon programming

language. Technical Report 92–39, Iowa State University, December 1992.

[Chirimar et al., 1992] Jawahar Chirimar, Carl A. Gunter, and Jon G. Riecke. Proving memory manage-

meont invariants for a language based on linear logic. In LFP 1992 [LFP 19921992], pages 129–150.

[Chirimar et al., 1996] Jawahar Chirimar, Carl A. Gunter, and Jon G. Riecke. Reference counting as

a computational interpretation of linear logic. Journal of Functional Programming, 6(2):195–244,

March 1996.

[Chis et al., 2011] Adriana E. Chis, Nick Mitchell, Edith Schonberg, Gary Sevitsky, Patrick O’Sullivan,

Trevor Parsons, and John Murphy. Patterns of memory inefficiency. In Mezini [Mezini2011], pages

383–407.

[Chisnall and Lippautz, 2022] David Chisnall and Michael Lippautz, editors. 21st ACM SIGPLAN In-

ternational Symposium on Memory Management. ACM Press, June 2022.

[Chiueh, 1991] Tzi-cker Chiueh. An architectural technique for cache-level garbage collection. In

Hughes [Hughes1991a], pages 520–537.

[Cho et al., 2006] Hyeonjoong Cho, Chewoo Na, Binoy Ravindran, and E. Douglas Jensen. On schedul-

ing garbage collector in dynamic real-time systems with statistical timing assurances. In ISORC 2006

[ISORC 20062006].

[Cho et al., 2007] Hyeonjoong Cho, Chewoo Na, Binoy Ravindran, and E. Douglas Jensen. On schedul-

ing garbage collector in dynamic real-time systems with statistical timing assurances. Real-Time

Systems, 36(1–2):23–46, 2007.

[Cho et al., 2009] Hyeonjoong Cho, Binoy Ravindran, and Chewoo Na. Garbage collector scheduling in

dynamic, multiprocessor real-time systems. IEEE Transactions on Parallel and Distributed Systems,

20(6):845–856, June 2009.

[Choi et al., 1999] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and

Samuel Midkiff. Escape analysis for Java. In OOPSLA 1999 [OOPSLA 19991999], pages 1–19.

32



[Choi et al., 2003] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and

Samuel Midkiff. Stack allocation and synchronization options for Java using escape analysis. ACM

Transactions on Programming Languages and Systems, 25(6):876–910, November 2003.

[Choi et al., 2005] Hyung-Kyu Choi, Yoo C. Chung, and Soo-Mook Moon. Java memory allocation

with lazy worst fit for small objects. Computer Journal, 48(4):437–442, 2005.

[Choi et al., 2018] Jiho Choi, Thomas Shull, and Josep Torrellas. Biased reference counting: Minimiz-

ing atomic operations in garbage collection. In PACT 2018 [PACT 20182018], page 12.

[Chong et al., 2007] K. F. Chong, C. Y. Ho, and Anthony S. Fong. Pretenuring in Java by object lifetime

and reference density using scratch-pad memory. In Proceedings of 15th EUROMICRO International

Conference on Parallel, Distributed and Network-Based Processing, pages 205–212, 2007.

[Christiansen and Velschrow, 1998] M.V. Christiansen and P. Velschrow. Region-based memory man-

agement in Java. Master’s thesis, Department of Computer Science (DIKU), University of Copen-

hagen, May 1998.

[Christie et al., 2010] Dave Christie, Jae-Woong Chung, Stephan Diestelhorst, Michael Hohmuth, Mar-

tin Pohlack, Christof Fetzer, Martin Nowack, Torvald Riegel, Pascal Felber, Patrick Marlier, and Eti-

enne Riviere. Evaluation of AMD’s Advanced Synchronization Facility within a complete transac-

tional memory stack. In EuroSys 2010 [EuroSys 20102010], pages 27–40.

[Christopher, 1984] T.W. Christopher. Reference count garbage collection. Software: Practice and

Experience, 14(6):503–507, June 1984.

[Chung and Moon, 2000] Yoo C. Chung and Soo-Mook Moon. Memory allocation with lazy fits. In

Chambers and Hosking [Chambers and Hosking2000], pages 65–70.

[Chung et al., 2000] Yoo C. Chung, Soo-Mook Moon, Kemal Ebcioglu, and Dan Sahlin. Reducing

sweep time for a nearly empty heap. In 27th Annual ACM SIGPLAN-SIGACT ACM SIGPLAN Sym-

posium on Principles of Programming Languages (POPL ’00), Boston, MA, January 2000. ACM

Press.

[Chung et al., 2005] Yoo C. Chung, Soo-Mook Moon, Kemal Ebciolu, and Dan Sahlin. Selective sweep-

ing. Software: Practice and Experience, 35(1):15–26, 2005.

[Chung et al., 2010] Jae-Woong Chung, Luke Yen, Stephan Diestelhorst, Martin Pohlack, Michael

Hohmuth, David Christie, and Dan Grossman. ASF: AMD64 extension for lock-free data structures

and transactional memory. In 43rd IEEE/ACM International Symposium on Microarchitecture, pages

39–50, Atlanta, GA, December 2010.

[Ciepielewski and Haridi, 1983] A. Ciepielewski and Seif Haridi. Storage models for Or-parallel execu-

tion of logic programs. Technical Report TRITA–CS–8301, Royal Institute of Technology, Stockholm,

Sweden, 1983.

[Cierniak et al., 2003] Michal Cierniak, Marsha Eng, Neal Glew, Brian Lewis, and James Stichnoth. The

Open Runtime Platform: A flexible high-performance managed runtime environment. Intel Technol-

ogy Journal, 7(1):5–18, 2003.

[Cierniak et al., 2005] Michal Cierniak, Marsha Eng, Neal Glew, Brian Lewis, and James Stichnoth. The

Open Runtime Platform: A flexible high-performance managed runtime environment. Concurrency

and Computation: Practice and Experience, 17(5–6):617–637, 2005.

[Clark and Green, 1977] Douglas W. Clark and C. Cordell Green. An empirical study of list structure in

Lisp. Communications of the ACM, 20(2):78–86, February 1977.

[Clark and Green, 1978] Douglas W. Clark and C. Cordell Green. A note on shared list structure in Lisp.

Information Processing Letters, 7(6):312–314, October 1978.

[Clark, 1975] Douglas W. Clark. A fast algorithm for copying binary trees. Information Processing

Letters, 9(3):62–63, December 1975.

[Clark, 1976a] Douglas W. Clark. An efficient list moving algorithm using constant workspace. Com-

munications of the ACM, 19(6):352–354, June 1976.

[Clark, 1976b] Douglas W. Clark. List Structure: Measurements, Algorithms, and Encodings. PhD

thesis, Carnegie Mellon University, 1976.

[Clark, 1978] Douglas W. Clark. A fast algorithm for copying list structures. Communications of the

ACM, 21(5):351–357, May 1978.

33



[Clark, 1979] Douglas W. Clark. Measurements of dynamic list structure in Lisp. ACM Transactions on

Software Engineering, 5(1):51–59, January 1979.

[Clarke and Mason, 1996] Charles L.A. Clarke and Dave Mason. Compacting garbage collection can be

fast and simple. Software: Practice and Experience, 26(2):177–194, February 1996.

[Clarke, 2001] David Clarke. On deleting aggregate objects. In SPACE 2001 [SPACE 20012001].

[Clebsch and Drossopoulou, 2013] Sylvan Clebsch and Sophia Drossopoulou. Fully concurrent garbage

collection of actors on many-core machines. In OOPSLA 2013 [OOPSLA 20132013], pages 553–570.

[Clebsch et al., 2015] Sylvan Clebsch, Sebastian Blessing, Juliana Franco, and Sophia Drossopoulou.

Ownership and reference counting based garbage collection in the actor world. In Morandat

[Morandat2015].

[Click et al., 2005] Cliff Click, Gil Tene, and Michael Wolf. The Pauseless GC algorithm. In Hind and

Vitek [Hind and Vitek2005], pages 46–56.

[Click, 2003] Cliff Click. Performance myths exposed. Talk at JavaOne 2003, 2003.

[Clifford et al., 2014] Daniel Clifford, Hannes Payer, Michael Starzinger, and Ben L. Titzer. Allocation

folding based on dominance. In Guyer and Grove [Guyer and Grove2014], pages 15–24.

[Clifford et al., 2015] Daniel Clifford, Hannes Payer, Michael Stanton, and Ben L. Titzer. Memento

Mori: Dynamic allocation-site-based optimizations. In Bond and Hosking [Bond and Hosking2015],

pages 105–117.

[Clinger and Hansen, 1997] William D. Clinger and Lars T. Hansen. Generational garbage collection

and the radioactive decay model. In PLDI 1997 [PLDI 19971997], pages 97–108.

[Clinger and Klock, 2009] William D. Clinger and Felix S. Klock. Scalable garbage collection with

guaranteed MMU. In Scheme and Functional Programming 2009, Boston, MA, August 2009.

[Clinger and Rojas, 2006] William D. Clinger and Fabio V. Rojas. Linear combinations of radioactive

decay models for generational garbage collection. Science of Computer Programming, 62(2):184–203,

October 2006.

[Clinger et al., 1988] William D. Clinger, Anne Hartheimer, and Erik Ost. Implementation strategies for

continuations. In LFP 1988 [LFP 19881988], pages 124–131.

[Clinger, 2010] William D. Clinger, editor. 6th ACM SIGPLAN International Symposium on on Dynamic

Languages, Reno, NV, October 2010.

[Coblenz et al., 2022] Michael Coblenz, Michelle L. Mazurek, and Michael Hicks. Garbage collection

makes Rust easier to use: A randomized controlled trial of the Bronze garbage collector. In ICSE

2022 [ICSE 20222022], pages 1021–1032.

[Coburn et al., 2011] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,

Ranjit Jhala, and Steven Swanson. NV-Heaps: Making persistent objects fast and safe with next-

generation, non-volatile memories. In Mowry [Mowry2011], pages 105–118.

[Cockshott et al., 1984] W. Cockshott, Malcolm Atkinson, K. Chisholm, P. Bailey, and Ron Morrison.

Persistent object management system. Software: Practice and Experience, 14(1):49–71, January

1984.

[Codewright’s Toolworks, 1993] Codewright’s Toolworks, San Pedro, CA. Alloc-GC: The Garbage Col-

lecting Replacement for malloc(), 1993.

[Coffman, Jr. and Leighton, 1989] E.G. Coffman, Jr. and F.T. Leighton. A provably efficient algorithm

for dynamic storage allocation. Journal of Computer and System Sciences, 38(1):2–35, February 1989.

[Coffman, Jr. et al., 1985] E.G. Coffman, Jr., T.T. Kadota, and L.A. Shepp. On the asymptotic optimal-

ity of first-fit storage allocation. IEEE Transactions on Software Engineering, SE-11(2):235–239,

February 1985.

[Coffman, Jr., 1983] E.G. Coffman, Jr. An introduction to combinatorial models of dynamic storage

allocation. SIAM Review, 25(3):311–325, July 1983.

[Cohen and Nicolau, 1983] Jacques Cohen and Alexandru Nicolau. Comparison of compacting algo-

rithms for garbage collection. ACM Transactions on Programming Languages and Systems, 5(4):532–

553, October 1983.

[Cohen and Petrank, 2013] Nachshon Cohen and Erez Petrank. Limitations of partial compaction: To-

wards practical bounds. In PLDI 2013 [PLDI 20132013].

34



[Cohen and Petrank, 2015a] Nachshon Cohen and Erez Petrank. Automatic memory reclamation for

lock-free data structures. In OOPSLA 2015 [OOPSLA 20152015].

[Cohen and Petrank, 2015b] Nachshon Cohen and Erez Petrank. Data structure aware garbage collector.

In Bond and Hosking [Bond and Hosking2015], pages 28–40.

[Cohen and Petrank, 2017] Nachshon Cohen and Erez Petrank. Limitations of partial compaction: To-

wards practical bounds. ACM Transactions on Programming Languages and Systems, 39(1):2:1–2:44,

March 2017.

[Cohen and Trilling, 1967] Jacques Cohen and Laurent Trilling. Remarks on garbage collection using a

two level storage. BIT, 7(1):22–30, 1967.

[Cohen and Zuckerman, 1972] Jacques Cohen and C. Zuckerman. Evalquote in simple Fortran: A tuto-

rial on interpreting Lisp. BIT, 12(3):299–317, 1972.

[Cohen et al., 2006] M. Cohen, S. Kooi, and Witiwas Srisa-an. Clustering the heap in multi-threaded

applications for improved garbage collection. In ACM Genetic and Evolutionary Computation Con-

ference (GECCO), pages 1901–1908, Seattle, WA, July 2006.

[Cohen, 1967] Jacques Cohen. A use of fast and slow memories in list-processing languages. Commu-

nications of the ACM, 10(2):82–86, February 1967.

[Cohen, 1981] Jacques Cohen. Garbage collection of linked data structures. ACM Computing Surveys,

13(3):341–367, September 1981.

[Cohen, 2018] Nachshon Cohen. Every data structure deserves lock-free memory reclamation. In OOP-

SLA 2018 [OOPSLA 20182018].

[Cohn and Singh, 1997] David Cohn and Satinder Singh. Predicting lifetimes in dynamically allocated

memory. In M. Mozer et al., editors, Advances in Neural Information Processing Systems 9, 1997.

[Collins, 1960] George E. Collins. A method for overlapping and erasure of lists. Communications of

the ACM, 3(12):655–657, December 1960.

[Collins, 1961] George E. Collins. Experience in automatic storage allocation. Communications of the

ACM, 4(10):436–440, October 1961.

[Collins, 1965] George E. Collins. REFCO III, a reference count list processing system for the IBM

7094. Research Report RC-1436, IBM Corp., May 1965.

[Collinson and Pym, 2006] Matthew Collinson and David Pym. Bunching for region and location mod-

els. In SPACE 2006 [SPACE 20062006], pages 14–22.

[Colnet and Sonntag, 2015] Dominique Colnet and Benoı̂t Sonntag. Exploiting array manipulation

habits to optimize garbage collection and type flow analysis. Software: Practice and Experience,

45(12):1639–1657, December 2015.

[Colnet et al., 1998a] Dominique Colnet, Philippe Coucaud, and Olivier Zendra. Compiler support to

customize the mark and sweep algorithm. In Peyton Jones and Jones [Peyton Jones and Jones1998],

pages 154–165.

[Colnet et al., 1998b] Dominique Colnet, Olivier Zendra, and Philippe Coucaud. Using type inference

to customize the garbage collector in an object-oriented language. the SmallEiffel compiler. Rapport

de recherche, INRIA Lorraine, 1998.

[Colvin, 1995] G. Colvin. Smart pointer for C++ garbage collection. C/C++ Users Journal, 12(12),

December 1995.

[Comfort, 1964] W.T. Comfort. Multiword list items. Communications of the ACM, 7(6):357–362, June

1964.

[Connor and Nettles, 1997] Richard C.H. Connor and Scott Nettles, editors. 7th International Workshop

on Persistent Object Systems (May, 1996), Persistent Object Systems: Principles and Practice, Cape

May, NJ, 1997. Morgan Kaufmann.

[Conrad, 1974] W.R. Conrad. A compactifying garbage collector for ECL’s non-homogenous heap.

Research Report 2–74, Center for Research in Computing Technology, Harvard, February 1974.

[Conte and Zhou, 2016] Tom Conte and Yuanyuan Zhou, editors. 21st International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems, ACM SIGPLAN Notices

51(4), Atlanta, GA, March 2016. ACM Press.

35



[Cook et al., 1993a] Jonathan E. Cook, Alexander L. Wolf, and Benjamin G. Zorn. The design of a

simulation system for persistent object storage management. Computer Science Technical Report

CU-CS-647-93, University of Colorado, Campus Box 430, Boulder, CO 80309, March 1993.

[Cook et al., 1993b] Jonathan E. Cook, Alexander L. Wolf, and Benjamin G. Zorn. The performance of

partitioned garbage collection in object databases. Computer Science Technical Report CU-CS-653-

93, University of Colorado, Campus Box 430, Boulder, CO 80309, June 1993.

[Cook et al., 1994] Jonathan E. Cook, Alexander L. Wolf, and Benjamin G. Zorn. Partition selection

policies in object databases garbage collection. In Richard T. Snodgrass and Marianne Winslett,

editors, ACM SIGMOD International Conference on Management of Data, volume 23(2), pages 317–

382, Minneapolis, May 1994. ACM Press.

[Cook et al., 1996] Jonathan E. Cook, Artur Klauser, Alexander L. Wolf, and Benjamin G. Zorn. Semi-

automatic, self-adaptive control of garbage collection rates in object databases. In H.V. Jagadish and

Inderpal Singh Mumick, editors, ACM SIGMOD International Conference on Management of Data,

pages 377–388, Montreal, Quebec, Canada, June 1996. SIGMOD Record 25(2), June 1996.

[Cook et al., 1998] Jonathan E. Cook, Alexander L. Wolf, and Benjamin G. Zorn. A highly effective

partition selection policy for object database garbage collection. IEEE Transactions on Knowledge

and Data Engineering, 10(1):153–172, 1998.

[Cooper and Harvey, 1998] Keith D. Cooper and Timothy J. Harvey. Compiler-controlled memory. In

ASPLOS 1998 [ASPLOS 19981998], pages 2–11.

[Cooper et al., 1992] Eric Cooper, Scott Nettles, and Indira Subramanian. Improving the performance

of SML garbage collection using application-specific virtual memory management. In LFP 1992

[LFP 19921992], pages 43–52.

[Cooper et al., 2013] Gregory H. Cooper, Arjun Guha, Sriram Krishnamurthi, Jay McCarthy, and

Robert Bruce Findler. Teaching garbage collection without implementing compilers or interpreters.

In ACM Special Interest Group on Computer Science Education (SIGCSE) 2013, 2013.

[Coplien, 1992] James Coplien. Advanced C++ Programming Styles and Idioms. Addison-Wesley,

1992.

[Corporaal et al., 1988] H. Corporaal, T. Veldman, and A.J. van de Goor. Reference weight-based

garbage collection for distributed systems. In SION Conference on Computing Science in the Nether-

lands, Utrecht, November 1988.

[Corporaal et al., 1990] H. Corporaal, T. Veldman, and A.J. van de Goor. Efficient, reference weight-

based garbage collection method for distributed systems. In PARBASE-90: International Conference

on Databases, Parallel Architectures, and Their Applications, pages 463–465, Miami Beach, 7–9

March 1990. IEEE Press.

[Corporaal, 1989] H. Corporaal. Garbage collection in distributed systems. Internal report, Technical

University, Delft, 1989.

[Correia et al., 2021] Andreia Correia, Pedro Ramalhete, and Pascal Felber. OrcGC: Automatic lock-

free memory reclamation. In PPOPP 2021 [PPOPP 20212021], page 205218.

[Corry, 2006] Erik Corry. Optimistic stack allocation for Java-like languages. In Petrank and Moss

[Petrank and Moss2006], pages 162–173.

[Cory and Petrank, 2024] Tomer Cory and Erez Petrank. The one pass (op) compactor: An intellectual

abstract. In Bond et al. [Bond et al.2024], pages 108–120.

[Courtemanche, 1986] Anthony J. Courtemanche. MultiTrash, a parallel garbage collector for Multi-

Scheme. Bachelor’s thesis, MIT Press, January 1986.

[Courts, 1988] Robert Courts. Improving locality of reference in a garbage-collecting memory

management-system. Communications of the ACM, 31(9):1128–1138, 1988.

[Couvert et al., 1989] André Couvert, Aomar Maddi, and René Pedrono. Partage d’objets dans les

systèmes distribués. principes des ramasse-miettes. Rapport de recherche 963, Institut National de

la Recherche en Informatique et Automatique (INRIA), January 1989.

[Craciunas et al., 2008] Silviu S. Craciunas, Christoph M. Kirsch, Hannes Payer, Ana Sokolova, Horst

Stadler, and Robert Staudinger. A compacting real-time memory management system. In USENIX

Annual Technical Conference, pages 349–362, Boston, MA, 2008.

36



[Craciunas et al., 2014] Silviu S. Craciunas, Christoph M. Kirsch, Hannes Payer, Harald Röck, and

Ana Sokolova. Concurrency and scalability versus fragmentation and compaction with compact-fit.

http://de.arxiv.org/pdf/1404.1830, April 2014.

[Crammond and Lindholm, 1995] Jim Crammond and Tim Lindholm. Memory management in Quintus

Prolog. In Kluwer, editor, Implementations of Logic Programming Systems, Budapest, 1995.

[Crammond, 1988] Jim Crammond. A garbage collection algorithm for shared memory parallel proces-

sors. International Journal Of Parallel Programming, 17(6):497–522, 1988.

[Cranston and Thomas, 1975] B. Cranston and R. Thomas. A simplified recombination scheme for the

Fibonacci buddy system. Communications of the ACM, 18(6):331–332, July 1975.

[Crary et al., 1998] Karl Crary, David Walker, and Greg Morrisett. Typed memory management in a

calculus of capabilities. Technical report, Cornell University, July 1998.

[Crary et al., 1999] Karl Crary, David Walker, and Greg Morrisett. Typed memory management in a

calculus of capabilities. In POPL 1999 [POPL 19991999].

[Crawley, 1991] S.C. Crawley. Local and global distributed garbage collection. In Wilson and Hayes

[Wilson and Hayes1991a].

[Cridlig, 1992] Regis Cridlig. An optimising ML to C compiler. In David MacQueen, editor, ACM

SIGPLAN Workshop on ML and its Applications, San Francisco, June 1992. ACM Press.

[Critchlow, 1992] Terence J. Critchlow. A distributed garbage collection algorithm. Master’s thesis,

Department of Computer Science, University of Utah, August 1992. University of Utah Technical

report CSTD–92–011.

[Cronburg and Guyer, 2019] Karl Cronburg and Samuel Z. Guyer. Floorplan: Spatial layout in memory

management systems. https://arxiv.org/pdf/1909.05339.pdf, September 2019.

[Cronburg and Guyer, 2021] Karl Cronburg and Samuel Z. Guyer. Permchecker: A toolchain for debug-

ging memory managers with typestate. In OOPSLA 2021 [OOPSLA 20212021].

[Şahin and Ümit Kocabiçak, 2016] Veysel Harun Şahin and Ümit Kocabiçak. A switchable approach to

large object allocation in real-time Java. Turkish Journal of Electrical Engineering and Computer

Sciences, 24:398–411, January 2016.

[Curial et al., 2008] Stephen Curial, Peng Zhao, Jose Nelson Amaral, Yaoqing Gao, Shimin Cui, Raul

Silvera, and Roch Archambault. Memory pooling assisted data splitting (MPADS). In Jones and

Blackburn [Jones and Blackburn2008], pages 101–110.

[Cutler and Morris, 2015] Cody Cutler and Robert Morris. Reducing pause times with clustered collec-

tion. In Bond and Hosking [Bond and Hosking2015], pages 131–142.

[Daconta, 1993] Michael C. Daconta. C Pointers and Dynamic Memory Management. QED Publishing,

1993.

[Daconta, 1995] Michael C. Daconta. C++ Pointers and Dynamic Memory Management. Wiley, 1995.

[Dahl and Nygaard, 1966] O.J. Dahl and K. Nygaard. Simula — an Algol-based simulation language.

Communications of the ACM, 9:671–678, 1966.

[Dahl, 1963] O.J. Dahl. The SIMULA storage allocation scheme. NCC Document 62, Norsk Regnesen-

tral, November 1963.

[Danvy and Jean, 1986] Olivier Danvy and Danielle Jean. Langage d’impleémentation pour langages

applicatifs: Contribution á l’Étude d’une réalisation informatique. Technical Report 86–23, LITP,

France, January 1986. Also Bigre+Globule 48, 3e journées d’étude sur les Langages Orientés Objet.

[Danvy, 1986a] Olivier Danvy. Agir avec LILA: le manuel de référence. Technical Report 86–40, LITP,

France, May 1986.

[Danvy, 1986b] Olivier Danvy. LILA: a virtual machine for functional and declarative languages. Tech-

nical Report 86–38, LITP, France, May 1986. Workshop on Future Directions in Computer Science

and Software.

[Danvy, 1987] Olivier Danvy. Memory allocation and higher-order functions. ACM SIGPLAN Notices,

22(7):241–252, June 1987.

[Das et al., 1999] S. Das, D.L. Dill, and S. Park. Experience with predicate abstraction. In Interna-

tional Conference on Computer Aided Verification (CAV), volume 1633 of Lecture Notes in Computer

Science, pages 160–171, Trento, Italy, July 1999. Springer-Verlag.

37



[Dashti and Fedorova, 2020] Mohammad Dashti and Alexandra Fedorova. Trash talk: Accelerating

garbage collection on integrated GPUs is worthless. https://arxiv.org/pdf/2012.06281.pdf, December

2020.

[Daugherty and Chang, 1998] C.H. Daugherty and J. Morris Chang. Common list method: A simple,

efficient allocator implementation. In 6th Annual High-Performance Computing Symposium, pages

180–185, Boston, MA, April 1998.

[Davies, 1984] D. Julian M. Davies. Memory occupancy patterns in garbage collection systems. Com-

munications of the ACM, 27(8):819–825, August 1984.

[Davis et al., 2012] Matthew Davis, Harald Sondergaard, Peter Schachte, and Zoltan Somogyi. Towards

region based memory management for Go. In Mutlu and Zhang [Mutlu and Zhang2012], pages 58–67.

[Davis et al., 2013] Matthew Davis, Peter Schachte, Zoltan Somogyi, and Harald Søndergaard. A low

overhead method for recovering unused memory inside regions. In MSPC 2013 [MSPC 20132013].

[Dawson, 1982] Jeffrey L. Dawson. Improved effectiveness from a real-time LISP garbage collector. In

LFP 1982 [LFP 19821982], pages 159–167.

[Day and Zimmermann, 1983] J.D. Day and H. Zimmermann. The OSI Reference Model. Proceedings

of the IEEE, 71:1334–1340, December 1983.

[Day et al., 1994] Mark Day, Barbara Liskov, Umesh Maheshwari, and Andrew C. Myers. References

to remote mobile objects in Thor. ACM Letters on Programming Languages and Systems, 2(1–4):115–

126, March 1994.

[Daylight et al., 2004] Edgar G. Daylight, Bart Demoen, and Francky Catthor. Formally specify-

ing dynamic data structures for embedded software design: An initial approach. In SPACE 2004

[SPACE 20042004].

[Daynès and Atkinson, 1997] Laurent Daynès and Malcolm P. Atkinson. Main-memory management

to support orthogonal persistence for Java. In 2nd International Workshop on Persistence and Java

(PJW2), Half Moon Bay, CA, August 1997.

[de Araújo Formiga and Lins, 2007] Andrei de Araújo Formiga and Rafael D. Lins. A new architec-

ture for concurrent lazy cyclic reference counting on multi-processor systems. Journal of Universal

Computer Science, 13(6), 2007.

[de Bakker et al., 1987] Jacobus W. de Bakker, A.J. Nijman, and Philip C. Treleaven, editors. Paral-

lel Architectures and Languages Europe (PARLE), volume 258/259 of Lecture Notes in Computer

Science, Eindhoven, The Netherlands, June 1987. Springer-Verlag.

[de Boer and Klop, 1992] F.S. de Boer and J.W. Klop. Asynchronous communication in process algebra:

Extended abstract. Technical Report CS-R9206, Stichting Mathematisch Centrum, January 1992.

[de Pauw and Sevitski, 1999] W. de Pauw and G. Sevitski. Visualizing reference patterns for solving

memory leaks in Java. In Guerraoui [Guerraoui1999], pages 116–134.

[de Pauw and Sevitski, 2000] W. de Pauw and G. Sevitski. Visualizing reference patterns for solving

memory leaks in Java. Concurrency and Computation: Practice and Experience, 12:1431–1454,

2000.

[de Pauw et al., 1993] W. de Pauw, R. Helm, D. Kimelman, and J. Vlissides. Visualizing the behaviour

of object-oriented systems. In OOPSLA 1993 [OOPSLA 19931993], pages 326–337.

[de Pauw et al., 1997] W. de Pauw, D. Kimelman, and J. Vlissides. Visualizing object-oriented software

execution. In John T. Stasko, John B. Domingue, Marc H. Brown, and Blaine A. Price, editors,

Software Visualization. MIT Press, 1997.

[de Pauw et al., 2001] W. de Pauw, N. Mitchell, M. Robillard, G. Sevitski, and H. Srinivasan. Drive-by

analysis of running programs. In Workshop on Software Visualization, International Conference on

Software Engineering, Toronto, May 2001.

[de Souza Amorim et al., 2025] Luis Eduardo de Souza Amorim, Yi Lin, Stephen M. Blackburn, Diogo

Netto, Gabriel Baraldi, Nathan Daly, Antony L. Hosking, Kiran Pamnany, and Oscar Smith. Recon-

sidering garbage collection in Julia: A practitioner report. In Harris et al. [Harris et al.2025], page

7283.

[Dearle and others, 1992] Alan Dearle et al. An examination of operating system support for persistent

object system s. In 25th Hawaii International Conference on Systems Sciences, vol. 1, pages 779–789,

1992.

38



[Dearle et al., 1991] Alan Dearle, Gail M. Shaw, and Stanley B. Zdonik, editors. 4th International Work-

shop on Persistent Object Systems (September, 1990), Implementing Persistent Object Bases: Princi-

ples and Practice, Martha’s Vineyard, MA, 1991. Morgan Kaufman.

[Dearle et al., 1992] Alan Dearle, Rex di Bona, James Farrow, Frans Henskens, Anders Lindstrom, John

Rosenberg, and Francis Vaughan. Grasshopper — a persistent operating system for conventional

hardware. In Cabrera et al. [Cabrera et al.1992], pages 81–85.

[Deb, 1984] Ashoke Deb. An efficient garbage collector for graph machines. Technical Report CS/E-

84-003, Oregon Graduate Center, 1984.

[Deb, 1987] Ashoke Deb. Parallel garbage collection in a parallel virtual memory environment. In

J.H. Fasel and R.M. Keller, editors, Graph Reduction: Proceedings of a Workshop at Santa Fe, New

Mexico, volume 279 of Lecture Notes in Computer Science, pages 252–264, New York, NY, 1987.

Springer-Verlag.

[Degano, 2003] Pierpaolo Degano, editor. European Symposium on Programming, Lecture Notes in

Computer Science, Warsaw, Poland, April 2003. Springer-Verlag.

[Degenbaev et al., 2016] Ulan Degenbaev, Jochen Eisinger, Manfred Ernst, Ross McIlroy, and Hannes

Payer. Idle time garbage collection scheduling. In PLDI 2016 [PLDI 20162016], pages 570–583.

[Degenbaev et al., 2017] Ulan Degenbaev, Jochen Eisinger, Kentaro Hara, Marcel Hlopko, Michael Lip-

pautz, and Hannes Payer. Garbage collection as a joint venture. In MoreVMs 2017, Brussels, Belgium,

April 2017. Extended abstract.

[Degenbaev et al., 2018] Ulan Degenbaev, Jochen Eisinger, Kentaro Hara, Marcel Hlopko, Michael

Lippautz, and Hannes Payer. Cross-component garbage collection. In OOPSLA 2018

[OOPSLA 20182018].

[Degenbaev et al., 2019] Ulan Degenbaev, Michael Lippautz, and Hannes Payer. Concurrent marking of

shape-changing objects. In Xu and Singer [Xu and Singer2019], pages 89–102.

[Delacour, 1992] V. Delacour. Allocation regions and implementation contracts. In Bekkers and Cohen

[Bekkers and Cohen1992], pages 426–439.

[Dellar, 1980] C.N.R. Dellar. Removing backing store administration from the CAP operating system.

ACM SIGOPS Operating Systems Review, 14(4):41–49, 1980.

[Demers et al., 1990] Alan Demers, Mark Weiser, Barry Hayes, Hans Boehm, Daniel G. Bobrow, and

Scott Shenker. Combining generational and conservative garbage collection: Framework and imple-

mentations. In POPL 1990 [POPL 19901990], pages 261–269.

[Demoen and Sagonas, 1998] Bart Demoen and Konstantinos Sagonas. Memory management for Prolog

with tabling. In Peyton Jones and Jones [Peyton Jones and Jones1998], pages 97–106.

[Demoen et al., 1996] Bart Demoen, Geert Engels, and Paul Tarau. Segment preserving copying garbage

collection for WAM-based Prolog. In Jim Hightower, editor, ACM Symposium on Applied Computing,

Philadelphia, February 1996. ACM Press. Programming languages track.

[Demoen et al., 2002] Bart Demoen, Phuong-Lan Nguyen, and Ruben Vandeginste. Copying garbage

collection for the WAM: To mark or not to mark? In Stuckey [Stuckey2002].

[Demoen, 2002] Bart Demoen. A different look at garbage collection for the WAM. In Stuckey

[Stuckey2002].

[Denning and Scwartz, 1972] P.J. Denning and Scwartz. Properties of the working-set model. Commu-

nications of the ACM, 15(3):191–198, March 1972.

[Denning, 1968a] P.J. Denning. Thrashing: Its causes and prevention. In AFIPS 1968 Fall Joint Com-

puter Conference, volume 33, pages 915–922, June 1968.

[Denning, 1968b] P.J. Denning. The working set model for program behaviour. Communications of the

ACM, 11:323–333, 1968.

[Denning, 1970] P.J. Denning. Virtual memory. ACM Computing Surveys, 2(3):153–190, September

1970.

[Denning, 1980] Peter Denning. Working sets past and present. IEEE Transactions on Software Engi-

neering, SE-6(1):64–84, January 1980.

39



[Derbyshire, 1987] Margaret H. Derbyshire. Garbage collection on the IRM: Report number 6. Depart-

mental Research Report FS/MU/MHD/004–87, University of Manchester, Department of Computer

Science, 1987.

[Derbyshire, 1990] Margaret H. Derbyshire. Mark scan garbage collection on a distributed architecture.

Lisp and Symbolic Computation, 3(2):135 – 170, April 1990.

[Dershowitz, 1980] N. Dershowitz. The Schorr–Waite marking algorithm revisited. Information Pro-

cessing Letters, 11(3):141–143, November 1980.

[Deters and Cytron, 2002] Morgan Deters and Ron Cytron. Automated discovery of scoped memory

regions for real-time Java. In Boehm and Detlefs [Boehm and Detlefs2002], pages 25–35.

[Deters et al., 2004] Morgan Deters, Nicholas A. Leidenfrost, M Matthew P. Hampton, James C. Brod-

man, and Ron Cytron. Automated reference-counted object recycling for real-time Java. In 10th

Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 424–433. IEEE

Press, 2004.

[Detlefs and Kalsow, 1995] Dave Detlefs and Bill Kalsow. Debugging storage management problems in

garbage-collected environments. In USENIX Conference on Object-Oriented Technologies. USENIX

Association, June 1995.

[Detlefs et al., 1993] David L. Detlefs, Al Dosser, and Benjamin Zorn. Memory allocation costs in

large C and C++ programs. Computer Science Technical Report CU-CS-665-93, Digital Equipment

Corporation and University of Colorado, 130 Lytton Avenue, Palo Alto, CA 94301 and Campus Box

430, Boulder, CO 80309, August 1993.

[Detlefs et al., 1994] David Detlefs, Al Dosser, and Benjamin Zorn. Memory allocation costs in large C

and C++ programs. Software: Practice and Experience, 24(6), 1994.

[Detlefs et al., 2001] David L. Detlefs, Paul A. Martin, Mark Moir, and Guy L. Steele. Lock-free refer-

ence counting. In PODC 2001 [PODC 20012001], pages 190–199.

[Detlefs et al., 2002a] David Detlefs, William D. Clinger, Matthias Jacob, and Ross Knippel. Concurrent

remembered set refinement in generational garbage collection. In JVM 2002 [JVM 20022002].

[Detlefs et al., 2002b] David L. Detlefs, Paul A. Martin, Mark Moir, and Guy L. Steele. Lock-free

reference counting. Distributed Computing, 15:255–271, 2002.

[Detlefs et al., 2004] David Detlefs, Christine Flood, Steven Heller, and Tony Printezis. Garbage-First

garbage collection. In Bacon and Diwan [Bacon and Diwan2004], pages 37–48.

[Detlefs, 1990a] David L. Detlefs. Concurrent, atomic garbage collection. In Jul and Juul

[Jul and Juul1990].

[Detlefs, 1990b] David L. Detlefs. Concurrent garbage collection for C++. Technical Report CMU-CS-

90-119, Carnegie Mellon University, Pittsburgh, PA, May 1990.

[Detlefs, 1991a] David L. Detlefs. Concurrent, Atomic Garbage Collection. PhD thesis, Carnegie Mel-

lon University, Pittsburgh, PA, 15213, November 1991.

[Detlefs, 1991b] David L. Detlefs. Concurrent garbage collection for C++. In Peter Lee, editor, Topics

in Advanced Language Implementation. MIT Press, 1991.

[Detlefs, 1992] David L. Detlefs. Garbage collection and runtime typing as a C++ library. In USENIX

C++ Conference, Portland, OR, August 1992. USENIX Association.

[Detlefs, 1993] David L. Detlefs. Empirical evidence for using garbage collection in C and C++ pro-

grams. In Moss et al. [Moss et al.1993].

[Detlefs, 2004a] David Detlefs. Automatic inference of reference-count invariants. In SPACE 2004

[SPACE 20042004].

[Detlefs, 2004b] David Detlefs. A hard look at hard real-time garbage collection. In ISORC 2004

[ISORC 20042004], pages 23–32. Invited paper.

[DeTreville, 1990a] John DeTreville. Experience with concurrent garbage collectors for Modula-2+.

Technical Report 64, DEC Systems Research Center, Palo Alto, CA, August 1990.

[DeTreville, 1990b] John DeTreville. Experience with garbage collection for Modula-2+ in the Topaz

environment. In Jul and Juul [Jul and Juul1990].

[DeTreville, 1990c] John DeTreville. Heap usage in the Topaz environment. Technical Report 63, DEC

Systems Research Center, Palo Alto, CA, August 1990.

40



[Deutsch and Bobrow, 1976] L. Peter Deutsch and Daniel G. Bobrow. An efficient incremental auto-

matic garbage collector. Communications of the ACM, 19(9):522–526, September 1976.

[Deutsch and Schiffman, 1984] Peter L. Deutsch and A.M. Schiffman. Efficient implementation of the

Smalltalk-80 system. In POPL 1984 [POPL 19841984], pages 297–302.

[Deutsch, 1973] L. Peter Deutsch. A LISP machine with very compact programs. In International Joint

Conference on Artificial Intelligence, pages 697–703, Stanford, CA, 1973.

[Deutsch, 1983] L. Peter Deutsch. The Dorado Smalltalk-80 implementation: Hardware architecture’s

impact on software architecture. In Krasner [Krasner1983], pages 113–125.

[Deutsch, 1990] A. Deutsch. On determining lifetime and aliasing of dynamically allocated data in

higher-order functional specifications. In POPL 1990 [POPL 19901990], pages 157 – 168.

[Deutsch, 1994] Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In

PLDI 1994 [PLDI 19941994], pages 230–241.

[Dewar and McCann, 1977] Robert B.K. Dewar and A.P. McCann. MACRO SPITBOL — a SNOBOL4

compiler. Software: Practice and Experience, 7(1):95–113, 1977.

[Dewar et al., 1982] Robert B.K. Dewar, Micha Sharir, and Elia Weixelbaum. Transformational deriva-

tion of a garbage collection algorithm. ACM Transactions on Programming Languages and Systems,

4(4):650–667, October 1982.

[Dhurjati et al., 2003] Dinakar Dhurjati, Sumant Kowshik, Vikram Adve, and Chris Lattner. Memory

safety without runtime checks or garbage collection. In LCTES 2003 [LCTES 20032003], pages

69–80.

[di Santo et al., 1981] M. di Santo, L. Nigro, and W. Russo. On the efficient implementation of retention

block-structured languages. Int. J. Comput. Inf. Sci, 10(1):39–54, February 1981.

[Dı́az et al., 1994] Manuel Dı́az, E. Pimentel, and José M. Troya. DROL: a distributed and real-time

object-oriented logic environment. Computer Journal, 37:407–421, 1994.

[Dı́az et al., 1997] Manuel Dı́az, Bartolomé Rubio, and José M. Troya. DRL: a distributed real-time

logic language. Journal of Computing Languages, special issue on Extensions of Logic Programming,

1997.

[Dice and Garthwaite, 2002] Dave Dice and Alex Garthwaite. Mostly lock-free malloc. In Boehm and

Detlefs [Boehm and Detlefs2002], pages 163–174.

[Dickman and Wilson, 1997] Peter Dickman and Paul R. Wilson, editors. OOPSLA Workshop on

Garbage Collection and Memory Management, October 1997.

[Dickman, 1991] Peter Dickman. Effective load balancing in a distributed object-support operating sys-

tem. In Cabrera et al. [Cabrera et al.1991].

[Dickman, 1992a] Peter Dickman. Distributed Object Management in a Non-Small Graph of Au-

tonomous Networ ks With Few Failures. PhD thesis, University of Cambridge, September 1992.

[Dickman, 1992b] Peter Dickman. Optimising weighted reference counts for scalable fault-tolerant dis-

tributed object-support systems. Unpublished note, 1992.

[Dickman, 1996a] Peter Dickman. Efficient, incremental, distributed orphan detection and actor garbage

collection. In preparation, 1996.

[Dickman, 1996b] Peter Dickman. Incremental, distributed orphan detection and actor

garbage collection using graph partitioning and Euler cycles. In Babaoglu and Marzullo

[Babaoglu and Marzullo1996], pages 141–158.

[Dickman, 2000] Peter Dickman. Diffusion tree redirection for indirect reference counting. In Chambers

and Hosking [Chambers and Hosking2000], pages 167–177.

[Dieckmann and Hölzle, 1999] Sylvia Dieckmann and Urs Hölzle. A study of the allocation behavior of

the SPECjvm98 Java benchmarks. In Guerraoui [Guerraoui1999], pages 92–115.

[Dieckmann and Hölzle, 2001] Sylvia Dieckmann and Urs Hölzle. The allocation behaviour of the

SPECjvm98 Java benchmarks. In Rudolf Eigenman, editor, Performance Evaluation and Benchmark-

ing with Realistic Applications, chapter 3, pages 77–108. MIT Press, 2001.

[Dijkstra and Scholten, 1980] Edsger W. Dijkstra and C.S. Scholten. Termination detection for diffusing

computations. Information Processing Letters, 11:1–4, August 1980.

41



[Dijkstra et al., 1976] Edsger W. Dijkstra, Leslie Lamport, A.J. Martin, C.S. Scholten, and E.F.M. Stef-

fens. On-the-fly garbage collection: An exercise in cooperation. In Language Hierarchies and Inter-

faces: International Summer School, volume 46 of Lecture Notes in Computer Science, pages 43–56.

Springer-Verlag, Marktoberdorf, Germany, 1976.

[Dijkstra et al., 1978] Edsger W. Dijkstra, Leslie Lamport, A.J. Martin, C.S. Scholten, and E.F.M. Stef-

fens. On-the-fly garbage collection: An exercise in cooperation. Communications of the ACM,

21(11):965–975, November 1978.

[Dijkstra, 1975] Edsger W. Dijkstra. Notes on a real-time garbage collection system. From a conversa-

tion with D.E. Knuth (private collection of D.E. Knuth), 1975.

[Dijkstra, 1976] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs,

N.J., 1976.

[Dillig et al., 2008] Isil Dillig, Thomas Dillig, Eran Yahav, and Satish Chandra. The CLOSER: Au-

tomating resource management in Java. In Jones and Blackburn [Jones and Blackburn2008], pages

1–10.

[Dimpsey et al., 2000] Robert Dimpsey, Rajiv Arora, and Kean Kuiper. Java server performance: A case

study of building efficient, scalable JVMs. IBM Systems Journal, 39(1):151–174, 2000.

[Ding and Blackburn, 2004] Chen Ding and Stephen Blackburn, editors. Workshop on Memory System

Performance, Washington, DC, June 2004.

[Ding and Kennedy, 1999] Chen Ding and Ken Kennedy. Improving cache performance of dynamic ap-

plications through data and computation reorganization at run time. In PLDI 1999 [PLDI 19991999],

pages 229–241.

[Ding and Li, 2002] Yuping Ding and Xining Li. Cache performance of chronological garbage collec-

tion. In IEEE Canadian Conference on Electrical and Computer Engineering, 1998, 2002.

[Ding et al., 2005] Chen Ding, Chengliang Zhang, Xipeng Shen, and Mitsunori Ogihara. Gated mem-

ory control for memory monitoring, leak detection and garbage collection. In Calder and Zorn

[Calder and Zorn2005], pages 62–67.

[Diwan et al., 1992] Amer Diwan, J. Eliot B. Moss, and Richard L. Hudson. Compiler support for

garbage collection in a statically typed language. In PLDI 1992 [PLDI 19921992], pages 273–282.

[Diwan et al., 1993] Amer Diwan, David Tarditi, and J. Eliot B. Moss. Memory subsystem performance

of programs with intensive heap allocation. Technical Report CMU-CS-93-227, Carnegie Mellon

University, December 1993. Also appears as Fox Memorandum CMU-CS-FOX-93-07.

[Diwan et al., 1994] Amer Diwan, David Tarditi, and J. Eliot B. Moss. Memory subsystem performance

of programs using copying garbage collection. In POPL 1994 [POPL 19941994], pages 1–14.

[Diwan et al., 1995] Amer Diwan, David Tarditi, and J. Eliot B. Moss. Memory subsystem performance

of programs with intensive heap allocation. ACM Transactions on Computer Systems, 13(4):244–273,

August 1995.

[Diwan et al., 2002] Amer Diwan, Han Lee, Dirk Grunwald, and Keith Farkas. Energy consumption

and garbage collection in low-powered computing. Technical Report CU–CS–930–02, University of

Colorado, Boulder, 2002.

[Diwan, 1991] Amer Diwan. Stack tracing in a statically typed language. In Wilson and Hayes

[Wilson and Hayes1991a].

[DLS 2011, 2011] 7th ACM SIGPLAN International Symposium on on Dynamic Languages, Portland,

OR, 2011. ACM Press.

[DLS 2014, 2014] 10th ACM SIGPLAN International Symposium on on Dynamic Languages, Portland,

OR, 2014. ACM Press.

[DLS 2017, 2017] 13th ACM SIGPLAN International Symposium on on Dynamic Languages, Vancou-

ver, Canada, 2017. ACM Press.

[Doherty et al., 2004] Simon Doherty, David L. Detlefs, Lindsay Groves, Christine H. Flood, Victor

Luchangco, Paul A. Martin, Mark Moir, Nir Shavit, and Guy L. Steele, Jr. DCAS is not a silver bullet

for nonblocking algorithm design. In 16th Annual ACM Symposium on Parallelism in Algorithms and

Architectures, pages 216–224, Barcelona, Spain, 2004.

42



[Dolby and Chien, 1998] Julian Dolby and Andrew A. Chien. An evaluation of automatic object inline

allocation techniques. In OOPSLA 1998 [OOPSLA 19981998], pages 1–20.

[Dolby and Chien, 2000] Julian Dolby and Andrew A. Chien. An automatic object inlining optimization

and its evaluation. In PLDI 2000 [PLDI 20002000], pages 345–357.

[Dolby, 1997] Julian Dolby. Automatic inline allocation of objects. In PLDI 1997 [PLDI 19971997],

pages 7–17.

[Doligez and Gonthier, 1994] Damien Doligez and Georges Gonthier. Portable, unobtrusive garbage

collection for multiprocessor systems. In POPL 1994 [POPL 19941994], pages 70–83.

[Doligez and Leroy, 1993] Damien Doligez and Xavier Leroy. A concurrent generational garbage col-

lector for a multi-threaded implementation of ML. In POPL 1993 [POPL 19931993], pages 113–123.

[Dolstra et al., 2004] Eelco Dolstra, Eelco Visser, and Meijn de Jonge. Imposing a memory management

discipline on software deployment. In ICSE 2004 [ICSE 20042004].

[Domani et al., 2000a] Tamar Domani, Elliot Kolodner, and Erez Petrank. A generational on-the-fly

garbage collector for Java. Technical Report 88.385, IBM Haifa Research Laboratory, 2000. Fuller

version of [Domani et al., 2000c].

[Domani et al., 2000b] Tamar Domani, Elliot K. Kolodner, Ethan Lewis, Elliot E. Salant, Katherine

Barabash, Itai Lahan, Erez Petrank, Igor Yanover, and Yossi Levanoni. Implementing an on-the-fly

garbage collector for Java. In Chambers and Hosking [Chambers and Hosking2000], pages 155–166.

[Domani et al., 2000c] Tamar Domani, Elliot K. Kolodner, and Erez Petrank. A generational on-the-fly

garbage collector for Java. In PLDI 2000 [PLDI 20002000], pages 274–284.

[Domani et al., 2002] Tamar Domani, Elliot K. Kolodner, Ethan Lewis, Erez Petrank, and Dafna Shein-

wald. Thread-local heaps for Java. In Boehm and Detlefs [Boehm and Detlefs2002], pages 76–87.

[Dombrowski et al., 2015] Marcel Dombrowski, Kenneth B. Kent Konstantin Nasartschuk and, and Ger-

hard W. Dueck. A survey on object cache locality in automated memory management systems. In

Proceeding of the IEEE 28th Canadian Conference on Electrical and Computer Engineering, pages

349–354, Halifax, Canada, May 2015. IEEE Press.

[Dombrowski et al., 2016] Marcel Dombrowski, Kenneth B. Kent Konstantin Nasartschuk and, Ger-

hard W. Dueck, and Charlie Gracie. Thread-group based local heap garbage collection in a simulated

runtime environment. In 2016 IEEE Canadian Conference on Electrical and Computer Engineering

(CCECE). IEEE Press, May 2016.

[Donahue et al., 2001] Steven M. Donahue, Matthew P. Hampton, Morgan Deters, Jonathan M. Nye,

Ron K. Cytron, and Krishna M. Kavi. Storage allocation for real-time, embedded systems. In Hen-

zinger and Kirsch [Henzinger and Kirsch2001], pages 131–147.

[Donaldson, 2019] Alastair F. Donaldson, editor. 33rd European Conference on Object-Oriented

Programming, volume 134 of Leibniz International Proceedings in Informatics (LIPIcs). Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, July 2019.

[Donnelly et al., 2006] Kevin Donnelly, Joe Hallett, and Assaf Kfoury. Formal semantics of weak refer-

ences. In Petrank and Moss [Petrank and Moss2006], pages 126–137.

[Dor et al., 1998] Nurit Dor, Michael Rodeh, and Mooly Sagiv. Detecting memory errors via static

pointer analysis. In PASTE 1998 [PASTE 19981998], pages 27–34.

[Dorfman and Neuberger, ] Len Dorfman and Marc J. Neuberger. C++ Memory Management. McGraw-

Hill. Out of print.

[Dorochevsky and Véron, 1992] M. Dorochevsky and A. Véron. Binding techniques and garbage col-

lection for OR-parallel CLP systems. In Bruynooghe and Wirsing [Bruynooghe and Wirsing1992],

pages 39–53.

[Dorochevsky et al., 1991] M. Dorochevsky, K. Schuerman, A. Véron, and J. Xu. Contraint handling,

garbage collection and execution models in ElipSys. In A. Beaumont and G. Gupta, editors, ICLP’91

Workshop on Parallel Execution of Logic Programs, volume 569 of Lecture Notes in Computer Sci-

ence, pages 17–28. Springer-Verlag, 1991.

[Douglass, 2002] Bruce Powel Douglass. Real-Time Design Patterns: Robust Scalable Architecture for

Real-Time Systems, chapter 6. Addison-Wesley, 2002.

43



[Douglis et al., 1991] Fred Douglis, M. Frans Kaashoek ad John K. Ousterhout, and Andrew S. Tanen-

baum. A comparison of two distributed operating systems : Amoeba and Sprite. Computing Systems,

4(4):353–384, September 1991.

[Douglis, 1993] Fred Douglis. The compression cache: Using on-line compression to extend physi-

cal memory. In 1993 Winter USENIX Conference, pages 519–529, San Diego, CA, January 1993.

USENIX Association.

[Drexler and Miller, 1988] K. Eric Drexler and Mark S. Miller. Incentive engineering: for computational

resource management. In Bernardo Huberman, editor, The Ecology of Computation. Elsevier-North

Holland, 1988.

[Drezner and Barak, 1986] Z. Drezner and A. Barak. An asynchronous algorithm for scattering infor-

mation between the active nodes of a multi-computer system. Journal of Parallel and Distributed

Computing, 3(3):344–351, September 1986.

[Drossopoulou, 2009] Sophia Drossopoulou, editor. 23rd European Conference on Object-Oriented Pro-

gramming, volume 5653 of Lecture Notes in Computer Science, Genoa, Italy, July 2009. Springer-

Verlag.

[D’Souza, 2017] Irwin D’Souza. How concurrent scavenge using the Guarded Storage Facility works.

Technical report, IBM Corp., October 2017.

[Du Bois et al., 2013] Kristof Du Bois, Jennifer B. Sartor, Stijn Eyerman, and Lieven Eeckhout. Bot-

tle graphs: visualizing scalability bottlenecks in multi-threaded applications. In OOPSLA 2013

[OOPSLA 20132013].

[Dubé et al., 1996] Danny Dubé, Marc Feeley, and Manuel Serrano. Un GC temps réel semi-compactant.

Journées Francophones des Langages Applicatifs, pages 165–181, January 1996.

[Dufour et al., 2004] Bruno Dufour, Christopher Goard, Laurie Hendren, Oege de Moor, Ganesh Sittam-

palam, and Clark Verbrugge. Measuring the dynamic behaviour of AspectJ programs. In OOPSLA

2004 [OOPSLA 20042004].

[Duimovich, 1990] John Duimovich. Garbage collection in a multiprocessor Smalltalk system. Master’s

thesis, Carleton University, Canada, 1990.

[Durdanovic, 1991] Igor Durdanovic. A fast garbage collection algorithm for WAM-based PROLOG.

In 4th Workshop on Computer Science Logic, Heidelberg, number 533 in Lecture Notes in Computer

Science, pages 110–127. Springer-Verlag, October 1991.

[Durieux et al., 1984] Jean-Louis Durieux, Danielle Jean, coise Carré Fran and Patrick Sallé. Langage

d’implémentation pour logique et acteurs. Bigre+Globule, November 1984. 2e journées d’étude sur

les Langages Orientés Objet.

[Duvvuru et al., 1992] S. Duvvuru, R. Sundararajan, E. Tick, A.V.S. Sastry, L. Hansen, and X. Zhong.

A compile-time memory-reuse scheme for concurrent logic programs. In Bekkers and Cohen

[Bekkers and Cohen1992], pages 264–276.

[Dwyer, 1973] B. Dwyer. Simple algorithms for traversing a tree without an auxiliary stack. Inf Process.

Lett., 2(5):143–145, December 1973.

[Dybvig et al., 1993] R. Kent Dybvig, Carl Bruggeman, and David Eby. Guardians in a generation-based

garbage collector. In PLDI 1993 [PLDI 19931993], pages 207–216.

[Dybvig et al., 1994] R. Kent Dybvig, David Eby, and Carl Bruggeman. Don’t stop the BIBOP: Flexible

and efficient storage management for dynamically-typed languages. Technical Report 400, Indiana

University Computer Science Department, March 1994.

[Dykstra et al., 2002] L. Dykstra, Witiwas Srisa-an, and J. Morris Chang. An analysis of the garbage

collector performance in Sun’s HotSpot JVM. In 21st IEEE International Performance Computing

and Communications Conference (IPCCC), pages 335–339, Phoenix, AZ, April 2002.

[Eckart and Leblanc, 1987] J. Dana Eckart and Richard J. Leblanc. Distributed garbage collection. ACM

SIGPLAN Notices, 22(7):264–273, 1987.

[Eckart, 1987] J. Dana Eckart. Garbage Collection for Functional Languages in a Distributed System.

PhD thesis, Georgia Institute of Technology, 1988, 1987.

[ECOOP 1984, 1984] European Conference on Object-Oriented Programming, 1984.

44



[Edelson and Pohl, 1990] Daniel R. Edelson and Ira Pohl. The case for garbage collection in C++. In Jul

and Juul [Jul and Juul1990]. Also University of California, Santa Cruz technical report UCSC-CRL-

90-37.

[Edelson and Pohl, 1991] Daniel R. Edelson and Ira Pohl. A copying collector for C++. In Usenix C++

Conference, pages 85–102. USENIX Association, 1991.

[Edelson, 1990] Daniel R. Edelson. Dynamic storage reclamation in C++. Master’s thesis, University of

California, Santa Cruz, June 1990.

[Edelson, 1992a] Daniel R. Edelson. A mark-and-sweep collector for C++. In POPL 1992

[POPL 19921992].

[Edelson, 1992b] Daniel R. Edelson. Precompiling C++ for garbage collection. In Bekkers and Cohen

[Bekkers and Cohen1992], pages 299–314.

[Edelson, 1992c] Daniel R. Edelson. Smart pointers: They’re smart, but they’re not pointers. In USENIX

C++ Conference, Portland, OR, August 1992. USENIX Association.

[Edelson, 1993a] Daniel R. Edelson. Comparing two garbage collectors for C++. Technical Report

UCSC-CRL-93-20, University of California, Santa Cruz, January 1993.

[Edelson, 1993b] Daniel Ross Edelson. Type-Specific Storage Management. PhD thesis, University of

California, Santa Cruz, May 1993.

[Edwards, 1960] Daniel J. Edwards. Lisp II garbage collector. AI Memo 19, MIT AI Laboratory, 1960.

[Effinger-Dean et al., 2006a] Laura Effinger-Dean, Chris Erickson, Melissa O’Neill, and Darren Strash.

Extending garbage collection to complex data structures. In SPACE 2006 [SPACE 20062006], pages

91–97.

[Effinger-Dean et al., 2006b] Laura Effinger-Dean, Chris Erickson, Melissa O’Neill, and Darren Strash.

Garbage collection for trailer arrays. In SPACE 2006 [SPACE 20062006], pages 83–90.

[Eggers and Larus, 2008] Susan J. Eggers and James R. Larus, editors. 13th International Conference on

Architectural Support for Programming Languages and Operating Systems, ACM SIGPLAN Notices

43(3), Seattle, WA, March 2008. ACM Press.

[Egudo, 1992] R. Egudo. An analysis of a garbage collection operation. International journal of math-

ematical education in science and technology, 23(1):89–96, January 1992.

[Ehn, 1989a] L. Ehn. A contribution to the increase of efficiency of on-the-fly garbage collection. Com-

puters And Artificial Intelligence, 8(1):83–91, 1989.

[Ehn, 1989b] L. Ehn. Performance analysis of on-the-fly garbage collection systems. Computers And

Artificial Intelligence, 8(2):141–152, 1989.

[Eisner, 2001] Cindy Eisner. Model checking the garbage collection mechanism of SMV. Electronic

Notes in Theoretical Computer Science, 55(3):289–303, October 2001.

[El Desokey et al., 2006] Ali Ebrahim El Desokey, Aida Abd El Gawad, Amany Sarhan, and Seham

Moawed. Improving the performance of the deferrable server based garbage collection scheduling

strategy. In ITI 4th International Conference on Information and Communications Technology, Cairo,

Egypt, 2006.

[El-Habbash et al., 1990] Ahmed El-Habbash, Chris Horn, and Neville Harris. Garbage collection in an

object oriented, distributed, persistent environment. In Jul and Juul [Jul and Juul1990].

[Ellis and Detlefs, 1993] John R. Ellis and David L. Detlefs. Safe, efficient garbage collection for C++.

Technical report, Xerox PARC, Palo Alto, CA, 1993.

[Ellis and Olson, 1988] C.S. Ellis and T.J. Olson. Algorithms for parallel memory allocation. Interna-

tional Journal of Parallel Programming, 17(4):303–345, 1988.

[Ellis and Stroustrup, 1990] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference

Manual, 1990.

[Ellis et al., 1988] John R. Ellis, Kai Li, and Andrew W. Appel. Real-time concurrent collection on stock

multiprocessors. Technical Report DEC–SRC–TR–25, DEC Systems Research Center, Palo Alto, CA,

February 1988.

[Ellis, 1993] John R. Ellis. Put up or shut up. In Moss et al. [Moss et al.1993].

[Ellis, 1995] John R. Ellis. Tutorial: Is safe C++ an oxymoron? In PLDI 1995 [PLDI 19951995].

45



[Elsman and Hallenberg, 1995] Martin Elsman and Niels Hallenberg. An optimizing back-end for the

ML Kit using a stack of regions. Student Project 95–7–8, Department of Computer Science (DIKU),

University of Copenhagen, July 1995.

[Elsman, 2001] Martin Elsman. A stack machine for region based programs. In SPACE 2001

[SPACE 20012001].

[Elsman, 2003] Martin Elsman. Garbage collection safety for region-based memory management. In

Shao and Lee [Shao and Lee2003], pages 123–134.

[Elsman, 2023] Martin Elsman. Garbage-collection safety for region-based type-polymorphic programs.

In PLDI 2023 [PLDI 20232023].

[Elson, 1975] M. Elson. Data Structures. Science Research Associates, 1975.

[Emmi et al., 2009] Michael Emmi, Ranjit Jhala, Eddie Kohler, and Rupak Majumdar. Verifying refer-

ence counting implementations. In S. Kowalewshi and A. Philippou, editors, Tools and Algorithms

for the Construction and Analysis of Systems (TACAS), volume 5505 of Lecture Notes in Computer

Science, pages 352–367. Springer, 2009.

[Endo et al., 1997] Toshio Endo, Kenjiro Taura, and Akinori Yonezawa. A scalable mark-sweep garbage

collector on large-scale shared-memory machines. In SC 1997 [SC 19971997].

[Endo et al., 2002] Toshio Endo, Kenjiro Taura, and Akinori Yonezawa. Reducing pause time of con-

servative collectors. In Boehm and Detlefs [Boehm and Detlefs2002], pages 12–24.

[Endo, 1998] Toshio Endo. A scalable mark-sweep garbage collector on large-scale shared-memory

machines. Master’s thesis, University of Tokyo, February 1998.

[Endo, 2001] Toshio Endo. Scalable Dynamic Memory Management Module on Shared Memory Multi-

processors. PhD thesis, University of Tokyo, September 2001.

[Engelstad and Vandendorpe, 1991] Steven L. Engelstad and James E. Vandendorpe. Automatic storage

management for systems with real time constraints. In Wilson and Hayes [Wilson and Hayes1991a].

[Ennals and Brewer, 2007] David Gay Rob Ennals and Eric Brewer. Safe manual memory management.

In Morrisett and Sagiv [Morrisett and Sagiv2007], pages 2–14.

[Eran and Petrank, 2013] H. Eran and E. Petrank. A study of data structures with a deep heap shape. In

MSPC 2013 [MSPC 20132013], pages 21–28.

[Eran, 2012] H. Eran. A study of data structures with a deep heap shape. Master’s thesis, Technion,

2012.

[Ericsson et al., 2017] Adam Sandberg Ericsson, Magnus O. Myreen, and Johannes Åman Pohjola. A

verified generational garbage collector for CakeML. In ITP 2017 [ITP 20172017].

[Ernst, 2007] Erik Ernst, editor. 21st European Conference on Object-Oriented Programming, volume

4609 of Lecture Notes in Computer Science, Berlin, Germany, July 2007. Springer-Verlag.

[Ershov, 1958] A.P. Ershov. On programming of arithmetic operations. Communications of the ACM,

1(8):3–6, August 1958.

[Ertl and Kirsch, 2024] M. Anton Ertl and Christoph Kirsch, editors. ACM SIGPLAN International Con-

ference on Managed Programming Languages and Runtimes, Vienna, Austria, September 2024. ACM

Press.

[ESOP 1992, 1992] European Symposium on Programming, volume 582 of Lecture Notes in Computer

Science, Rennes, France, February 1992. Springer-Verlag.

[Etienne, 2004] Lozes Etienne. Separation logic preserves the expressive power of classical logic. In

SPACE 2004 [SPACE 20042004].

[EuroSys 2010, 2010] 5th European Conference on Computer Systems (EuroSys), Paris, France, April

2010. ACM Press.

[EuroSys 2018, 2018] European Conference on Computer Systems (EuroSys). ACM Press, 2018.

[EuroSys 2019, 2019] European Conference on Computer Systems (EuroSys). ACM Press, March 2019.

[Evans and Dickman, 1997] Huw Evans and Peter Dickman. Garbage collection and memory manage-

ment. In OOPSLA 1997 [OOPSLA 19971997], pages 138–143. Addendum to proceedings.

[Evans, 1996] David Evans. Static detection of dynamic memory errors. In PLDI 1996

[PLDI 19961996], pages 44–53.

46



[Even and Shiloach, 1981] Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. Journal

of the ACM, 28(1):1–4, January 1981.

[Explorer, 1987] Explorer (tm) System Software Design Notes, June 1987. Texas Instruments part num-

ber 2243208–0001*A.

[Fabri, 1979] Janet Fabri. Automatic storage optimization. In SIGPLAN 1979 [SIGPLAN 19791979],

pages 83–91.

[Faes et al., 2005] Philippe Faes, Mark Christiaens, Dries Buytaert, and Dirk Stroobandt. FPGA-aware

garbage collection in Java. In T. Rissa, S. Wilton, and P. Leong, editors, 2005 International Conference

on Field Programmable Logic and Applications (FPL), pages 675–680, Tampere, Finland, August

2005. IEEE.

[Falcone and Stinger, 1983] J.R. Falcone and J.R. Stinger. The Smalltalk-80 implementation at Hewlett–

Packard. In Krasner [Krasner1983], pages 79–112.

[Farkas et al., 2000] Keith I. Farkas, Jason Flinn, Godmar Back, Dirk Grunwald, and Jennifer Ander-

son. Quantifying the energy consumption of a pocket computer and a Java virtual machine. In ACM

SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, 2000.

[Farrens and Park, 1991] Matthew Farrens and Arvin Park. Dynamic base register caching: A technique

for reducing address bus width. In ISCA 1991 [ISCA 19911991], pages 128–137.

[Feeley and Miller, 1990] Marc Feeley and James S. Miller. A parallel virtual machine for efficient

Scheme compilation. In LFP 1990 [LFP 19901990], pages 119–130.

[Feeley, 1993] Marc Feeley. Polling efficiently on stock hardware. In Hughes [Hughes1993], pages

179–187.

[Feizabadi and Back, 2005] Shahrooz Feizabadi and Godmar Back. Java garbage collection scheduling

in utility accrual scheduling environments. In JTRES 2005 [JTRES 20052005].

[Feizabadi and Back, 2006] S. Feizabadi and G. Back. Automatic memory management in utility accrual

scheduling environments. In ISORC 2006 [ISORC 20062006].

[Feizabadi and Back, 2007] Shahrooz Feizabadi and Godmar Back. Garbage collection-aware utility

accrual scheduling. Real-Time Systems, 36(1–2), July 2007.

[Fenacci et al., 2018] Damon Fenacci, Hans Vandierendonck, and Dimitrios Nikolopoulos. Code and

data transformations to address garbage collector performance in big data processing. In 25th IEEE

International Conference on High Performance Computing (HiPC), pages 284–293, 2018.

[Fenichel and Yochelson, 1969] Robert R. Fenichel and Jerome C. Yochelson. A Lisp garbage collector

for virtual memory computer systems. Communications of the ACM, 12(11):611–612, November

1969.

[Fenichel, 1971a] Robert R. Fenichel. Comment on cheney’s list-compaction algorithm. Communica-

tions of the ACM, 14(9):603–604, September 1971.

[Fenichel, 1971b] Robert R. Fenichel. List tracing in systems allowing multiple cell types. Communi-

cations of the ACM, 14(8):522–526, August 1971.

[Fenton and Payne, 1974] J.S. Fenton and D.W. Payne. Dynamic storage allocation of arbitrary sized

segments. In Proceedings of IFIPS, pages 344–348, 1974.

[Férey and Shankar, 2016] Gaspard Férey and Natarajan Shankar. Code generation using a formal model

of reference counting. In Sanjai Rayadurgam and Oksana Tkachuk, editors, NASA Formal Methods,

volume 9690 of Lecture Notes in Computer Science, pages 150–165. Springer International Publish-

ing, 2016.

[Ferguson, 1976] H.R.P. Ferguson. On a generalization of the Fibonacci numbers useful in memory

allocation schema. The Fibonacci Quarterly, 14(3):233–243, October 1976.

[Fernandez and Hanson, 1992] Mary F. Fernandez and David R. Hanson. Garbage collection alternatives

for Icon. Software: Practice and Experience, 22(8):659–672, August 1992.

[Ferrante and McKinley, 2007] Jeanne Ferrante and Kathryn S. McKinley, editors. ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, ACM SIGPLAN Notices 42(6), San

Diego, CA, June 2007. ACM Press.

[Ferrari, 1974] Domenico Ferrari. Improving locality by critical working sets. Communications of the

ACM, 17(11):614–620, November 1974.

47



[Ferreira and Shapiro, 1994a] Paulo Ferreira and Marc Shapiro. Distributed shared memory consistency

and garbage collection. In Workshop Inter-PRS, Paris, December 1994.

[Ferreira and Shapiro, 1994b] Paulo Ferreira and Marc Shapiro. Garbage collection and DSM consis-

tency. In 1st Symposium on Operating Systems Design and Implementation, pages 229–241, Monterey,

CA, November 1994. ACM Press.

[Ferreira and Shapiro, 1994c] Paulo Ferreira and Marc Shapiro. Garbage collection of persistent objects

in distributed shared memory. In Workshop Franco-Isralienne, St Malo, France, September 1994.

[Ferreira and Shapiro, 1995a] Paulo Ferreira and Marc Shapiro. Garbage collection in the Larchant per-

sistent distributed shared store. In 5th Workshop on Future Trends in Distributed Computing Systems,

Cheju Island, Korea, August 1995.

[Ferreira and Shapiro, 1995b] Paulo Ferreira and Marc Shapiro. Garbage collection of persistent objects

in distributed shared memory. In Atkinson et al. [Atkinson et al.1995], pages 176–191.

[Ferreira and Shapiro, 1996a] Paulo Ferreira and Marc Shapiro. Asynchronous distributed garbage col-

lection in the Larchant cached shared store. Available from Marc Shapiro, May 1996.

[Ferreira and Shapiro, 1996b] Paulo Ferreira and Marc Shapiro. Larchant: Persistence by reachability

in distributed shared memory through garbage collection. In 16th International Conference on Dis-

tributed Computer Systems, Hong Kong, May 1996.

[Ferreira and Shapiro, 1998] Paulo Ferreira and Marc Shapiro. Modelling a distributed cached store for

garbage collection: the algorithm and its correctness proof. In Jul [Jul1998], pages 234–259.

[Ferreira and Veiga, 2005] Paulo Ferreira and Luis Veiga. Garbage collection curriculum. MSDN Aca-

demic Alliance Curriculum Repository, object ID 6812, July 2005.

[Ferreira and Veiga, 2006] Paulo Ferreira and Luis Veiga. Mobile middleware – seamless service access

via resource replication. In Paolo Bellavista and Antonio Corradi, editors, The Handbook of Mobile

Middleware. Auerbach Publications, Taylor and Francis-CRC Press, October 2006.

[Ferreira et al., 1998] Paulo Ferreira, Marc Shapiro, Xavier Blondel, Olivier Fambon, Jo ao Garcia,

Sytse Kloosterman, Nicolas Richer, Marcus Roberts, Fadi Sandakly, George Colouris, Jean Dollimore,

Paulo Guedes, Daniel Hagimont, and Sacha Krakowiak. PerDiS: Design, implementation and use of a

PERsistent DIstributed Store. Technical Report QMW TR 752, CSTB ILC/98-1392, INRIA RR 3525,

INESC RT/5/98, QMW, CSTB INRIA and INESC, October 1998.

[Ferreira et al., 2000] Paulo Ferreira, Marc Shapiro, Xavier Blondel, Olivier Fambon, Jo ao Garcia,

Sytse Kloosterman, Nicolas Richer, Marcus Roberts, Fadi Sandakly, George Colouris, Jean Dollimore,

Paulo Guedes, Daniel Hagimont, and Sacha Krakowiak. PerDiS: Design, implementation and use of a

PERsistent DIstributed Store. In Krakowiak and Shrivastava [Krakowiak and Shrivastava2000], pages

427–452.

[Ferreira et al., 2003] Paulo Ferreira, Luis Veiga, and Carlos Ribeiro. OBIWAN: Design and im-

plementation of a middleware platform. IEEE Transactions on Parallel and Distributed Systems,

14(11):1086–1099, November 2003.

[Ferreira, 1990] Paulo Ferreira. Storage reclamation. In Jul and Juul [Jul and Juul1990].

[Ferreira, 1991a] Paulo Ferreira. Garbage collection in C++. In Wilson and Hayes

[Wilson and Hayes1991a].

[Ferreira, 1991b] Paulo Ferreira. Garbage collection in C++. In Workshop on Extensions to C++, Lis-

bon, June 1991.

[Ferreira, 1991c] Paulo Ferreira. Reclaiming storage in an object-oriented platform supporting extended

C++ and Objective-C applications. In Cabrera et al. [Cabrera et al.1991].

[Ferreira, 1992] Paulo Ferreira. Reciclagem automática de memória num sistema orientado a objectos.

Master’s thesis, Technical University of Lisbon, June 1992.

[Ferreira, 1996] Paulo Ferreira. Larchant: Garbage Collection in a Cached Distributed Shared Store

with Persistence by Reachability. PhD thesis, Université Paris VI, Pierre et Marie Curie, May 1996.

[Ferreiro et al., 2016] Henrique Ferreiro, Laura Castro, Vladimir Janjic, and Kevin Hammond. Kinder-

garten Cop: Dynamic nursery resizing for GHC. In CC 2016 [CC 20162016], pages 56–66.

[Field and Harrison, 1988] Anthony J. Field and Peter G. Harrison. Functional Programming. Addison-

Wesley, 1988.

48



[Fink and Qian, 2003] Stephen J. Fink and Feng Qian. Design, implementation and evaluation of adap-

tive recompilation with on-stack replacement. In CGO 2003 [CGO 20032003], pages 241–252.

[Fisher, 1974] David A. Fisher. Bounded workspace garbage collection in an address order preserving

list processing environment. Information Processing Letters, 3(1):29–32, July 1974.

[Fisher, 1975] David A. Fisher. Copying cyclic list structure in linear time using bounded workspace.

Communications of the ACM, 18(5):251–252, May 1975.

[Fitch and Norman, 1978] John P. Fitch and Arthur C. Norman. A note on compacting garbage collec-

tion. Computer Journal, 21(1):31–34, February 1978.

[Fitzgerald and Tarditi, 2000] Robert Fitzgerald and David Tarditi. The case for profile-directed selec-

tion of garbage collectors. In Chambers and Hosking [Chambers and Hosking2000], pages 111–120.

[Fiuczynski et al., 2010] Marc E. Fiuczynski, Emery Berger, and Andrew Warfield, editors. 6th ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, Pittsburgh, PA,

March 2010. ACM Press.

[Flanagan and Nikhil, 1996] Cormac Flanagan and Rishiyur S. Nikhil. pHluid: the design of a parallel

functional language implementation on workstations. In ICFP 1996 [ICFP 19961996], pages 169–

179.

[Fleisch, 1989] B.D. Fleisch. Mirage: A coherent distributed shared memory design. In 12th ACM

SIGOPS Symposium on Operating Systems Principles, pages 211–213. ACM Press, December 1989.

[Flood et al., 2001] Christine Flood, Dave Detlefs, Nir Shavit, and Catherine Zhang. Parallel garbage

collection for shared memory multiprocessors. In JVM 2001 [JVM 20012001].

[Flood et al., 2016] Christine H. Flood, Roman Kennke, Andrew Dinn, Andrew Haley, and Roland

Westrelin. Shenandoah: An open-source concurrent compacting garbage collector for OpenJDK.

In PPPJ 2016 [PPPJ 20162016], pages 13:1–13:9.

[Fluet and Wang, 2004] Matthew Fluet and Daniel Wang. Implementation and performance evaluation

of a safe runtime system in Cyclone. In SPACE 2004 [SPACE 20042004].

[Fluet et al., 2008] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. Implicitly-threaded

parallelism in Manticore. In ICFP 2008 [ICFP 20082008], pages 119–130.

[Fluet, 2004] Matthew Fluet. Monadic regions. In SPACE 2004 [SPACE 20042004].

[Foderaro and Fateman, 1981] John K. Foderaro and Richard J. Fateman. Characterization of VAX Mac-

syma. In 1981 ACM Symposium on Symbolic and Algebraic Computation, pages 14–19, Berkeley, CA,

1981. ACM Press.

[Foderaro et al., 1985] John K. Foderaro, Keith Sklower, Kevin Layer, et al. Franz Lisp Reference Man-

ual. Franz Inc., 1985.

[Ford, 1988] R. Ford. Concurrent algorithms for real-time memory management. IEEE Software, pages

10–23, September 1988.

[Forin et al., 1989] A. Forin, J. Barrera, M. Young, and R. Rashid. Design, implementation, and perfor-

mance evaluation of a distributed shared memory server for Mach. In Winter USENIX Conference.

USENIX Association, January 1989.

[Foster and Winsborough, 1991] Ian Foster and William Winsborough. Copy avoidance through

compile-time analysis and local reuse. In International Logic Programming Symposium, pages 455–

469, 1991.

[Foster, 1968] J.M. Foster. List Processing. Elsevier Computer Monographs. Elsevier-North Holland,

New York, 1968.

[Foster, 1985] Mark H. Foster. Design of a list-structure memory using parallel garbage collection.

Master’s thesis, Oregon Graduate Center, 1985.

[Foster, 1988] Ian Foster. An asynchronous parallel garbage collector for a single-assignment language.

Technical report, Imperial College, London, May 1988.

[Foster, 1989a] Ian Foster. Copy avoidance through local reuse. Technical Report MCS–P99–0989,

Argonne National Laboratory, 1989.

[Foster, 1989b] Ian Foster. A multicomputer garbage collector for a single-assignment language. Inter-

national Journal of Parallel Programming, 18(3):181–203, 1989.

49



[Fotheringham, 1961] J.A. Fotheringham. Dynamic storage allocation in the Atlas computer including

an automatic use of the backing store. Communications of the ACM, 4:435, 1961.

[Fox, 1960] Phyllis Fox. Lisp I Programmer’s Manual, March 1960. The first GC, mark-sweep, imple-

mented by MIT graduate studentDaniel Edwards.

[FPCA 1989, 1989] Conference on Functional Programming and Computer Architecture, Imperial Col-

lege, London, August 1989. ACM Press.

[FPCA 1995, 1995] Conference on Functional Programming and Computer Architecture, La Jolla, CA,

June 1995. ACM Press.

[Fradet, 1994] Pascal Fradet. Collecting more garbage. In LFP 1994 [LFP 19941994], pages 24–33.

[Frampton et al., 2007] Daniel Frampton, David F. Bacon, Perry Cheng, and David Grove. Generational

real-time garbage collection: A three-part invention for young objects. In Ernst [Ernst2007], pages

101–125.

[Frampton et al., 2009a] Daniel Frampton, Stephen M. Blackburn, Perry Cheng, Robin J. Garner,

D. Grove, J. Eliot B. Moss, and S.I. Salishev. Demystifying magic: High-level low-level program-

ming. In Hosking et al. [Hosking et al.2009], pages 81–90.

[Frampton et al., 2009b] Daniel Frampton, Stephen M. Blackburn, Luke N. Quinane, and John N. Zig-

man. Efficient concurrent mark-sweep cycle collection. Technical Report TR-CS-09-02, Australian

National University, October 2009.

[Frampton, 2003] Daniel Frampton. An investigation into automatic dynamic memory management

strategies using compacting collection. Honours thesis, Australian National University, 2003.

[Frampton, 2010] Daniel Frampton. Garbage Collection and the Case for High-level Low-level Pro-

gramming. PhD thesis, Australian National University, June 2010.

[Francez and Kozen, 1984] Nissim Francez and Dexter Kozen. Generalized fair termination. In POPL

1984 [POPL 19841984], pages 46–53.

[Francez, 1978] Nissim Francez. An application of a method for analysis of cyclic programs. ACM

Transactions on Software Engineering, 4(5):371–377, September 1978.

[Francez, 1980] Nissim Francez. Distributed termination. ACM Transactions on Programming Lan-

guages and Systems, 2(1):42–55, January 1980.

[Franco et al., 2018] Juliana Franco, Sylvan Clebsch, Sophia Drossopoulou, Jan Vitek, and Tobias

Wrigstad. Correctness of a concurrent object collector for Actor languages. In Programming Lan-

guages and Systems (ESOP 2018), volume 10801 of Lecture Notes in Computer Science, pages 885–

911, 2018.

[Franklin et al., 1989] Michael Franklin, G. Copeland, and G. Weikum. What’s different about garbage

collection for persistent programming languages. Technical Report ACA-ST-062-89, Microelectronics

and Computer Technology Corporation, 1989.

[Franz, 1988, 1988] Franz Inc. Allegro CL User Guide, release 3.0 (beta) edition, April 1988.

[Franz, 1992, 1992] Franz Inc. Allegro CL User Guide, Version 4.1, revision 2 edition, March 1992.

[Freiburger et al., 1975] W.F. Freiburger, U. Grenander, and P.D. Sampson. Patterns in program refer-

ences. IBM Journal of Research and Development, 19(3):230–243, May 1975.

[Friedman and Wise, 1976] Daniel P. Friedman and David S. Wise. Garbage collecting a heap which

included a scatter table. Information Processing Letters, 5(6):161–164, December 1976.

[Friedman and Wise, 1978] Daniel P. Friedman and David S. Wise. Aspects of applicative programming

for parallel processing. IEEE Transactions on Computers, 27(4):289–296, April 1978.

[Friedman and Wise, 1979] Daniel P. Friedman and David S. Wise. Reference counting can manage the

circular environments of mutual recursion. Information Processing Letters, 8(1):41–45, January 1979.

[Friedman et al., 2005] S. Friedman, P. Krishnamurthy, R. Chamberlain, Ron K. Cytron, and J.E. Fritts.

Dusty caches for reference counting garbage collection. In Proceedings of the 2005 workshop on

MEmory performance: DEaling with Applications, systems and architecture (MEDEA 05), pages 3–

10, 2005.

[Fu and Hauser, 2005a] Wei Fu and Carl Hauser. Modeling real-time garbage collection cost. In RTCSA

2007 [RTCSA 20072005].

50



[Fu and Hauser, 2005b] Wei Fu and Carl Hauser. A real-time garbage collection framework for embed-

ded systems. In Workshop on Software and Compilers for Embedded Systems, pages 20–26, Dallas,

TX, 2005.

[Fuchs, 1995] Matthew Fuchs. Garbage collection on an open network. In Baker [Baker1995b], pages

251–265.

[Fumero et al., 2023] Juan Fumero, Florin Blanaru, Athanasios Stratikopoulos, Steve Dohrmann, Sand-

hya Viswanathan, and Christos Kotselidis. Unified shared memory: Friend or foe? understanding the

implications of unified memory on managed heaps. In Moss [Moss2023].

[Furusou et al., 1991] Shinichi Furusou, Satoshi Matsuoka, and Akinori Yonezawa. Parallel conservative

garbage collection with fast allocation. In Wilson and Hayes [Wilson and Hayes1991a].

[G et al., 2005] Bollella G, Delsart B, Guider R, Lizzi C, and Parain F. Mackinac: Making Hotspot

real-time. In ISORC 2005 [ISORC 20052005], pages 45–54.

[Gabriel and Mansinter, 1982] Richard P. Gabriel and L.M. Mansinter. Performance of Lisp systems. In

LFP 1982 [LFP 19821982], pages 123–142.

[Gabriel, 1985] Richard P. Gabriel. Performance and Evaluation of Lisp Systems. MIT Press Series in

Computer Science. MIT Press, Cambridge, MA, 1985.

[Gai and Mezzalama, 1985] S. Gai and M. Mezzalama. Dynamic storage allocation: Experiments using

the C language. Software: Practice and Experience, 15(7):693–704, July 1985.

[Gamari and Dietz, 2020] Ben Gamari and Laura Dietz. Alligator collector: A latency-optimized

garbage collector for functional programming languages. In Maas and Ding [Maas and Ding2020],

pages 87–99.

[Gammie et al., 2015] Peter Gammie, Antony L. Hosking, and Kai Engelhardt. Relaxing safely: Verified

on-the-fly garbage collection for x86-TSO. In PLDI 2015 [PLDI 20152015].

[Ganesan, 1994] Ravichandran Ganesan. Local variable allocation for accurate garbage collection of

C++. Master’s thesis, Iowa State University, July 1994. Technical Report ISUTR 94–12.

[Gannon et al., 1988] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local memory man-

agement by global program transformation. Journal of Parallel and Distributed Computing, 5:587–

616, 1988.

[Gao and Nilsen, 1994] Hong Gao and Kelvin Nilsen. Reliable general purpose dynamic memory man-

agement for real-time systems. Technical Report TR94–09, Iowa State University, July 1994.

[Gao et al., 2007] H. Gao, J.F. Groote, and W.H. Hesselink. Lock-free parallel and concurrent garbage

collection by mark&sweep. Science of Computer Programming, 64(3):341–374, February 2007.

[Gao et al., 2013] Tiejun Gao, Karin Strauss, Stephen M. Blackburn, Kathryn S. McKinley, Doug

Burger, and James Larus. Using managed runtime systems to tolerate holes in wearable memories. In

PLDI 2013 [PLDI 20132013].

[Garcı́, 2021] Andrés Amaya Garcı́. Integrated Hardware Garbage Collection for Real-Time Embedded

Systems. PhD thesis, University of Bristol, 2021.

[Garcı́a et al., 2020] Andrés Amaya Garcı́a, David May, and Ed Nutting. Garbage collection for edge

computing. In IEEE/ACM Symposium on Edge Computing (SEC), 2020.

[Garcı́a et al., 2021] Andrés Amaya Garcı́a, David May, and Ed Nutting. Integrated hardware garbage

collection. ACM Transactions on Embedded Computer Systems, 20(5):1–25, July 2021. Article 40.

[Garey et al., 1972] M.R. Garey, R.L. Graham, and Jeffrey D. Ullman. Worst-case analysis of memory

allocation algorithms. In 4th Annual ACM Symposium on the Theory of Computing. ACM Press, 1972.

[Garner et al., 2007] Robin Garner, Stephen M. Blackburn, and Daniel Frampton. Effective prefetch for

mark-sweep garbage collection. In Morrisett and Sagiv [Morrisett and Sagiv2007], pages 43–54.

[Garner et al., 2011] Robin J. Garner, Stephen M. Blackburn, and Daniel Frampton. A comprehensive

evaluation of object scanning techniques. In Boehm and Bacon [Boehm and Bacon2011], pages 33–

42.

[Garner, 2003] Robin J. Garner. JMTk: A portable memory management toolkit. Bachelor of science

(honours) thesis, Australian National University, December 2003.

[Garner, 2007] Robin J. Garner. Porting the JMTk memory management toolkit. Technical report,

Australian National University, 2007.

51



[Garner, 2012] Robin Garner. The Design and Construction of High Performance Garbage Collectors.

PhD thesis, Australian National University, May 2012.

[Garnett and Needham, 1980] N.H. Garnett and Roger M. Needham. An asynchronous garbage collector

for the Cambridge file server. ACM SIGOPS Operating Systems Review, 14(4):36–40, 1980.

[Garthwaite and Nettles, 1997] Alex Garthwaite and Scott Nettles. Concurrent collection for the Java

Development Kit. In Dickman and Wilson [Dickman and Wilson1997].

[Garthwaite and Nettles, 1998] Alex Garthwaite and Scott Nettles. TJava: a transactional Java. In IEEE

International Conference on Computer Languages. IEEE Press, 1998.

[Garthwaite et al., 2005] Alex Garthwaite, Dave Dice, and Derek White. Supporting per-processor

local-allocation buffers using lightweight user-level preemption notification. In Hind and Vitek

[Hind and Vitek2005], pages 24–34.

[Garthwaite et al., 2006] Alexander T. Garthwaite, David L. Detlefs, Antonios Printezis, and Y. Srinivas

Ramakrishna. Method and mechanism for finding references in a card in time linear in the size of the

card in a garbage-collected heap. United States Patent 7,136,887 B2, Sun Microsystems, November

2006.

[Garthwaite, 2001] Alex Garthwaite. Memory management = partitioning + alpha-renaming. In SPACE

2001 [SPACE 20012001].

[Garthwaite, 2005] Alex Garthwaite. Making the Trains Run On Time. PhD thesis, University of Penn-

sylvania, 2005.

[Gavrilovska and Zadok, 2020] Ada Gavrilovska and Erez Zadok, editors. 2020 USENIX Annual Tech-

nical Conference. USENIX Association, July 2020.

[Gay and Aiken, 1998] David Gay and Alexander Aiken. Memory management with explicit regions.

In PLDI 1998 [PLDI 19981998], pages 313–323.

[Gay and Aiken, 2001] David Gay and Alexander Aiken. Language support for regions. In PLDI 2001

[PLDI 20012001], pages 70–80.

[Gay and Steensgaard, 1998] David Gay and Bjarne Steensgaard. Stack allocating objects in Java. Tech-

nical report, Microsoft Research, October 1998.

[Gay and Steensgaard, 2000] David Gay and Bjarne Steensgaard. Fast escape analysis and stack alloca-

tion for object-based programs. In CC 2000 [CC 20002000], pages 82–93.

[Gay, 2001] David Gay. A type system for reference-counted regions. In SPACE 2001

[SPACE 20012001].

[Gee et al., 1993] Jeffrey D. Gee, Mark D. Hill, Dionisios N. Pnevmatikatos, and Alan J. Smith. Cache

performance of the SPEC92 benchmark suite. IEEE Micro, 13(4):17–27, 1993.

[Gehringer and Chang, 1993] Edward F. Gehringer and J. Morris Chang. Hardware-assisted memory

management. In Moss et al. [Moss et al.1993].

[Gelenbe, 1971] E. Gelenbe. The two-thirds rule for dynamic storage allocation under equilibrium.

Information Processing Letters, 1:59–60, 1971.

[Gelernter et al., 1960] H. Gelernter, J.R. Hansen, and C.L. Gerberich. A Fortran-compiled list process-

ing language. Journal of the ACM, 7(2):87–101, April 1960.

[Geoffray et al., 2008] N. Geoffray, G. Thomas, C. Clémentand, and B. Folliot. A lazy developer ap-

proach: Building a JVM with third party software. In PPPJ 2008 [PPPJ 20082008], pages 73–82.

[Geoffray et al., 2010] Nicolas Geoffray, Gaël Thomas, Julia Lawall, Gilles Muller, and Bertil Folliot.

VMKit: a substrate for managed runtime environments. In Fiuczynski et al. [Fiuczynski et al.2010],

pages 51–61.

[George et al., 2020] Jerrin Shaji George, Mohit Verma, Rajesh Venkatasubramanian, and Pratap Sub-

rahmanyam. go-pmem: Native support for programming persistent memory in Go. In Gavrilovska

and Zadok [Gavrilovska and Zadok2020], pages 859–872.

[Georges et al., 2004] Andy Georges, Dries Buytaert, Lieven Eeckhout, and Koen De Bosschere.

Method-level phase behavior in Java workloads. In OOPSLA 2004 [OOPSLA 20042004], pages

270–287.

[Georges et al., 2007] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous Java

performance evaluation. In OOPSLA 2007 [OOPSLA 20072007], pages 57–76.

52



[Georges et al., 2008] Andy Georges, Lieven Eeckhout, and Dries Buytaert. Java performance evalua-

tion through rigorous replay compilation. In OOPSLA 2008 [OOPSLA 20082008], pages 367–384.

[Gerhart, 1979] S.L. Gerhart. A derivation oriented proof of Schorr–Waite marking algorithm. Lecture

Notes in Computer Science, 69:472–492, 1979.

[Gharaibeh and Chang, 2009] Bashar Gharaibeh and J. Morris Chang. Meaningful object lifetime mea-

surement for multithreaded applications. Technical report, Iowa State University, 2009.

[Gheorghioiu et al., 2003] Ovidiu Gheorghioiu, Alexandru Salcianu, and Martin Rinard. Interprocedural

compatibility analysis for static object preallocation. In POPL 2003 [POPL 20032003].

[Ghesquiere et al., 2003a] T. Ghesquiere, J.-D. Choi, and K. De Bosschere. Accurate replay of memory

management in Java. In 4th FTW PhD Symposium, Gent, Belgium, December 2003.

[Ghesquiere et al., 2003b] T. Ghesquiere, J.-D. Choi, and K. De Bosschere. Memory management replay

in DejaVu. In Program Acceleration through Application and Architecture Driven Code Transforma-

tions: Symposium Proceedings, pages 113–115, Edegem, Belgium, September 2003.

[Ghiya et al., 2001] Rakesh Ghiya, Daniel M. Lavery, and David C. Sehr. On the importance of points-to

analysis and other memory disambiguation methods for C programs. In PLDI 2001 [PLDI 20012001],

pages 47–58.

[Ghosh, 1994] Kaushik Ghosh. Reconfigurable garbage collection of data structures in a speculative

real-time system. Technical Report GIT-CC-94-57, Georgia Institute of Technology, 1994.

[Giallorenzo and Goretti, 2025] Saverio Giallorenzo and Francesco Goretti. Breadth-first cycle collec-

tion reference counting: Theory and a Rust smart pointer implementation. In Proceedings of the 40th

ACM/SIGAPP Symposium on Applied Computing, pages 1412–1420, 2025.

[Gibbs and Coady, 2005] Celina Gibbs and Yvonne Coady. Aspects of memory management. In 38th

Annual Hawaii International Conference on System Sciences (HICSS) – Track 9, page 275.2, 2005.

[Gidenstam et al., 2009] Anders Gidenstam, Marina Papatriantafilou, Høakan Sundell, and Philippas

Tsigas. Efficient and reliable lock-free memory reclamation based on reference counting. IEEE

Transactions on Parallel and Distributed Systems, 20(8), 2009.

[Gidra et al., 2011] Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc Shapiro. Assessing the scal-

ability of garbage collectors on many cores. In 6th Workshop on Programming Languages and Oper-

ating Systems (PLOS 2011), page 5, Cascais, Portugal, October 2011. ACM Press.

[Gidra et al., 2013] Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc Shapiro. A study of the

scalability of stop-the-world garbage collectors on multicores. In Proceedings of the Eighteenth In-

ternational Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), pages 229–240, Houston, Texas, 2013. ACM Press.

[Gidra et al., 2015] Lokesh Gidra, Gaël Thomas, Julien Sopena, Marc Shapiro, and Nhan Bguyen. Nu-

maGiC: a garbage collector for big data on big NUMA machines. In Proceedings of the Seventeenth

International Conference on Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS), Istanbul, Turkey, March 2015.

[Gillam, ] Richard Gillam. An Introduction to Garbage Collection.

[Ginter, 1991] Andrew Ginter. Cooperative garbage collection using smart pointers in the C++ program-

ming language. Master’s thesis, University of Calgary, December 1991. Technical report 91/451/45.

[Girard, 1987] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[Glaser and Hayes, 1986] Hugh W. Glaser and S. Hayes. Another implementation technique for applica-

tive languages. In Robinet and Wilhelm [Robinet and Wilhelm1986], pages 70–81.

[Glaser and Thompson, 1987] Hugh W. Glaser and P. Thompson. Lazy garbage collection. Software:

Practice and Experience, 17(1):1–4, January 1987.

[Glaser et al., 1989] Hugh W. Glaser, Michael Reeve, and S. Wright. An analysis of reference count

garbage collection schemes for declarative languages. Technical report, Department of Computing,

Imperial College, London, 1989.

[Glaser, 1987] Hugh W. Glaser. On minimal overhead reference count garbage collection in distributed

systems. Technical report, Department of Computing, Imperial College, London, 1987.

[Goetz, 2003a] Brian Goetz. Java theory and practice: A brief history of garbage collection, October

2003. First of a series of three articles.

53



[Goetz, 2003b] Brian Goetz. Java theory and practice: Garbage collection in the 1.4.1 JVM, November

2003. Second of a series of three articles.

[Goetz, 2004] Brian Goetz. Java theory and practice: Garbage collection and performance, January

2004. Last of a series of three articles.

[Gog et al., 2015] Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Vaswani, Dimitrios Vytiniotis,

Ganesan Ramalingam, Manuel Costa, Derek G. Murray, Steven Hand, and Michael Isard. Broom:

Sweeping out garbage collection from big data systems. In 15th Workshop on Hot Topics in Operating

Systems (HotOS XV), Kartause Ittingen, Switzerland, May 2015. USENIX Association.

[Goguen et al., 1998] Healfdene Goguen, Richard Brooksby, and Rod Burstall. An abstract formulation

of memory management. Technical report, University of Edinburgh, December 1998. draft.

[Goguen et al., 2000] Healfdene Goguen, Richard Brooksby, and Rod M. Burstall. Memory manage-

ment: An abstract formulation of incremental tracing. In Types for Proofs and Programs, International

Workshop TYPES’99, pages 148–161. Springer, 2000.

[Goh et al., 2006] O. Goh, Yann-Hang Lee, Z. Kaakani, and E. Rachlin. Integrated scheduling with

garbage collection for real-time embedded applications in CLI. In ISORC 2006 [ISORC 20062006].

[Goldberg and Gloger, 1992] Benjamin Goldberg and Michael Gloger. Polymorphic type reconstruction

for garbage collection without tags. In LFP 1992 [LFP 19921992], pages 53–65.

[Goldberg and Hassinger, 1974] Ron P. Goldberg and R. Hassinger. The double paging anomaly. In

AFIPS National Computer Conference, pages 195–199, May 1974.

[Goldberg and Robson, 1983] Adele Goldberg and D. Robson. Smalltalk-80: The Language and its

Implementation. Addison-Wesley, 1983.

[Goldberg, 1989] Benjamin Goldberg. Generational reference counting: A reduced-communication dis-

tributed storage reclamation scheme. In PLDI 1989 [PLDI 19891989], pages 313–320.

[Goldberg, 1991] Benjamin Goldberg. Tag-free garbage collection for strongly typed programming lan-

guages. In PLDI 1991 [PLDI 19911991], pages 165–176.

[Goldberg, 1992] Benjamin Goldberg. Incremental garbage collection without tags. In ESOP 1992

[ESOP 19921992], pages 200–218.

[Golding, 1992] Richard A. Golding. Weak-Consistency Group Communication and Membership. PhD

thesis, University of California, Santa Cruz, December 1992. UCSC–CRL-92-52.

[Goldman and Gabriel, 1988] Ron Goldman and Richard P. Gabriel. Preliminary results with the initial

implementation of Qlisp. In LFP 1988 [LFP 19881988], pages 143–152.

[Gonçalves and Appel, 1994] Marcelo J.R. Gonçalves and Andrew W. Appel. Cache performance

of fast-allocating programs. Technical Report CS–TR–482–94, Department of Computer Science,

Princeton University, December 1994.

[Gonçalves and Appel, 1995] Marcelo J.R. Gonçalves and Andrew W. Appel. Cache performance of

fast-allocating programs. In FPCA 1995 [FPCA 19951995], pages 293–305.

[Gonçalves, 1995] Marcelo J.R. Gonçalves. Cache Performance of Programs with Intensive Heap Allo-

cation and Generational Garbage Collection. PhD thesis, Department of Computer Science, Princeton

University, May 1995.

[Gonthier, 1996] Georges Gonthier. Verifying the safety of a practical concurrent garbage collector. In

R. Alur and T. Henzinger, editors, Computer Aided Verification CAV’96, Lecture Notes in Computer

Science, pages 462–465, New Brunswick, NJ, 1996. Springer-Verlag.

[Goodell et al., 2010] David Goodell, Pavan Balaji, Darius Buntinas, Gbor Dzsa, William Gropp,

Sameer Kumar, Bronis R. de Supinski, and Rajeev Thakur. Minimizing MPI resource contention

in multithreaded multicore environments. In 2010 IEEE International Conference on Cluster Com-

puting, pages 1–8, 2010.

[Gorman and Healy, 2008] Mel Gorman and Patrick Healy. Supporting superpage allocation without

additional hardware support. In Jones and Blackburn [Jones and Blackburn2008], pages 41–50.

[Gosling et al., 1997] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. The

Java Series. Addison-Wesley, 1997.

[Gosling et al., 2005] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-

ification. Addison-Wesley, third edition, May 2005.

54



[Gosling et al., 2014] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java

Language Specification. Addison-Wesley, Java SE 8 edition, March 2014.

[Gosling et al., 2015] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java

Language Specification. Addison-Wesley, Java SE 8 edition, February 2015.

[Gotlieb and Gotlieb, 1978] C.C. Gotlieb and L.R. Gotlieb. Data Types and Structures. Prentice-Hall,

1978.

[Goto et al., 1979] E. Goto, I. Tetsuo, K. Hiraki, M. Susuki, and N. Inada. FLATS, a machine for nu-

merical, symbolic and associative computing. In ISCA 1979 [ISCA 19791979], pages 102–110.

[Goto et al., 1988] Atsuhiro Goto, Y. Kimura, T. Nakagawa, and T. Chikayama. Lazy reference count-

ing: An incremental garbage collection method for parallel inference machines. In ICLP 1988

[ICLP 19881988], pages 1241–1256. Also ICOT Technical Report TR-354, 1988.

[Goto, 1974] Eiichi Goto. Monocopy and associative algorithms in an extended LISP. Technical Report

74-03, Information Science Laboratories, Faculty of Science, University of Tokyo, 1974.

[Gottesman, 2019] Michael Gottesman. Ownership SSA. LLVM Developers’ Meeting, 2019.

[Gottlieb and Wilson, 1982] A. Gottlieb and J. Wilson. Parallelizing the usual buddy algorithm. Tech-

nical Report System Software Note 37, Courant Institute, New York University, 1982.

[Gourhant et al., 1992] Y. Gourhant, S. Louboutin, V. Cahill, A. Condon, G. Starovic, and B. Tangney.

Dynamic clustering in an object-oriented distributed system. In Proceedings of OLDA-II (Objects in

Large Distributed Applications), Ottawa, Canada, October 1992.

[Goyer, 1971] P. Goyer. A garbage collector to be implemented on a CDC 3100. In Peck [Peck1971],

pages 303–317.

[Gray, 1987] Stanley M. Gray. Garbage collection in a parallel processing environment. Master’s thesis,

East Texas State University, 1987.

[Greenblat, 1974] Richard Greenblat. The LISP machine. Working Paper 79, MIT AI Laboratory,

November 1974.

[Greenblatt, 1984] Richard Greenblatt. The LISP machine. In D.R. Barstow, H.E. Shrobe, and E. Sande-

wall, editors, Interactive Programming Environments. McGraw-Hill, 1984.

[Gregg et al., 2008] David Gregg, Vikram Adve, and Brian Bershad, editors. 4th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environments, Seattle, WA, March

2008. ACM Press.

[Grelck and Scholz, 2008] Clemens Grelck and Sven-Bodo Scholz. Efficient heap management for

declarative data parallel programming on multicores. In 3rd Workshop on Declarative Aspects of

Multicore Programming (DAMP 2008), pages 17–31, San Francisco, CA, 2008. ACM Press.

[Grgic et al., 2018] H. Grgic, B. Mihaljević, and A. Radovan. Comparison of garbage collectors in Java

programming language. In 41st IEEE International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO), pages 1539–1544, 2018.

[Gries, 1977a] David Gries. An exercise in proving parallel programs correct. Communications of the

ACM, 20(12):921–930, December 1977.

[Gries, 1977b] David Gries. On believing programs to be correct. Communications of the ACM,

20(1):49–50, January 1977.

[Gries, 1979] David Gries. The Schorr–Waite graph marking algorithm. Acta Informatica, 11(3):223–

232, 1979.

[Griffin et al., 2005a] Paul Griffin, Witawas Srisa-An, and J. Morris Chang. An energy efficient garbage

collector for Java embedded devices. In LCTES 2005 [LCTES 20052005], pages 230–238.

[Griffin et al., 2005b] Paul Griffin, Witawas Srisa-An, and J. Morris Chang. On designing a low-power

garbage collector for Java embedded devices: A case study. In ACM Symposium on Applied Comput-

ing, pages 868–873, Santa Fe, NM, 2005.

[Grimsrud, 1989] Knut S. Grimsrud. Multiple prefetch adaptive disk caching with strategic data layout.

Master’s thesis, Brigham Young University, December 1989.

[Griswold and Griswold, 1983] Ralph E. Griswold and Madge T. Griswold. The Icon Programming

Language. Prentice-Hall, 1983.

55



[Griswold and Griswold, 1986] Ralph E. Griswold and Madge T. Griswold. The Implementation of the

Icon Programming Language. Princeton University Press, 1986. Out of print.

[Griswold, 1972] R.E. Griswold. The macro implementation of Snobol 4, 1972.

[Grit and Page, 1981] Dale H. Grit and Rex L. Page. Deleting irrelevant tasks in an expression-oriented

multiprocessor system. ACM Transactions on Programming Languages and Systems, 3(1):49–59,

January 1981.

[Grossman et al., 2002] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and

James Cheney. Region-based memory management in Cyclone. In PLDI 2002 [PLDI 20022002],

pages 282–293.

[Grossman, 2007] Dan Grossman. The transactional memory / garbage collection analogy. In OOPSLA

2007 [OOPSLA 20072007], pages 695–706. Essay session.

[Grouleff, 1999] Morten Grouleff. A concurrent garbage collector for BETA. Master’s thesis, University

of Aarhus, December 1999.

[Gruian and Salcic, 2005] Flavius Gruian and Zoran Salcic. Designing a concurrent hardware garbage

collector for small embedded systems. In Thambipillai Srikanthan, Jingling Xue, and Chip-Hong

Chang, editors, Advances in Computer Systems Architecture, volume 3740 of Lecture Notes in Com-

puter Science, pages 281–294. Springer-Verlag, 2005.

[Grunwald and Zorn, 1992] Dirk Grunwald and Benjamin Zorn. CUSTOMALLOC: Efficient synthe-

sized memory allocators. Computer Science Technical Report CU-CS-602-92, University of Colorado,

Campus Box 430, Boulder, CO 80309, July 1992.

[Grunwald and Zorn, 1993] Dirk Grunwald and Benjamin Zorn. Customalloc: Efficient, synthesised

memory allocators. Software: Practice and Experience, 23:851–869, 1993.

[Grunwald et al., 1993] Dirk Grunwald, Benjamin G. Zorn, and Robert Henderson. Improving the cache

locality of memory allocation. In PLDI 1993 [PLDI 19931993], pages 177–186.

[Grzegorczyk et al., 2007] Chris Grzegorczyk, Sunil Soman, Chandra Krintz, and Rich Wolski. Isla

Vista heap sizing: Using feedback to avoid paging. In CGO 2007 [CGO 20072007], pages 325–340.

[Gu et al., 2009] Xiaoming Gu, Ian Christopher, Tongxin Bai, Chengliang Zhang, and Chen Ding. A

component model of spatial locality. In Kolodner and Steele [Kolodner and Steele2009], pages 99–

108.

[Guan et al., 2009] Xiaohua Guan, Witawas Srisa-an, and Chenghuan Jia. Investigating the ef-

fects of using different nursery sizing policies on performance. In Kolodner and Steele

[Kolodner and Steele2009], pages 59–68.

[Guatto et al., 2018] Adrien Guatto, Sam Westrick, Ram Raghunathan, Umut Acar, and Matthew Fluet.

Hierarchical memory management for mutable state. In PPOPP 2018 [PPOPP 20182018], pages 81–

93.

[Gudeman, 1993] David Gudeman. Representing type information in dynamically-typed languages.

Technical Report TR93-27, University of Arizona, Department of Computer Science, Tucson, AZ,

1993.

[Guerraoui, 1999] Rachid Guerraoui, editor. 13th European Conference on Object-Oriented Program-

ming, volume 1628 of Lecture Notes in Computer Science, Lisbon, Portugal, July 1999. Springer-

Verlag.

[Guggilla, 1994] Satish Kumar Guggilla. Generational garbage collection of C++ targeted to SPARC

architectures. Master’s thesis, Iowa State University, July 1994. Technical report ISUTR 94-11.

[Gupta and Amarasinghe, 2008] Rajiv Gupta and Saman P. Amarasinghe, editors. ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, ACM SIGPLAN Notices 43(6), Tuc-

son, AZ, June 2008. ACM Press.

[Gupta and Fuchs, 1988] Aloke Gupta and W.K. Fuchs. Reliable garbage collection in distributed object

oriented systems. In 12th Annual International Computer Software Applications Conference (COMP-

SAC), pages 324–328, Chicago, October 1988. IEEE Press.

[Gupta and Fuchs, 1993] Aloke Gupta and W.K. Fuchs. Garbage collection in a distributed object-

oriented system. IEEE Transactions on Knowledge and Data Engineering, 5(2), April 1993.

56



[Gupta, 1990] Aloke Gupta. Low overhead garbage collection in a distributed object-oriented system.

Master’s thesis, University of Illinois at Urbana-Champaign, 1990.

[Gupta, 2003] Alka Gupta. GC Portal, July 2003.

[Guttman et al., 1995] J.D. Guttman, J.D. Ramsdel, and V. Swarup. The VLISP verified Scheme system.

Lisp and Symbolic Computation, 8(1/2):33–110, March 1995.

[Guyer and Grove, 2014] Samuel Z. Guyer and David Grove, editors. 13th ACM SIGPLAN International

Symposium on Memory Management, Edinburgh, June 2014. ACM Press.

[Guyer and McKinley, 2004] Samuel Guyer and Kathryn McKinley. Finding your cronies: Static analy-

sis for dynamic object colocation. In OOPSLA 2004 [OOPSLA 20042004], pages 237–250.

[Guyer et al., 2006] Samuel Z. Guyer, Kathryn S. McKinley, and Daniel Frampton. Free-Me:

A static analysis for automatic individual object reclamation. In Schwartzbach and Ball

[Schwartzbach and Ball2006], pages 364–375.

[Guzmán and Hudak, 1990] J.C. Guzmán and Paul Hudak. Single threaded polymorphic lambda calcu-

lus. In 5th IEEE Symposium on Logic in Computer Science. IEEE Press, 1990.

[GWFP 1993, 1993] 6th Annual Glasgow Workshop on Functional Programming, Workshops in Com-

puter Science. Springer-Verlag, 1993.

[Haage and Morazán, 2011] J. Haage and M. Morazán, editors. 22nd International Symposium on Im-

plementation and Application of Functional Languages, volume 6647 of Lecture Notes in Computer

Science, Alphen a/d Rijn, Netherlands, 2011. Springer.

[Haddon and Waite, 1967] B.K. Haddon and W.M. Waite. A compaction procedure for variable length

storage elements. Computer Journal, 10:162–165, August 1967.

[Hagan, 1996] Tom Hagan. Not just a stopgap. Information Week, January 1996.

[Häggander and Lundberg, 1998] Daniel Häggander and Lars Lundberg. Optimizing dynamic mem-

ory management in a multithreaded application executing on a multiprocessor. In ICPP 1998

[ICPP 19981998].

[Häggander and Lundberg, 1999] Daniel Häggander and Lars Lundberg. Memory allocation prevented

telecommunication application to be parallelized for better database utilization. In 6th International

Australasian Conference on Parallel and Real-Time Systems (PART), Melbourne, November 1999.

[Häggander and Lundberg, 2000] Daniel Häggander and Lars Lundberg. Attacking the dynamic mem-

ory problem for SMPs. In 13th International Conference on Parallel and Distributed Computing

System (PDCS), 2000.

[Häggander et al., 2001] Daniel Häggander, Per Lidén, and Lars Lundberg. A method for automatic

optimization of dynamic memory management in C++. In ICPP 2001 [ICPP 20012001].

[Haible, 2005] Bruno Haible. Weak datastructures. This talk at the European Common Lisp meeting o2

24 April 2005 explains the benefits and drawbacks of weak references. It generalizes the data types of

weak pointer, weak list and weak hash-table. It explains how to implement these data types correctly

and efficiently., April 2005.

[Halatsis et al., 1994] Costas Halatsis, Dimitrios Maritsas, George Philokyprou, and Sergios Theodor-

idis, editors. Parallel Architectures and Languages Europe (PARLE), volume 817 of Lecture Notes in

Computer Science, Athens, July 1994. Springer-Verlag.

[Hall et al., 1988] Cordelia Hall, R. John M. Hughes, and John T. O’Donnell, editors. Glasgow Work-

shop on Functional Programming. Glasgow University Computer Science Report 89/R4, February

1988.

[Hallenberg et al., 2002] Niels Hallenberg, Martin Elsman, and Mads Tofte. Combining region inference

and garbage collection. In PLDI 2002 [PLDI 20022002], pages 141–152.

[Hallenberg, 1996] Niels Hallenberg. A region profiler for a Standard ML compiler based on region

inference. Student Project 96–5–7, Department of Computer Science (DIKU), University of Copen-

hagen, June 1996.

[Hallenberg, 1999] N. Hallenberg. Combining garbage collection and region inference in the ML Kit.

Master’s thesis, Department of Computer Science (DIKU), University of Copenhagen, June 1999.

[Halpern et al., 1984] Joseph Y. Halpern, Albert R. Meyer, and B.A. Trakhtenbrot. The semantics of

local storage, or what makes the free-list free? In POPL 1984 [POPL 19841984], pages 245–257.

57



[Halpern, 1986] J. Halpern, editor. 5th ACM SIGPLAN Symposium on Principles of Distributed Com-

puting, Calgary, Canada, August 1986. ACM Press.

[Halstead, 1978] Robert H. Halstead. Multiple-processor implementations of message passing systems.

Technical Report TR–198, MIT Laboratory for Computer Science, April 1978.

[Halstead, 1984] Robert H. Halstead. Implementation of Multilisp: Lisp on a multiprocessor. In Steele

[Steele1984], pages 9–17.

[Halstead, 1985] Robert H. Halstead. Multilisp: A language for concurrent symbolic computation. ACM

Transactions on Programming Languages and Systems, 7(4):501–538, October 1985.

[Hamanaka et al., 2017] Shintaro Hamanaka, Shun Kurihara, Shoki Fukuda, Ryusuke Mori, Masato

Oguchi, and Saneyasu Yamaguchi. Object lifetime trend of modern Android applications for GC

performance improvement. In Proceedings of the 11th International Conference on Ubiquitous Infor-

mation Management and Communication, page 6, Beppu, Japan, 2017. ACM Press.

[Hamid and Crowe, 1992] T. Hamid and M.K. Crowe. Garbage collection in large scale distributed

object stores. In Objects in Large Distributed Applications (OLDA II) — OOPSLA’92, 1992.

[Hamilton and Jones, 1990] G.W. Hamilton and Simon B. Jones. Compile-time garbage collection by

necessity analysis. Technical Report 67, Department of Computer Science and Mathematics, Univer-

sity of Stirling, 1990.

[Hamilton and Jones, 1991] G.W. Hamilton and Simon B. Jones. Compile-time garbage collection by

necessity analysis. In Peyton Jones et al. [Peyton Jones et al.1991], pages 66–70.

[Hamilton, 1993] G.W. Hamilton. Compile-Time Optimisation of Store Usage in Lazy Funtional Pro-

grams. PhD thesis, University of Stirling, 1993.

[Hamilton, 1995] G.W. Hamilton. Compile-time garbage collection for lazy functional languages. In

Baker [Baker1995b], pages 119–144.

[Hamilton, 1997] Craig Hamilton. Measuring the performance of disk garbage collectors: Garbage

collecting persistent Java stores. Master’s thesis, University of Glasgow, 1997.

[Hammer and Acar, 2008] Matthew Hammer and Umut Acar. Memory management for self-adjusting

computation. In Jones and Blackburn [Jones and Blackburn2008], pages 51–60.

[Hammond et al., 1994] Kevin Hammond, Geoff L. Burn, and D.B. Howe. Spiking your caches. Glas-

gow University, 1994.

[Hampton, 2003] Matthew Hampton. Using contaminated garbage collection and reference counting

garbage collection to provide automatic reclamation for real-time systems. Master’s thesis, Washing-

ton University, 2003.

[Hamza and Counsell, 2010a] H. Hamza and Steve Counsell. The impact of varying memory region

numbers and nesting on RTSJ execution time. In Proceedings of the 3rd International Conference on

Computer and Electrical Engineering (ICCEE 2010), 2010.

[Hamza and Counsell, 2010b] H. Hamza and Steve Counsell. Improving the performance of scoped

memory in RTSJ applications. In Proceedings of the 36th EUROMICRO Conference on Software

Engineering and Advanced Applications (SEAA 2010), 2010.

[Hamza and Counsell, 2011] H. Hamza and Steve Counsell. Using scoped memory in RTSJ applica-

tions: Dynamic analysis of memory consumption. In Proceedings of the 37th EUROMICRO Confer-

ence on Software Engineering and Advanced Applications, 2011.

[Hamza and Counsell, 2013] H. Hamza and Steve Counsell. Exploiting slicing and patterns for RTSJ

immortal memory optimization. In PPPJ 2013 [PPPJ 20132013].

[Han et al., 2006] Longzhe Han, Yeonseung Ryu, and Keunsoo Yim. CATA: A garbage collection

scheme for flash memory file systems. In Ubiquitous Intelligence and Computing, volume 4159 of

Lecture Notes in Computer Science. Springer-Verlag, 2006.

[Hand and da Silva, 2012] Steven Hand and Dilma da Silva, editors. 8th ACM SIGPLAN/SIGOPS Inter-

national Conference on Virtual Execution Environments, London, UK, March 2012. ACM Press.

[Hannon, 1995] J. Hannon. A type-based analysis for stack allocation in functional languages. In 2nd

International Static Analysis Symposium (SAS), volume 983 of Lecture Notes in Computer Science,

pages 172–188. Springer, September 1995.

58



[Hansen and Clinger, 2002] Lars Thomas Hansen and William D. Clinger. An experimental study of

renewal-older-first garbage collection. In ICFP 2002 [ICFP 20022002], pages 247–258.

[Hansen, 1969] Wilfred J. Hansen. Compact list representation: Definition, garbage collection, and

system implementation. Communications of the ACM, 12(9):499–507, September 1969.

[Hansen, 1992] Lars Thomas Hansen. The impact of programming style on the performance of Scheme

programs. Master’s thesis, University of Oregon, August 1992.

[Hansen, 2000] Lars Thomas Hansen. Older-first Garbage Collection in Practice. PhD thesis, North-

eastern University, November 2000.

[Hanson, 1977] David R. Hanson. Storage management for an implementation of SNOBOL4. Software:

Practice and Experience, 7(2):179–192, 1977.

[Hanson, 1990] David R. Hanson. Fast allocation and deallocation of memory based on object lifetimes.

Software: Practice and Experience, 20(1):5–12, January 1990.

[Hao and Zhen-Zhou, 2011] Wu Hao and Ji Zhen-Zhou. Design and evaluation of an efficient semispace-

based memory reclamation scheme. In 2011 First International Conference on Instrumentation, Mea-

surement, Computer, Communication and Control, pages 212–215, 2011.

[Harland and Beloff, 1987] David M. Harland and Brune Beloff. OBJEKT — a persistent object store

with an integrated garbage collector. ACM SIGPLAN Notices, 22(4):70–79, 1987.

[Harms, 1989] Douglas E. Harms. Efficient initialization and finalization of data structures: Why and

how. Technical Report OSU-CISRC-3/89-TR11, Ohio State University, Computer and Information

Science Research Center, February 1989.

[Harris and Fraser, 2003] Tim Harris and Keir Fraser. Language support for lightweight transactions. In

OOPSLA 2003 [OOPSLA 20032003], pages 388–402.

[Harris and Scott, 2012] Tim Harris and Michael L. Scott, editors. 17th International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems, London, UK, March 2012.

ACM Press.

[Harris et al., 2002] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A practical multi-word compare-

and-swap operation. In Dahlia Malkhi, editor, International Conference on Distributed Computing,

volume 2508 of Lecture Notes in Computer Science, pages 265–279, Toulouse, France, October 2002.

[Harris et al., 2025] Tim Harris, Onur Mutlu, and Martin Maas, editors. 24th ACM SIGPLAN Interna-

tional Symposium on Memory Management, Seoul, Korea, June 2025. ACM Press.

[Harris, 1998a] Warren Harris. Applet lifecycle in Netscape Communicator. Technical Report TN-

JAVA-05-9707, Netscape Communications Corporation, 1998.

[Harris, 1998b] Warren Harris. The design and implementation of the Sport Model garbage collector.

Technical report, Netscape Communications Corporation, January 19 1998.

[Harris, 1999] Timothy Harris. Early storage reclamation in a tracing garbage collector. ACM SIGPLAN

Notices, 34(4):46–53, April 1999.

[Harris, 2000] Timothy Harris. Dynamic adaptive pre-tenuring. In Chambers and Hosking

[Chambers and Hosking2000], pages 127–136.

[Harris, 2006] Tim Harris. Leaky regions: Linking reclamation hints to program structure. Technical

Report MSR-TR-2006-84, Microsoft Research, June 2006.

[Hart and Evans, 1974] Timothy P. Hart and Thomas G. Evans. Notes on implementing LISP for the

M–460 computer. In Berkeley and Bobrow [Berkeley and Bobrow1974], pages 191–203.

[Hart et al., 2007] Thomas E. Hart, Paul E. McKenney, Angela Demke Brown, and Jonathan Walpole.

Performance of memory reclamation for lockless synchronization. Journal of Parallel Distributed

Computing, 67(12):1270–1285, 2007.

[Hartel et al., 1994] Pieter H. Hartel, Marc Feeley, Martin Alt, Lennart Augustsson, Peter Baumann,

Marcel Beemster, Emmanuel Chailloux, Christine H. Flood, Wolfgang Grieskamp, John H.G. van

Groningen, Kevin Hammond, BogumiłHausman, Melody Y. Ivory, Peter Lee, Xavier Leroy, Sandra

Loosemore, Niklas Röjemo, Manuel Serrano, Jean-Pierre Talpin, Jon Thackray, Pierre Weis, and Peter

Wentworth. Pseudoknot: A float-intensive benchmark for functional compilers. In J.R.W. Glauert, ed-

itor, 6th Implementation of Functional Languages, pages 13.1–13.34. School of Information Systems,

University of East Anglia, Norwich, UK, September 1994.

59



[Hartel et al., 1996] Pieter H. Hartel, Marc Feeley, Martin Alt, Lennart Augustsson, Peter Baumann,

Marcel Beemster, Emmanuel Chailloux, Christine H. Flood, Wolfgang Grieskamp, John H.G. van

Groningen, Kevin Hammond, BogumiłHausman, Melody Y. Ivory, Richard Jones, Peter Lee, Xavier

Leroy, Rafael Lins, Sandra Loosemore, Niklas Röjemo, Manuel Serrano, Jean-Pierre Talpin, Jon

Thackray, Stephen P. Thomas, Pierre Weis, and Peter Wentworth. Benchmarking implementations

of functional languages with ‘Pseudoknot’, a float-intensive benchmark. Journal of Functional Pro-

gramming, 6(4), 1996.

[Hartel, 1988] Pieter H. Hartel. Performance Analysis of Storage Management in Combinator Graph

Reduction. PhD thesis, Department of Computer Systems, University of Amsterdam, Amsterdam,

1988.

[Hartel, 1990] Pieter H. Hartel. A comparison of 3 garbage collection algorithms. Structured Program-

ming, 11(3):117–127, 1990.

[Hasan and Chang, 2003] Yusuf Hasan and J. Morris Chang. A hybrid allocator. In ISPASS 2003

[ISPASS 20032003].

[Hassanein, 2016] Wessam Hassanein. Understanding and improving JVM GC work stealing at the data

center scale. In Zhang and Flood [Zhang and Flood2016], pages 46–54.

[Hastings and Joyce, 1992] Reed Hastings and Bob Joyce. Fast detection of memory leaks and access

errors. In Winter USENIX Conference, pages 125–136. USENIX Association, 1992.

[HAT, ] Sun Microsystems. Java Heap Analysis Tool (HAT). http://java.sun.com/people/billf/heap/.

[Hattori et al., 1987] A. Hattori, H. Masuzawa, and H. Hayashi. AI machine. Fujitsu Scientific and

Technical Journal, 23(4):369–378, 1987.

[Haug, 1999] Scott Haug. Automatic storage optimization via garbage collection. Master’s thesis, Wash-

ington University, St Louis, 1999.

[Hauswirth and Chilimbi, 2004] Mattias Hauswirth and Trishul M. Chilimbi. Low-overhead

memory leak detection using adaptive statistical profiling. In Mukherjee and McKinley

[Mukherjee and McKinley2004], pages 156–164.

[Havelund and Shankar, 1997] Klaus Havelund and Natarajan Shankar. A mechanized refinement proof

for a garbage collector. Technical report, Aalborg University, 1997. Submitted to Formal Aspects of

Computing.

[Havelund, 1999] Klaus Havelund. Mechanical verification of a garbage collector. In Parallel and Dis-

tributed Processing, volume 1586 of Lecture Notes in Computer Science, pages 1258–1283, San Juan,

Puerto Rico, April 1999. 11th IPPS/SPDP’99 Workshops held in conjunction with the 13th Interna-

tional Parallel Processing Symposium and 10th Symposium on Parallel and Distributed Processing.

[Hawblitzel and Petrank, 2009] Chris Hawblitzel and Erez Petrank. Automated verification of practical

garbage collectors. In POPL 2009 [POPL 20092009], pages 441–453.

[Hawblitzel et al., 2004] Chris Hawblitzel, Edward Wei, Heng Huang, Eric Krupski, and Lea Wittie.

Low-level linear memory management. In SPACE 2004 [SPACE 20042004].

[Hawblitzel et al., 2007] Chris Hawblitzel, Heng Huang, Lea Wittie, and Juan Chen. A garbage-

collecting typed assembly language. In ACM SIGPLAN Workshop on Types in Language Design

and Implementation, Nice, France, January 2007.

[Hawblitzel et al., 2015] Chris Hawblitzel, , Shaz Qadeer, and Serdar Tasiran. Automated and modular

refinement reasoning for concurrent programs. In Computer Aided Verification (CAV’15), volume

9207 of Lecture Notes in Computer Science. Springer-Verlag, July 2015.

[Hawblitzel, 2006] Chris Hawblitzel. Linear types for aliased resources. In SPACE 2006

[SPACE 20062006], pages 105–107.

[Hayashi et al., ] H. Hayashi, A. Hattori, and H. Akimoto. ALPHA: High-performance Lisp machine

equipped with a new stack structure and real-time garbage collection system. Draft report, Fujitsu

Laboratories.

[Hayes, 1990] Barry Hayes. Open systems require conservative garbage collectors. In Jul and Juul

[Jul and Juul1990].

[Hayes, 1991] Barry Hayes. Using key object opportunism to collect old objects. In OOPSLA 1991

[OOPSLA 19911991], pages 33–46.

60



[Hayes, 1992] Barry Hayes. Finalization in the collector interface. In Bekkers and Cohen

[Bekkers and Cohen1992], pages 277–298.

[Hayes, 1993] Barry Hayes. Key Objects in Garbage Collection. PhD thesis, Stanford University, March

1993.

[Hayes, 1997] Barry Hayes. Ephemerons: A new finalization mechanism. In OOPSLA 1997

[OOPSLA 19971997], pages 176–183.

[Hazelwood et al., 2009] Kim Hazelwood, Greg Lueck, and Robert Cohn. Scalable support for

multithreaded applications on dynamic binary instrumentation systems. In Kolodner and Steele

[Kolodner and Steele2009], pages 20–29.

[Heck and Wise, 1992] Brian C. Heck and David S. Wise. An implementation of an applicative file

system. In Bekkers and Cohen [Bekkers and Cohen1992], pages 248–263.

[Hederman, 1988] Lucy Hederman. Compile-time garbage collection using reference count analysis.

Master’s thesis, Rice University, August 1988. Also Rice University Technical Report TR88–75 but,

according to Rice University’s technical report list, this report is no longer available for distribution.

[Heeb and Pfister, 1991] Beat Heeb and Cuno Pfister. Oberon technical notes: An integrated heap allo-

cator/garbage collector. ETH Technical Report 156, ETHZ, March 1991.

[Heil and Smith, 2000] Timothy Heil and James E. Smith. Concurrent garbage collection using hardware

assisted profiling. In Chambers and Hosking [Chambers and Hosking2000], pages 80–93.

[Heintze and Tardieu, 2001a] Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis. In

PLDI 2001 [PLDI 20012001], pages 24–34.

[Heintze and Tardieu, 2001b] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using CLA:

A million lines of C code in a second. In PLDI 2001 [PLDI 20012001], pages 254–263.

[Hellyer et al., 2010] Laurence Hellyer, Richard Jones, and Antony L. Hosking. The locality of concur-

rent write barriers. In Vitek and Lea [Vitek and Lea2010], pages 83–92.

[Helsen, 2001] Simon Helsen. Syntactic type soundness for the imperative region calculus. In SPACE

2001 [SPACE 20012001].

[Henderson et al., 1995] Fergus Henderson, Thomas Conway, and Zoltan Somogyi. Compiling logic

programs to C using GNU C as a portable assembler. In ILPS’95 Post-conference Workshop on Se-

quential Implementation Technologies for Logic Programming, pages 1–15, Portland, Or, 1995.

[Henderson, 2002] Fergus Henderson. Accurate garbage collection in an uncooperative environment. In

Boehm and Detlefs [Boehm and Detlefs2002], pages 150–156.

[Hendren, 1990] Laurie J. Hendren. Parallelizing Programs with Recursive Data Structures. PhD thesis,

Cornell University, April 1990.

[Heng, 1988] Seng-Lai Heng. Performance evaluation of numerous garbage collections by real-time

simulation. Master’s thesis, University of Texasat Austin, 1988.

[Henglein et al., 2001] Fritz Henglein, Henning Makholm, and H. Niss. A direct approach to control-

flow sensitive region-based memory management. In International Conference on Principles and

Practice of Declarative Programming (PPDP), pages 175–186, 2001.

[Hennessey, 1993] Wade Hennessey. Real-time garbage collection in a multimedia programming lan-

guage. In Moss et al. [Moss et al.1993].

[Hennessy and Patterson, 1996] John L. Hennessy and David A. Patterson. Computer Architecture: A

Quantitative Approach. Morgan Kaufman, second edition, 1996.

[Henning, 1998] Michi Henning. Binding, migration and scalability in CORBA. Communications of the

ACM, 41(10):62–71, October 1998.

[Henriksson, 1994] Roger Henriksson. Scheduling real-time garbage collection. In Proceedings of NW-

PER’94, Lund, Sweden, 1994.

[Henriksson, 1996a] Roger Henriksson. Adaptive scheduling of incremental copying garbage collection

for interactive applications. Technical Report 96–174, Lund University, Sweden, 1996.

[Henriksson, 1996b] Roger Henriksson. Scheduling real-time garbage collection. Licentiate thesis, De-

partment of Computer Science, Lund University, 1996. Lund technical report LU-CS-TR:96-161

(abstract only).

61



[Henriksson, 1997] Roger Henriksson. Predictable automatic memory management for embedded sys-

tems. In Dickman and Wilson [Dickman and Wilson1997].

[Henriksson, 1998] Roger Henriksson. Scheduling Garbage Collection in Embedded Systems. PhD

thesis, Lund Institute of Technology, July 1998.

[Henzinger and Kirsch, 2001] T.A. Henzinger and C.M. Kirsch, editors. 1st International Workshop on

Embedded Software (EMSOFT), volume 2211 of Lecture Notes in Computer Science, Tahoe City, CA,

2001. Springer-Verlag.

[Herhut et al., 2011] Stephan Herhut, Carl Joslin, Sven-Bodo Scholz, Raphael Poss, and Clemens

Grelck. Concurrent non-deferred reference counting on the Microgrid: First experiences. In Haage

and Morazán [Haage and Morazán2011], pages 185–202. Revised Selected Papers.

[Herlihy and Moss, 1990] Maurice Herlihy and J. Eliot B Moss. Non-blocking garbage collection for

multiprocessors. Technical Report CRL 90/9, DEC Cambridge Research Laboratory, 1990.

[Herlihy and Moss, 1991] Maurice P. Herlihy and J. Eliot B. Moss. Lock-free garbage collection for

multiprocessors. In Parallel Algorithms and Architectures, pages 229–236. ACM Press, July 1991.

[Herlihy and Moss, 1992] Maurice Herlihy and J. Eliot B Moss. Lock-free garbage collection for multi-

processors. IEEE Transactions on Parallel and Distributed Systems, 3(3):304–311, May 1992.

[Herlihy and Moss, 1993] Maurice P. Herlihy and J. Eliot B. Moss. Transactional memory: Architectural

support for lock-free data structures. In ISCA 1993 [ISCA 19931993], pages 289–300.

[Herlihy and Shavit, 2008] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.

Morgan Kaufman, April 2008.

[Herlihy and Wing, 1990] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness con-

dition for concurrent objects. ACM Transactions on Programming Languages and Systems, 12(3):463–

492, 1990.

[Herlihy et al., 2002a] Maurice P. Herlihy, Victor Luchangco, and Mark Moir. The repeat offender prob-

lem: A mechanism for supporting dynamic-sized lock-free data structures. In 16th International

Symposium on Distributed Computing, volume 2508 of Lecture Notes in Computer Science, pages

339–353, Toulouse, France, October 2002. Springer-Verlag.

[Herlihy et al., 2002b] Maurice P. Herlihy, Paul Martin, Victor Luchangco, and Mark Moir. Dynamic-

sized and lock-free data structures. Technical Report TR–2002–110, Sun Microsystems Laboratories,

June 2002.

[Hertz and Berger, 2004] Matthew Hertz and Emery Berger. Automatic vs. explicit memory manage-

ment: Settling the performance debate. Technical Report CS TR-04-17, University of Massachusetts,

2004.

[Hertz and Berger, 2005] Matthew Hertz and Emery Berger. Quantifying the performance of garbage

collection vs. explicit memory management. In OOPSLA 2005 [OOPSLA 20052005], pages 313–

326.

[Hertz et al., 2002a] Matthew Hertz, Steve M. Blackburn, K.S. McKinley, J. Eliot B. Moss, and Darko

Stefanović. Error-free garbage collection traces: How to cheat and not get caught. In ACM SIGMET-

RICS International Conference on Measurement and Modeling of Computer Systems, Marina Del Rey,

CA, June 2002.

[Hertz et al., 2002b] Matthew Hertz, N. Immerman, and J. Eliot B. Moss. Framework for analyzing

garbage collection. In 2nd IFIP Theoretical Computer Science Congress, pages 230–242. Springer-

Verlag, 2002.

[Hertz et al., 2004] Matthew Hertz, Yi Feng, and Emery Berger. Page-level cooperative garbage collec-

tion. Technical Report CS TR-04-16, University of Massachusetts, 2004.

[Hertz et al., 2005] Matthew Hertz, Yi Feng, and Emery D. Berger. Garbage collection without paging.

In Sarkar and Hall [Sarkar and Hall2005], pages 143–153.

[Hertz et al., 2006] Matthew Hertz, Stephen M. Blackburn, J. Eliot B. Moss, Kathryn McKinley, and

Darko Stefanović. Generating object lifetime traces with Merlin. ACM Transactions on Programming

Languages and Systems, 28(3):476–516, May 2006.

[Hertz et al., 2009] Matthew Hertz, Jonathan Bard, Stephen Kane, Elizabeth Keudel, Tongxin Bai, Kirk

Kelsey, and Chen Ding. Waste not, want not — resource-based garbage collection in a shared envi-

ronment. Technical Report TR–951, The University of Rochester, December 2009.

62



[Hertz et al., 2011] Matthew Hertz, Stephen Kane, Elizabeth Keudel, Tongxin Bai, Chen Ding, Xiaom-

ing Gu, and Jonathan E. Bard. Waste not, want not: Resource-based garbage collection in a shared

environment. In Boehm and Bacon [Boehm and Bacon2011], pages 65–76.

[Hertz, 2006] Matthew Hertz. Quantifying and Improving the Performance of Garbage Collection. PhD

thesis, University of Massachusetts, September 2006.

[Hesselink and Groote, 2001] Wim H. Hesselink and Jan Friso Groote. Wait-free concurrent memory

management by create and read until deletion (CaRuD). Distributed Computing, 14(1):31–39, 2001.

[Hesselink and Lali, 2010] Wim H. Hesselink and M.I. Lali. Simple concurrent garbage collection al-

most without synchronization. Formal Methods of System Design, 36(2):148–166, 2010.

[Hewitt, 1977] Carl Hewitt. Viewing control structures as patterns of passing messages. Journal of

Artificial Intelligence, 8(3):323–364, June 1977.

[Heymann, 1991] J. Heymann. A comprehensive analytical model for garbage collection algorithms.

ACM SIGPLAN Notices, 26(8):50–59, 1991.

[Hibino, 1980] Y. Hibino. A practical parallel garbage collection algorithm and its implementation. In

ISCA 1980 [ISCA 19801980], pages 113–120.

[Hickey and Cohen, 1984] Tim Hickey and Jacques Cohen. Performance analysis of on-the-fly garbage

collection. Communications of the ACM, 27(11):1143–1154, November 1984.

[Hicks et al., 1997] Michael W. Hicks, Jonathan T. Moore, and Scott M. Nettles. The measured cost of

copying garbage collection mechanisms. In ICFP 1997 [ICFP 19971997], pages 292–305.

[Hicks et al., 1998] Michael Hicks, Luke Hornof, Jonathan T. Moore, and Scott Nettles. A study of

Large Object Spaces. In Peyton Jones and Jones [Peyton Jones and Jones1998], pages 138–145.

[Hicks et al., 2004a] Michael Hicks, Dan Grossman, and Trevor Jim. Combining garbage collection and

safe manual memory management. In SPACE 2004 [SPACE 20042004].

[Hicks et al., 2004b] Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Experience with

safe manual memory-management in Cyclone. In Bacon and Diwan [Bacon and Diwan2004], pages

73–84.

[Hicks, 1993] James Hicks. Experiences with compiler-directed storage reclamation. In Hughes

[Hughes1993].

[Hieb et al., 1990] R. Hieb, R.K. Dybvig, and C. Bruggeman. Representing control in the presence of

first-class continuations. ACM SIGPLAN Notices, 25(6):66–77, 1990.

[Hiep, 1991] Van Nguyen Hiep. Compilation et Environment d’Execution d’un Langage à Base

d’Objects. PhD thesis, Institut National Polytechnique de Grenoble, February 1991.

[Higuera and Issarny, 2005] M. Teresa Higuera and Valerie Issarny. Improving the memory management

performance of RTSJ. Concurrency and Computation: Practice and Experience, 17(5–6), 2005.

[Higuera et al., 2002] Maria Teresa Higuera, Valerie Issarny, Michel Banatre, Gilbert Cabillic, Jean-

Philippe Lesot, and Frederic Parain. Memory management for real-time Java: an efficient solution

using hardware support. Real-Time Systems Journal, 2002.

[Higuera Toledano and Issarny, 2001] Maria Teresa Higuera Toledano and Valerie Issarny. Analyzing

the performance of memory management in RTSJ. In ISORC 2001 [ISORC 20012001].

[Higuera-Toledano et al., 2004] M. Teresa Higuera-Toledano, Valerie Issarny, Michel Banatre, Gilbert

Cabillic, Jean-Philippe Lesot, and Frederic Parain. Memory management for real-time Java: an effi-

cient solution using hardware support. Real-Time Systems Journal, 26(1):63–87, 2004.

[Higuera Toledano, 2002] Maria Teresa Higuera Toledano. Solutions à la Gestion Mémoire pour

Systèmes Java Temps Réel. PhD thesis, L’Université de Rennes, 2002.

[Higuera-Toledano, 2006a] M. Teresa Higuera-Toledano. Analyzing the memory management se-

mantic and requirements of the Real-Time specification of Java JSR-0000001. In ISORC 2006

[ISORC 20062006], pages 419–423.

[Higuera-Toledano, 2006b] M. Teresa Higuera-Toledano. Towards an analysis of garbage collection

techniques for embedded real-time Java systems. In 12th international Conference on Embedded and

Real-Time Computing Systems and Applications, pages 97–100. IEEE Press, 2006.

63



[Higuera Toledano, 2006c] Maria Teresa Higuera Toledano. The indeterministic behaviour of scoped

memory in Real-Time Java. In 4th ACS/IEEE International Conference on Computer Systems and

Applications (AICCSA-06), pages 656–664. IEEE Press, 2006.

[Higuera Toledano, 2007a] Maria Teresa Higuera Toledano. Allowing cycles references among scoped

memory areas in the Real-Time Specification for Java. In ISORC 2007 [ISORC 20072007], pages

110–114.

[Higuera Toledano, 2007b] Maria Teresa Higuera Toledano. Name-based write barriers in real-time

Java. In IEEE international Conference on Computer and Information Technology (CIT-07), pages

781–786. IEEE Press, 2007.

[Higuera Toledano, 2008] Maria Teresa Higuera Toledano. Allowing cycle references by introducing

controlled violations of the assignment rules in real-time Java. In ISORC 2008 [ISORC 20082008],

pages 463–467.

[Higuera Toledano, 2011] Maria Teresa Higuera Toledano. Using transactional memory to synchro-

nize an adaptive garbage collector in real-time Java. In 14th IEEE International Symposium on

Object/Component/Service-Oriented Real-Time Distributed Computing Workshops, pages 152–161,

Newport Beach, CA, March 2011.

[Higuera Toledano, 2014] Maria Teresa Higuera Toledano. Building the Java heap with bricks in an em-

bedded real-time environment. In Proceedings of the 2014 IEEE/ACM 18th International Symposium

on Distributed Simulation and Real Time Applications (DS-RT’14), pages 57–66. IEEE Computer

Society Press, 2014.

[Higuera, 2003] Maria Teresa Higuera. Memory management design to the concurrent execution of

RTSJ applications. In JTRES 2003 [JTRES 20032003], pages 479–489.

[Hill and Smith, 1989] Mark D. Hill and Alan Jay Smith. Evaluating associativity in CPU caches. IEEE

Transactions on Computers, 38(12):1612–1629, December 1989.

[Hill, 1987] Mark D. Hill. Aspects of Cache Memory and Instruction Buffer Performance. PhD thesis,

University of California, Berkeley, November 1987. Also UCB/CSD Technical report 87/381.

[Hill, 1988] Mark D. Hill. A case for direct-mapped caches. IEEE Computer, 21(12):25–40, December

1988.

[Hind and Vitek, 2005] Michael Hind and Jan Vitek, editors. 1st ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments, Chicago, IL, June 2005. ACM Press.

[Hind, 2001] Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In PASTE 2001

[PASTE 20012001], pages 54–61.

[Hinds, 1975] J.A. Hinds. An algorithm for locating adjacent storage blocks in the buddy system. Com-

munications of the ACM, 18(4):221–222, April 1975.

[Hirschberg, 1973] D.S. Hirschberg. A class of dynamic memory allocation algorithms. Communica-

tions of the ACM, 16(10):615–618, October 1973.

[Hirzel and Diwan, 2000] Martin Hirzel and Amer Diwan. On the type accuracy of garbage collection.

In Chambers and Hosking [Chambers and Hosking2000], pages 1–11.

[Hirzel et al., 2001] Martin Hirzel, Amer Diwan, and Antony L. Hosking. On the usefulness of liveness

for garbage collection and leak detection. In Knudsen [Knudsen2001].

[Hirzel et al., 2002a] Martin Hirzel, Amer Diwan, and Johannes Henkel. On the usefulness of type and

liveness for garbage collection and leak detection. ACM Transactions on Programming Languages

and Systems, 24(6):593–624, November 2002.

[Hirzel et al., 2002b] Martin Hirzel, Johannes Henkel, Amer Diwan, and Michael Hind. Understanding

the connectivity of heap objects. In Boehm and Detlefs [Boehm and Detlefs2002], pages 36–49.

[Hirzel et al., 2003a] Martin Hirzel, Amer Diwan, and Matthew Hertz. Connectivity-based garbage col-

lection. In OOPSLA 2003 [OOPSLA 20032003], pages 359–373.

[Hirzel et al., 2003b] Martin Hirzel, Harold N. Gabow, and Amer Diwan. Choosing a set of partitions

to collect in a connectivity-based garbage collector. Technical Report CU–CS–958–03, University of

Colorado, August 2003.

[Hirzel et al., 2004] Martin Hirzel, Amer Diwan, and Michael Hind. Pointer analysis in the presence of

dynamic class loading. In Odersky [Odersky2004].

64



[Hirzel et al., 2007] Martin Hirzel, Daniel von Dincklage, Amer Diwan, and Michael Hind. Fast online

pointer analysis. ACM Transactions on Programming Languages and Systems, April 2007.

[Hirzel, 2000] Martin Hirzel. Effectiveness of garbage collection and explicit deallocation. Master’s

thesis, University of Colorado, 2000.

[Hirzel, 2004] Martin Hirzel. Connectivity-Based Garbage Collection. PhD thesis, University of Col-

orado at Boulder, July 2004.

[Hirzel, 2007] Martin Hirzel. Data layouts for object-oriented programs. In ACM SIGMETRICS Inter-

national Conference on Measurement and Modeling of Computer Systems, June 2007. This paper plus

a 2-page appendix is available as IBM Research Report RC24218, Watson.

[Hoare, 1969] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of the

ACM, 12, October 1969.

[Hoare, 1974] C.A.R. Hoare. Optimisation of store size for garbage collection. Information Processing

Letters, 2(6):165–166, April 1974.

[Hoare, 2009] C.A.R. Hoare. Null references: The billion dollar mistake. In Proceedings of QCon,

Historically Bad Ideas, London, UK, March 2009.

[Hofman and Jost, 2003] Martin Hofman and Steffen Jost. Static prediction of heap usage for first-order

functional programs. In POPL 2003 [POPL 20032003].

[Hofmann, 2001] Martin Hofmann. A type system for controlling heap space and its translation to

JavaCard. In SPACE 2001 [SPACE 20012001].

[Hogen and Loogen, 1993] Guido Hogen and Rita Loogen. A new stack technique for the management

of runtime structures in distributed implementations. Aachener Informatik-Berichte 93-3, RWTH

Aachen, Ahornstr. 55, 52056 Aachen, Germany, 1993.

[Hogen and Loogen, 1994a] Guido Hogen and Rita Loogen. Efficient organization of control structures

in distributed implementations. In Peter A. Fritzson, editor, Compiler Construction, volume 786 of

Lecture Notes in Computer Science, pages 98–112. Springer-Verlag, 1994.

[Hogen and Loogen, 1994b] Guido Hogen and Rita Loogen. Parallel functional imple-

mentations: Graphbased vs. stackbased reductions. Technical report, RWTH Aachen,

ghogen@zesu.informatik.rwth-aachen.de, lllgen@informatik.uni-marburg.de, 1994.

[Hollmann et al., 2015] J. Hollmann, R. Titos-Gil, and P. Stenstrom. Enhancing garbage collection syn-

chronization using explicit bit barriers. In ICPP 2015 [ICPP 20152015], pages 769–778.

[Holloway et al., 1980] Jack Holloway, Guy L. Steele, Gerald Jay Sussman, and Alan Bell. The

SCHEME–79 chip. AI Memo 559, MIT AI Laboratory, January 1980.

[Holmström, 1983] S. Holmström. A simple and efficient way to handle large datastructures in applica-

tive languages. In Joint SERC/Chalmers Workshop on Declarative Programming, University College,

London, 1983.

[Holt, 1961] Anatol W. Holt. Program organization and record keeping for dynamic storage allocaton.

Communications of the ACM, 4(10), October 1961.

[Hölzle and Ungar, 1995] Urs Hölzle and David Ungar. Do object-oriented languages need special hard-

ware support? In Nierstrasz [Nierstrasz1995].

[Hölzle, 1991] Urs Hölzle. The myth of high object creation rates. In Wilson and Hayes

[Wilson and Hayes1991a].

[Hölzle, 1993] Urs Hölzle. A fast write barrier for generational garbage collectors. In Moss et al.

[Moss et al.1993].

[Horie et al., 2018] Michihiro Horie, Hiroshi Horii, Kazunori Ogata, and Tamiya Onodera. Bal-

anced double queues for GC work-stealing on weak memory models. In Payer and Sartor

[Payer and Sartor2018], pages 109–119.

[Horie et al., 2019] Michihiro Horie, Kazunori Ogata, Mikio Takeuchi, and Hiroshi Horii. Scaling up

parallel GC work-stealing in many-core environments. In Xu and Singer [Xu and Singer2019], pages

27–40.

[Horowitz and Sahni, 1977] E. Horowitz and S. Sahni. Fundamentals of Data Structures. Computer

Science Press, Woodland Hills, CA, 1977.

65



[Horspool and Huberman, 1987] R. Nigel Horspool and Ronald M. Huberman. Analysis and develop-

ment of demand prepaging policies. Journal of Systems and Software, 7:183–194, 1987.

[Horwitz et al., 1989] Susan Horwitz, Phil Pfeiffer, and Thomas W. Reps. Dependence analysis for

pointer variables. In PLDI 1989 [PLDI 19891989], pages 28–40.

[Hoseinzadeh and Swanson, 2021] Morteza Hoseinzadeh and Steven Swanson. Corundum: statically-

enforced persistent memory safety. In Sherwood et al. [Sherwood et al.2021], pages 429–442. ASP-

LOS 2021 was a virtual event.

[Hosking and Adl-Tabatabai, 2006] Antony L. Hosking and Ali-Reza Adl-Tabatabai, editors. Workshop

on Memory System Performance and Correctness, San Jose, CA, October 2006.

[Hosking and Chen, 1999a] Antony L. Hosking and Jiawan Chen. Mostly-copying reachability-based

orthogonal persistence. In OOPSLA 1999 [OOPSLA 19991999], pages 382–398.

[Hosking and Chen, 1999b] Antony L. Hosking and Jiawan Chen. PM3: An orthogonally persistent

systems programming language. In International Conference on Very Large Data Bases, pages 587–

598, Edinburgh, Scotland, September 1999.

[Hosking and Finocchi, 2019] Antony Hosking and Irene Finocchi, editors. 16th ACM SIGPLAN Inter-

national Conference on Managed Programming Languages and Runtimes, Athens, Greece, October

2019. ACM Press.

[Hosking and Hudson, 1993] Antony L. Hosking and Richard L. Hudson. Remembered sets can also

play cards. In Moss et al. [Moss et al.1993].

[Hosking and Moss, 1993a] Antony L. Hosking and J. Eliot B. Moss. Object fault handling for persistent

programming languages: A performance evaluation. In OOPSLA 1993 [OOPSLA 19931993].

[Hosking and Moss, 1993b] Antony L. Hosking and J. Eliot B. Moss. Protection traps and alternatives

for memory management of an object-oriented language. In SOSP 1993 [SOSP 19931993], pages

106–119.

[Hosking and Moss, 1995] Antony L. Hosking and J. Eliot B. Moss. Lightweight write detection and

checkpointing for fine-grained persistence. Technical Report 95-084, Purdue University, 1995.

[Hosking and Novianto, 1997] Antony L. Hosking and Aria P. Novianto. Reachability-based orthogonal

persistence for C, C++ and other intransigents. In Dickman and Wilson [Dickman and Wilson1997].

[Hosking et al., 1992] Antony L. Hosking, J. Eliot B. Moss, and Darko Stefanović. A comparative per-

formance evaluation of write barrier implementations. In OOPSLA 1992 [OOPSLA 19921992], pages

92–109.

[Hosking et al., 1999] Antony L. Hosking, Nathaniel Nystrom, Quintin Cutts, and Kumar Brahn-

math. Optimizing the read and write barrier for orthogonal persistence. In Morrison et al.

[Morrison et al.1999], pages 149–159.

[Hosking et al., 2009] Antony L. Hosking, David Bacon, and Orran Krieger, editors. 5th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environments, Washington, DC, March

2009. ACM Press.

[Hosking, 1991] Antony L. Hosking. Main memory management for persistence. In Wilson and Hayes

[Wilson and Hayes1991a].

[Hosking, 2006] Antony L Hosking. Portable, mostly-concurrent, mostly-copying garbage collection

for multi-processors. In Petrank and Moss [Petrank and Moss2006], pages 40–51.

[Hosoya and Yonezawa, 1998] Haruo Hosoya and Akinori Yonezawa. Garbage collection via dynamic

type inference — a formal treatment. In 2nd Workshop on Types in Compilation, volume 1473 of

Lecture Notes in Computer Science, pages 215–239, 1998.

[Hsieh et al., 1997] Cheng-Hsueh A. Hsieh, Marie T. Conte, Teresa L. Johnson, John C. Gyllenhaal, and

Wen-mei W. Hwu. Compilers for improved Java performance. Computer, 30:67–75, June 1997.

[Hu et al., 2003] Y. Charlie Hu, Weimin Yu, Alan Cox, Dan Wallach, and Willy Zwaenepoel. Run-time

support for distributed sharing in safe languages. ACM Transactions on Computer Systems, 21:1–35,

February 2003.

[Huang and Bond, 2013] Jipeng Huang and Michael D. Bond. Efficient context sensitivity for dy-

namic analyses via calling context uptrees and customized memory management. In OOPSLA 2013

[OOPSLA 20132013], pages 53–72.

66



[Huang et al., 2003] Xianlong Huang, J. Eliot B. Moss, Kathryn S. McKinley, Stephen M. Blackburn,

and D. Burger. Dynamic SimpleScalar: Simulating Java virtual machines. Technical Report TR–03–

03, University of Texas at Austin, February 2003.

[Huang et al., 2004a] Wei Huang, Y. Qian, Witiwas Srisa-an, and J. Morris Chang. Object allocation

and memory contention study of Java multithreaded application. In IEEE International Performance

Computing and Communications Conference (IPCCC), Phoenix, AZ, April 2004.

[Huang et al., 2004b] Wei Huang, Witiwas Srisa-an, and J. Morris Chang. Adaptive pretenuring for

generational garbage collection. In ISPASS 2004 [ISPASS 20042004], pages 133–140.

[Huang et al., 2004c] Xianlong Huang, Stephen M. Blackburn, Kathryn S. McKinley, J. Eliot B. Moss,

Z. Wang, and Perry Cheng. The garbage collection advantage: Improving program locality. In OOP-

SLA 2004 [OOPSLA 20042004], pages 69–80.

[Huang et al., 2006] Xianglong Huang, Stephen M Blackburn, David Grove, and Kathryn S McKinley.

Fast and efficient partial code reordering: Taking advantage of dynamic recompilation. In Petrank and

Moss [Petrank and Moss2006], pages 184–192.

[Huang et al., 2023] Claire Huang, Stephen M. Blackburn, and Zixian Cai. Improving garbage collection

observability with performance tracing. In Moss [Moss2023].

[Hudak and Bloss, 1985] Paul Hudak and Adrienne Bloss. The aggregate update problem in functional

programming systems. In POPL 1984 [POPL 19841984], pages 300–314.

[Hudak and Keller, 1982] Paul R. Hudak and R.M. Keller. Garbage collection and task deletion in dis-

tributed applicative processing systems. In LFP 1982 [LFP 19821982], pages 168–178.

[Hudak et al., 1992] Paul Hudak, Simon L. Peyton Jones, and Phillip Wadler. Report on the program-

ming language Haskell, a non-strict purely functional language (version 1.2). ACM SIGPLAN Notices,

27(5), May 1992.

[Hudak, 1981] Paul R. Hudak. Call-graph reclamation: an alternative storage reclamation scheme.

AMPS Technical Memorandum 4, University of Utah, August 1981.

[Hudak, 1982] Paul R. Hudak. Object and Task Reclamation in Distributed Applicative Processing Sys-

tems. PhD thesis, University of Utah, Salt Lake City, Utah, 1982.

[Hudak, 1983a] Paul R. Hudak. Distributed graph marking. Departmental Research Report 268, Uni-

versity of Yale, 1983.

[Hudak, 1983b] Paul R. Hudak. Distributed task and memory management. In PODC 1983

[PODC 19831983], pages 277–89.

[Hudak, 1986] Paul R. Hudak. A semantic model of reference counting and its abstraction (detailed

summary). In LFP 1986 [LFP 19861986], pages 351–363.

[Hudak, 1987] Paul R. Hudak. A semantic model of reference counting and its abstraction. In Samson

Abramsky and Chris Hankin, editors, Abstract Interpretation of Declarative Languages, pages 45–62.

Ellis Horward, 1987.

[Hudson and Diwan, 1990] Richard L. Hudson and Amer Diwan. Adaptive garbage collection for

Modula-3 and Smalltalk. In Jul and Juul [Jul and Juul1990].

[Hudson and Hannah, 1992] S. Hudson and J.M. Hannah. Structured knowledge manipulation system

for real-time engineering applications. IEE Proceedings, Part E: Computers and Digital Techniques,

139(1):59–63, January 1992.

[Hudson and Moss, 1992] Richard L. Hudson and J. Eliot B. Moss. Incremental collection of mature

objects. In Bekkers and Cohen [Bekkers and Cohen1992], pages 388–403.

[Hudson and Moss, 2001] Richard L. Hudson and J. Eliot B. Moss. Sapphire: Copying GC without

stopping the world. In Joint ACM-ISCOPE Conference on Java Grande, pages 48–57, Palo Alto, CA,

June 2001. ACM Press.

[Hudson and Moss, 2003] Richard L. Hudson and J. Eliot B. Moss. Sapphire: Copying garbage col-

lection without stopping the world. Concurrency and Computation: Practice and Experience, 15(3–

5):223–261, 2003.

[Hudson et al., 1991] Richard L. Hudson, J. Eliot B. Moss, Amer Diwan, and Christopher F. Weight.

A language-independent garbage collector toolkit. Technical Report COINS 91-47, University of

Massachusetts, September 1991.

67



[Hudson et al., 1997a] Richard L. Hudson, Ron Morrison, J. Eliot B. Moss, and David S. Munro.

Garbage collecting the world: One car at a time. In OOPSLA 1997 [OOPSLA 19971997].

[Hudson et al., 1997b] Richard L. Hudson, Ron Morrison, J. Eliot B. Moss, and David S. Munro. Train-

ing distributed garbage: The DMOS collector. Technical report, University of St Andrews, 1997.

[Hudson et al., 1998] Richard L. Hudson, Ron Morrison, J. Eliot B. Moss, and David S. Munro. Where

have all the pointers gone? In 21st Australasian Computer Science Conference (ACSC), pages 107–

119, Perth, 1998.

[Hudson et al., 2000] Richard L. Hudson, J. Eliot B. Moss, Sreenivas Subramoney, and Weldon

Washburn. Cycles to recycle: Garbage collection on the IA-64. In Chambers and Hosking

[Chambers and Hosking2000], pages 101–110.

[Hudson et al., 2006] Richard L. Hudson, Bratin Saha, Ali-Reza Adl-Tabatabai, and Benjamin

Hertzberg. McRT-malloc — a scalable transactional memory allocator. In Petrank and Moss

[Petrank and Moss2006], pages 74–83.

[Hudson, 1991] Richard L. Hudson. Finalization in a garbage collected world. In Wilson and Hayes

[Wilson and Hayes1991a].

[Huelsbergen and Larus, 1993] Lorenz Huelsbergen and James R. Larus. A concurrent copying garbage

collector for languages that distinguish (im)mutable data. In PPOPP 1993 [PPOPP 19931993], pages

73–82.

[Huelsbergen and Winterbottom, 1998] Lorenz Huelsbergen and Phil Winterbottom. Very concurrent

mark-&-sweep garbage collection without fine-grain synchronization. In Peyton Jones and Jones

[Peyton Jones and Jones1998], pages 166–175.

[Hughes, 1982] R. John M. Hughes. A semi-incremental garbage collection algorithm. Software: Prac-

tice and Experience, 12(11):1081–1082, November 1982.

[Hughes, 1983] R. John M. Hughes. Reference counting with circular structures in virtual memory

applicative systems. Internal paper, Programming Research Group, Oxford, 1983.

[Hughes, 1985] R. John M. Hughes. A distributed garbage collection algorithm. In Jouannaud

[Jouannaud1985], pages 256–272.

[Hughes, 1987] R. John M. Hughes. Managing reduction graphs with reference counts. Departmental

Research Report CSC/87/R2, University of Glasgow, March 1987.

[Hughes, 1991a] John Hughes, editor. Conference on Functional Programming and Computer Archi-

tecture, volume 523 of Lecture Notes in Computer Science, Cambridge, MA, August 1991. Springer-

Verlag.

[Hughes, 1991b] Simon Hughes. Static Analysis of Store Use in Functional Programs. PhD thesis,

Imperial College, University of London, 1991.

[Hughes, 1992] Simon Hughes. Compile-time garbage collection for higher-order functional languages.

Journal of Logic and Computation, 2(4):483–509, August 1992. Special Issue on Abstract Interpreta-

tion.

[Hughes, 1993] John Hughes, editor. Conference on Functional Programming and Computer Architec-

ture, Copenhagen, Denmark, June 1993. ACM Press.

[Humphries et al., 1997] Thorna O. Humphries, Alexander L. Wolf, and Benjamin G. Zorn. A frame-

work for storage management evaluation in persistent object systems. In Dickman and Wilson

[Dickman and Wilson1997].

[Humphries et al., 2000] Thorna O. Humphries, Artur W. Klauser, Alexander L. Wolf, and Benjamin G.

Zorn. POSSE trace format, version 1.0. Technical Report CU-CS-897-00, University of Colorado,

Boulder, CO, January 2000.

[Hundt, 2011] Robert Hundt. Loop recognition in C++/Java/Go/Scala. In Proceedings of the 2nd Scala

Workshop (ScalaDays), 2011.

[Hunter and Krishnamurthi, 2003] Rob Hunter and Shriram Krishnamurthi. A model of garbage collec-

tion for OO languages. In 10th International Workshop on Foundations of Object-Oriented Languages

(FOOL), 2003.

68



[Hunter et al., 2021] A.H. Hunter, Chris Kennelly, Paul Turner, Darryl Gove, Tipp Moseley, and

Parthasarathy Ranganathan. Beyond malloc efficiency to fleet efficiency: a hugepage-aware mem-

ory allocator. In 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI

21), pages 257–273. USENIX Association, July 2021.

[Hur et al., 2011] Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis. Separation logic in the presence

of garbage collection. In IEEE Symposium on Logic in Computer Science (LICS), pages 247–256,

2011.

[Hussein et al., 2015a] Ahmed Hussein, Antony L. Hosking, Mathias Payer, and Christopher A. Vick.

Don’t race the memory bus: Taming the GC leadfoot. In Bond and Hosking [Bond and Hosking2015].

[Hussein et al., 2015b] Ahmed Hussein, Mathias Payer, Antony L. Hosking, and Christopher A. Vick.

Impact of GC design on power and performance for Android. In ACM International Systems and

Storage Conference, SYSTOR, Haifa, Israel, May 2015.

[Hussein et al., 2017] Ahmed Hussein, Mathias Payer, Antony L. Hosking, and Chris Vick. One process

to reap them all: Garbage collection As-a-Service. In Petrank et al. [Petrank et al.2017], pages 171–

186.

[Hutchinson et al., 1987] Norman Hutchinson, R.K. Raj, Andrew P. Black, Henry M. Levy, and Eric Jul.

The Emerald programming language report. Technical Report 87–10–07, University of Washington,

October 1987.

[Hutchinson, 1987] Norman Hutchinson. Emerald: An Object-Based Language for Distributed Pro-

gramming. PhD thesis, University of Washington, January 1987.

[IBM Corp., 2003] JVM Garbage Collection and Storage Allocation Techniques, November 2003. De-

tails of the IBM Developer Kit and Runtime Environment, version 1.4.1.

[ICFP 1996, 1996] 1st ACM SIGPLAN International Conference on Functional Programming, Philadel-

phia, PA, May 1996. ACM Press.

[ICFP 1997, 1997] 2nd ACM SIGPLAN International Conference on Functional Programming, Amster-

dam, June 1997. ACM Press.

[ICFP 1998, 1998] 3rd ACM SIGPLAN International Conference on Functional Programming, Balti-

more, MA, September 1998. ACM Press.

[ICFP 1999, 1999] 4th ACM SIGPLAN International Conference on Functional Programming, Paris,

September 1999. ACM Press.

[ICFP 2000, 2000] 5th ACM SIGPLAN International Conference on Functional Programming, Mon-

treal, September 2000. ACM Press.

[ICFP 2002, 2002] 7th ACM SIGPLAN International Conference on Functional Programming, ACM

SIGPLAN Notices 37(9), Pittsburgh, PA, September 2002. ACM Press.

[ICFP 2007, 2007] 12th ACM SIGPLAN International Conference on Functional Programming,

Freiburg, Germany, September 2007. ACM Press.

[ICFP 2008, 2008] 13th ACM SIGPLAN International Conference on Functional Programming, Victo-

ria, BC, Canada, September 2008. ACM Press.

[ICFP 2009, 2009] 14th ACM SIGPLAN International Conference on Functional Programming, Edin-

burgh, Scotland, September 2009. ACM Press.

[ICFP 2010, 2010] 15th ACM SIGPLAN International Conference on Functional Programming, Balti-

more, MD, September 2010. ACM Press.

[ICFP 2011, 2011] 16th ACM SIGPLAN International Conference on Functional Programming, Tokyo,

Japan, September 2011. ACM Press.

[ICFP 2015, 2016] 20th ACM SIGPLAN International Conference on Functional Programming, Van-

couver, Canada, September 2016. ACM Press.

[ICFP 2016, 2016] 21st ACM SIGPLAN International Conference on Functional Programming, Ljubl-

jana, Slovenia, September 2016. ACM Press.

[ICFP 2022, 2022] 27th ACM SIGPLAN International Conference on Functional Programming, Nara,

Japan, September 2022. ACM Press.

[ICFP 2024, 2024] 29th ACM SIGPLAN International Conference on Functional Programming, Milan,

Italy, September 2024. ACM Press.

69



[Ichisuki and Morita, 1994] Yuuji Ichisuki and Masao Morita. A shared-memory parallel extension of

KLIC and its garbage collection. In FGCS Workshop on Parallel Logic Programming, pages 113–126,

1994.

[Ichisuki and Yonezawa, 1990a] Yuuji Ichisuki and Akinori Yonezawa. Distributed garbage collection

using group reference counting. In Jul and Juul [Jul and Juul1990].

[Ichisuki and Yonezawa, 1990b] Yuuji Ichisuki and Akinori Yonezawa. Distributed garbage collection

using group reference counting. Technical Report 90–014, University of Tokyo, 1990.

[ICLP 1982, 1982] 1st International Conference on Logic Programming, 1982.

[ICLP 1988, 1988] 5th International Conference on Logic Programming. MIT Press, 1988.

[ICPP 1976, 1976] International Conference on Parallel Processing (ICPP’76). IEEE Press, 1976.

[ICPP 1982, 1982] International Conference on Parallel Processing (ICPP’82). IEEE Press, August

1982.

[ICPP 1983, 1983] International Conference on Parallel Processing (ICPP’83). IEEE Press, August

1983.

[ICPP 1985, 1985] International Conference on Parallel Processing (ICPP’85). IEEE Press, August

1985.

[ICPP 1987, 1987] International Conference on Parallel Processing (ICPP’87). IEEE Press, August

1987.

[ICPP 1998, 1998] International Conference on Parallel Processing (ICPP’98), Minneapolis, MN, Au-

gust 1998. IEEE Press.

[ICPP 2001, 2001] 30th International Conference on Parallel Processing (ICPP’01), Valencia, Spain,

September 2001. IEEE Press.

[ICPP 2015, 2015] 44th International Conference on Parallel Processing (ICPP’15), Beijing, Septem-

ber 2015. IEEE Press.

[ICSE 2004, 2004] 26th International Conference on Software Engineering, Edinburgh, May 2004.

IEEE Computer Society Press.

[ICSE 2022, 2022] 44th International Conference on Software Engineering, Pittsburg, PA, May 2022.

IEEE Computer Society Press.

[IFL 2018, 2018] 30th International Symposium on Implementation and Application of Functional Lan-

guages, Lowell, MA, USA, 2018. ACM Press.

[iguera Toledano, 2006] Maria Teresa H iguera Toledano. Improving the scoped memory region garbage

collector of real-time Java. In Zendra [Zendra2006a], pages 1–14.

[Iliadis, 2010] Ilias Iliadis. Performance of the greedy garbage-collection scheme in flash-based solid-

state drives. Research Report RZ 3769 (# 99779), IBM Research – Zurich, March 2010.

[Iliffe and Jodeit, 1962] J.K. Iliffe and J.G. Jodeit. A dynamic storage allocation scheme. Computer

Journal, 5(3):200–209, October 1962.

[Ilsøe and Pedersen, 2001] Peer Møller Ilsøe and Simon Hem Pedersen. Garbage collection in a Beta

virtual machine with the Train Algorithm. Master’s thesis, Aalborg University, June 2001.

[Imai and Tick, 1991a] Akira Imai and Evan Tick. Evaluation of parallel copying garbage collection

on a shared-memory multiprocessor. ICOT technical report TR-650, Institute for New Generation

Computer Technology, May 1991.

[Imai and Tick, 1991b] Akira Imai and Evan Tick. A shared-memory multiprocess or [sic] garbage col-

lector and its evaluation for committed-choice logic programs. ICOT technical report TR-653, Institute

for New Generation Computer Technology, June 1991.

[Imai and Tick, 1993] Akira Imai and Evan Tick. Evaluation of parallel copying garbage collection on a

shared-memory multiprocessor. IEEE Transactions on Parallel and Distributed Systems, 4(9):1030–

1040, 1993.

[Imai et al., 1990] Akira Imai, Keiji Hirata, and Kazuo Taki. A parallel copying garbage collection for

kl1 on a shared memory multiprocessor. ICOT technical memorandum TM-0967, Institute for New

Generation Computer Technology, November 1990.

70



[inmos, 1988] inmos. The occam 2 Reference Manual. Prentice-Hall, 1988.

[Inoue and Nakatani, 2012] Hiroshi Inoue and Toshio Nakatani. Identifying the sources of cache

misses in Java programs without relying on hardware counters. In McKinley and Vechev

[McKinley and Vechev2012], pages 133–142.

[Inoue and Torii, 1991] Katsuro Inoue and K. Torii. Implementation and analysis of compile-time

garbage collection. New Generation Computing, 10(1):101–119, 1991.

[Inoue et al., 1988] Katsuro Inoue, Hiroyuki Seki, and Hikaru Yagi. Analysis of functional programs

to detect run-time garbage cells. ACM Transactions on Programming Languages and Systems,

10(4):555–578, October 1988.

[Inoue et al., 2003] H. Inoue, Darko Stefanović, and S. Forrest. Object lifetime prediction in Java. Tech-

nical Report TR–CS–2003–28, University of New Mexico, May 2003.

[Inoue et al., 2006] H. Inoue, Darko Stefanović, and S. Forrest. On the prediction of Java object life-

times. IEEE Transactions on Computers, 55(7):880–892, July 2006.

[Inoue et al., 2009] Hiroshi Inoue, Hideaki Komatsu, and Toshio Nakatani. A study of memory man-

agement for web-based applications on multicore processors. In PLDI 2009 [PLDI 20092009].

[Inoue et al., 2024] Akira Inoue, Tomoharu Ugawa, and Shigeru Chiba. A managed memory system for

micro controllers with NOR Flash memory. In Bond et al. [Bond et al.2024], pages 57–67.

[Iosif and Sisto, 2000] Radu Iosif and Riccardo Sisto. Using garbage collection in model checking. In

7th International SPIN Workshop on Model Checking of Software, volume 1885 of Lecture Notes in

Computer Science, pages 20–33, Stanford, CA, September 2000. Springer-Verlag.

[Ireland, 1989] E. Ireland. Writing interactive and file-processing functional programs. Master’s thesis,

Victoria University of Wellington, March 1989.

[ISCA 1979, 1979] 6th Annual ACM/IEEE International Symposium on Computer Architecture, April

1979.

[ISCA 1980, 1980] 7th Annual ACM/IEEE International Symposium on Computer Architecture, May

1980.

[ISCA 1985, 1985] 12th Annual ACM/IEEE International Symposium on Computer Architecture. IEEE

Press, June 1985.

[ISCA 1986, 1986] 13th Annual ACM/IEEE International Symposium on Computer Architecture, Tokyo,

June 1986. IEEE Press.

[ISCA 1987, 1976] 14th Annual ACM/IEEE International Symposium on Computer Architecture, Pitts-

burgh, PA, June 1976. ACM Press.

[ISCA 1988, 1988] 15th Annual ACM/IEEE International Symposium on Computer Architecture, Hon-

olulu, Hawaii, June 1988.

[ISCA 1989, 1989] 16th Annual ACM/IEEE International Symposium on Computer Architecture,

Jerusalem, Israel, May 1989. IEEE Press.

[ISCA 1990, 1990] 17th Annual ACM/IEEE International Symposium on Computer Architecture, Seat-

tle, WA, May 1990. IEEE Press.

[ISCA 1991, 1991] 18th Annual ACM/IEEE International Symposium on Computer Architecture,

Toronto, Canada, May 1991. ACM Press.

[ISCA 1992, 1992] 19th Annual ACM/IEEE International Symposium on Computer Architecture, Gold

Coast, Australia, May 1992. ACM Press.

[ISCA 1993, 1993] 20th Annual ACM/IEEE International Symposium on Computer Architecture, San

Diego, CA, May 1993. IEEE Press.

[ISCA 1994, 1994] 21st Annual ACM/IEEE International Symposium on Computer Architecture,

Chicago, IL, April 1994. IEEE Press.

[ISCA 1998, 1998] 25st Annual ACM/IEEE International Symposium on Computer Architecture,

Chicago, IL, 1998.

[ISCA 2005, 2005] 32th Annual ACM/IEEE International Symposium on Computer Architecture. ACM

Press, 2005.

71



[ISCA 2009, 2009] 36th Annual ACM/IEEE International Symposium on Computer Architecture,

Austin, TX, June 2009. ACM Press.

[ISCA 2012, 2012] 39th Annual ACM/IEEE International Symposium on Computer Architecture, Port-

land, OR, June 2012. ACM Press.

[ISCA 2015, 2015] 42nd Annual ACM/IEEE International Symposium on Computer Architecture, Port-

land, OR, June 2015. ACM Press.

[ISCA 2018, 2018] 45th Annual ACM/IEEE International Symposium on Computer Architecture, Los

Angeles, CA, June 2018. ACM Press.

[Ishii, 1983] Carol Y. Ishii. A comparative study of garbage collection and compaction algorithms.

Master’s thesis, Emory University, 1983.

[Ismail and Suh, 2018] Mohamed Ismail and G. Edward Suh. Hardware-software co-optimization of

memory management in dynamic languages. In Payer and Sartor [Payer and Sartor2018], pages 45–

58.

[Isoda et al., 1971] S. Isoda, E. Goto, and I. Kimura. An efficient bit table technique for dynamic storage

allocation of 2n-word blocks. Communications of the ACM, 14(9):589–592, September 1971.

[ISORC 2001, 2001] 5th International Symposium on Object-Oriented Real-Time Distributed Comput-

ing, Washington, DC, April 2001. IEEE Press.

[ISORC 2004, 2004] 7th International Symposium on Object-Oriented Real-Time Distributed Comput-

ing, Vienna, May 2004. IEEE Press.

[ISORC 2005, 2005] 8th International Symposium on Object-Oriented Real-Time Distributed Comput-

ing, Seattle, WA, May 2005. IEEE Press.

[ISORC 2006, 2006] 9th International Symposium on Object-Oriented Real-Time Distributed Comput-

ing, Gyeongju, Korea, April 2006. IEEE Press.

[ISORC 2007, 2007] 10th International Symposium on Object-Oriented Real-Time Distributed Comput-

ing. IEEE Press, 2007.

[ISORC 2008, 2008] 11th International Symposium on Object-Oriented Real-Time Distributed Comput-

ing, volume 10499 of Lecture Notes in Computer Science, Orlando, FL, 2008. Springer-Verlag.

[ISPASS 2000, 2000] IEEE International Symposium on Performance Analysis of Systems and Software,

Austin, TX, April 2000. IEEE Press.

[ISPASS 2003, 2003] IEEE International Symposium on Performance Analysis of Systems and Software,

Austin, TX, March 2003. IEEE Press.

[ISPASS 2004, 2004] IEEE International Symposium on Performance Analysis of Systems and Software,

Austin, TX, March 2004. IEEE Press.

[ISPASS 2022, 2022] IEEE International Symposium on Performance Analysis of Systems and Software,

Singapore, May 2022. IEEE Press.

[Ito and Asai, 1997] Takayasu Ito and Toshihiro Asai. Timed-GC for a real-time Lisp system. In Work-

shop on Languages, Compilers, and Tools for Real-Time Systems (LCT-RTS97), Las Vegas, Nevada,

June 1997. ACM Press.

[ITP 2017, 2017] 8th International Conference on Interactive Theorem Proving (ITP), Brası́lia, Brazil,

2017. IEEE Press.

[IWOOOS 1993, 1993] International Workshop on Object Orientation in Operating Systems. IEEE

Press, 1993.

[Iyengar et al., 2012a] Balaji Iyengar, Edward Gehringer, Michael Wolf, and Karthikeyan Manivannan.

Scalable concurrent and parallel mark. In McKinley and Vechev [McKinley and Vechev2012], pages

61–72.

[Iyengar et al., 2012b] Balaji Iyengar, Gil Tene, Michael Wolf, and Edward Gehringer. The Collie: a

wait-free compacting collector. In McKinley and Vechev [McKinley and Vechev2012], pages 85–96.

[Iyengar, 1992] Arun Iyengar. Dynamic Storage Allocation on a Multiprocessor. PhD thesis, MIT

Laboratory for Computer Science, 1992. Technical Report MIT/LCS/TR-560.

[Iyengar, 1993] Arun K. Iyengar. Parallel dynamic storage allocation algorithms. In 5th IEEE Sympo-

sium on Parallel and Distributed Processing. IEEE Press, 1993.

72



[Iyengar, 2012] Balaji Iyengar. Non-Blocking Algorithms for Garbage Collected Environments. PhD

thesis, North Carolina State University, 2012.

[Jacek and Moss, 2019] Nicholas Jacek and J. Eliot B. Moss. Learning when to garbage collect with

random forests. In Xu and Singer [Xu and Singer2019], pages 53–63.

[Jacek et al., 2016] Nicholas Jacek, Meng-Chieh Chiu, Benjamin Marlin, and Eliot Moss. Assessing the

limits of program-specific garbage collection performance. In PLDI 2016 [PLDI 20162016], pages

584–598.

[Jacek et al., 2019] Nicholas Jacek, Meng-Chieh Chiu, Benjamin Marlin, and Eliot Moss. Optimal

choice of when to garbage collect. ACM Transactions on Programming Languages and Systems,

41(1):3:1–3:35, January 2019.

[Jackson, 1991] Frank Jackson. Garbage collection bugs that I have known. In Wilson and Hayes

[Wilson and Hayes1991a].

[Jackson, 1998] Paul B. Jackson. Verifying a garbage collection algorithm. In 11th International Con-

ference on Theorem Proving in Higher Order Logics (TPHOLs), volume 1479 of Lecture Notes in

Computer Science, pages 225–244, Canberra, September 1998. Springer-Verlag.

[Jacobs and Langen, 1989] D. Jacobs and A. Langen. Accurate and efficient approximation of variable

aliasing in logic programs. In North American Conference on Logic Programming, pages 154–165,

1989.

[Jagadish et al., 1994] H.V. Jagadish, Daniel Lieuwen, Rajeev Rastogi, and Avi Silbersch atz. Dali: A

high performance main memory storage manager. In 20th International Conference on Very Large

Data Bases, 1994.

[Jang et al., 2019] Jaeyoung Jang, Jun Heo, Yejin Lee, Jaeyeon Won, Seonghak Kim, Sung Jun Jung,

Hakbeom Jang, Tae Jun Ham, and Jae W. Lee. Charon: Specialized near-memory processing ar-

chitecture for clearing dead objects in memory. In MICRO ’52: Proceedings of the 52nd Annual

IEEE/ACM International Symposium on Microarchitecture, pages 726–739, October 2019.

[Janssens and Bruynooghe, 1992] G. Janssens and Maurice Bruynooghe. Deriving descriptions of pos-

sible values of program variables by means of abstract interpretation. Journal of Logic Programming,

13(2, 3):205–258, July 1992.

[Janssens, 1986] D. Janssens. Message passing and graph transformations: a model of Actor computa-

tion. Microprocessing and Microprogramming, 18(1–5):307–318, 1986.

[Janssens, 1990] G. Janssens. Deriving Run-Time Properties of Logic Programs by Means of Abstract

Interpretation. PhD thesis, Katholieke University of Leuven, Belgium, 1990.

[Jantz et al., 2015] Michael Jantz, Forrest Robinson, Prasad Kulkarni, and Kshitij Doshi. Cross-layer

memory management for managed language applications. In OOPSLA 2015 [OOPSLA 20152015].

[Java RMI, 1996] Sun Microsystems. Java Remote Method Invocation Specification, November 1996.

[Jazayeri and Pozefsky, 1981] Medhi Jazayeri and Diane Pozefsky. Space-efficient storage management

in an attribute grammar evaluator. ACM Transactions on Programming Languages and Systems,

3(4):388–404, October 1981.

[Jean-Marie Madiot, 2022] François Pottier Jean-Marie Madiot. A separation logic for heap space under

garbage collection. In POPL 2022 [POPL 20222022].

[Jefferson and others, 1987] D.R. Jefferson et al. Distributed simulation and the Time Warp operating

system. In 11th ACM SIGOPS Symposium on Operating Systems Principles. ACM Press, November

1987.

[Jefferson, 1985] D.R. Jefferson. Virtual time. ACM Transactions on Programming Languages and

Systems, 7(3):404–425, July 1985.

[Jensen and Mogensen, 1990] Thomas P. Jensen and Torben Mogensen. A backwards analysis for

compile-time garbage collection. In Jones [Jones1990], pages 227–239.

[Jensen, 1990] Thomas P. Jensen. Context analysis of functional programs. Master’s thesis, Department

of Computer Science (DIKU), University of Copenhagen, January 1990.

[Jeschke, 1995] Eric R. Jeschke. An Architecture for Parallel Symbolic Processing based on Suspending

Construction. PhD thesis, Indiana University, April 1995.

73



[Jew, 1987] Yanni K. Jew. Distributed garbage collection. Master’s thesis, Carleton University, Canada,

1987.

[Jibaja et al., 2011] Ivan Jibaja, Stephen M. Blackburn, Mohammad R. Haghighat, and Kathryn S.

McKinley. Deferred gratification: Engineering for high performance garbage collection from the

get go. In Vetter et al. [Vetter et al.2011].

[Jin et al., 2011] Dongyun Jin, Patrick O’Neil Meredith, Dennis Griffith, and Grigore Rosu. Garbage

collection for monitoring parametric properties. In PLDI 2011 [PLDI 20112011], pages 415–424.

[Jinsight, ] Jinsight. Visualisation tools for Java.

[Jiva and Frost, 2010] Azeem S. Jiva and Gary R. Frost. GPU assisted garbage collection. US Patent

2010/0082930, April 2010.

[Joao et al., 2009] A. Joao, O. Mutlu, , and Y.N. Patt. Flexible reference-counting-based hardware ac-

celeration for garbage collection. In ISCA 2009 [ISCA 20092009], pages 418–428.

[Johansson et al., 2002] Erik Johansson, Konstantinos Sagonas, and Jesper Wilhelmsson. Heap

architectures for concurrent languages using message passing. In Boehm and Detlefs

[Boehm and Detlefs2002], pages 88–99.

[Johnson and Davis, 1992] Theodore Johnson and Tim Davis. Space efficient parallel buddy memory

management. 1992.

[Johnson and Ha, 1994] Eric E. Johnson and Jiheng Ha. PDATS: Lossless address space compression

for reducing file size and access time. In IEEE International Phoenix Conference on Computers and

Communication, April 1994.

[Johnson and Sasha, 1992] Theodore Johnson and D. Sasha. Parallel buddy memory management. Par-

allel Processing Letters, 2(4):391–398, 1992.

[Johnson, 1985] Steven D. Johnson. Storage allocation for list processing. Technical Report 168, Indiana

University, March 1985.

[Johnson, 1988] Douglas Johnson. Trap architectures for Lisp systems. Technical Report

UCB/CSD/88/470, University of California, Berkeley, November 1988.

[Johnson, 1991a] Douglas Johnson. The case for a read barrier. ACM SIGPLAN Notices, 26(4):279–287,

1991.

[Johnson, 1991b] Douglas Johnson. Comparing two garbage collectors. In Wilson and Hayes

[Wilson and Hayes1991a].

[Johnson, 1991c] Theodore Johnson. A concurrent fast fit memory manager. Technical Report 91-009,

University of Florida, 1991.

[Johnson, 1992] Ralph E. Johnson. Reducing the latency of a real-time garbage collector. Letters on

Programming Languages and Systems, 1(1):46–58, March 1992.

[Johnson, 1994a] Eric E. Johnson. PDATS II: Improved compression of traces. In 1999 IEEE Interna-

tional Performance, Computing and Communications Conference, February 1994.

[Johnson, 1994b] G.M. Johnson, editor. ACM/IEEE Conference on Supercomputing, Washington, DC,

November 1994.

[Johnsson, 1987] Thomas Johnsson. Compiling Lazy Functional Languages. PhD thesis, Chalmers

University of Technology, 1987.

[Johnstone and Wilson, 1997] Mark S. Johnstone and Paul R. Wilson. The memory fragmentation prob-

lem: Solved? In Dickman and Wilson [Dickman and Wilson1997].

[Johnstone and Wilson, 1998] Mark S. Johnstone and Paul R. Wilson. The memory fragmentation prob-

lem: Solved? In Peyton Jones and Jones [Peyton Jones and Jones1998], pages 26–36.

[Johnstone, 1997] Mark S. Johnstone. Non-Compacting Memory Allocation and Real-Time Garbage

Collection. PhD thesis, University of Texas at Austin, December 1997.

[Joisha, 2006] Pramod Joisha. Compiler optimizations for non-deferred reference-counting garbage col-

lection. In Petrank and Moss [Petrank and Moss2006], pages 150–161.

[Joisha, 2007] Pramod Joisha. Overlooking roots: A framework for making nondeferred reference-

counting garbage collection fast. In Morrisett and Sagiv [Morrisett and Sagiv2007], pages 141–158.

74



[Joisha, 2008] Pramod Joisha. A principled approach to nondeferred reference-counting garbage collec-

tion. In Gregg et al. [Gregg et al.2008].

[Joisha, 2014] Pramod G. Joisha. Sticky tries: Fast insertions, fast lookups, no deletions for large key

universes. In Guyer and Grove [Guyer and Grove2014], pages 35–46.

[Jokinen, 1989] M.O. Jokinen. Customizable garbage collectors. Information Processing Letters,

30(3):115–118, February 1989.

[Jones, ] Richard Jones. The garbage collection page.

[Jones and Blackburn, 2008] Richard Jones and Steve Blackburn, editors. 7th ACM SIGPLAN Interna-

tional Symposium on Memory Management, Tucson, AZ, June 2008. ACM Press.

[Jones and Kelly, 1995] Richard W.M. Jones and Paul H.J. Kelly. Bounds checking for C. Technical

report, Imperial College London, 1995.

[Jones and King, 2004] Richard E. Jones and Andy C. King. Collecting the garbage without blocking

the traffic. Technical Report 18–04, Computing Laboratory, University of Kent, September 2004. This

report summarises [King, 2004].

[Jones and King, 2005] Richard E. Jones and Andy C. King. A fast analysis for thread-local garbage

collection with dynamic class loading. In 5th IEEE International Workshop on Source Code Analy-

sis and Manipulation (SCAM), pages 129–138, Budapest, September 2005. IEEE Computer Society

Press. This is a shorter version of [Jones and King, 2004].

[Jones and le Métayer, 1988] Simon B. Jones and D. le Métayer. Optimisation of storage management

in functional languages by static analysis of programs. In Hall et al. [Hall et al.1988], pages 87–100.

[Jones and le Métayer, 1989] Simon B. Jones and D. le Métayer. Compile-time garbage collection by

sharing analysis. In FPCA 1989 [FPCA 19891989], pages 54–74.

[Jones and Lins, 1992] Richard E. Jones and Rafael D. Lins. Cyclic weighted reference counting with-

out delay. Technical Report 28–92, Computing Laboratory, The University of Kent at Canterbury,

December 1992.

[Jones and Lins, 1993] Richard E. Jones and Rafael D. Lins. Cyclic weighted reference counting without

delay. In Bode et al. [Bode et al.1993], pages 712–715.

[Jones and Muchnick, 1981] Neil D. Jones and Steven S. Muchnick. Flow analysis and optimization of

LISP-like structures. In Program Flow Analysis: Theory and Applications, pages 102–131. Prentice-

Hall, 1981.

[Jones and Ryder, 2006] Richard Jones and Chris Ryder. Garbage collection should be lifetime aware.

In Zendra [Zendra2006a], page 8.

[Jones and Ryder, 2008] Richard Jones and Chris Ryder. A study of Java object demographics. In Jones

and Blackburn [Jones and Blackburn2008], pages 121–130.

[Jones and Tyas, 1993] Simon B. Jones and Andrew S. Tyas. The implementer’s dilemma: A mathemat-

ical model of compile-time garbage collection. In GWFP 1993 [GWFP 19931993], pages 139–144.

[Jones and White, 1991] Simon B. Jones and M. White. Is compile time garbage collection worth the

effort. In Peyton Jones et al. [Peyton Jones et al.1991], pages 172–176.

[Jones and Yatapanage, 2019] Cliff B. Jones and Nisansala Yatapanage. Investigating the limits of

rely/guarantee relations based on a concurrent garbage collector example. Formal Aspects of Comput-

ing, 31(3):353–374, February 2019.

[Jones et al., 2012] Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection Hand-

book: The Art of Automatic Memory Management. CRC Applied Algorithms and Data Structures.

Chapman & Hall, January 2012.

[Jones et al., 2023] Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection Hand-

book: The Art of Automatic Memory Management. CRC Applied Algorithms and Data Structures.

CRC Press, second edition, June 2023.

[Jones, 1990] Neil D. Jones, editor. European Symposium on Programming, volume 432 of Lecture

Notes in Computer Science, Copenhagen, Denmark, May 1990. Springer-Verlag.

[Jones, 1992] Richard E. Jones. Tail recursion without space leaks. Journal of Functional Programming,

2(1):73–79, January 1992.

75



[Jones, 1995] Simon B. Jones. An experiment in compile time garbage collection. Technical Report 84,

Programming Methodology Group, Göteborg University and Chalmers University of Technology, Jan-

uary 1995.

[Jones, 1996] Richard E. Jones. Garbage Collection: Algorithms for Automatic Dynamic Memory Man-

agement. Wiley, Chichester, July 1996. With a chapter on Distributed Garbage Collection by R.

Lins.

[Jones, 1996 2024] Richard Jones. The garbage collection bibliography. The definitive GC bibliography,

1996–2024.

[Jones, 2006] Richard Jones. Five perspectives on modern memory management: Systems, hardware

and theory. Science of Computer Programming, 62(2):95–204, October 2006.

[Jones, 2007] Richard Jones. Dynamic memory management: Challenges for today and tomorrow. In

International Lisp Conference, pages 115–124, Cambridge, April 2007. Association of Lisp Users.

Invited presentation.

[Jones, 2014] Richard Jones, editor. 28th European Conference on Object-Oriented Programming, vol-

ume 8586 of Lecture Notes in Computer Science, Uppsala, July 2014. Springer-Verlag.

[Jonker, 1992] J.E. Jonker. On-the-fly garbage collection for several mutators. Distributed computing,

5(4):187–200, April 1992.

[Jonkers, 1979] H.B.M. Jonkers. A fast garbage compaction algorithm. Information Processing Letters,

9(1):26–30, July 1979.

[Jonkers, 1983] H.B.M. Jonkers. Abstraction, Specification and Implementation Techniques: With an

Application to Garbage Collection. Mathematical Centre, Amsterdam, the Netherlands, 1983.

[Jordan Montaño et al., 2024] Sebastian Jordan Montaño, Guillermo Polito, Stephane Ducasse, and

Pablo Tesone. Evaluating finalization-based object lifetime profiling. In Bond et al. [Bond et al.2024],

pages 30–42.

[Jordan, 1978] M.J. Jordan. Slp: A paged processor for compact lists. Software: Practice and Experi-

ence, 8(3):285–301, 1978.

[Jost, 2004] Steffen Jost. lfd infer: An implementation of a static inference on heap space usage. In

SPACE 2004 [SPACE 20042004].

[Jouannaud, 1985] Jean-Pierre Jouannaud, editor. Conference on Functional Programming and Com-

puter Architecture, volume 201 of Lecture Notes in Computer Science, Nancy, France, September

1985. Springer-Verlag.

[Jouppi, 1990] Norman P. Jouppi. Improving direct-mapped cache performance by the addition of a

small fully-associative cache and prefetch buffers. In ISCA 1990 [ISCA 19901990], pages 346–373.

[Jouppi, 1993] Norman P. Jouppi. Cache write policies and performance. In ISCA 1993

[ISCA 19931993], pages 191–201.

[Joy et al., 2000] Bill Joy, Guy Steele, James Gosling, and Gilad Bracha. The Java Language Specifica-

tion. Addison-Wesley, second edition edition, June 2000.

[JPDA, ] Sun Microsystems. Java Platform Debugger Architecture (JPDA).

http://java.sun.com/j2se/1.3/docs/guide/jpda/.

[JProbe, ] Sitraka Inc. The JProbe Profiler. http://www.jprobe.com.

[JRockit, 2008] BEA Systems Inc. Understanding Memory Management, 2008. The BEA JRockit JVM

R27.6.

[JTRES 2003, 2003] International Workshop on Java Technologies for Real-time and Embedded Sys-

tems (JTRES), volume 2889 of Lecture Notes in Computer Science. Springer, 2003.

[JTRES 2005, 2005] 3rd International Workshop on Java Technologies for Real-time and Embedded

Systems (JTRES), San Diego, CA, 2005.

[JTRES 2007, 2007] 5th International Workshop on Java Technologies for Real-time and Embedded

Systems (JTRES), Vienna, Austria, September 2007. ACM Press.

[JTRES 2008, 2008] 6th International Workshop on Java Technologies for Real-time and Embedded

Systems (JTRES), Santa Clara, CA, September 2008. ACM Press.

76



[JTRES 2009, 2009] 7th International Workshop on Java Technologies for Real-time and Embedded

Systems (JTRES), Madrid, Spain, September 2009. ACM Press.

[JTRES 2010, 2010] 10th International Workshop on Java Technologies for Real-time and Embedded

Systems (JTRES), Prague, September 2010. ACM Press.

[JTRES 2011, 2011] 9th International Workshop on Java Technologies for Real-time and Embedded

Systems (JTRES), York, September 2011. ACM Press.

[JTRES 2014, 2014] 12th International Workshop on Java Technologies for Real-time and Embedded

Systems (JTRES), Niagara Falls, NY, October 2014. ACM Press.

[Juillerat et al., 2007] Nicolas Juillerat, Stefan Müller Arisona, and Simon Schubiger-Banz. Real-time,

low latency audio processing in Java. In International Computer Music Conference, ICMC 2007,

Copenhagen, Denmark, August 2007.

[Jul and Juul, 1990] Eric Jul and Niels-Christian Juul, editors. OOPSLA/ECOOP Workshop on Garbage

Collection in Object-Oriented Systems, Ottawa, Canada, October 1990.

[Jul and Racordon, 2023] Eric Jul and Dimi Racordon, editors. Implementation, Compilation, Optimiza-

tion of Object-Oriented Languages, Programs and Systems (ICOOOLPS’23), Seattle, WA, July 2023.

[Jul et al., 1987] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained mobility

in the Emerald system. In 11th ACM SIGOPS Symposium on Operating Systems Principles, pages

105–106. ACM Press, December 1987. See also [Jul et al., 1988].

[Jul et al., 1988] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained mobility

in the Emerald system. ACM Transactions on Computer Systems, 6(1):109–133, January 1988.

[Jul, 1988] Eric Jul. Object Mobility in a Distributed Object-Oriented System. PhD thesis, Department

of Computer Science, University of Washington, Seattle, WA, December 1988. Technical Report 88-

12-6. Also DIKU Report (Blue Series) 89/1, Department of Computer Science, University of Copen-

hagen, Denmark.

[Jul, 1998] Eric Jul, editor. 12th European Conference on Object-Oriented Programming, volume 1445

of Lecture Notes in Computer Science, Brussels, Belgium, July 1998. Springer-Verlag.

[Jula and Rauchwerger, 2009] Alin Jula and Lawrence Rauchwerger. Two memory allocators that use

hints to improve locality. In Kolodner and Steele [Kolodner and Steele2009], pages 109–118.

[Julien, 1985] Danielle Julien. Etude et Réalisation de la Machine Virtuelle LILA Adaptée à l’Écriture

d’Interprètes. PhD thesis, Université Paul Sabatier, Toulouse, France, May 1985.

[Jump and McKinley, 2007] Maria Jump and Kathryn S. McKinley. Cork: Dynamic memory leak de-

tection for garbage-collected languages. In POPL 2007 [POPL 20072007], pages 31–38.

[Jump and McKinley, 2009] Maria Jump and Kathryn S. McKinley. Dynamic shape analysis via degree

metrics. In Kolodner and Steele [Kolodner and Steele2009], pages 119–128.

[Jump and McKinley, 2010] Maria Jump and Kathryn S. McKinley. Detecting memory leaks in managed

languages with cork. Software: Practice and Experience, 40(1):1–22, January 2010.

[Jump et al., 2004] Maria Jump, Stephen M. Blackburn, and Kathryn S. McKinley. Dynamic object

sampling for pretenuring. In Bacon and Diwan [Bacon and Diwan2004], pages 152–162.

[Jung and Yi, 2008] Yungbum Jung and Kwangkeun Yi. Practical memory leak detector based on param-

eterized procedural summaries. In Jones and Blackburn [Jones and Blackburn2008], pages 131–140.

[Jung et al., 2024] Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang. Con-

current immediate reference counting. In PLDI 2024 [PLDI 20242024], pages 151–174.

[Juul and Jul, 1992] Neils-Christian Juul and Eric Jul. Comprehensive and robust garbage collection in

a distributed system. In Bekkers and Cohen [Bekkers and Cohen1992], pages 103–115.

[Juul, 1990a] Nils Christian Juul. A distributed, faulting garbage collector for Emerald. In Jul and Juul

[Jul and Juul1990].

[Juul, 1990b] Nils Christian Juul. Report on the 1990 workshop on garbage collection in object-oriented

systems. In OOPSLA 1990 [OOPSLA 19901990]. Addendum.

[Juul, 1992] Niels Christian Juul. Comprehensive, Concurrent, and Robust Garbage Collection in the

Distributed, Object-Based System, Emerald. PhD thesis, Department of Computer Science (DIKU),

University of Copenhagen, 1992.

77



[JVM 2001, 2001] 1st Java Virtual Machine Research and Technology Symposium, Monterey, CA, April

2001. USENIX Association.

[JVM 2002, 2002] 2nd Java Virtual Machine Research and Technology Symposium, San Francisco, CA,

August 2002. USENIX Association.

[JVM 2004, 2004] 3rd Java Virtual Machine Research and Technology Symposium, San Jose, CA, May

2004. USENIX Association.

[JVMPI, ] Sun Microsystems. Java Virtual Machine Profiling Interface (JVMPI).

http://java.sun.com/j2se/1.3/docs/guide/jvmpi/.

[Kaashoek et al., 1989] M. Frans Kaashoek, Andrew Tanenbaum, S. Hummel, and Henri E. Bal. An

efficient reliable broadcast protocol. ACM SIGOPS Operating Systems Review, 23(4):5–19, October

1989.

[Kaburlasos, 1992] Nikos Kaburlasos. Hardware support for garbage collection in the C programming

language. Master’s thesis, University of Texas at Austin, 1992.

[Kaehler and Krasner, 1983] Ted Kaehler and Glenn Krasner. LOOM — large object-oriented memory

for Smalltalk-80 systems. In Krasner [Krasner1983], pages 251–271.

[Kaehler, 1981] Ted Kaehler. Virtual memory for an object-oriented language. Byte, 6(8):378–387,

August 1981.

[Kaehler, 1986] Ted Kaehler. Virtual memory on a narrow machine for an object-oriented language. In

OOPSLA 1986 [OOPSLA 19861986], pages 87–106.

[Kafura et al., 1990] Dennis Kafura, Doug Washabaugh, and Jeff Nelson. Garbage collection of actors.

In OOPSLA 1990 [OOPSLA 19901990], pages 126–134.

[Kafura et al., 1995] Dennis Kafura, Manibrata Mukherji, and Doug Washabaugh. Concurrent and dis-

tributed garbage collection of active objects. IEEE Transactions on Parallel and Distributed Systems,

6(4), April 1995.

[Kagedal and Debray, 1997] Andreas Kagedal and Saumya K. Debray. A practical approach to structure

reuse of arrays in single assignment languages. In 14th International Conference on Logic Program-

ming, pages 18–32, 1997.

[Kagimasa et al., 1991] T. Kagimasa, K. Takahashi, and S. Yoshizumi. Adaptive storage management

for very large virtual/real storage systems. In ISCA 1991 [ISCA 19911991], pages 372–379.

[Kahn, 1987] Gilles Kahn, editor. Conference on Functional Programming and Computer Architecture,

volume 274 of Lecture Notes in Computer Science, Portland, OR, September 1987. Springer-Verlag.

[Kain, 1969] Y. Kain. Block structures, indirect addressing, and garbage collection. Communications of

the ACM, 12(7):395–398, July 1969.

[Kakkad et al., 1998] Sheetal V. Kakkad, Mark S. Johnstone, and Paul R. Wilson. Portable run-time

type description for conventional compilers. In Peyton Jones and Jones [Peyton Jones and Jones1998],

pages 146–153.

[Kakuta et al., 1986] K. Kakuta, H. Nakamura, and S. Iida. Parallel reference counting algorithm. In-

formation Processing Letters, 23(1):33–37, 1986.

[Kal, ] Kaleida Labs. ScriptX Architectural Overview.

[Kalagnanam and Kodi, 2003] Aruna Kalagnanam and Sripathi Kodi. Mash that trash — incremental

compaction in the IBM JDK garbage collector: How to minimize pause times and free the heap from

dark matter. IBM developerWorks, June 2003.

[Kaleba et al., 2018] Sophie Kaleba, Clement Bera, and Eliot Miranda. Garbage collection evaluation

infrastructure for the Cog VM. In International Workshop on Smalltalk Technologies, 2018.

[Kalibera and Jones, 2011] Tomas Kalibera and Richard Jones. Handles revisited: Optimising perfor-

mance and memory costs in a real-time collector. In Boehm and Bacon [Boehm and Bacon2011],

pages 89–98.

[Kalibera and Jones, 2013] Tomas Kalibera and Richard Jones. Rigorous benchmarking in reasonable

time. In Petrank and Cheng [Petrank and Cheng2013], pages 63–74.

[Kalibera et al., 2009a] Tomas Kalibera, Jeff Hagelberg, Filip Pizlo, Ales Plsek, Ben Titzer, and Jan

Vitek. CDx: A family of real-time Java benchmarks. In JTRES 2009 [JTRES 20092009], pages

41–50.

78



[Kalibera et al., 2009b] Tomas Kalibera, Filip Pizlo, Antony L. Hosking, and Jan Vitek. Scheduling hard

real-time garbage collection. In 30th IEEE Real-Time Systems Symposium, pages 81–92, Washington,

DC, December 2009. IEEE Computer Society Press.

[Kalibera et al., 2009c] Tomas Kalibera, Marek Prochazka, Filip Pizlo, Martin Decky, Jan Vitek, and

Marco Zulianello. Real-time Java in space: Potential benefits and open challenges. In Eurospace

Conference on Data Systems in Aerospace (DASIA), Istanbul, Turkey, January 2009.

[Kalibera et al., 2011a] Tomas Kalibera, Jeff Hagelberg, Petr Maj, Filip Pizlo, Ben Titzer, and Jan Vitek.

A family of real-time Java benchmarks. Concurrency and Computation: Practice and Experience,

23(14):1679–1700, 2011.

[Kalibera et al., 2011b] Tomas Kalibera, Filip Pizlo, Antony L. Hosking, and Jan Vitek. Scheduling

real-time garbage collection on uniprocessors. ACM Transactions on Computer Systems, 3(1):8:1–29,

August 2011.

[Kalibera et al., 2012] Tomas Kalibera, Matthew Mole, Richard Jones, and Jan Vitek. A black-box ap-

proach to understanding concurrency in DaCapo. In OOPSLA 2012 [OOPSLA 20122012], pages

335–354.

[Kalibera, 2009] Tomas Kalibera. Replicating real-time garbage collector for Java. In JTRES 2009

[JTRES 20092009], pages 100–109.

[Kalsow and Muller, 1989] Bill Kalsow and Eric Muller. SRC Modula-3, Version 1.2, December 1989.

[Kamada et al., 1993] Tomio Kamada, Satoshi Matsuoka, and Akinori Yonezawa. Efficient parallel

global garbage collection on massively parallel computers. In Moss et al. [Moss et al.1993].

[Kamada et al., 1994] Tomio Kamada, Satoshi Matsuoka, and Akinori Yonezawa. Efficient parallel

global garbage collection on massively parallel computers. In Johnson [Johnson1994b], pages 79–

88.

[Kandemir et al., 2001] M. Kandemir, J. Ramanujam, M.J. Irwin, N. Vijaykrishnan, I. Kadayif, and

A. Parikh. Dynamic management of scratch-pad memory space. In DAC, 2001.

[Kandu et al., 1987] B. Kandu, S. Heng, C. Wu, and Nader Bagherzadeh. Network simulation of syn-

chronous garbage collection algorithm. In P. Roth, editor, Simulation of computer networks1987 Sym-

posium on the simulation of computer networks, Colorado Springs, Aug. 4–7, 1987, pages 215–222.

IEEE Press, 1987.

[Kapadia1 and Thakar, 2014] Viral V. Kapadia1 and V.K. Thakar. Evaluation search operation for tra-

ditional processor and a different memory processor for garbage collection. International Journal of

Computer Engineering and Technology (IJCET), 5(7):149–156, July 2014.

[Kaplan et al., 2002] Scott Kaplan, Lyle McGeoch, and Megan Cole. Adaptive caching for demand

prepaging. In Boehm and Detlefs [Boehm and Detlefs2002], pages 114–126.

[Kapoor et al., 2011] Kalpesh Kapoor, Kamal Lodaya, and Uday S. Reddy. Fine-grained concurrency

with separation logic. Journal of Philosophical Logic, 40:583–632, October 2011.

[Karel, 2019] Benjamin Karel. Subheap-Augmented Garbage Collection. PhD thesis, University of

Pennsylvania, 2019.

[Karkare et al., 2006] Amey Karkare, Amitabha Sanyal, and Uday Khedker. Effectiveness of garbage

collection in MIT/GNU Scheme, November 2006.

[Karkare et al., 2007] Amey Karkare, Uday Khedker, and Amitabha Sanyal. Liveness of heap data for

functional programs. In Heap Analysis and Verification Workshop (HAV), page 15, 2007.

[Karlsson, 2022] Stefan Karlsson. JDK 8272979: Generational ZGC. Technical report, OpenJDK, Oc-

tober 2022.

[Katoen et al., 2007] JoostPieter Katoen, Thomas Noll, and Stefan Rieger. Verifying concurrent listma-

nipulating programs by LTL model checking. In Workshop on Heap Analysis and Verification (HAV

2007), pages 94–113, Braga, Portugal, March 2007.

[Katz, 1986] M.J. Katz. ParaTran: A transparent, transaction based runtime mechanism for parallel

execution of Scheme. Master’s thesis, MIT Press, June 1986.

[Kaufman, 1984] Arie Kaufman. Tailored-list and recombination-delaying buddy systems. ACM Trans-

actions on Programming Languages and Systems, 6(4):118–125, 1984.

79



[Kawachiya et al., 2008] Kiyokuni Kawachiya, Kazunori Ogata, and Tamiya Onodera. Analysis and

reduction of memory inefficiencies in Java strings. In OOPSLA 2008 [OOPSLA 20082008].

[Kawachiya et al., 2012] Kiyokuni Kawachiya, Mikio Takeuchi, Salikh Zakirov, and Tamiya Onodera.

Distributed garbage collection for managed X10. In Proceedings of the X10 2012 Workshop, Beijing,

China, June 2012.

[Kawakami and Gurd, 1986] K. Kawakami and J.R. Gurd. Scalable dataflow structure store. In ISCA

1986 [ISCA 19861986].

[Kejariwal, 2013] A. Kejariwal. A tool for practical garbage collection analysis in the cloud. In IEEE

International Conference on Cloud Engineering (IC2E), pages 46–53, Redwood City, CA, 2013.

[Kempf, 2001] William E. Kempf. A garbage collection framework for C++. Technical report, The Code

Project website, January 2001.

[Kennedy and Syme, 2004] Andrew Kennedy and Don Syme. Combining generics, pre-compilation and

sharing between software-based processes. In SPACE 2004 [SPACE 20042004].

[Kennedy, 1991] Brian Kennedy. The features of the object oriented abstract type hierarchy (OATH). In

Usenix C++ Conference, pages 41–50. USENIX Association, April 1991.

[Kennke, 2019a] Roman Kennke. Shenandoah GC in JDK 13, part 1: Load reference barriers. Red Hat

Developer, June 2019.

[Kennke, 2019b] Roman Kennke. Shenandoah GC in JDK 13, part 2: Eliminating the forward pointer

word. Red Hat Developer, June 2019.

[Kennke, 2020a] Roman Kennke. Shenandoah GC in JDK 14, part 1: Self-fixing barriers. Red Hat

Developer, March 2020.

[Kennke, 2020b] Roman Kennke. Shenandoah GC in JDK 14, part 2: Concurrent roots and class un-

loading. Red Hat Developer, March 2020.

[Kennke, 2021a] Roman Kennke. Shenandoah garbage collection in OpenJDK 16: Concurrent reference

processing. Red Hat Developer, May 2021.

[Kennke, 2021b] Roman Kennke. Shenandoah in OpenJDK 17: Sub-millisecond GC pauses. Red Hat

Developer, September 2021.

[Kenny and Lin, 1991] K.B. Kenny and K. Lin. Flexible real-time systems using the Flex language.

IEEE Transactions on Computers, pages 70–78, May 1991.

[Kermany and Petrank, 2006] Haim Kermany and Erez Petrank. The Compressor: Concurrent, incre-

mental and parallel compaction. In Schwartzbach and Ball [Schwartzbach and Ball2006], pages 354–

363.

[Kermarrec et al., 1995] A.M. Kermarrec, G. Cabillic, A. Gefflaut, C. Morin, and Isabbelle Puaut. A

recoverable distributed shared memory integrating coherence and recoverability. In 25th Annual In-

ternational Symposium on Fault-Tolerant Computing, 1995.

[Kero et al., 2007] Martin Kero, Johan Nordlander, and Per Lundgren. A correct and useful incremental

copying garbage collector. In Morrisett and Sagiv [Morrisett and Sagiv2007], pages 129–140.

[Kessler and Livny, 1989] Richard E. Kessler and M. Livny. An analysis of distributed shared memory

algorithms. In 9th International Conference on Distributed Computing Systems, June 1989.

[Kessler et al., 1989] Richard Kessler, Richard Jooss, Alvin Lebeck, and Mark D. Hill. Inexpensive

implementations of set-associativity. In ISCA 1989 [ISCA 19891989], pages 131–139.

[Kessler et al., 1992] Richard Kessler, H. Carr, L. Stoller, and M. Swanson. Implementing Concur-

rent Scheme for the Mayfly distributed parallel processing system. Lisp and Symbolic Computation,

5(1):73–93, May 1992.

[Keyngnaert, 2001] Peter Keyngnaert. Conflict graph based allocation of static objects to memory banks.

In SPACE 2001 [SPACE 20012001].

[Khedker et al., 2006] Uday Khedker, Amitabha Sanyal, and Amey Karkare. Heap reference analysis

using access graphs. ACM Computing Research Repository, August 2006.

[Khedker et al., 2008] Uday Khedker, Amitabha Sanyal, and Amey Karkare. Heap reference analysis

using access graphs. ACM Transactions on Programming Languages and Systems, 30(1), 2008.

80



[Kim and Hsu, 2000] Jin-Soo Kim and Yarsun Hsu. Memory system behavior of Java programs:

Methodology and analysis. In ACM SIGMETRICS International Conference on Measurement and

Modeling of Computer Systems, pages 264–274. ACM Press, June 2000.

[Kim and Shin, 2004] Taehyoun Kim and Heonshik Shin. Scheduling-aware real-time garbage collec-

tion using dual aperiodic servers. In Real-Time and Embedded Computing Systems and Applications,

volume 2968 of Lecture Notes in Computer Science, pages 1–17. Springer-Verlag, 2004.

[Kim et al., 1991] Yasunori Kim, Takashi Chikayama, Tsuyoshi Shinogi, and Atsuhiro Goto. Incremen-

tal Garbage Collection Scheme in KL1 and its Architectural Support of PIM, pages 33–45. Plenum

Press, 1991.

[Kim et al., 1998] Jin-Soo Kim, Xiaohan Qin, and Yarsun Hsu. Memory characterization of a parallel

data mining workload. In Proc. Workload Characterization: Methodology and Case Studies. IEEE

Press, November 1998.

[Kim et al., 1999] Taehyoun Kim, Naehyuck Chang, Namyun Kim, and Heonshik Shin. Scheduling

garbage collector for embedded real-time systems. In LCTES 1999 [LCTES 19991999], pages 55–

64.

[Kim et al., 2000] Taehyoun Kim, Naehyuck Chang, and Heonshik Shin. Bounding worst case garbage

collection time for embedded real-time systems. In 6th IEEE Real-Time Technology and Applications

Symposium (RTAS), pages 46–55, Washington, DC, May/June 2000.

[Kim et al., 2001] Taehyoun Kim, Naehyuck Chang, and Heonshik Shin. Joint scheduling of garbage

collector and hard real-time tasks for embedded applications. Journal of Systems and Software,

58(3):247–260, September 2001.

[Kim et al., 2014] Hongjune Kim, Seonmyeong Bak, and Jaejin Lee. Lightweight and block-level con-

current sweeping for Javascript garbage collection. In LCTES 2014 [LCTES 20142014], pages 155–

164.

[Kimura et al., 1987] Y. Kimura, K. Nishida, N. Miyauchi, and T. Chikayama. Realtime GC by multiple

reference bit in KL1. In Data Flow Workshop, pages 215–222, October 1987. In Japanese.

[King, 2002] Andy C. King. Removing GC synchronisation. In OOPSLA 2002 [OOPSLA 20022002],

pages 112–113 (Companion).

[King, 2004] Andy C. King. Removing Garbage Collector Synchronisation. PhD thesis, Computing

Laboratory, The University of Kent at Canterbury, 2004.

[Kingdon et al., 1991] H. Kingdon, David R. Lester, and Geoffrey L. Burn. The HDG-machine: A

highly distributed graph reducer for a transputer network. Computer Journal, 34:290–301, September

1991.

[Kirby et al., 2001] Graham N.C. Kirby, Alan Dearle, and Dag I.K. Sjøberg, editors. 9th International

Workshop on Persistent Object Systems (September, 2000), volume 2135 of Lecture Notes in Computer

Science, Lillehammer, Norway, 2001. Springer.

[Kirisame et al., 2022] Marisa Kirisame, Pranav Shenoy, and Pavel Panchekha. Optimal heap limits for

reducing browser memory use. In OOPSLA 2022 [OOPSLA 20222022].

[Kirsch and Titzer, 2017] Christoph Kirsch and Ben Titzer, editors. 16th ACM SIGPLAN International

Symposium on Memory Management, Barcelona, June 2017. ACM Press.

[Kistler and Franz, 1998] Thomas Kistler and Michael Franz. Automated layout of data members for

type-safe languages. Technical Report 98–22, University of California, Irvine, May 1998.

[Kistler and Franz, 1999] Thomas Kistler and Michael Franz. The case for dynamic optimization: Im-

proving memory-hierarchy performance by continuously adapting the internal storage layout of heap

objects at run-time. Technical Report 99–21, University of California, Irvine, May 1999.

[Kistler and Franz, 2000] Thomas Kistler and Michael Franz. Automated data-member layout of heap

objects to improve memory-hierarchy performance. ACM Transactions on Programming Languages

and Systems, 22(3):490–505, May 2000.

[Kjelso and Jones, 1995] Morten Kjelso and Simon Jones. Memory management in flash-memory disks

with data compression. In Baker [Baker1995b], pages 399–413.

[Klaiber and Levy, 1991] Alexander C. Klaiber and Henry M. Levy. An architecture for software-

controlled data prefetching. In ISCA 1991 [ISCA 19911991], pages 43–53.

81



[Kliot et al., 2009] Gabriel Kliot, Erez Petrank, and Bjarne Steensgaard. A lock-free, concurrent, and

incremental stack scanning for garbage collectors. In Hosking et al. [Hosking et al.2009].

[Klock and Clinger, 2011] Felix S. Klock, II and William D. Clinger. Bounded-latency regional garbage

collection. In DLS 2011 [DLS 20112011], pages 73–84.

[Klock, 2011] Felix S. Klock, II. Scalable Garbage Collection via Remembered Set Summarization and

Refinement. PhD thesis, Northeastern University, 2011.

[Kluk, 1989] Mark G. Kluk. A study of garbage collection schemes for list processors. Master’s thesis,

Lehigh University, 1989.

[Kluźniak, 1988] F. Kluźniak. Compile-time garbage collection for ground Prolog. In 5th International

Conference and Symposium on Logic Programming, pages 1490–1505, 1988.

[Knight, 1974] Tom Knight. CONS. Working Paper 80, MIT AI Laboratory, November 1974.

[Knowlton, 1965] Kenneth C. Knowlton. A fast storage allocator. Communications of the ACM,

8(10):623–625, October 1965.

[Knudsen, 2001] Jørgen Lindskov Knudsen, editor. 15th European Conference on Object-Oriented

Programming, volume 2072 of Lecture Notes in Computer Science, Budapest, Hungary, June 2001.

Springer-Verlag.

[Knuth, 1973a] Donald E. Knuth. The Art of Computer Programming, volume I: Fundamental Algo-

rithms. Addison-Wesley, second edition, 1973.

[Knuth, 1973b] Donald E. Knuth. Lists and Garbage Collection, chapter 2, pages 408–423. Volume I:

Fundamental Algorithms of Knuth Volume 1 [Knuth1973a], second edition, 1973.

[Ko et al., 2008] Sohyang Ko, Seonsoo Jun, Kiyong Kim, and Yeonseung Ry. Study on garbage collec-

tion schemes for flash-based linux swap system. In Advanced Software Engineering and Its Applica-

tions, ASEA 2008, pages 13–16, December 2008.

[Koch et al., 1991] B. Koch, T. Schunke, A. Dearle, F. Vaughan, C. Marlin, R. Fazekerley, and

C. Barter. Cache coherence and storage management in a persistent object system. In Dearle et al.

[Dearle et al.1991], pages 99–109.

[Kogan and Schuster, 1997a] Dmitry Kogan and Assaf Schuster. Collecting garbage pages in a dis-

tributed shared memory system. In 5th European Symposium on Algorithms, pages 308–325, Graz,

September 1997.

[Kogan and Schuster, 1997b] Dmitry Kogan and Assaf Schuster. Remote reference counting: Dis-

tributed garbage collection with reduced memory and communication overhead. In 5th European

Symposium on Algorithms, pages 308–325, Graz, September 1997.

[Koide and Noshita, 1993] Hiroshi Koide and K. Noshita. On the copying garbage collection which pre-

serves the genetic order. Transaction of Information Processing (IPSJ), 34(11):2395–2400, November

1993. In Japanese.

[Koide, 1993] Hiroshi Koide. Hybrid garbage collection. Master’s thesis, University of Electro-

Communications, Tokyo, 1993.

[Kokosa, 2018] Konrad Kokosa. Pro .NET Memory Management: For Better Code, Performance, and

Scalability. Apress, November 2018.

[Kölling and Rosenberg, 1996] Michael Kölling and John Rosenberg. Blue — a language for teaching

object-oriented programming. In 27th SIGCSE Technical Symposium on Computer Science Education,

pages 190–194, March 1996.

[Kolodner and Petrank, 1999] Elliot K. Kolodner and Erez Petrank. Parallel copying garbage collection

using delayed allocation. Technical Report 88.384, IBM Haifa Research Lab., November 1999.

[Kolodner and Steele, 2009] Hillel Kolodner and Guy Steele, editors. 8th ACM SIGPLAN International

Symposium on Memory Management, Dublin, Ireland, June 2009. ACM Press.

[Kolodner and Weihl, 1992] Elliot K. Kolodner and W.E. Weihl. Atomic incremental garbage collection.

In Bekkers and Cohen [Bekkers and Cohen1992], pages 365–387.

[Kolodner and Weihl, 1993] Elliot K. Kolodner and William E. Weihl. Atomic incremental garbage

collection and recovery for large stable heap. In Peter Buneman and Sushil Jajodia, editors, ACM

SIGMOD International Conference on Management of Data, pages 177–186, Washington, DC, May

1993. Also MIT/LCS/TR-534, February, 1992.

82



[Kolodner et al., 1989] Elliot K. Kolodner, Barbara Liskov, and W. Weihl. Atomic garbage collection:

Managing a stable heap. In James Clifford, Bruce G. Lindsay, and David Maier, editors, ACM SIG-

MOD International Conference on Management of Data, pages 15–25. ACM Press, June 1989.

[Kolodner, 1987] Elliot K. Kolodner. Recovery using virtual memory. Technical Memo MIT/LCS/TM–

404, MIT Laboratory for Computer Science, July 1987.

[Kolodner, 1991] Elliot K. Kolodner. Atomic incremental garbage collection and recovery for large

stable heap, implementing persistent object bases: Principles and practice. In Dearle et al.

[Dearle et al.1991].

[Kolodner, 1992] Elliot K. Kolodner. Atomic Incremental Garbage Collection and Recovery for a Large

Stable Heap. PhD thesis, MIT Press, 1992. MIT/LCS/TR 534.

[Kolokasis et al., 2023] Iacovos G. Kolokasis, Giannos Evdorou, Shoaib Akram, Christos Kozanitis,

Anastasios Papagiannis, Foivos S. Zakkak, Polyvios Pratikakis, and Angelos Bilas. TeraHeap: Reduc-

ing memory pressure in managed big data frameworks. In Aamodt et al. [Aamodt et al.2023], page

694709.

[Koopman et al., 1989] Philip J. Koopman, Jr., Peter Lee, and Daniel P. Siewiorek. Cache performance

of combinator graph reduction. In PLDI 1989 [PLDI 19891989], pages 110–119.

[Koopman et al., 1992] Philip J. Koopman, Peter Lee, and Daniel P. Siewiorek. Cache behavior of com-

binator graph reduction. ACM Transactions on Programming Languages and Systems, 14(2):265–297,

April 1992.

[Koparkar et al., 2024] Chaitanya S. Koparkar, Vidush Singhal, Aditya Gupta, Mike Rainey, Michael

Vollmer, Artem Pelenitsyn, Sam Tobin-Hochstadt, Milind Kulkarni, and Ryan R. Newton. Garbage

collection for mostly serialized heaps. In Bond et al. [Bond et al.2024], pages 1–14.

[Kordale and Ahamad, 1993] R. Kordale and Mustaque Ahamad. A scalable cyclic garbage detection

algorithm for distributed systems. In Moss et al. [Moss et al.1993].

[Kordale et al., 1992] R. Kordale, John Shilling, and Mustaque Ahamad. Garbage collection in dis-

tributed shared memory systems. Technical Report TR GIT-CC-92/45, Georgia Institute of Technol-

ogy, 1992.

[Kordale et al., 1993] R. Kordale, Mustaque Ahamad, and John Shilling. Distributed/concurrent garbage

collection in distributed shared memory systems. In IWOOOS 1993 [IWOOOS 19931993].

[Korn and Vo, 1985] David G. Korn and Kiem-Phong Vo. In search of a better malloc. In USENIX

Summer Conference, pages 489–506, Portland, Oregon, 1985. USENIX Association.

[Kowaltowski, 1979] T. Kowaltowski. Data structures and correctness of programs. Journal of the ACM,

26(2):283–301, April 1979.

[Koziolek et al., 2017] Anne Koziolek, Evgenia Smirni, and Meikel Poess, editors. 8th ACM/SPEC on

International Conference on Performance Engineering (ICPE’17), L’Aquila, Italy, 2017. ACM Press.

[Krakowiak and Shrivastava, 2000] S. Krakowiak and S.K. Shrivastava, editors. Recent Advances in

Distributed Systems, volume 1752 of Lecture Notes in Computer Science. Springer-Verlag, February

2000.

[Krall, 2006] Andreas Krall. Static verification of global heap references in Java native libraries. In

SPACE 2006 [SPACE 20062006], pages 98–100.

[Kranz et al., 1986] David A. Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, James Philbin,

and Norman Adams. ORBIT: An optimizing compiler for Scheme. In SIGPLAN 1986

[SIGPLAN 19861986], pages 219–233.

[Kranz et al., 1989] David A. Kranz, Robert H. Halstead, and Eric Mohr. Mul-T: A high-performance

parallel Lisp. In PLDI 1989 [PLDI 19891989], pages 81–90.

[Kranz, 1988] David A. Kranz. ORBIT: An Optimizing Compiler For Scheme. PhD thesis, Yale Univer-

sity, February 1988.

[Krasner, 1983] Glenn Krasner, editor. Smalltalk-80: Bits of History, Words of Advice. Addison-Wesley,

1983.

[Krauter et al., 2021] Nicolas Krauter, Patrick Raaf, Peter Braam, Reza Salkhordeh, Sebastian Erdweg,

and Andr Brinkmann. Persistent software transactional memory in Haskell. Proceedings of the ACM

on Programming Languages, 5(ICFP):63:1–63:29, August 2021.

83



[Kriegel, 1993] E. Ulrich Kriegel. A conservative garbage collector for an EuLisp to ASM/C compiler.

In Moss et al. [Moss et al.1993].

[Krieger and Stumm, 1990] O. Krieger and Michael Stumm. An optimistic approach for consistent repli-

cated data for multicomputers. In Proc. HICCSS, 1990.

[Krintz et al., 2007] Chandra Krintz, Steven Hand, and David Tarditi, editors. 3rd ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environments, San Diego, CA, June

2007. ACM Press.

[Krishnan et al., 2020] R. Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xinwei Fu, Anthony Demeri,

Changwoo Min, and Sudarsun Kannan. Durable transactional memory can scale with TimeStone. In

Larus et al. [Larus et al.2020], pages 335–349. ASPLOS 2020 was canceled because of COVID-19.

[Krishnaswami, 2006] Neelakantan Krishnaswami. Separation logic for a higher-order typed language.

In SPACE 2006 [SPACE 20062006], pages 73–82.

[Krogdahl, 1973] S. Krogdahl. A dynamic storage allocation problem. Information Processing Letters,

2:96–99, 1973.

[Krueger, 1989] Steven Krueger. Vlsi-appropriate garbage collection support. In Jose G Delgado-Frias

and Will R. Moore, editors, VLSI for artificial intelligence, The Kluwer international series in engi-

neering and computer science. Kluwer Academic Publishers, 1989.

[Küchlin and Nevin, 1991a] Wolfgang Küchlin and Nicholas J. Nevin. On multi-threaded list-processing

and garbage collection. Technical Report OSU-CISRC-3/91-TR11, Ohio State University, March

1991.

[Küchlin and Nevin, 1991b] Wolfgang Küchlin and Nicholas J. Nevin. On multi-threaded list-processing

and garbage collection. In 3rd IEEE Symposium on Parallel and Distributed Processing, pages 894–

897. IEEE Press, December 1991.

[Küchlin, 1991] Wolfgang Küchlin. A space-efficient parallel garbage collection algorithm. In SC 1991

[SC 19911991], pages 40–46.

[Kumar and Li, 2002] Sanjeev Kumar and Kai Li. Dynamic memory management for programmable

devices. In Boehm and Detlefs [Boehm and Detlefs2002], pages 139–149.

[Kumar et al., 2014] Vivek Kumar, Stephen M. Blackburn, and David Grove. Friendly barriers: Efficient

work-stealing with return barriers. In Petrank et al. [Petrank et al.2014].

[Kumar K. et al., 2016] Prasanna Kumar K., Amitabha Sanyal, and Amey Karkare. Liveness-based

garbage collection for lazy languages. In Zhang and Flood [Zhang and Flood2016], pages 122–133.

[Kung and Song, 1977a] H.T. Kung and S.W. Song. An efficient parallel garbage collection system and

its correctness proof. In IEEE Symposium on Foundations of Computer Science, pages 120–131,

Providence, Rhode Island, October 1977. IEEE Press.

[Kung and Song, 1977b] H.T. Kung and S.W. Song. An efficient parallel garbage collection system and

its correctness proof. Department of computer science report, Carnegie Mellon University, September

1977.

[Kung and Song, 1977c] H.T. Kung and S.W. Song. Performance analysis of a parallel garbage collec-

tion system. Department of computer science report, Carnegie Mellon University, August 1977.

[Kung, 1983] Delphine T. H Kung. Garbage collection of linked data structures: An example in a net-

work oriented database management system. Master’s thesis, Rochester Institute of Technology, 1983.

[Kurihara et al., 1990] Satoshi Kurihara, Mikio Inari, Norihisa Doi, Kazuki Yasumatsu, and Takemi Ya-

mazaki. SPiCE collector : The run-time garbage collector for Smalltalk-80 programs translated into

C. In Jul and Juul [Jul and Juul1990].

[Kurokawa, 1975] T. Kurokawa. New marking algorithms for garbage collection. In 2nd USA–Japan

Computer Conference, pages 585–584, 1975.

[Kurokawa, 1981] T. Kurokawa. A new fast and safe marking algorithm. Software: Practice and Expe-

rience, 11:671–682, 1981.

[Kuse and Kamimura, 1991] Kazushi Kuse and Tsutomu Kamimura. Generational garbage collection

for C-based object-oriented languages. In Wilson and Hayes [Wilson and Hayes1991a].

84



[Kwon and Koh, 2007] Ohhoon Kwon and K Koh. Swap-aware garbage collection for NAND flash

memory based embedded systems. In 7th IEEE International Conference on Computer and Informa-

tion Technology, CIT 2007, pages 787–792, November 2007.

[Kwon and Wellings, 2004] Jagun Kwon and Andy J. Wellings. Memory management based on method

invocation in RTSJ. In Meersman et al. [Meersman et al.2004], pages 333–345.

[Kwon et al., 2003] Jagun Kwon, Andy J. Wellings, and Steve King. Predictable memory utilization in

the Ravenscar-Java profile. In Puschner et al. [Puschner et al.2003], pages 267–274.

[Kwon et al., 2007a] Ohhoon Kwon, Jaewoo Lee, and Kern Koh. EF-greedy: A novel garbage collection

policy for flash memory based embedded systems. In Computational Science, ICCS 2007, volume

4490 of Lecture Notes in Computer Science, pages 913–920. Springer-Verlag, 2007.

[Kwon et al., 2007b] Ohhoon Kwon, Yeonseung Ryu, and Kern Koh. An efficient garbage collection

policy for flash memory based swap systems. In 2007 International Conference on Computational

Science and its Applications (ICCSA), volume 4705 of Lecture Notes in Computer Science, pages

213–223, Kuala Lumpur, Malaysia, 2007. Springer-Verlag.

[Kyrylkov and Stefanović, 2005] Sergiy Kyrylkov and Darko Stefanović. A study of garbage collection

with a large address space for server applications. Technical Report TR–CS–2005–1, University of

New Mexico, February 2005.

[Kyrylkov et al., 2004] Sergiy Kyrylkov, Darko Stefanović, and J. Eliot B. Moss. Design and imple-

mentation of a 64-bit PowerPC port of Jikes RVM 2.0.3. In 2nd Workshop on Managed Runtime

Environments (MRE), 2004.

[Kyrylkov, 2003] Sergiy Kyrylkov. Jikes Research Virtual Machine — design and implementation of a

64-bit PowerPC port. Master’s thesis, University of New Mexico, 2003.

[Kyrylkov, 2005] Sergiy Kyrylkov. 64-bit computing and JVM performance. Dr. Dobb’s Journal,

30(370):24–27, March 2005.

[Ladin and Liskov, 1992] Rivka Ladin and Barbara Liskov. Garbage collection of a distributed heap. In

International Conference on Distributed Computing Systems, Yokohama, June 1992.

[Ladin, 1989] Rivka Ladin. A Method for Constructing Highly Available Services and a Technique for

Distributed Garbage Collection. PhD thesis, MIT Press, 1989.

[Lahaie-Bertrand et al., 2025] Frédéric Lahaie-Bertrand, Léonard Oest O’Leary, Olivier Melançon,

Marc Feeley, and Stefan Monnier. Arborescent garbage collection: A dynamic graph approach to

immediate cycle collection. In Harris et al. [Harris et al.2025], pages 14–26.

[Lai et al., 2007] Chunrong Lai, Volosyuk Ivan, and Xiao-Feng Li. Behavior characterization and per-

formance study on compacting garbage collectors with Apache Harmony. In The 10th Workshop on

Computer Architecture Evaluation using Commercial Workloads (CAECW), Phoenix, AZ, February

2007. Held with HPCA-13.

[Lakhamraju et al., 2000] M.K. Lakhamraju, R. Rastoji, S. Seshadri, and S. Sundarshan. On-line reor-

ganization in object databases. In ACM SIGMOD International Conference on Management of Data,

Dallas, TX, May 2000. ACM Press.

[Lal and Ramalingam, 2009] Akash Lal and Ganesh Ramalingam. Reference count analysis with shal-

low aliasing. Technical Report MSR–TR–2009–61, Microsoft Research, May 2009.

[Lal and Ramalingam, 2010] Akash Lal and Ganesh Ramalingam. Reference count analysis with shal-

low aliasing. Information Processing Letters, 111(2):57–63, 2010.

[Lam et al., 1991] Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache performance

and optimizations of blocked algorithms. In ASPLOS 1991 [ASPLOS 19911991], pages 63–74.

[Lam et al., 1992] Michael S. Lam, Paul R. Wilson, and Thomas G. Moher. Object type directed garbage

collection to improve locality. In Bekkers and Cohen [Bekkers and Cohen1992], pages 404–425.

[Lam, 1992] Michael S. Lam. Improving Locality via Garbage Collection. PhD thesis, University of

Illinois at Chicago, 1992.

[Lamb et al., 1991] Charles Lamb, Gordon Landis, Jack Orenstein, and Dan Weinreb. The ObjectStore

database system. Communications of the ACM, 34(10):50–63, October 1991.

85



[Lamolle et al., 2000] Myriam Lamolle, Thierry Millan, Pierre Bazex, and Marc Gonzalez. Garbage

collection in object oriented databases — optimisation of unreachable objects detection. In 2nd In-

ternational Workshop on Computer Science and Information Technologies, pages 38–46, Ufa, Russia,

September 2000. Computer Science and Information Technologies.

[Lamport, 1976a] Leslie Lamport. Garbage collection with multiple processes: an exercise in co-

operation. Technical Report CA-7602-2511, Computer Associates, Wakefield, MA, August 1976.

[Lamport, 1976b] Leslie Lamport. Garbage collection with multiple processes: an exercise in paral-

lelism. In ICPP 1976 [ICPP 19761976], pages 50–54.

[Lamport, 1977] Leslie Lamport. Concurrent reading and writing. Communications of the ACM,

20(11):806–811, November 1977.

[Lamport, 1979] Leslie Lamport. A new approach to proving the correctness of multiprocess programs.

ACM Transactions on Programming Languages and Systems, 1(1):84–97, July 1979.

[Lamport, 1991] Leslie Lamport. The temporal logic of actions. Research Report 79, DEC Systems

Research Center, Palo Alto, CA, 1991.

[Lamprakos et al., 2023] Christos Lamprakos, Sotirios Xydis, Peter Kourzanov, Manu Perumkunnil,

Francky Catthoor, and Dimitrios Soudris. Beyond RSS: Towards intelligent dynamic memory man-

agement. In Moss [Moss2023].

[Lampson, 1983] Butler W. Lampson. A description of the Cedar language: A Cedar language reference

manual. Technical Report CLS–83–15, Xerox PARC, Palo Alto, CA, 1983.

[Lang and Dupont, 1987a] Bernard Lang and B. Dupont. Incremental incrementally compacting garbage

collection. In Programing Of Future Generation Computers II, Proceedings of the Second Franco-

Japanese Symposium, pages 163–182. North Holland, November 1987. Extended version of

[Lang and Dupont, 1987b].

[Lang and Dupont, 1987b] Bernard Lang and Francis Dupont. Incremental incrementally compacting

garbage collection. In SIGPLAN 1987 [SIGPLAN 19871987], pages 253–263.

[Lang and Wegbreit, 1972] Bernard Lang and B. Wegbreit. Fast compactification. Technical Report

25–72, Harvard University, Cambridge, MA, November 1972.

[Lang et al., 1992] Bernard Lang, Christian Quenniac, and José Piquer. Garbage collecting the world.

In POPL 1992 [POPL 19921992], pages 39–50.

[Langendoen and Vree, 1991] Koen G. Langendoen and Willem G. Vree. FRATS: A parallel reduction

strategy for shared memory. In M. Wirsing and J. Maluszynski, editors, 3rd international Symposium

on Programming Language Implementation ans Logic Programming, Passau, Germany, volume 528

of Lecture Notes in Computer Science, pages 99–110. Springer-Verlag, August 1991.

[Langendoen et al., 1992] Koen G. Langendoen, H.L. Muller, and Willem G. Vree. Memory manage-

ment for parallel tasks in shared memory. In Bekkers and Cohen [Bekkers and Cohen1992], pages

165–178.

[Larose and Feeley, 1998] Martin Larose and Marc Feeley. A compacting incremental collec-

tor and its performance in a production quality compiler. In Peyton Jones and Jones

[Peyton Jones and Jones1998], pages 1–9.

[Larson, 1977] Richard G. Larson. Minimizing garbage collection as a function of region size. SIAM

Journal of Computing, 6(4):663–668, December 1977.

[Larus and Hilfinger, 1988] James R. Larus and Paul N. Hilfinger. Detecting conflicts between structure

accesses. In PLDI 1988 [PLDI 19881988], pages 21–34.

[Larus et al., 2020] James R. Larus, Luis Ceze, and Karin Strauss, editors. 25th International Con-

ference on Architectural Support for Programming Languages and Operating Systems, Lausanne,

Switzerland, March 2020. ACM Press. ASPLOS 2020 was canceled because of COVID-19.

[Lassez, 1987] J.L. Lassez, editor. 4th International Conference on Logic Programming, Melbourne,

1987. MIT Press.

[Lattner and Adve, 2002] Chris Lattner and Vikram Adve. Automatic pool allocation for disjoint data

structures. In MSP 2002 [MSP 20022002].

[Lattner and Adve, 2005] Chris Lattner and Vikram S. Adve. Automatic pool allocation: Improving per-

formance by controlling data structure layout in the heap. In Sarkar and Hall [Sarkar and Hall2005],

pages 129–142.

86



[Layer and Richardson, 1991] D.K. Layer and C. Richardson. Lisp systems in the 1990s. Communica-

tions of the ACM, 34(9):48–57, 1991.

[LCPC 2001, 2001] 14th Workshop on Languages and Compilers for Parallel Computing, volume 2624

of Lecture Notes in Computer Science, Cumberland Falls, KT, August 2001. Springer-Verlag.

[LCPC 2007, 2007] 20th Workshop on Languages and Compilers for Parallel Computing, Urbana, IL,

October 2007.

[LCPC 2008, 2008] 21st Workshop on Languages and Compilers for Parallel Computing, University of

Alberta, 2008.

[LCT-RTS 1994, 1994] PLDI Workshop on Language, Compiler, and Tool Support for Real-Time Sys-

tems, Orlando, FL, June 1994. ACM Press.

[LCT-RTS 1995, 1995] ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Real-Time

Systems (LCT-RTS), ACM SIGPLAN Notices 30(11), La Jolla, CA, June 1995. ACM Press.

[LCTES 1999, 1999] ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded

Systems (LCTES), ACM SIGPLAN Notices 34(7), Atlanta, GA, May 1999. ACM Press.

[LCTES 2000, 2000] ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded

Systems (LCTES), volume 1985 of Lecture Notes in Computer Science, Vancouver, Canada, June

2000. Springer.

[LCTES 2001, 2001] ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded

Systems (LCTES), ACM SIGPLAN Notices 36(8), Snowbird, UT, June 2001. ACM Press.

[LCTES 2003, 2003] ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Em-

bedded Systems, ACM SIGPLAN Notices 38(7), San Diego, CA, June 2003. ACM Press.

[LCTES 2004, 2004] ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Em-

bedded Systems, ACM SIGPLAN Notices 39(7), Washington, DC, June 2004. ACM Press.

[LCTES 2005, 2005] ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Em-

bedded Systems, ACM SIGPLAN Notices 40(7), Chicago, IL, June 2005. ACM Press.

[LCTES 2006, 2006] ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Em-

bedded Systems, ACM SIGPLAN Notices 41(7), Ottawa, Canada, June 2006. ACM Press.

[LCTES 2007, 2007] ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Em-

bedded Systems, ACM SIGPLAN Notices 42(7), San Diego, CA, June 2007. ACM Press.

[LCTES 2008, 2008] ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Em-

bedded Systems, ACM SIGPLAN Notices 43(7), Tucson, AZ, June 2008. ACM Press.

[LCTES 2009, 2009] ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Em-

bedded Systems, ACM SIGPLAN Notices 44(7), Dublin, Ireland, June 2009. ACM Press.

[LCTES 2010, 2010] ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Em-

bedded Systems, ACM SIGPLAN Notices 45(4), Stockholm, Sweden, April 2010. ACM Press.

[LCTES 2011, 2011] ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Em-

bedded Systems, Chicago, IL, April 2011. ACM Press.

[LCTES 2014, 2014] ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Em-

bedded Systems, Edinburgh, UK, 2014. ACM Press.

[LCTES/SCOPES 2002, 2002] Joint Conference on Languages, Compilers, and Tools for Embedded

Systems (LCTES) and Software and Compilers for Embedded Systems (SCOPES), ACM SIGPLAN

Notices 37(7), Berlin, Germany, June 2002. ACM Press.

[Le and Fluet, 2016] Matthew Le and Matthew Fluet. Partial aborts for transactions via first-class con-

tinuations. In ICFP 2015 [ICFP 20152016], pages 230–242.

[Le et al., 2019] Tung D. Le, Haruki Imai, Yasushi Negishi, and Kiyokuni Kawachiya. Automatic GPU

memory management for large neural models in TensorFlow. In Xu and Singer [Xu and Singer2019],

pages 1–13.

[Le Fessant et al., 1997] Fabrice Le Fessant, Ian Piumarta, and Marc Shapiro. A detection algorithm for

distributed cycles of garbage. In Dickman and Wilson [Dickman and Wilson1997].

[Le Fessant et al., 1998] Fabrice Le Fessant, Ian Piumarta, and Marc Shapiro. An implementation for

complete, asynchronous, distributed, garbage collection. In PLDI 1998 [PLDI 19981998], pages 152–

161.

87



[Le Fessant, 1999] Fabrice Le Fessant. Detection of free distributed cycles in large-scale networks.

Technical report, INRIA Rocquencourt, January 1999.

[Le Fessant, 2001] Fabrice Le Fessant. Detecting distributed cycles of garbage in large-scale systems.

In PODC 2001 [PODC 20012001], pages 200–209.

[Le Huitouze, 1988] Serge Le Huitouze. Mise en Oeuvre de PrologII/MALI. PhD thesis, Université de

Rennes I, 1988.

[Le Huitouze, 1990a] S. Le Huitouze. A new data structure for implementing extensions to Prolog. In

P. Deransart and J. Maluszyński, editors, International Workshop on Programming Languages Im-

plementation and Logic Programming, volume 456 of Lecture Notes in Computer Science. Springer-

Verlag, 1990.

[Le Huitouze, 1990b] Serge Le Huitouze. A new data structure for implementing extensions to Prolog.

In International Symposium on Programming Language Implementati on and Logic Programming,

pages 136–150, Linköping, Sweden, 1990.

[Le Sergent and Barthomieu, 1992] Thierry Le Sergent and Bernard Barthomieu. Incremental multi-

threaded garbage collection on virtually shared memory architectures. In Bekkers and Cohen

[Bekkers and Cohen1992], pages 179–199.

[Lea, 1993] Doug Lea. The GNU C++ library. The C++ Report, 1993.

[Lea, 1997] Doug Lea. A memory allocator. Technical report, Oswego State University of New York,

1997.

[Lebsack and Chang, 2005] Carl S. Lebsack and J. Morris Chang. Using scratchpad to exploit object

locality in Java. In International Conference on Computer Design, San Jose, CA, October 2005. IEEE

Computer Society Press.

[Lee and Barkley, 1989] T. Paul Lee and R.E. Barkley. Design and evaluation of a watermark-based lazy

buddy system. Performance Evaluation Review, 17(1), May 1989.

[Lee and Chang, 2002] Woo Hyong Lee and J. Morris Chang. A study of dynamic memory management

in C++ programs. International Journal of Computer Languages, 28:237–272, 2002.

[Lee and Chang, 2003a] Woo Hyong Lee and J. Morris Chang. A garbage collection policy based on

empirical behavior. International Journal of Information Sciences, 2003. To appear.

[Lee and Chang, 2003b] Woo Hyong Lee and J. Morris Chang. An integrated dynamic memory tracing

tool for C++ programs. International Journal of Information Sciences, 151:27–49, May 2003.

[Lee and Yi, 2004a] Oukseh Lee and Kwangkeun Yi. Experiments on the effectiveness of an automatic

insertion of memory reuses into ML-like programs. In SPACE 2004 [SPACE 20042004].

[Lee and Yi, 2004b] Oukseh Lee and Kwangkeun Yi. Experiments on the effectiveness of an automatic

insertion of memory reuses into ML-like programs. In Bacon and Diwan [Bacon and Diwan2004],

pages 97–107.

[Lee and Zorn, 1997] Han Bok Lee and Benjamin G. Zorn. Bytecode instrumentation as an aid in under-

standing the behaviour of Java persistent stores. In Dickman and Wilson [Dickman and Wilson1997].

[Lee et al., 1979] S. Lee, W.P. De Roever, and S. Gerhart. The evolution of list copying algorithms.

In 6th ACM Symposium on Principles of Programming Languages, pages 53–56, San Antonio, TX,

January 1979. ACM Press.

[Lee et al., 1987] S. Lee, Heonshik Shin, and Miroslaw Malek. Parallel garbage collection with associa-

tive tag. In International Conference on Computers and Applications, Beijing, June 1987.

[Lee et al., 2000a] Woo Hyong Lee, J. Morris Chang, and Yusuf Hasan. Dynamic memory measur-

ing tool for C++ programs. In 3rd IEEE Symposium on Application-Specific Systems and Software

Engineering Technology (ASSET), Richardson, TX, March 2000.

[Lee et al., 2000b] Woo Hyong Lee, J. Morris Chang, and Yusuf Hasan. Evaluation of a high-

performance object reuse dynamic memory allocation policy for C++ programs. In 4th IEEE Interna-

tional Conference on High Performance Computing in Asia-Pacific Region, pages 386–391, Beijing,

China, May 2000.

[Lee et al., 2005] Oukseh Lee, Hongseok Yang, and Kwangkeun Yi. Static insertion of safe and effective

memory reuse commands into ML-like programs. Science of Computer Programming, 58(1-2):141–

178, October 2005.

88



[Lee et al., 2015] J. Lee, C.G. Park, Y. Chuh, J. Noh, and M. Muehle. Version garbage collection using

snapshot lists. US Patent 13/750,204, 2015.

[Lee et al., 2016] Juchang Lee, Hyungyu Shin, Chang Gyoo Park, Seongyun Ko, Jaeyun Noh, Yongjae

Chuh, Wolfgang Stephan, and Wook-Shin Han. Hybrid garbage collection for multi-version concur-

rency control in SAP HANA. In SIGMOD 1916 [SIGMOD 19162016], pages 1307–1318.

[Lee et al., 2020] Dokeun Lee, Youjip Won, Yongjun Park, and Seongjin Lee. Two-tier garbage collec-

tion for persistent object. In Proceedings of the 35th Annual ACM Symposium on Applied Computing,

pages 1246–1255, New York, NY, USA, March 2020. ACM Press.

[Lee, 1980] K.P. Lee. A linear algorithm for copying binary trees using bounded workspace. Communi-

cations of the ACM, 23(3):159–162, March 1980.

[Lee, 1988] Elgin Hoe-Sing Lee. Object storage and inheritance for SELF, a prototype-based object-

oriented programming language. Engineer’s thesis, Stanford University, Palo Alto, CA, December

1988.

[Leijen et al., 2019] Daan Leijen, Benjamin Zorn, and Leonardo de Moura. Mimalloc: Free list sharding

in action. In Anthony Widjaja Lin, editor, Programming Languages and Systems, volume 11893 of

Lecture Notes in Computer Science, pages 244–265. Springer International Publishing, 2019.

[Lengauer and Mössenböck, 2014] Philipp Lengauer and Hanspeter Mössenböck. The Taming of the

Shrew: Increasing performance by automatic parameter tuning for Java garbage collectors. In Binder

and Merseguer [Binder and Merseguer2014], pages 111–122.

[Lengauer et al., 2015] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. Accurate and effi-

cient object tracing for Java applications. In Sachs and Llad’o [Sachs and Llad’o2015].

[Lengauer et al., 2017] Philipp Lengauer, Verena Bitto, Hanspeter Mössenböck, and Markus Weninger.

A comprehensive Java benchmark study on memory and garbage collection behavior of DaCapo,

DaCapo Scala, and SPECjvm2008. In Koziolek et al. [Koziolek et al.2017], pages 3–14.

[Lermen and Maurer, 1986] C.-W. Lermen and Dieter Maurer. A protocol for distributed reference

counting. In LFP 1986 [LFP 19861986], pages 343–350.

[Leslie, 1975] Lamport Leslie. On-the-fly garbage collection: Once more with rigor. Technical Report

CA-7508-1611, Computer Associates, Wakefield, MA, August 1975.

[Lester, 1989] David Lester. An efficient distributed garbage collection algorithm. In Odijk et al.

[Odijk et al.1989], pages 207–203.

[Lester, 1992] David Lester. Distributed garbage collection of cyclic structures. In 4th International

Workshop on the Parallel Implementation of Functional Languages, Aachen, September 1992. Avail-

able from Herbert Kuchen, Lehrstuhl Informatik II, RWTH Aachen, Ahornstr. 55, W-51000 Aachen.

Also Glasgow Functional Programming Workshop 1993.

[Leung and Ting, 1997] Ho-Fung Leung and Hing-Fung Ting. An optimal algorithm for global ter-

mination detection in shared-memory asynchronous multiprocessor systems. IEEE Transactions on

Parallel and Distributed Systems, 8(5):538–543, May 1997.

[Levanoni and Petrank, 1999] Yossi Levanoni and Erez Petrank. A scalable reference counting garbage

collector. Technical Report CS–0967, Technion — Israel Institute of Technology, Haifa, Israel,

November 1999.

[Levanoni and Petrank, 2001] Yossi Levanoni and Erez Petrank. An on-the-fly reference counting

garbage collector for Java. In OOPSLA 2001 [OOPSLA 20012001], pages 367–380.

[Levanoni and Petrank, 2006] Yossi Levanoni and Erez Petrank. An on-the-fly reference counting

garbage collector for Java. ACM Transactions on Programming Languages and Systems, 28(1):1–

69, January 2006.

[Levelt et al., 1992] Willem G. Levelt, M. Frans Kaashoek, Henri E. Bal, and Andrew Tanenbaum. A

comparison of two paradigms for distributed shared memory. Software: Practice and Experience,

22(11):985–1010, November 1992.

[Leverett and Hibbard, 1982] B.W. Leverett and P.G. Hibbard. An adaptive system for dynamic storage

allocation. Software: Practice and Experience, 12(6):543–556, June 1982.

[Lewis et al., 1974] T.G. Lewis, B.J. Smith, and M.Z. Smith. Dynamic memory allocation systems for

minimizing internal fragmentation. In ACM Annual Conference, pages 725–728. ACM Press, Novem-

ber 1974.

89



[Lewis et al., 1998] Bill Lewis, Dan LaLiberte, Richard Stallman, and the GNU Manual Group. GNU

Emacs Lisp Reference Manual. GNU Project, May 1998.

[Lextrait, 1992] Vincent Lextrait. Generation de Serveurs de Vues. PhD thesis, University of Nice,

lextrait@hotmail.com, December 1992. (In french).

[LFP 1980, 1980] LISP Conference, Stanford University, CA, August 1980. ACM Press.

[LFP 1982, 1982] ACM Symposium on LISP and Functional Programming, Pittsburgh, PA, August

1982. ACM Press.

[LFP 1986, 1986] ACM Conference on LISP and Functional Programming, Cambridge, MA, August

1986. ACM Press.

[LFP 1988, 1988] ACM Conference on LISP and Functional Programming, Snowbird, UT, July 1988.

ACM Press.

[LFP 1990, 1990] ACM Conference on LISP and Functional Programming, Nice, France, June 1990.

ACM Press.

[LFP 1992, 1992] ACM Conference on LISP and Functional Programming, San Francisco, CA, June

1992. ACM Press.

[LFP 1994, 1994] ACM Conference on LISP and Functional Programming, Orlando, FL, June 1994.

ACM Press.

[Lhoták and Hendren, 2002] Ondrej Lhoták and Laurie Hendren. Run-time evaluation of opportuniites

for object inlining in Java. In Joint ACM Java Grande - ISCOPE Conference, pages 175–184, Seattle,

WA, 2002. ACM Press.

[Li and Hudak, 1985] Kai Li and Paul Hudak. A new list compaction method. Research Report 362,

Yale University, February 1985.

[Li and Hudak, 1986] Kai Li and Paul Hudak. A new list compaction method. Software: Practice and

Experience, 16(2):145–163, February 1986.

[Li and Hudak, 1989] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.

ACM Transactions on Computer Systems, 7(4):321–359, November 1989.

[Li and Tan, 2014] Siliang Li and Gang Tan. Finding reference-counting errors in Python/C programs

with affine analysis. In Jones [Jones2014], pages 80–104.

[Li et al., 2008] Xiao-Feng Li, L. Wang, and C. Yang. A fully parallel LISP2 compactor with preserva-

tion of the sliding properties. In LCPC 2008 [LCPC 20082008].

[Li et al., 2014] Pengcheng Li, Chen Ding, and Hao Luo. Modeling heap data growth using average

liveness. In Guyer and Grove [Guyer and Grove2014], pages 71–82.

[Li, 1986] Kai Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis, Yale Uni-

versity, 1986.

[Li, 1990] Kai Li. Real-time concurrent collection in user mode. In Jul and Juul [Jul and Juul1990].

[Li, 2009] Xiao-Feng Li. Tick: Concurrent gc in Apache Harmony. Slides on Harmony’s Tick GCs,

2009.

[Liang et al., 2012] Hongjin Liang, Xinyu Feng, and Ming Fu. A rely-guarantee-based simulation for

verifying concurrent program transformations. In POPL 2012 [POPL 20122012].

[Liang et al., 2014] H. Liang, X. Feng, , and M. Fu. Rely-Guarantee-based simulation for compositional

verification of concurrent program transformations. ACM Transactions on Programming Languages

and Systems, 2014.

[Libič et al., 2014] Peter Libič, Lubomı́r Bulej, Vojtěch Horky, and Petr Tůma. On the limits of model-

ing generational garbage collector performance. In Proceedings of the 5th ACM/SPEC International

Conference on Performance Engineering (ICPE’14), pages 15–26, Dublin, Ireland, 2014. ACM Press.

[Libič et al., 2015] Peter Libič, Lubomı́r Bulej, Vojtěch Horky, and Petr Tůma. Estimating the impact

of code additions on garbage collection overhead. In 12th European Workshop on Computer Perfor-

mance Engineering (EPEW’15), volume 9272 of Lecture Notes in Computer Science, pages 130–145,

Madrid, Spain, 2015. Springer.

[Lidén and Karlsson, 2018a] Per Lidén and Stefan Karlsson. JEP 333: ZGC: A scalable low-latency

garbage collector (experimental). Technical report, OpenJDK, 2018.

90



[Lidén and Karlsson, 2018b] Per Lidén and Stefan Karlsson. The Z garbage collector. In FOSDEM,

2018.

[Lidén, 2018] Per Lidén. JEP 377: ZGC: A scalable low-latency garbage collector (production). Tech-

nical report, OpenJDK, 2018.

[Lidén, 2020a] Per Lidén. ZGC — what’s new in JDK 14. https://malloc.se/blog/zgc-jdk14, March

2020.

[Lidén, 2020b] Per Lidén. ZGC — what’s new in JDK 15. https://malloc.se/blog/zgc-jdk15, September

2020.

[Lidén, 2021a] Per Lidén. ZGC — what’s new in JDK 16. https://malloc.se/blog/zgc-jdk16, March

2021.

[Lidén, 2021b] Per Lidén. ZGC — what’s new in JDK 17. https://malloc.se/blog/zgc-jdk17, October

2021.

[Lidén, 2022] Per Lidén. ZGC — what’s new in JDK 18. https://malloc.se/blog/zgc-jdk18, April 2022.

[Lieberman and Hewitt, 1981] Henry Lieberman and Carl E. Hewitt. A real-time garbage collector based

on the lifetimes of objects. AI Memo 569a, MIT, April 1981.

[Lieberman and Hewitt, 1983] Henry Lieberman and Carl E. Hewitt. A real-time garbage collector based

on the lifetimes of objects. Communications of the ACM, 26(6):419–429, June 1983. Also report TM–

184, Laboratory for Computer Science, MIT, Cambridge, MA, July 1980 and AI Lab Memo 569,

1981.

[Liekweg, 2006] Florian Liekweg. Compiler-directed automatic memory management. In SPACE 2006

[SPACE 20062006], pages 23–34.

[Lim et al., 1998] Tian F. Lim, Przemyslaw Pardyak, and Brian N. Bershad. A memory-efficient real-

time non-copying garbage collector. In Peyton Jones and Jones [Peyton Jones and Jones1998], pages

118–129.

[Lin and Chen, 2000] Chi-Min Lin and Tien-Fu Chen. Dynamic memory management for real-time

embedded Java chips. In RTCSA 2000 [RTCSA 20002000].

[Lin and Hou, 2006] Chin-Yang Lin and Ting-Wei Hou. A lightweight cyclic reference counting algo-

rithm. In International Conference on Grid and Pervasive Computing, number 3947 in Lecture Notes

in Computer Science, pages 246–359. Springer-Verlag, 2006.

[Lin and Hou, 2007] Chin-Yang Lin and Ting-Wei Hou. A simple and efficient algorithm for cycle

collection. ACM SIGPLAN Notices, 42(3):7–13, March 2007.

[Lin and Hou, 2010] Chin-Yang Lin and Ting-Wei Hou. An efficient approach to cyclic reference count-

ing based on a coarse-grained search. Information Processing Letters, 111(1):1–10, December 2010.

[Lin et al., 2007] Chunxiao Lin, Andrew McCreight, Zhong Shao, Yiyun Chen, and Yu Guo. Foun-

dational typed assembly language with certified garbage collection. In 1st IEEE IFIP International

Symposium on Theoretical Aspects of Software Engineering (TASE 2007), pages 326–335, Shanghai,

China, June 2007. IEEE Computer Society Press.

[Lin et al., 2009] C. Lin, Y. Chen, and B. Hua. Verification of an incremental garbage collector in Hoare-

style logic. International Journal of Software and Informatics, 3(1):67–88, March 2009.

[Lin et al., 2012] Yi Lin, Stephen M. Blackburn, and Daniel Frampton. Unpicking the knot: Teasing

apart VM/application interdependencies. In Hand and da Silva [Hand and da Silva2012], pages 181–

190.

[Lin et al., 2015] Yi Lin, Kunshan Wang, Stephen M. Blackburn, Antony L. Hosking, and Michael Nor-

rish. Stop and go: Understanding yieldpoint behavior. In Bond and Hosking [Bond and Hosking2015].

[Lin et al., 2016] Yi Lin, Stephen M. Blackburn, Antony L. Hosking, and Michael Norrish. Rust as

a language for high performance GC implementation. In Zhang and Flood [Zhang and Flood2016],

pages 89–98.

[Lin, 1992] Sheng-Lien Lin. Performance evaluation of a generation scavenging algorithm. 1992.

[Lincoln and Mitchell, 1992] Patrick Lincoln and John Mitchell. Operational aspects of linear lambda

calculus. In 7th Annual IEEE Symposium on Logic in Computer Science (LICS), pages 235–246, Santa

Cruz, CA, June 1992. IEEE Press.

91



[Lindholm and O’Keefe, 1987] T.G. Lindholm and R.A. O’Keefe. Efficient implementation of a defen-

sible semantics for dynamic Prolog code. In Lassez [Lassez1987].

[Lindholm and Yellin, 1999] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification.

Addison-Wesley Longman Publishing Co., Inc., 1999.

[Lindholm et al., 2012] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. Java Virtual

Machine Specification. Oracle America, Inc., Java 7 SE edition, 2012.

[Lindstrom and Soffa, 1981] Gary Lindstrom and Mary Lou Soffa. Referencing and retention in block-

structured coroutines. ACM Transactions on Programming Languages and Systems, 3(3):263–292,

July 1981.

[Lindstrom et al., 1994] Anders Lindstrom, Alan Dearle, Rex di Bona, J. Matthew Farrow, Frans

Henskens, John Rosenberg, and Francis Vaughan. A model for user-level memory management in

a distributed, persistent environment. In Gopal Gupta, editor, 17th Annual Australasian Computer

Science Conference (ACSC), Part B, pages 343–354, Christchurch, New Zealnad, January 1994.

[Lindstrom, 1973] Gary Lindstrom. Scaning list structures without stacks or tag bits. Information Pro-

cessing Letters, 2(2):47–51, June 1973.

[Lindstrom, 1974] Gary Lindstrom. Copying list structures using bounded workspace. Communications

of the ACM, 17(4):199–202, April 1974.

[Lins and Dehne, 1994] Rafael D. Lins and Frank Dehne. Distributed reference counting. In 1994

Canada–France Conference on Parallel Computing, number 805 in Lecture Notes in Computer Sci-

ence, pages 95–100. Springer-Verlag, May 1994.

[Lins and Jones, 1993] Rafael D. Lins and Richard E. Jones. Cyclic weighted reference counting. In

K. Boyanov, editor, Procedings of WP & DP’93 Workshop on Parallel and Distributed Processing,

pages 369–382, Sofia, Bulgaria, May 1993. North Holland. Also Computing Laboratory Technical

Report 95, University of Kent, December 1991.

[Lins and Vasques, 1991] Rafael D. Lins and Márcio A. Vasques. A comparative study of algorithms

for cyclic reference counting. Technical Report 92, Computing Laboratory, The University of Kent at

Canterbury, August 1991.

[Lins et al., 2007] R.D. Lins, F. Heron de Carvalho Junior, and Z.D. Lins. Cyclic reference counting

with permanent objects. Journal of Universal Computer Science, 13(6):830–838, 2007.

[Lins, 1991] Rafael D. Lins. A shared memory architecture for parallel cyclic reference counting. Mi-

croprocessing and Microprogramming, 32:53–58, September 1991.

[Lins, 1992a] Rafael D. Lins. Cyclic reference counting with lazy mark-scan. Information Processing

Letters, 44(4):215–220, 1992. Also Computing Laboratory Technical Report 75, University of Kent,

July 1990.

[Lins, 1992b] Rafael D Lins. Generational cyclic reference counting. Technical Report 22-92, Comput-

ing Laboratory, University of Kent, September 1992.

[Lins, 1992c] Rafael D. Lins. A multi-processor shared memory architecture for parallel cyclic reference

counting. Microprocessing and Microprogramming, 35:563–568, September 1992.

[Lins, 2002] Rafael D. Lins. An efficient algorithm for cyclic reference counting. Information Process-

ing Letters, 83:145–150, 2002.

[Lins, 2005] R. Lins. A new multiprocessor architecture for parallel lazy cyclic reference counting. In

17th International Symposium on Computer Architecture and High Performance Computing (SBAC-

PAD). IEEE Press, 2005.

[Liskov and Ladin, 1986] Barbara Liskov and Rivka Ladin. Highly available distributed services and

fault-tolerant distributed garbage collection. In Halpern [Halpern1986], pages 29–39.

[List and Car, 2011] Michael List and David Car. A polymorphic reference counting implementation in

Fortran 2003. SIGPLAN Fortran Forum, 30(2):4–27, March 2011.

[Liu et al., 2009] Shaoshan Liu, Ligang Wang, Xiao-Feng Li, and Jean-Luc Gaudiot. Space-and-time

efficient garbage collectors for parallel systems. In Proceedings of the 6th ACM conference on Com-

puting Frontiers (CF09), pages 21–30, Ischia, Italy, May 2009.

[Liu et al., 2012] Shaoshan Liu, Jie Tang, Ligang Wang, Xiao-Feng Li, and Jean-Luc Gaudiot. Packer:

Parallel garbage collection based on virtual spaces. IEEE Transactions on Computers, 61(11):1611–

1623, November 2012.

92



[Llames, 1991] Rene Lim Llames. Performance Analysis of Garbage Collection and Dynamic Reorder-

ing in a Lisp System. PhD thesis, University of Illinois at Urbana-Champaign, 1991.

[Lo and Chang, 2001] Chia-Tien Dan Lo and J. Morris Chang. A multithreaded concurrent generational

garbage collector for Java. In OOPSLA 2001 [OOPSLA 20012001], pages 7–9. Doctoral Symposium.

[Lo et al., 1998] Chia-Tien Dan Lo, Witiwas Srisa-an, and J. Morris Chang. Boundary analysis for

buddy systems. In International Computer Symposium (Computer Architecture Track), pages 96–103,

Tainan, Taiwan, December 1998.

[Lo et al., 2000a] Chia-Tien Dan Lo, Witiwas Srisa-an, and J. Morris Chang. Page replacement perfor-

mance in garbage collection systems. In 13th International Conference on Parallel and Distributed

Computing Systems, pages 374–379, Las Vegas, NA, August 2000.

[Lo et al., 2000b] Chia-Tien Dan Lo, Witiwas Srisa-an, and J. Morris Chang. A quantitative simulator

for dynamic memory managers. In ISPASS 2000 [ISPASS 20002000], pages 64–69.

[Lo et al., 2001] Chia-Tien Dan Lo, Witiwas Srisa-an, and J. Morris Chang. A study of page replacement

performance in garbage collection heap. Journal of Systems and Software, 58(3):235–245, September

2001.

[Lo et al., 2002a] Chia-Tien Dan Lo, J. Morris Chang, Ophir Frieder, and David Grossman. The object

behaviour of Java object-oriented database management systems. In International Conference on

Information Technology: Coding and Computing (ITCC). IEEE Press, 2002.

[Lo et al., 2002b] Chia-Tien Dan Lo, Witiwas Srisa-an, and J. Morris Chang. A high performance

garbage collector for Java. In Proceeding of the 2002 International Computer Symposium, ICS 2002,

National Dong Hwa University, Hualien, Taiwan, December 2002.

[Lo et al., 2002c] Chia-Tien Dan Lo, Witiwas Srisa-an, and J. Morris Chang. A multithreaded concur-

rent garbage collector which parallelizes the new instruction in Java. In International Parallel and

Distributed Processing Symposium, pages 59–64, Fort Lauderdale, FL, April 2002.

[Lo et al., 2002d] Chia-Tien Dan Lo, Witiwas Srisa-an, and J. Morris Chang. A performance compari-

son between stop-the-world and multithreaded concurrent garbage collection for Java. In 21st IEEE

International Performance, Computing, And Communications Conference (IPCCC 2002), pages 301–

308, Phoenix, AZ, April 2002.

[Lo et al., 2003] Chia-Tien Dan Lo, Witiwas Srisa-an, and J. Morris Chang. Who is collecting your Java

garbage? IEEE IT Professional, 5(2):44–50, April 2003.

[Lo et al., 2004] Chia-Tien Dan Lo, Witiwas Srisa-an, and J. Morris Chang. The design and analysis

of a quantitative simulator for dynamic memory management. Journal of Systems and Software,

72(3):443–453, August 2004.

[Lo et al., 2005] Chia-Tien Dan Lo, Witiwas Srisa-an, and J. Morris Chang. Security issues in garbage

collection. CrossTalk: The Journal of Defense Software Engineering, October 2005.

[Loidl, 2000] H-W. Loidl. Investigating the memory management in a parallel graph reducer. In

M. Mohnen and P. Koopman, editors, 12th International Workshop on Implementation of Functional

Languages, number AIB-00-7 in Aachener Informatik Berichte, pages 185–200. RWTH Aachen,

2000.

[Lomet, 1975] D.B. Lomet. Scheme for invalidating references to freed storage. IBM Journal of Re-

search and Development, pages 26–35, January 1975.

[Lorenzen and Leijen, 2022] Anton Lorenzen and Daan Leijen. Reference counting with frame limited

reuse. In ICFP 2022 [ICFP 20222022].

[Louboutin and Cahill, 1995a] Sylvain Louboutin and Vinny Cahill. A lazy log-keeping mechanism

for comprehensive global garbage detection on Amadeus. In OOIS (Object-Oriented Information

Systems) ’95, pages 118–132, London, December 1995. Springer-Verlag. Technical report TCD–CS–

95–11.

[Louboutin and Cahill, 1995b] Sylvain Louboutin and Vinny Cahill. Lazy, per cluster log-keeping mech-

anism for global garbage detection on Amadeus. Technical Report TCD-CS-95-13, Department of

Computer Science, Trinity College, May 1995.

[Louboutin and Cahill, 1995c] Sylvain Louboutin and Vinny Cahill. On comprehensive global garbage

detection. In Proceeding of the European Research Seminar on Advances in Distributed Systems

(ERSADS ’95), pages 208–213, Alpes d’Huez, France, April 1995. INRIA/IMAG. Also technical

report TCD-CS-95-11, Department of Computer Science, Trinity College Dublin.

93



[Louboutin and Cahill, 1997] Sylvain R.Y. Louboutin and Vinny Cahill. Comprehensive distributed

garbage collection by tracking causal dependencies of relevant mutator events. In International Con-

ference on Distributed Computing Systems (ICDCS). IEEE Press, 1997.

[Louboutin, 1998] Sylvain R.Y. Louboutin. A Reactive Approach to Comprehensive Global Garbage

Detection. PhD thesis, Trinity College, Dublin, 1998.

[Lowry and Munro, 2002] M.C. Lowry and David S. Munro. Safe and complete distributed garbage

with the Train algorithm. In International Conference on Parallel and Distributed Systems (ICPADS),

pages 651–658, Taiwan, December 2002.

[Lowry, 2004] M.C. Lowry. A New Approach to the Train Algorithm for Distributed Garbage Collection.

PhD thesis, University of Adelaide, December 2004.

[Lu et al., 2016] Lu Lu, Xuanhua Shi, Yongluan Zhou, Xiong Zhang, Hai Jin, Cheng Pei, Ligang He,

and Yuanzhen Geng. Lifetime-based memory management for distributed data processing systems.

https://arxiv.org/abs/1602.01959, May 2016.

[Luc, 1997] Lucent Technologies Inc. The Limbo Programming Language, 1997.

[Luk and Mowry, 1996] Chi-Keung Luk and Todd C. Mowry. Compiler-based prefetching for recursive

data structures. In ASPLOS 1996 [ASPLOS 19961996], pages 222–233.

[Lyberis et al., 2012] Spyros Lyberis, Polyvios Pratikakis, Dimitrios S. Nikolopoulos, Martin Schulz,

Todd Gamblin, and Bronis R. de Supinski. The Myrmics memory allocator: Hierarchical, message-

passing allocation for global address spaces. In McKinley and Vechev [McKinley and Vechev2012],

pages 15–24.

[Lynch, 1990] N.A. Lynch. Multivalued possibilities mappings. Technical Memo MIT/LCS/TM–422,

MIT Laboratory for Computer Science, August 1990.

[Lyon, 1988] G. Lyon. Tagless marking that is linear over subtrees. Information Processing Letters,

27(1):23–28, 1988.

[Ma et al., 2022] Haoran Ma, Yifan Qiao, Shi Liu, Michael D. Bond, Chenxi Wang, Stephen M. Black-

burn, Miryung Kim, and Guoqing Harry Xu. Mako: A low-pause, high-throughput evacuating collec-

tor for memory-disaggregated datacenters. In PLDI 2022 [PLDI 20222022].

[Maas and Ding, 2020] Martin Maas and Chen Ding, editors. 19th ACM SIGPLAN International Sym-

posium on Memory Management. ACM Press, June 2020.

[Maas et al., 2012] Martin Maas, Philip Reames, Jeffrey Morlan, Krste Asanović, Anthony D. Joseph,

and John Kubiatowicz. GPUs as an opportunity for offloading garbage collection. In McKinley and

Vechev [McKinley and Vechev2012], pages 25–36.

[Maas et al., 2015] Martin Maas, Tim Harris, Krste Asanovic, and John Kubiatowicz. Trash day: Co-

ordinating garbage collection in distributed systems. In 15th USENIX Conference on Hot Topics in

Operating Systems (HOTOS’15), Switzerland, 2015. USENIX Association.

[Maas et al., 2016] Martin Maas, Krste Asanović, Tim Harris, and John Kubiatowicz. Taurus: A holistic

language runtime system for coordinating distributed managed-language applications. In Conte and

Zhou [Conte and Zhou2016], pages 457–471.

[Maas et al., 2018] Martin Maas, Krste Asanović, and John Kubiatowicz. A hardware accelerator for

tracing garbage collection. In ISCA 2018 [ISCA 20182018].

[MacGregor et al., 2021] Ruairidh MacGregor, Phil Trinder, and Hans-Wolfgang Loidl. Improving GHC

Haskell NUMA profiling. In Proceedings of the 9th ACM SIGPLAN International Workshop on Func-

tional High-Performance and Numerical Computing, pages 1–12, Virtual, Republic of Korea, 2021.

ACM Press.

[MacLachlan, 1991] Robert A. MacLachlan. A system model of memory management. In Wilson and

Hayes [Wilson and Hayes1991a].

[Madany et al., 1992] Peter W. Madany, Nayeem Islam, Panos Kougiouris, and Roy H. Campbell. Reifi-

cation and reflection in C++: An operating systems perspective. Technical Report UIUCDCS–R–92–

1736, Department of Computer Science, University of Illinois at Urbana-Champaign, March 1992.

[Maebe et al., 2004] Jonas Maebe, Michiel Ronsse, and Koen De Bosschere. The missing leak. In Pro-

gram Acceleration through Application and Architecture Driven Code Transformations: Symposium

Proceedings, pages 75–77, Edegem, Belgium, 2004.

94



[Maeda and Ishikawa, 1997] Munenori Maeda and Yutaka Ishikawa. GLEANER-7: A hybrid distributed

GC algorithm. In Dickman and Wilson [Dickman and Wilson1997].

[Maeda and Yonezawa, 2006] Toshiyuki Maeda and Akinori Yonezawa. Writing practical memory man-

agement code with a strictly typed assembly language. In SPACE 2006 [SPACE 20062006], pages

35–46.

[Maeda et al., 1993] Munenori Maeda, Hiroki Konaka, Yutaka Ishikawa, Takashi Tomokiyo, and At-

sushi Hori. An incremental, weighted, cyclic reference counting for object-based languages. RWCP

Technical Report P–93–001, Tsukuba Research Center, 1993.

[Maeda et al., 1995] Munenori Maeda, Hiroki Konaka, Yutaka Ishikawa, Takashi Tomokiyo, Atsushi

Hori, and Jörg Nolte. On-the-fly global garbage collection based on partly mark-sweep. In Baker

[Baker1995b], pages 283–296.

[Maeder, 1992] Roman E. Maeder. A provably correct reference count scheme for a symbolic computa-

tion system. In unpublished form, cited by Edelson, 1992.

[Maekawa et al., 1987] Mamoru Maekawa, Masataka Ohta, and Kentaro Shimizu. Garbage collection

for multimedia processing. Technical Report 87-01, University of Tokyo, 1987.

[Magill et al., 2006] Stephen Magill, Aleksandar Nanevski, Edmund Clarke, and Peter Lee. In-

ferring invariants in separation logic for imperative list-processing programs. In SPACE 2006

[SPACE 20062006], pages 47–60.

[Magnusson and Henriksson, 1995a] Boris Magnusson and Roger Henriksson. Garbage collection for

control systems. In Baker [Baker1995b], pages 323–342.

[Magnusson and Henriksson, 1995b] Boris Magnusson and Roger Henriksson. Garbage collection for

hard real-time systems. Technical Report 95–153, Lund University, Sweden, 1995.

[Magnusson, 2002] Boris Magnusson, editor. 16th European Conference on Object-Oriented Program-

ming, volume 2374 of Lecture Notes in Computer Science, Málaga, Spain, June 2002. Springer-Verlag.

[Maher, 1961] R.J. Maher. Problems of storage allocation in a multiprocessor multiprogrammed system.

Communications of the ACM, 4(10):421–422, October 1961.

[Maheshwari and Liskov, 1995] Umesh Maheshwari and Barbara Liskov. Collecting cyclic distributed

garbage by controlled migration. In PODC 1995 [PODC 19951995]. Later appeared in Distributed

Computing, Springer Verlag, 1996.

[Maheshwari and Liskov, 1997a] Umesh Maheshwari and Barbara Liskov. Collecting cyclic distributed

garbage by back tracing. In PODC 1997 [PODC 19971997], pages 239–248.

[Maheshwari and Liskov, 1997b] Umesh Maheshwari and Barbara Liskov. Partitioned garbage collec-

tion of a large object store. Technical Report MIT/LCS/TR–699, MIT Press, 1997. This report contains

an obsolete proposal. See [Maheshwari and Liskov, 1997c].

[Maheshwari and Liskov, 1997c] Umesh Maheshwari and Barbara Liskov. Partitioned garbage collec-

tion of a large object store. In ACM SIGMOD International Conference on Management of Data,

1997.

[Maheshwari, 1992] Umesh Maheshwari. Distributed garbage collection in a client–server transaction

system. Master’s thesis, Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, 1992.

[Maheshwari, 1993a] Umesh Maheshwari. Distributed garbage collection in a client–server persistent

object system. In Moss et al. [Moss et al.1993].

[Maheshwari, 1993b] Umesh Maheshwari. Distributed garbage collection in a client–server, transac-

tional, persistent object system. Master’s thesis, MIT Press, February 1993.

[Maheshwari, 1994] Umesh Maheshwari. Fault-tolerant distributed garbage collection in a client-server

object-oriented database. In 3rd International Conference on Parallel and Distributed Information

Systems, Austin, September 1994.

[Maheshwari, 1997] Umesh Maheshwari. Garbage Collection in a Large, Distributed, Object Store.

PhD thesis, MIT Laboratory for Computer Science, September 1997. Technical Report MIT/LCS/TR-

727.

[Mailund, 2021] Thomas Mailund. Reference Counting Garbage Collection, pages 477–508. Apress,

Berkeley, CA, 2021.

95



[Maisonneuve et al., 1992] Julien Maisonneuve, Marc Shapiro, and Pierre Collet. Implementing refer-

ences as chains of links. In Cabrera et al. [Cabrera et al.1992].

[Maisonneuve, 1996] Julien Maisonneuve. Hobbes: un modèle de liaison de références réparties. PhD

thesis, Université Paris 6, Pierre et Marie Curie, October 1996.

[Makholm and Niss, 2001] Henning Makholm and Henning Niss. Towards a more flexible region type

system. In SPACE 2001 [SPACE 20012001].

[Makholm, 2000] Henning Makholm. A region-based memory manager for Prolog. In Chambers and

Hosking [Chambers and Hosking2000], pages 25–34.

[Makpangou et al., 1992] Mesaac Makpangou, Yvon Gourhant, Jean-Pierre Le Narzul, and Marc

Shapiro. Structuring distributed applications as fragmented objects. Technical Report Rapport de

Recherche INRIA 1404, Institut National de la Recherche en Informatique et Automatique (INRIA),

February 1992.

[Malcolm, ] D. Malcolm. CPyChecker. Inter alia, checks reference counts.

[Mancini and Shrivastava, 1991] Luigi V. Mancini and S.K. Shrivastava. Fault-tolerant reference count-

ing for garbage collection in distributed systems. Computer Journal, 34(6):503–513, December 1991.

[Mancini et al., 1991] Luigi V. Mancini, Vittoria Rotella, and Simonetta Venosa. Copying garbage col-

lection for distributed object stores. In 10th Symposium on Reliable Distributed Systems, Pisa, Septem-

ber 1991.

[Mann et al., 2005] Tobias Mann, Morgan Deters, Rob Legrand, and Ron. K. Cytron. Static determina-

tion of allocation rates to support real-time garbage collection. In LCTES 2005 [LCTES 20052005],

pages 193–2002.

[Manson et al., 2005] Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory model. In

POPL 2005 [POPL 20052005], pages 378–391.

[Mao et al., 2009] Feng Mao, Eddy Z. Zhang, and Xipeng Shen. Influence of program inputs on the

selection of garbage collectors. In Hosking et al. [Hosking et al.2009], pages 91–100.

[Mao et al., 2016] Junjie Mao, Yu Chen, Qixue Xiao, and Yuanchun Shi. RID: Finding reference count

bugs with inconsistent path pair checking. In ASPLOS 2016 [Conte and Zhou2016], pages 531–544.

[Maranget, 1991] L. Maranget. GAML: A parallel implementation of lazy ML. In Hughes

[Hughes1991a], pages 102–123.

[Margolin et al., 1971] B.H. Margolin, R.P. Parmelee, and M. Schatzoff. Analysis of free-storage algo-

rithms. IBM Systems Journal, 10(4):283–304, 1971.

[Marion et al., 2007] Sebastien Marion, Richard Jones, and Chris Ryder. Decrypting the Java gene pool:

Predicting objects’ lifetimes with micro-patterns. In Morrisett and Sagiv [Morrisett and Sagiv2007],

pages 67–78.

[Marion, 2009] Sebastien Marion. Using Class-Level Static Properties to Predict Object Lifetimes. PhD

thesis, University of Kent, 2009.

[Markatos and Chronaki, 1994] Evangelos P. Markatos and Catherine E. Chronaki. The use of reference

counters in update based coherent memory. In Halatsis et al. [Halatsis et al.1994], pages 805–808.

[Marlow and Peyton Jones, 2011] Simon Marlow and Simon L. Peyton Jones. Multicore garbage col-

lection with local heaps. In Boehm and Bacon [Boehm and Bacon2011], pages 21–32.

[Marlow et al., 2007] Simon Marlow, Alexey Rodriguez Yakushev, and Simon Peyton Jones. Faster

laziness using dynamic pointer tagging. In ICFP 2007 [ICFP 20072007], pages 277–288.

[Marlow et al., 2008] Simon Marlow, Tim Harris, Roshan James, and Simon L. Peyton Jones. Paral-

lel generational-copying garbage collection with a block-structured heap. In Jones and Blackburn

[Jones and Blackburn2008], pages 11–20.

[Marlow et al., 2009] Simon Marlow, Simon L. Peyton Jones, and Satnam Singh. Runtime support for

multicore Haskell. In ICFP 2009 [ICFP 20092009], pages 65–78.

[Marques and Guedes, 1989] José Alves Marques and Paulo Guedes. Extending the operating system to

support an object-oriented environment. In OOPSLA 1989 [OOPSLA 19891989], pages 113–122.

[Marques et al., 1990] José Alves Marques, Paulo Guedes, Pedro Sousa, Paulo Ferreira, José Monge,

André Zúquete, and Manuel Sequeira. IK implementation report. Technical Report INESC–TR–0013,

INESC, Portugal, July 1990. Extended description of system described in [Ferreira, 1990].

96



[Marquet and Grimaud, 2007] Kevin Marquet and Gilles Grimaud. A DSL approach for object memory

management of small devices. In PPPJ 2007 [PPPJ 20072007], pages 155–164.

[Marquez et al., 2000] A. Marquez, John N. Zigman, and Stephen M Blackburn. Fast portable orthogo-

nally persistent Java. Software: Practice and Experience, 30(4):449–479, 2000.

[Marron et al., 2009] Mark Marron, Deepak Kapur, and Manuel Hermenegildo. Identification of logi-

cally related heap regions. In Kolodner and Steele [Kolodner and Steele2009], pages 89–98.

[Marshall, 1971] S. Marshall. An Algol–68 garbage collector. In Peck [Peck1971], pages 239–243.

[Marti et al., 2006a] Nicolas Marti, Reynald Affeldt, and Akinori Yonezawa. Formal verification of the

heap manager of an operating system using separation logic. In Zhiming Liu and Jifeng He, editors,

Formal Methods and Software Engineering, volume 4260 of Lecture Notes in Computer Science, pages

400–419, Macao, China, November 2006. Springer.

[Marti et al., 2006b] Nicolas Marti, Reynald Affeldt, and Akinori Yonezawa. Verification of the heap

manager of an operating system using separation logic. In SPACE 2006 [SPACE 20062006], pages

61–72.

[Martin, 1982] Johannes J. Martin. An efficient garbage compaction algorithm. Communications of the

ACM, 25(8):571–581, August 1982.

[Martinez et al., 1990] A.D. Martinez, R. Wachenchauzer, and Rafael D. Lins. Cyclic reference counting

with local mark-scan. Information Processing Letters, 34:31–35, 1990.

[Masmano et al., 2006] Miguel Masmano, Ismael Ripoll, and Alfons Crespo. A comparison of memory

allocators for real-time applications. In 4th International Workshop on Java Technologies for Real-

time and Embedded Systems, pages 68–76, 2006.

[Mateu, 1992] Luis Mateu. Efficient implementation for coroutines. In Bekkers and Cohen

[Bekkers and Cohen1992], pages 230–247.

[Matocha and Camp, 1998] Jeff Matocha and Tracy Camp. A taxonomy of distributed termination de-

tection algorithms. Journal of Systems and Software, 43(3):207–221, November 1998.

[Matsui et al., 1987] Shogo Matsui, Yoshinobu Kato, Shinsuke Teramura, Tomoyuki Tanaka, Nobuyuki

Mohri, Atsushi Maeda, and Masakazu Nakanishi. SYNAPSE — a multi-microprocessor Lisp machine

with parallel garbage collector. Lecture Notes in Computer Science, 269:131–137, 1987.

[Matsui et al., 1995] Shogo Matsui, Yoshio Tanaka, Atsushi Maeda, and Masakazu Nakanishi. Comple-

mentary garbage collector. In Baker [Baker1995b], pages 163–177.

[Matsuoka et al., 1991] Satoshi Matsuoka, Shin’ichi Furuso, and Akinori Yonezawa. A fast par-

allel conservative garbage collector for concurrent object-oriented systems. In Cabrera et al.

[Cabrera et al.1991], pages 87–93.

[Mattern, 1987] Friedmann Mattern. Algorithms for distributed termination detection. Distributed Com-

puting, 2:161–175, 1987.

[Mattern, 1989a] Friedmann Mattern. Global quiescence detection based on credit distribution and re-

covery. Information Processing Letters, 30(4):195–200, 1989.

[Mattern, 1989b] Friedmann Mattern. Virtual time and global states of distributed systems. In M. Cos-

nard et al., editors, International Workshop on Parallel and Distributed Algorithms, pages 215–226,

Amsterdam, 1989. Elsevier Science Publishers.

[Matthews and Le Sergent, 1995] David C.J. Matthews and Thierry Le Sergent. LEMMA: A distributed

shared memory with global and local garbage coll ection. In Baker [Baker1995b], pages 297–311.

[Mattson et al., 1970] R.L. Mattson, J. Gecsei, D.R. Slutz, and I.L. Traiger. Evaluation techniques for

storage hierarchies. IBM Systems Journal, 9:78–117, 1970.

[Mazder Rahman et al., 2016] Md Mazder Rahman, Konstantin Nasartschuk, Kenneth B. Kent, and Ger-

hard W. Dueck. Trace files for automatic memory management systems. In 23rd International Con-

ference on Software Analysis, Evolution, and Reengineering (SANER). IEEE Press, March 2016.

[Mazur et al., 2000] Nancy Mazur, Gerda Janssens, and Maurice Bruynooghe. A module based analysis

for memory reuse in Mercury. In Computational Logic, volume 1861 of Lecture Notes in Computer

Science, pages 1255–1269. Springer-Verlag, 2000.

97



[Mazur et al., 2001] Nancy Mazur, Peter Ross, Gerda Janssens, and Maurice Bruynooghe. Practical as-

pects for a working compile time garbage collection system for Mercury. In International Conference

on Logic Programming, pages 105–119, 2001.

[Mazur, 2001] Nancy Mazur. Practical structure reuse for Mercury. In SPACE 2001 [SPACE 20012001].

[McBeth, 1963] J. Harold McBeth. On the reference counter method. Communications of the ACM,

6(9):575, September 1963.

[McCarthy and Minsky, 1959] John McCarthy and Marvin Minsky. Artificial intelligence, quarterly

progress report no. 53. Technical report, Research Laboratory of Electronics at MIT, April 1959.

[McCarthy and others, 1962] John McCarthy et al. Lisp 1.5 Programmer’s Manual, 1962.

[McCarthy, 1960] John McCarthy. Recursive functions of symbolic expressions and their computation

by machine, Part I. Communications of the ACM, 3(4):184–195, April 1960.

[McCarthy, 1978] John McCarthy. History of LISP. In Richard L. Wexelblat, editor, History of Pro-

gramming Languages I, pages 173–185. ACM Press, 1978.

[McCloskey et al., 2008] Bill McCloskey, David F. Bacon, Perry Cheng, and David Grove. Staccato: A

parallel and concurrent real-time compacting garbage collector for multiprocessors. IBM Research

Report RC24505, IBM Research, 2008.

[McCreight et al., 2007] Andrew McCreight, Zhong Shao, Chunxiao Lin, and Long Li. A gen-

eral framework for certifying garbage collectors and their mutators. In Ferrante and McKinley

[Ferrante and McKinley2007], pages 468–479.

[McCreight et al., 2010] Andrew McCreight, Tim Chevalier, and Andrew Tolmach. A certified frame-

work for compiling and executing garbage-collected languages. In ICFP 2010 [ICFP 20102010],

pages 273–284.

[McCreight, 2008] Andrew McCreight. The Mechanized Verification of Garbage Collector Implemen-

tations. PhD thesis, Yale University, New Have, 2008.

[McCullough, 1983] P.L. McCullough. Implementing the Smalltalk-80 system: the Tektronix experi-

ence. In Krasner [Krasner1983], pages 59–78.

[McDowell, 1998] Charles E. McDowell. Reducing garbage in Java. ACM SIGPLAN Notices, 33(9):84–

86, September 1998.

[McEntee, 1987] T.J. McEntee. Overview of garbage collection in symbolic computing. LISP Pointers,

1(3):8–16, August–September 1987.

[McGachey and Hosking, 2006] Phil McGachey and Antony L Hosking. Reducing generational copy

reserve overhead with fallback compaction. In Petrank and Moss [Petrank and Moss2006], pages

17–28.

[McGachey et al., 2008] Phil McGachey, Ali-Reza Adl-Tabatabi, Richard L. Hudson, Vijay Menon,

Bratin Saha, and Tatiana Shpeisman. Concurrent GC leveraging transactional memory. In PPOPP

2008 [PPOPP 20082008], pages 217–226.

[McGaughey, 1995] Mike McGaughey. Bounded-space tagless garbage collection for first order poly-

morphic languages. In 18th Australian Computer Science Conference (ACSC), Australian Computer

Science Communications 17(1), pages 380–388, Glenelg, South Australia, January 1995. Also ap-

pears as: Technical report 94/208, Department of Computer Science, Monash University.

[McIlroy and Sventek, 2010] Ross McIlroy and Joe Sventek. Hera-JVM: a runtime system for hetero-

geneous multi-core architectures. In OOPSLA 2010 [OOPSLA 20102010], pages 205–222.

[McIlroy et al., 2008] Ross McIlroy, Peter Dickman, and Joe Sventek. Efficient dynamic heap allocation

of scratch-pad memory. In Jones and Blackburn [Jones and Blackburn2008], pages 31–40.

[McIlroy, 1976] M. Douglas McIlroy. Mass-produced software components. In J.M. Buxton, Peter Naur,

and Brian Randell, editors, Software Engineering Concepts and Techniques (1968 NATO Conference

of Software Engineering), pages 88–98, 1976.

[McIlroy, 1982] M. Douglas McIlroy. The number of states of a dynamic storage allocation system.

Computer Journal, 25(3):388–392, August 1982.

[McIver and King, 1994] William J. McIver and Roger King. Self-adaptive, on-line reclustering of com-

plex object data. In SIGMOD94, pages 407–418, 1994.

98



[McKenney and Slingwine, 1993] Paul E. McKenney and Jack Slingwine. Efficient kernel memory allo-

cation on shared-memory multiprocessors. In USENIX Winter Technical Conference, pages 295–306,

San Diego, CA, January 1993. USENIX Association.

[McKenney and Slingwine, 1998] Paul E. McKenney and Jack Slingwine. Read-copy update: Using ex-

ecution history to solve concurrency problems. In 10th IASTED International Conference on Parallel

and Distributed Computing and Systems. IEEE Computer Society, October 1998.

[McKinley and Vechev, 2012] Kathryn McKinley and Martin Vechev, editors. 11th ACM SIGPLAN In-

ternational Symposium on Memory Management, Beijing, China, June 2012. ACM Press.

[McKusick and Karels, 1988] Marshall K. McKusick and Michael J. Karels. Design of a general-

purpose memory allocator for the 4.3BSD UNIX kernel. In Summer USENIX Conference. USENIX

Association, June 1988.

[McNally and Davie, 1991] D.J. McNally and Anthony J.T. Davie. 2 models for integrating persistence

and lazy functional languages. ACM SIGPLAN Notices, 26(5):43–52, 1991.

[Meawad et al., 2011] Fadi Meawad, Ryan Macnak, and Jan Vitek. Collecting transactional garbage. In

TRANSACT 2011 [TRANSACT 20112011].

[Meersman et al., 2004] R. Meersman, Z. Tari, and A. Corsaro, editors. 2nd International Workshop on

Java Technologies for Real-time and Embedded Systems (JTRES), volume 3292 of Lecture Notes in

Computer Science, Heidelburg, Germany, October 2004. Springer.

[Meira, 1985] Silvio R. de L. Meira. On the Efficiency of Applicative Algorithms. PhD thesis, Computing

Laboratory, The University of Kent at Canterbury, March 1985.

[Mellish, 1980] C.S. Mellish. An alternative to structure-sharing in the implementation of a Prolog

interpreter. In Workshop on Logic Programming, Debrecen, Hungary, 1980.

[Meloan, 1999] Steve Meloan. The Java Hotspot Performance Engine: An In-Depth Look, 1999.

[Mendelson et al., 1993] Abraham Mendelson, Dominique Thiebaut, and Dhiraj K. Pradhan. Modeling

live and dead lines in cache memory systems. IEEE Transactions on Computers, 42(1):1–14, January

1993.

[Menezes and Wood, 1997] Ronaldo Menezes and Alan Wood. Garbage collection in open distributed

tuple space systems. In 15th Brazilian Computer Networks Symposium — SBRC ’97, pages 525–543,

May 1997.

[Menezes and Wood, 1998a] Ronaldo Menezes and Alan Wood. Ligia: A Java based Linda-like run-

time system with garbage collection of tuple spaces. Technical Report YCS 304 (1998), University of

York, 1998.

[Menezes and Wood, 1998b] Ronaldo Menezes and Alan Wood. Using tuple monitoring and process

registration on the implementation of garbage collection in open Linda-like systems. In 10th IASTED

International Conference on Parallel and Distributed Computing System (PDCS), pages 490–495, Las

Vegas, October 1998. ASTED/Acta Press.

[Menezes, 1998] Ronaldo Menezes. Ligia: Incorporating garbage collection in a Java based Linda-like

run-time system. In 2nd Workshop on Distributed Systems (WOSID), pages 81–88, Curitiba, Parana,

Brazil, 1998.

[Merrall and Padget, 1992] Simon C. Merrall and Julian A. Padget. Collections and garbage collection.

In Bekkers and Cohen [Bekkers and Cohen1992], pages 473–489.

[Méry, 1995] Dominique Méry. Refining solutions of the on the fly garbage collection from formal

specifications. Technical report, Université henri Poincaré, November 1995.

[Metropolis et al., 1980] N. Metropolis, J. Howlett, and Gian-Carlo Rota, editors. A History of Comput-

ing in the Twentieth Century. Academic Press, 1980.

[Meyer et al., 2012] Bertrand Meyer, Alexander Kogtenkov, and Anton Akhi. Processors and their col-

lection. In Proceedings of the 2012 International Conference on Multicore Software Engineering,

Performance and Tools, MSEPT’12, pages 1–15, Prague, Czech Republic, 2012. Springer-Verlag.

[Meyer, 1988] Bertrand Meyer. Object-oriented Software Construction. Prentice-Hall, 1988.

[Meyer, 1996] Bertrand Meyer. The ISE Eiffel garbage collection mechanism: An overview. Technical

report, ISE Inc., February 1996.

99



[Meyer, 2003] Matthias Meyer. A novel processor architecture with exact tag-free pointers. In 2nd

Workshop on Application Specific Processors, pages 96–103, San Diego, CA, 2003.

[Meyer, 2004] Matthias Meyer. A novel processor architecture with exact tag-free pointers. IEEE Micro,

24(3):46–55, May–June 2004.

[Meyer, 2005] Matthias Meyer. An on-chip garbage collection coprocessor for embedded real-time sys-

tems. In 11th IEEE International Conference on Embedded and Real-Time Computing Systems and

Applications, pages 517–524, Hong Kong, China, August 2005.

[Meyer, 2006] Matthias Meyer. A true hardware read barrier. In Petrank and Moss

[Petrank and Moss2006], pages 3–16.

[Meyers and Casseres, 1983] R. Meyers and D. Casseres. An MC68000-based Smalltalk-80 system. In

Krasner [Krasner1983], pages 175–188.

[Mezini, 2011] Mira Mezini, editor. 25th European Conference on Object-Oriented Programming, vol-

ume 6813 of Lecture Notes in Computer Science, Lancaster, UK, July 2011. Springer-Verlag.

[Michael and Scott, 1995] Maged M. Michael and M.L. Scott. Correction of a memory management

method for lock-free data structures. Technical Report UR CSD / TR59, University of Rochester,

December 1995.

[Michael, 2002a] Maged M. Michael. Safe memory reclamation for dynamic lock-free objects using

atomic reads and writes. Research Report RC22317, IBM Corp., Thomas J Watson Research Center,

Yorktown Heights, NY, January 2002.

[Michael, 2002b] Maged M. Michael. Safe memory reclamation for dynamic lock-free objects using

atomic reads and writes. In The 21st Annual ACM Symposium on Principles of Distributed Computing

(PODC), pages 21–30, July 2002.

[Michael, 2004a] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects.

IEEE Transactions on Parallel and Distributed Systems, 15(6):491–504, June 2004.

[Michael, 2004b] Maged M. Michael. Scalable lock-free dynamic memory allocation. In Pugh and

Chambers [Pugh and Chambers2004], pages 35–46.

[Microsoft RNI, 1997, 1997] Raw Native Interface, 1997. Microsoft’s Raw Native Interface for Java.

[Might et al., 2007] Matthew Might, Benjamin Chambers, and Olin Shivers. Model checking via ΓCFA.

In Proceedings of the 8th International Conference on Verification, Model Checking, and Abstract

Interpretation (VMCAI’07), pages 59–73, Nice, France, January 2007.

[Mihaljević et al., 2019] Branko Mihaljević, Matija Šipek, and Paula Pufek. On the aspects of poly-

glot programming and memory management in a VM — GraalVM and contemporary GCs. In 6th

International Community Java Conference in Croatia (Javantura v6), Zagreb, Croatia, 2019.

[Mijajlovic and Torp-Smith, 2004] Ivana Mijajlovic and Noah Torp-Smith. Refinement in separation

context. In SPACE 2004 [SPACE 20042004].

[Mikheev and Fedoseev, 2001] V.V. Mikheev and S.A. Fedoseev. Compiler-cooperative memory man-

agement in Java. In Perspectives of System Informatics, 4th International Andrei Ershov Memorial

Conference, volume 2244 of Lecture Notes in Computer Science, Novosibirsk, Russia, 2001. Springer-

Verlag.

[Miller and Epstein, 1990] James S. Miller and B. Epstein. Garbage collection in MultiScheme. In

US/Japan Workshop on Parallel Lisp, volume 441 of Lecture Notes in Computer Science, pages 138–

160. Springer-Verlag, June 1990.

[Miller and Rozas, 1994] James S. Miller and Guillermo J. Rozas. Garbage collection is fast, but a stack

is faster. Technical Report AIM-1462, MIT AI Laboratory, March 1994.

[Miller, 1987] James S. Miller. MultiScheme: A Parallel Processing System Based on MIT Scheme. PhD

thesis, MIT Press, 1987. Also Technical Report MIT/LCS/402.

[Miller, 1988] B.P. Miller. The frequency of dynamic pointer references in C programs. Technical Report

TR 759, University of Wisconsin, Madison, 1988.

[Miller, 1996] Justin Miller. Clean up: C++ garbage collection. BYTE, pages 157–158, January 1996.

[Mills Strout et al., 1998] Michelle Mills Strout, Larry Carter, Jeanne Ferrante, and Beth Simon.

Schedule-independent storage mapping for loops. In ASPLOS 1998 [ASPLOS 19981998], pages

24–33.

100



[Milner et al., 1990] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT

Press, 1990.

[Minsky, 1963] Marvin L. Minsky. A Lisp garbage collector algorithm using serial secondary storage.

Technical Report Memo 58 (rev.), Project MAC, MIT, Cambridge, MA, December 1963.

[Miranda and Béra, 2015] Eliot Miranda and Clément Béra. A partial read barrier for efficient support

of live object-oriented programming. In Bond and Hosking [Bond and Hosking2015], pages 93–104.

[Miranda, 1977] Eliot E. Miranda. Brouhaha — a portable Smalltalk interpreter. ACM SIGPLAN No-

tices, 22(12):354–365, 1977.

[Miranda, 1987] Eliot Miranda. BrouHaHa — a portable Smalltalk interpreter. In OOPSLA 1987

[OOPSLA 19871987], pages 354–365.

[Misra and Chandy, 1982] Jayadev Misra and K.M. Chandy. Termination detection of diffusing compu-

tations in communicating sequential processes. ACM Transactions on Programming Languages and

Systems, 4(1):37–43, January 1982.

[Misra, 1986] Jayadev Misra. Axioms for memory access in asynchronous hardware systems. ACM

Transactions on Programming Languages and Systems, 8(1):142–153, January 1986.

[Mitchell and Sevitsky, 2003] Nick Mitchell and Gary Sevitsky. LeakBot: An automated and lightweight

tool for diagnosing memory leaks in large java applications. In Cardelli [Cardelli2003], pages 351–

377.

[Mitchell et al., 2009] Nick Mitchell, Edith Schonberg, and Gary Sevitsky. Making sense of large heaps.

In Drossopoulou [Drossopoulou2009].

[Mittal et al., 1986] S. Mittal, Daniel Bobrow, and K. Kahn. Virtual copies: At the boundary between

classes and instances. In OOPSLA 1986 [OOPSLA 19861986], pages 159–166.

[Miyauchi et al., 1987] Nobuhito Miyauchi, A. Matsumoto, Y. Kimura, and A. Goto. Multiple refer-

ence management by MRB — GC characteristics on KL1 emulator. In 35th Meeting of Information

Processing Society, September 1987. In Japanese.

[Miyauchi et al., 1989] Nobuhito Miyauchi, Yasuharu Kawada, and Katsuto Nakajima. Tracing garbage

collection for KL1 on the Multi-PSI/V2 system. ICOT technical report TR-469, Institute for New

Generation Computer Technology, March 1989.

[Mo, 2021] Man Yue Mo. Chrome in-the-wild bug analysis: CVE-2021-37975, October 2021.

[Mogensen, 2014] Torben Ægidius Mogensen. Reference counting for reversible languages. In Shigeru

Yamashita and Shin-ichi Minato, editors, Reversible Computation, volume 8507 of Lecture Notes in

Computer Science, pages 82–94. Springer International Publishing, 2014.

[Mogul and Borg, 1991] Jeffrey C. Mogul and Anita Borg. The effect of context switches on cache

performance. In ASPLOS 1991 [ASPLOS 19911991], pages 75–84.

[Mohamed-Ali and Haridi, 1986] Kharyi A. Mohamed-Ali and Seif Haridi. Global garbage collection

for distributed heap storage-systems. International Journal Of Parallel Programming, 15(5):339–387,

1986.

[Mohamed-Ali, 1984] Khayri A. Mohamed-Ali. Object Oriented Storage Management and Garbage

Collection in Distributed Processing Systems. PhD thesis, Royal Institute of Technology, Stockholm,

December 1984.

[Mohamed-Ali, 1989] Kharyi A. Mohamed-Ali. Garbage collection for Or-parallel Prolog based on

WAM. In Gigalips Workshop, Stockholm, April 1989. SICS.

[Mohnen, 1995a] Markus Mohnen. Efficient compile-time garbage collection for arbitrary data struc-

tures. Technical Report 95–08, University of Aachen, May 1995. Also in 7th International Symposium

on Programming Languages, Implementations, Logics and Programs, PLILP95.

[Mohnen, 1995b] Markus Mohnen. Efficient compile-time garbage collection for arbitrary data struc-

tures. In 7th International Symposium on Programming Languages, Implementations, Logics and

Programs (PLILP), pages 241–258, 1995. Also see [Mohnen, 1995a].

[Moine et al., 2023] Alexandre Moine, Arthur Charguéraud, and François Pottier. A high-level separa-

tion logic for heap space under garbage collection. In POPL 2023 [POPL 20232023].

101



[Moine et al., 2025] Alexandre Moine, Arthur Charguéraud, and François Pottier. Will it fit? verifying

heap space bounds of concurrent programs under garbage collection. ACM Transactions on Program-

ming Languages and Systems, 47(1), April 2025.

[Moine, 2024] Alexandre Moine. Formal Verification of Heap Space Bounds under Garbage Collection.

PhD thesis, Université Paris Cité, 2024.

[Moller, 2001] Anders Moller. Verification of data type implementations using graph types and monadic

second-order logic. In SPACE 2001 [SPACE 20012001].

[Monnier et al., 2001] Stefan Monnier, Bratin Saha, and Zhong Shao. Principled scavenging. In PLDI

2001 [PLDI 20012001], pages 81–91.

[Monnier, 2001] Stefan Monnier. Principled scavenging. In SPACE 2001 [SPACE 20012001].

[Monnier, 2004] Stefan Monnier. Typed regions. In SPACE 2004 [SPACE 20042004].

[Moon, 1974] David A. Moon. MACLisp reference manual. Project MAC, MIT, Cambridge, MA, April

1974.

[Moon, 1984] David A. Moon. Garbage collection in a large LISP system. In Steele [Steele1984], pages

235–245.

[Moon, 1985] David A. Moon. Architecture of the Symbolics 3600. In 12th Annual International Sym-

posium on Computer Architecture, pages 76–83, Boston, MA, June 1985.

[Moon, 1990] David A. Moon. Symbolics Architecture, chapter 3. Wiley, 1990.

[Moon, 1991] David A. Moon. Genera retrospective. In Cabrera et al. [Cabrera et al.1991]. Order

Number 2265.

[Moon, 1992] David A. Moon. Copying garbage collection is harmful. In Bekkers and Cohen

[Bekkers and Cohen1992]. Discussion Session.

[Moore et al., 1997] Jonathan Moore, Mike Hicks, and Scott Nettles. Oscar: A GC testbed. In Dickman

and Wilson [Dickman and Wilson1997].

[Morad et al., 2009] Ronny Morad, Martin Hirzel, Elliot K. Kolodner, and Mooly Sagiv. Efficient mem-

ory management for long-lived objects. IBM Research Report RC24794, IBM T.J. Watson Research

Center, May 2009.

[Morandat, 2015] Floréal Morandat, editor. Implementation, Compilation, Optimization of Object-

Oriented Languages, Programs and Systems (ICOOOLPS’15), Prague, July 2015.

[Moreau and Duprat, 1999] Luc Moreau and Jean Duprat. A construction of distributed reference count-

ing: the constructive proof in Coq. Technical report, University of Southampton, February 1999.

[Moreau and Duprat, 2001] Luc Moreau and Jean Duprat. A construction of distributed reference count-

ing. Acta Informatica, pages 563–595, 2001.

[Moreau and Zendra, 2002] P.-E. Moreau and Olivier Zendra. GC2: A generational conservative garbage

collector for the ATerm library. Rapport de Recherche RR–4547, INRIA Lorraine, September 2002.

[Moreau and Zendra, 2004] P.-E. Moreau and Olivier Zendra. GC2: A generational conservative garbage

collector for the ATerm library. Journal of Logic and Algebraic Programming (JLAP), 59(1–2), April

2004.

[Moreau et al., 1997] Luc Moreau, David DeRoure, and Ian Foster. NeXeme: a distributed Scheme

based on Nexus. In 3rd International Europar Conference (EuroPar), volume 1300 of Lecture Notes

in Computer Science, pages 581–590, Passau, Germany, August 1997. Springer-Verlag.

[Moreau et al., 2003] Luc Moreau, Peter Dickman, and Richard Jones. Birrell’s distributed reference

listing revisited. Technical Report 8–03, University of Kent, July 2003.

[Moreau et al., 2005] Luc Moreau, Peter Dickman, and Richard Jones. Birrell’s distributed reference

listing revisited. ACM Transactions on Programming Languages and Systems, 27(6):1344–1395,

2005.

[Moreau, 1997] Luc Moreau. A distributed garbage collector with diffusion tree reorganisation and

object mobility. Technical Report M97/2, University of Southampton, October 1997.

[Moreau, 1998a] Luc Moreau. A distributed garbage collector with diffusion tree reorganisation and

mobile objects. In ICFP 1998 [ICFP 19981998], pages 204–215.

102



[Moreau, 1998b] Luc Moreau. Hierarchical distributed reference counting. In Peyton Jones and Jones

[Peyton Jones and Jones1998], pages 57–67.

[Moreau, 1999] Luc Moreau. Implementation and performance evaluation of a distributed garbage col-

lection algorithm. In Takayasu Ito and Taiichi Yuasa, editors, Parallel and Distributed Computing for

Symbolic and Irregular Applications, PDCSIA’99, pages 221–241, Sendai, Japan, July 1999. World

Scientific Publishing.

[Moreau, 2001] Luc Moreau. Tree rerooting in distributed garbage collection: Implementation and per-

formance evaluation. Higher-Order and Symbolic Computation, 14(4), 2001.

[Morikawa et al., 2013] Kazuya Morikawa, Tomoharu Ugawa, and Hideya Iwasaki. Adaptive scan-

ning reduces sweep time for the Lisp2 mark-compact garbage collector. In Petrank and Cheng

[Petrank and Cheng2013].

[Morimoto et al., 2025] Ryu Morimoto, Kazuki Ichinose, and Tomoharu Ugawa. Gray-in-Young: A

generational garbage collection for Processing-in-Memory. In Harris et al. [Harris et al.2025].

[Morris, 1978] F. Lockwood Morris. A time- and space-efficient garbage compaction algorithm. Com-

munications of the ACM, 21(8):662–5, 1978.

[Morris, 1979] F. Lockwood Morris. On a comparison of garbage collection techniques. Communica-

tions of the ACM, 22(10):571, October 1979.

[Morris, 1982] F. Lockwood Morris. Another compacting garbage collector. Information Processing

Letters, 15(4):139–142, October 1982.

[Morrisett and Harper, 1997] Greg Morrisett and Robert Harper. Semantics of memory management for

polymorphic languages. In A. Gordon and A. Pitts, editors, Higher Order Operational Techniques in

Semantics, pages 175–226. Newton Institute, Cambridge University Press, 1997.

[Morrisett and Sagiv, 2007] Greg Morrisett and Mooly Sagiv, editors. 6th ACM SIGPLAN International

Symposium on Memory Management, Montréal, Canada, October 2007. ACM Press.

[Morrisett et al., 1995a] J. Gregory Morrisett, Mattias Felleisen, and Robert Harper. Abstract models

of memory management. Technical Report CMU–CS–95–110, Carnegie Mellon University, January

1995. Also published as Fox memorandum CMU–CS–FOX–95–01.

[Morrisett et al., 1995b] J. Gregory Morrisett, Mattias Felleisen, and Robert Harper. Abstract models of

memory management. In FPCA 1995 [FPCA 19951995].

[Morrisett, 1995] J. Gregory Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon University,

December 1995. Published as CMU Technical Report CMU-CS-95-226.

[Morrisett, 2001] Greg Morrisett. Next generation low-level languages. In SPACE 2001

[SPACE 20012001]. Invited talk.

[Morrison et al., 1999] Ronald Morrison, Mick J. Jordan, and Malcolm P. Atkinson, editors. 8th Interna-

tional Workshop on Persistent Object Systems (August, 1998), Advances in Persistent Object Systems,

Tiburon, CA, 1999. Morgan Kaufmann.

[Moss and Sinofsky, 1988] J. Eliot B. Moss and S. Sinofsky. Managing persistent data with Mneme: De-

signing a reliable, shared object interface. In Advances in Object-oriented Database Systems, volume

334 of Lecture Notes in Computer Science, pages 298–316. Springer-Verlag, 1988.

[Moss et al., 1993] J. Eliot B. Moss, Paul R. Wilson, and Benjamin Zorn, editors. OOPSLA Workshop

on Garbage Collection in Object-Oriented Systems, October 1993.

[Moss et al., 1997] J. Eliot B. Moss, David S. Munro, and Richard L. Hudson. PMOS: A complete

and coarse-grained incremental garbage collector for persistent object stores. In Connor and Nettles

[Connor and Nettles1997], pages 140–150.

[Moss, 1989a] J. Eliot B. Moss. Addressing large distributed collections of persistent objects: The

Mneme project’s approach. In 2nd International Workshop on Database Programming Languages,

pages 269–285, Glenedon Beach, OR, June 1989. Also available as Technical Report 89-68, Univer-

sity of Massachusetts.

[Moss, 1989b] J. Eliot B. Moss. The Mneme persistent object store. COINS Technical Report 89–107,

University of Massachusetts, 1989.

[Moss, 1990a] J. Eliot B. Moss. Abstract data types in stack based languages. Technical Memo

MIT/LCS/TR–190, MIT Laboratory for Computer Science, August 1990.

103



[Moss, 1990b] J. Eliot B. Moss. Garbage collecting persistent object stores. In Jul and Juul

[Jul and Juul1990]. Also in SIGPLAN Notices 23(1):45–52, January 1991.

[Moss, 1990c] J. Eliot B. Moss. Working with objects: To swizzle or not to swizzle? Technical Report

90–38, University of Massachusetts, Amherst, MA, May 1990.

[Moss, 1991] J. Eliot B. Moss. The UMass language independent garbage collector toolkit. In Wilson

and Hayes [Wilson and Hayes1991a].

[Moss, 1992] J. Eliot B. Moss. Working with persistent objects: To swizzle or not to swizzle? IEEE

Transactions on Software Engineering, 18(8):657–673, August 1992.

[Moss, 2023] Eliot Moss, editor. ACM SIGPLAN International Conference on Managed Programming

Languages and Runtimes, Cascais, Portugal, October 2023. ACM Press.

[Mowry et al., 1992] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and evaluation of a

compiler algorithm for prefetching. In ASPLOS 1992 [ASPLOS 19921992], pages 62–73.

[Mowry, 2011] Todd Mowry, editor. 16th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, Newport Beach, CA, March 2011. ACM Press.

[MSP 2002, 2002] Workshop on Memory System Performance, ACM SIGPLAN Notices 38(2 supple-

ment), Berlin, Germany, June 2002. ACM Press.

[MSPC 2013, 2013] Workshop on Memory System Performance and Correctness, Seattle, WA, June

2013.

[MSPC 2014, 2014] Workshop on Memory System Performance and Correctness, Edinburgh, UK, June

2014.

[Mukherjee and McKinley, 2004] Shubu Mukherjee and Kathryn S. McKinley, editors. 11th Interna-

tional Conference on Architectural Support for Programming Languages and Operating Systems,

ACM SIGPLAN Notices 39(11), Boston, MA, October 2004. ACM Press.

[Mulkers et al., 1990a] Anne Mulkers, William Winsborough, and Maurice Bruynooghe. Analysis of

shared data structures for compile-time garbage collection in logic programs. In 7th International

Conference on Logic Programming, pages 747–762. MIT Press, 1990.

[Mulkers et al., 1990b] Anne Mulkers, William Winsborough, and Maurice Bruynooghe. Analysis

of shared data structures for compile-time garbage collection in logic programs. Report CW117,

Katholieke Universitiet of Leuven, Belgium, 1990. Extended version.

[Mulkers et al., 1992] Anne Mulkers, William Winsborough, and Maurice Bruynooghe. Static analysis

of logic programs to detect run-time garbage cells. In International Conference on Computer Systems

and Software Engineering, pages 526–531. IEEE Press, 1992.

[Mulkers et al., 1993] Anne Mulkers, William Winsborough, and Maurice Bruynooghe. A live-structure

data-flow analysis for Prolog. Theory Reort CW167, Katholieke Universitiet of Leuven, Belgium,

1993.

[Mulkers et al., 1994] Anne Mulkers, William Winsborough, and Maurice Bruynooghe. Live-structure

dataflow analysis for Prolog. ACM Transactions on Programming Languages and Systems, 16(2),

March 1994.

[Mulkers, 1991] Anne Mulkers. Deriving Live Data Structures in Logic Programs by Means of Abstract

Interpretation. PhD thesis, Katholieke Universitiet of Leuven, Belgium, 1991.

[Mulkers, 1993] Anne Mulkers. Live Data Structures in Logic Programs. Number 675 in Lecture Notes

in Computer Science. Springer-Verlag, 1993.

[Muller et al., 1992] H.L. Muller, K.G. Langendoen, and L.O. Hertzberger. MiG: Simulating parallel

functional programs on hierarchical cache architectures. Technical Report CS–92–04, Department of

Computer Science, University of Amsterdam, June 1992.

[Müller, 1976] Klaus A.G. Müller. On the Feasibility of Concurrent Garbage Collection. PhD thesis,

Tech. Hogeschool Delft, March 1976.

[Munch-Maccagnoni and Scherer, 2022] Guillaume Munch-Maccagnoni and Gabriel Scherer. Boxroot,

fast movable GC roots for a better FFI. In ML Workshop, 2022.

[Munro and Brown, 2001] David S. Munro and Alfred L. Brown. Evaluating partition selection policies

using the PMOS garbage collector. In Kirby et al. [Kirby et al.2001], pages 104–115.

104



[Munro et al., 1999] David Munro, Alfred Brown, Ron Morrison, and J. Eliot B. Moss. Incremental

garbage collection of a persistent object store using PMOS. In Ron Morrison, Mick Jordan, and

Malcolm Atkinson, editors, Advances in Persistent Object Systems, pages 78–91. Morgan Kaufman,

1999.

[Munsin and Lilius, 2002] Henrik Munsin and Johan Lilius. Compile-time garbage collection using es-

cape analysis. In Nordic Workshop on Software Development Tools and Techniques (NWPER), 2002.

[Murtagh, 1984] Thomas P. Murtagh. A less dynamic memory allocation scheme for Algol-like lan-

guages. In POPL 1984 [POPL 19841984], pages 283–289.

[Murtagh, 1991] Thomas P. Murtagh. An improved storage management scheme for block structured

languages. ACM Transactions on Programming Languages and Systems, 13(3):372–398, July 1991.

[Muthu Kumar and Janakiram, 2006] R.M. Muthu Kumar and D. Janakiram. Yama: a scalable gen-

erational garbage collector for Java in multiprocessor systems. IEEE Transactions on Parallel and

Distributed Systems, 17(2):148–159, 2006.

[Muthukumar and Janakiram, 2004] R.M. Muthukumar and D. Janakiram. Yama: a scalable genera-

tional garbage collector for Java in multiprocessor systems. Technical Report DOS-CSE-2004-14,

Distributed and Object Systems Lab, Indian Institute of Technology, Madras, 2004.

[Mutlu and Zhang, 2012] Onur Mutlu and Lixin Zhang, editors. Workshop on Memory System Perfor-

mance and Correctness, Beijing, China, June 2012.

[Mycroft, 2001] Alan Mycroft. Statically allocated systems. In SPACE 2001 [SPACE 20012001].

[Myreen, 2010] Magnus O. Myreen. Reusable verification of a copying collector. In Verified Software:

Theories, Tools, Experiments (VSTTE), volume 6217 of Lecture Notes in Computer Science. Springer-

Verlag, 2010.

[Mytkowicz et al., 2008] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney.

Producing wrong data without doing anything obviously wrong! In Soffa [Soffa2008], pages 265–

276.

[Naeem and Lhoták, 2009] Nomair A. Naeem and Ondrej Lhoták. Efficient alias set analysis using SSA

form. In Kolodner and Steele [Kolodner and Steele2009], pages 79–88.

[Naganuma et al., 1988] Jiro Naganuma, Takeshi Ogura, Shin-ichiro Yamada, and Takashi Kimura.

High-speed CAM-based architecture for a Prolog machine (ASCA). IEEE Transactions on Com-

puters, 37(11):1375–1383, 11 1988.

[Nagarajan et al., 2009] Vijay Nagarajan, Dennis Jeffrey, and Rajiv Gupta. Self-recovery in server pro-

grams. In Kolodner and Steele [Kolodner and Steele2009], pages 49–58.

[Nakajima, 1988a] Katsuto Nakajima. Piling GC: Efficient garbage collection for Al languages. ICOT

technical report TR-354, Institute for New Generation Computer Technology, 1988.

[Nakajima, 1988b] Katsuto Nakajima. Piling GC: Efficient garbage collection for Al languages. In IFIP

WG 10.3 Working Conference on Parallel Processing, pages 210–204. North Holland, 1988.

[Nakamura and Aikawa, 2010] Narihiro Nakamura and Hikari Aikawa. Garbage Collection Algorithms

and Implementations. Hidekazu, 2010. In Japanese.

[Nandivada and Detlefs, 2005] V. Krishna Nandivada and David Detlefs. Compile-time concurrent

marking write barrier removal. In CGO 2005 [CGO 20052005], pages 37–48.

[Nanjekye et al., 2021a] Joannah Nanjekye, David Bremner, and Aleksandar Micic. Eclipse OMR

garbage collection for tracing JIT-based virtual machines. In Proceedings of the 31st Annual Inter-

national Conference on Computer Science and Software Engineering (CASCON’21), pages 244–249,

2021.

[Nanjekye et al., 2021b] Joannah Nanjekye, David Bremner, and Aleksandar Micic. The garbage col-

lection cost for meta-tracing JIT-based dynamic languages. In Proceedings of the 32nd Annual Inter-

national Conference on Computer Science and Software Engineering (CASCON’22), pages 140–149,

2021.

[Nanjekye et al., 2023] Joannah Nanjekye, David Bremner, and Aleksandar Micic. Towards reliable

memory management for Python native extensions. In Jul and Racordon [Jul and Racordon2023],

pages 244–249.

105



[Nasartschuk et al., 2016a] Konstantin Nasartschuk, Marcel Dombrowski, Tristan Basa, Mazder Rah-

man, Kenneth Kent, and Gerhard Dueck. Garcosim: A framework for automated memory manage-

ment research and evaluation. In Proceedings of the 9th EAI International Conference on Performance

Evaluation Methodologies and Tools (VALUETOOLS’15), pages 263–268, Berlin, Germany, 2016.

ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).

[Nasartschuk et al., 2016b] Konstantin Nasartschuk, Marcel Dombrowski, Kenneth B. Kent, Aleksandar

Micic, Dane Henshall, and Charlie Gracie. String deduplication during garbage collection in virtual

machines. In Proceedings of the 26th Annual International Conference on Computer Science and

Software Engineering (CASCON’16), pages 250–256, Toronto, Ontario, Canada, 2016.

[Navasca et al., 2023] Christian Navasca, Martin Maas, and Petros Maniatis. Predicting dynamic prop-

erties of heap allocations using neural networks trained on static code. In Blackburn and Petrank

[Blackburn and Petrank2023], pages 43–57.

[Neely, 1996] Michael S. Neely. An analysis of the effects of memory allocation policy on storage

fragmentation. Master’s thesis, University of Texas at Austin, 1996.

[Neirynck et al., 1987] Anne Neirynck, Prakash Panangaden, and Alan J. Demers. Computation of

aliases and support sets. In POPL 1987 [POPL 19871987], pages 274–283.

[Neirynck, 1988] Anne Neirynck. Static Analysis of Aliasing and Side Effects in Higher-Order Lan-

guages. PhD thesis, Cornell University, January 1988.

[Nelson, 1983] Greg Nelson. Verifying reachability invariants of linked structures. In POPL 1983

[POPL 19831983], pages 38–47.

[Nelson, 1989] Jeffrey E. Nelson. Automatic, incremental, on-the-fly garbage collection of actors. Mas-

ter’s thesis, Virginia Polytechnic Institute and State University, 1989.

[Nethercote and Fitzhardinge, 2004] Nicholas Nethercote and Jeremy Fitzhardinge. Bounds-checking

entire programs without recompiling. In SPACE 2004 [SPACE 20042004].

[Nettles and O’Toole, 1993a] Scott Nettles and James O’Toole. Real-time replication-based garbage

collection. In PLDI 1993 [PLDI 19931993], pages 217–226.

[Nettles and O’Toole, 1993b] Scott M. Nettles and James W. O’Toole. Implementing orthogo-

nal persistence: A simple optimization based on replicating collection. In IWOOOS 1993

[IWOOOS 19931993].

[Nettles and O’Toole, 1997] Scott M. Nettles and James W. O’Toole. A rollback technique for imple-

menting persistence by reachability. In Connor and Nettles [Connor and Nettles1997].

[Nettles et al., 1992] Scott M. Nettles, James W. O’Toole, David Pierce, and Nicholas Haines.

Replication-based incremental copying collection. In Bekkers and Cohen [Bekkers and Cohen1992],

pages 357–364.

[Nettles et al., 1993] Scott M. Nettles, James W. O’Toole, and David Gifford. Concurrent garbage col-

lection of persistent heaps. Technical Report MIT/LCS/TR–569 and CMU–CS–93–137, Carnegie

Mellon University, April 1993. The same paper as [O’Toole et al., 1993].

[Nettles, 1992] Scott M. Nettles. A Larch specification of copying garbage collection. Research paper

CMU-CS-92-219, Carnegie Mellon University, December 1992.

[Newell and Shaw, 1957] A. Newell and J.C. Shaw. Programming the logic theory machine. In Western

Joint Computing Conference, pages 230–240, 1957.

[Newell and Tonge, 1960] A. Newell and F.M. Tonge. An introduction to information processing lan-

guage V. Communications of the ACM, 3(4):205–211, April 1960.

[Newman et al., 1982a] I.A. Newman, R.P. Stallard, and M.C. Woodward. Alternative approaches to

multiprocessor garbage collection. In ICPP 1982 [ICPP 19821982], pages 205–210.

[Newman et al., 1982b] I.A. Newman, R.P. Stallard, and M.C. Woodward. Performance of parallel

garbage collection algorithms. Computer Studies, 166, September 1982.

[Newman et al., 1983] I.A. Newman, R.P. Stallard, and M.C. Woodward. Improved multiprocessor

garbage collection algorithms. In ICPP 1983 [ICPP 19831983], pages 367–368.

[Newman et al., 1984] I.A. Newman, R.P. Stallard, and M.C. Woodward. A parallel compaction algo-

rithm for multiprocessor garbage collection. In M. Feilmeier, J. Joubert, and U. Schendel, editors,

Parallel Computing 83 Conference, pages 450–462, 1984.

106



[Newman et al., 1987] I.A. Newman, R.P. Stallard, and M.C. Woodward. A hybrid multiple processor

garbage collection algorithm. Computer Journal, 30(2):119–127, 1987.

[Ng and Glover, 1987] Y.H. Ng and R.J. Glover. Basic memory support for functional languages. In 4th

International IEEE VLSI Multilevel Interconnection Conference, pages 35–40, Santa Clara, CA, June

1987. IEEE Press.

[Ng, 1996] T.C.T. Ng. Efficient garbage collection for large object-oriented databases. Master’s thesis,

MIT Laboratory for Computer Science, 1996.

[Nguyen and Rinard, 2007] Huu Hai Nguyen and Martin Rinard. Detecting and eliminating memory

leaks using cyclic memory allocation. In Morrisett and Sagiv [Morrisett and Sagiv2007], pages 15–

30.

[Nguyen and Ruys, 2009] Viet Yen Nguyen and Theo C. Ruys. Memoised garbage collection for soft-

ware model checking. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS),

volume 5505 of Lecture Notes in Computer Science, 2009.

[Nguyen et al., 2007] N. Nguyen, A. Dominguez, and R. Barua. Scratch-pad memory allocation without

compiler support for Java applications. In International Conference on Compilers, Architecture and

Synthesis for Embedded Systems (CASES), 2007.

[Nguyen et al., 2015a] Khanh Nguyen, Lu Fang, Guoqing Xu, and Brian Demsky. Speculative region-

based memory management for big data systems. In Proceedings of the 8th Workshop on Programming

Languages and Operating Systems, pages 27–32, Monterey, California, 2015. ACM Press.

[Nguyen et al., 2015b] Khanh Nguyen, Kai Wang, Yingyi Bu, Lu Fang, Jianfei Hu, and Guoqing Xu.

Facade: A compiler and runtime for (almost) object-bounded big data applications. In ASPLOS 2015

[ASPLOS 20152015], pages 675–690.

[Nguyen et al., 2016] Khanh Nguyen, Lu Fang, Guoqing Xu, , Brian Demsky, Shan Lu, Sanazsadat

Alamian, and Onur Mutlu. Yak: A high-performance big-data-friendly garbage collector. In 12th

USENIX Symposium on Operating Systems Design and Implementation (OSDI’16), Savannah, GA,

November 2016.

[Ni et al., 2007] Yang Ni, Vijay Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosking, Richard L. Hud-

son, J. Eliot B. Moss, Bratin Saha, and Tatiana Shpeisman. Open nesting in software transactional

memory. In PPOPP 2007 [PPOPP 20072007], pages 68–78.

[Nielsen, 1977] Norman R. Nielsen. Dynamic memory allocation in computer simulation. Communica-

tions of the ACM, 20(11):864–873, November 1977.

[Nierstrasz, 1993] Oscar Nierstrasz, editor. 7th European Conference on Object-Oriented Programming,

volume 707 of Lecture Notes in Computer Science, Kaiserslautern, Germany, July 1993. Springer-

Verlag.

[Nierstrasz, 1995] Oscar Nierstrasz, editor. 9th European Conference on Object-Oriented Programming,

volume 952 of Lecture Notes in Computer Science, øAarhus, Denmark, August 1995. Springer-Verlag.

[Nieto and Esparza, 2000] Leonor P. Nieto and Javier Esparza. Verifying single and multi-mutator

garbage collectors with Owicki-Gries in Isabelle/HOL. In International Symposium on Mathemat-

ical Foundations of Computer Science, pages 619–628. Springer-Verlag, 2000.

[Nikhil and Ramachandran, 2000] R.S. Nikhil and U. Ramachandran. Garbage collection of times-

tamped data in Stampede. In PODC 2000 [PODC 20002000].

[Nikolaev and Ravindran, 2021] Ruslan Nikolaev and Binoy Ravindran. Snapshot-free, transparent, and

robust memory reclamation for lock-free data structures. In PLDI 2021 [PLDI 20212021].

[Nilsen and Gao, 1995] Kelvin Nilsen and H. Gao. The real-time behaviour of dynamic memory man-

agement in C++. In IEEE Real-Time Technologies and Applications Symposium, pages 142–153,

Chicago, May 1995. IEEE Press.

[Nilsen and Schmidt, 1990a] Kelvin D. Nilsen and William J. Schmidt. Hardware support for garbage

collection of linked objects and arrays in real-time. In Jul and Juul [Jul and Juul1990].

[Nilsen and Schmidt, 1990b] Kelvin D. Nilsen and William J. Schmidt. A high-level overview of hard-

ware assisted real-time garbage collection. Technical Report TR90-18a, Iowa State University, De-

partment of Computer Science, October 1990.

107



[Nilsen and Schmidt, 1992a] Kelvin D. Nilsen and William J. Schmidt. Cost-effective object-space man-

agement for hardware-assisted real-time garbage collection. Letters on Programming Language and

Systems, 1(4):338–354, December 1992.

[Nilsen and Schmidt, 1992b] Kelvin D. Nilsen and William J. Schmidt. Hardware-assisted general-

purpose garbage collection for hard real-time systems. Technical Report ISU TR92-15, Iowa State

University, Department of Computer Science, October 1992.

[Nilsen and Schmidt, 1992c] Kelvin D. Nilsen and William J. Schmidt. Preferred embodiment of a

hardware-assisted garbage collection system. Technical Report ISU TR92-17, Iowa State University,

Department of Computer Science, November 1992.

[Nilsen and Schmidt, 1993] Kelvin D. Nilsen and William J. Schmidt. Cost-effective object-space man-

agement for hardware-assisted real-time garbage collection. Letters on Programming Languages and

Systems, 1(4):338–354, December 1993.

[Nilsen and Schmidt, 1994] Kelvin D. Nilsen and William J. Schmidt. A high-performance hardware-

assisted real time garbage collection system. Journal of Programming Languages, 2(1), 1994.

[Nilsen, 1987] Kelvin D. Nilsen. Real-time garbage collection of strings and linked data structures.

Technical Report TR 87-5, University of Arizona, Department of Computer Science, January 1987.

[Nilsen, 1988] Kelvin D. Nilsen. Garbage collection of strings and linked data-structures in real-time.

Software: Practice and Experience, 18(7):613–640, 1988.

[Nilsen, 1991] Kelvin D. Nilsen. A high-performance architecture for real-time garbage collection. In

Wilson and Hayes [Wilson and Hayes1991a].

[Nilsen, 1992] Kelvin D. Nilsen. Memory cycle accountings for hardware-assisted real-time garbage

collection. Technical Report 91-21(c), Iowa State University, Computer Science Department, 1992.

[Nilsen, 1993] Kelvin D. Nilsen. Reliable real-time garbage collection of C++. In Moss et al.

[Moss et al.1993].

[Nilsen, 1994a] Kelvin D. Nilsen. Cost-effective hardware-assisted real-time garbage collection. In

LCT-RTS 1994 [LCT-RTS 19941994].

[Nilsen, 1994b] Kelvin D. Nilsen. Reliable real-time garbage collection of C++. Computing Systems,

7(4), 1994.

[Nilsen, 1995a] Kelvin Nilsen. High-level dynamic memory management for object oriented real-time

systems. In Workshop on Object-Oriented Real-Time Systems, San Antonio, Tx., October 1995.

[Nilsen, 1995b] Kelvin Nilsen. Progress in hardware-assisted real-time garbage collection. In Baker

[Baker1995b], pages 355–379.

[Nilsen, 1996a] Kelvin Nilsen. Invited note: Java for real-time. Real-Time Systems Journal, pages 197–

205, September 1996.

[Nilsen, 1996b] Kelvin Nilsen. Issues in the design and implementation of real-time Java. Java Devel-

oper’s Journal, 1(1):44, June 1996.

[Nilsen, 1996c] Kelvin Nilsen. Starting to PERC. Java Developer’s Journal, 1(2):11, July 1996.

[Nilsen, 1998] Kelvin Nilsen. Adding real-time capabilities to the Java programming language. Com-

munications of the ACM, 1998. To appear.

[Nilsen, 2009] Kelvin Nilsen. Differentiating features of the PERC virtual machine. White paper, Aonix,

2009.

[Nishanov and Schupp, 1998a] Gor Nishanov and Sibylle Schupp. Design and implementation of the

fgc garbage collector. Technical Report 98–7, Rensselaer Polytechnic Institute, NY, 1998. Extended

version (1 December 1999) available.

[Nishanov and Schupp, 1998b] Gor Nishanov and Sibylle Schupp. Garbage collection in generic li-

braries. In Peyton Jones and Jones [Peyton Jones and Jones1998], pages 86–96.

[Nishida et al., 1988a] Kenji Nishida, Yasunori Kimura, and A. Matsumoto. Evaluation of the effect of

incremental garbage collection by MRB on FGHC parallel execution performance. ICOT technical

report TR-394, Institute for New Generation Computer Technology, June 1988.

[Nishida et al., 1988b] Kenji Nishida, Yasunori Kimura, A. Matsumoto, and A. Goto. Evaluation of

MRB garbage collection on parallel logic programming architectures. In 7th International Conference

on Logic Programming, Jerusalem, pages 83–95. MIT Press, June 1988.

108



[Nishimura, 2006] Susumu Nishimura. Verifying data-parallel programs with separation logic. In

SPACE 2006 [SPACE 20062006], pages 101–104.

[Nitzberg and Lo, 1991] B. Nitzberg and V. Lo. Distributed shared memory: A survey of issues and

algorithms. IEEE Computer, pages 52–60, 1991.

[Niwa et al., 1986] M. Niwa, M. Yuhara, K. Hayashi, and A. Hattori. Garbage collector with area opti-

mization for FACOM ALPHA. In COMPCON Spring 86: 31st IEEE Computer Society International

Conference. San Francisco, 1986 March 3–6. IEEE Press, 1986.

[Noble et al., 2000] James Noble, Charles Weir, and Duane Bibby. Small Memory Software: Patterns

for Systems with Limited Memory. Addison-Wesley, 2000.

[Norcross et al., 2003] Stuart Norcross, Ron Morrison, David S. Munro, and Henry Detmold. Imple-

menting a family of distributed garbage collectors. In Australasian Computer Science Conference,

(ACSC), pages 161–170, Adelaide, January 2003.

[Norcross, 2003] Stuart Norcross. Deriving Distributed Garbage Collectors for Distributed Termination

Algorithms. PhD thesis, St Andrews University, 2003.

[Nori, 1979] A.K. Nori. A storage reclamation system for an applicative multiprocessor system. Master’s

thesis, University of Utah, Salt Lake City, Utah, 1979.

[Norlinder et al., 2022] Jonas Norlinder, Erik Österlund, and Tobias Wrigstad. Compressed forwarding

tables reconsidered. In Wrigstad and Gonzalez Boix [Wrigstad and Gonzalez Boix2022].

[Norlinder et al., 2024a] Jonas Norlinder, Erik Österlund, David Black-Schaffer, and Tobias Wrigstad.

Mark–Scavenge: Waiting for trash to take itself out. In OOPSLA 2024 [OOPSLA 20242024].

[Norlinder et al., 2024b] Jonas Norlinder, Albert Mingkun Yang, David Black-Schaffer, and To-

bias Wrigstad. Mutator-driven object placement using load barriers. In Ertl and Kirsch

[Ertl and Kirsch2024].

[North and Reppy, 1987] S.C. North and John H. Reppy. Concurrent garbage collection on stock hard-

ware. In Kahn [Kahn1987], pages 113–133.

[Novark et al., 2006] Gene Novark, Trevor Strohman, and Emery D. Berger. Custom object layout for

garbage-collected languages. Technical report, University of Massachusetts, 2006. New England

Programming Languages and Systems Symposium, March, 2006.

[Novark et al., 2009] Gene Novark, Emery Berger, and Benjamin Zorn. Efficiently and precisely locat-

ing memory leaks and bloat. In PLDI 2009 [PLDI 20092009].

[Nunez et al., 2016] Diogenes Nunez, Samuel Z. Guyer, and Emery D. Berger. Prioritized garbage col-

lection: Explicit GC support for software caches. In OOPSLA 2016 [OOPSLA 20162016], pages

695–710.

[Nuth and Halstead, 1989] Peter R. Nuth and Robert H. Halstead. A study of LISP on a multiprocessor

(preliminary version). Lisp Pointers, 2(3–4):15–32, 1989.

[Nuth, 1987] Peter R. Nuth. Communication patterns in a symbolic multiprocessor. Technical Report

MIT/LCS/TR–395, MIT Laboratory for Computer Science, June 1987.

[Nutting, 2017] Ed Nutting. Feasibility of an integrated hardware garbage collector. Bachelor of engi-

neering thesis, University of Bristol, May 2017.

[Nyblom, 2020] Hanna Nyblom. An experimental study on the behavioural tendencies of objects clas-

sified as hot and cold by a Java virtual machine garbage collector. Master’s thesis, KTH School of

Electrical Engineering and Computer Science, 2020.

[Oancea et al., 2009] Cosmin E. Oancea, Alan Mycroft, and Stephen M. Watt. A new approach to par-

allelising tracing algorithms. In Kolodner and Steele [Kolodner and Steele2009], pages 10–19.

[Odaira et al., 2010] Rei Odaira, Kazunori Ogata, Kiyokuni Kawachiya, Tamiya Onodera, and

Toshio Nakatani. Efficient runtime tracking of allocation sites in Java. In Fiuczynski et al.

[Fiuczynski et al.2010], pages 109–120.

[Odersky, 2004] Martin Odersky, editor. 18th European Conference on Object-Oriented Programming,

volume 3086 of Lecture Notes in Computer Science, Oslo, Norway, June 2004. Springer-Verlag.

[Odijk et al., 1989] Eddy Odijk, Martin Rem, and Jean-Claude Syre, editors. Parallel Architectures and

Languages Europe (PARLE), volume 365/366 of Lecture Notes in Computer Science, Eindhoven, The

Netherlands, June 1989. Springer-Verlag.

109



[O’Farrell, 1991] William Gerald O’Farrell. Garbage Collection Algorithms for the Connection Ma-

chine. PhD thesis, Syracuse University, 1991.

[Ogasawara, 2009] Takeshi Ogasawara. NUMA-aware memory manager with dominant-thread-based

copying GC. In OOPSLA 2009 [OOPSLA 20092009], pages 377–390.

[Ogata et al., 2010] Kazunori Ogata, Dai Mikurube, Kiyokuni Kawachiya, Scott Trent, and Tamiya On-

odera. A study of Java’s non-Java memory. In OOPSLA 2010 [OOPSLA 20102010], pages 191–204.

[Ogura et al., 1989] Takeshi Ogura, Junzo Yamada, Shin-Ichiro Yamada, and Masa-Aki Tan-No. 20-

kbit associative memory LSI for artificial intelligence machines. IEEE Journal of Solid-State Circuits,

24(4), August 1989.

[Oiwa, 2009] Yutaka Oiwa. Implementation of the memory-safe full ANSI-C compiler. In PLDI 2009

[PLDI 20092009], pages 259–269.

[Oldehoeft and Allan, 1985] Rod R. Oldehoeft and S.J. Allan. Adaptive exact-fit storage management.

Communications of the ACM, 28(5):506–511, May 1985.

[Older and Rummell, 1992] William J. Older and John A. Rummell. An incremental garbage collector

for WAM-based Prolog. In International Conference on Logic Programming, pages 369–383, Wash-

ington, DC, 1992.

[OMG, 1997] Object Management Group. Garbage Collection of CORBA Objects, 1997. Draft RFP.

[Omohundro, 1991] Stephen M. Omohundro. The Sather Language. ICSI, Berkeley, 1991.

[O’Neill and Burton, 2006] Melissa E. O’Neill and F. Warren Burton. Smarter garbage collection with

simplifiers. In Hosking and Adl-Tabatabai [Hosking and Adl-Tabatabai2006], pages 19–30.

[Onodera, 1993] Tamiya Onodera. A generational and conservative copying collector for hybrid object-

oriented languages. Software: Practice and Experience, 23(10):1077–1093, October 1993.

[Onozawa et al., 2021a] Hiro Onozawa, Tomoharu Ugawa, and Hideya Iwasaki. Fusuma: Double-ended

threaded compaction. In Wrigstad and Wang [Wrigstad and Wang2021].

[Onozawa et al., 2021b] Hiro Onozawa, Tomoharu Ugawa, and Hideya Iwasaki. Fusuma: Double-ended

threaded compaction (full version). Technical report, The University of Electro-Communications,

Japan, 2021. Adds benchmark code and results to their ISMM 2021 paper.

[OOPSLA 1986, 1986] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 21(11), Portland, OR, November 1986. ACM

Press.

[OOPSLA 1987, 1987] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 22(12), Orlando, FL, December 1987. ACM Press.

[OOPSLA 1988, 1988] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 23(11), San Diego, CA, November 1988. ACM

Press.

[OOPSLA 1989, 1989] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 24(10), New Orleans, LA, October 1989. ACM

Press.

[OOPSLA 1990, 1990] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 25(10), Ottawa, Canada, October 1990. ACM

Press.

[OOPSLA 1991, 1991] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 26(11), Phoenix, AZ, November 1991. ACM

Press.

[OOPSLA 1992, 1992] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 27(10), Vancouver, Canada, October 1992. ACM

Press.

[OOPSLA 1993, 1993] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 28(10), Washington, DC, October 1993. ACM

Press.

[OOPSLA 1994, 1994] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 29(10), Portland, OR, October 1994. ACM Press.

110



[OOPSLA 1995, 1995] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 30(10), Austin, TX, October 1995. ACM Press.

[OOPSLA 1996, 1996] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 31(10), San Jose, CA, October 1996. ACM Press.

[OOPSLA 1997, 1997] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 32(10), Atlanta, GA, October 1997. ACM Press.

[OOPSLA 1998, 1998] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 33(10), Vancouver, Canada, October 1998. ACM

Press.

[OOPSLA 1999, 1999] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 34(10), Denver, CO, October 1999. ACM Press.

[OOPSLA 2000, 2000] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 35(10), Minneapolis, MN, October 2000. ACM

Press.

[OOPSLA 2001, 2001] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 36(11), Tampa, FL, November 2001. ACM Press.

[OOPSLA 2002, 2002] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 37(11), Seattle, WA, November 2002. ACM Press.

[OOPSLA 2003, 2003] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 38(11), Anaheim, CA, November 2003. ACM

Press.

[OOPSLA 2004, 2004] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 39(10), Vancouver, Canada, October 2004. ACM

Press.

[OOPSLA 2005, 2005] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 40(10), San Diego, CA, October 2005. ACM

Press.

[OOPSLA 2006, 2006] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 41(10), Portland, OR, October 2006. ACM Press.

[OOPSLA 2007, 2007] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 42(10), Montréal, Canada, October 2007. ACM

Press.

[OOPSLA 2008, 2008] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 43(10), Nashville, TN, October 2008. ACM Press.

[OOPSLA 2009, 2009] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, ACM SIGPLAN Notices 44(10), Orlando, FL, October 2009. ACM Press.

[OOPSLA 2010, 2010] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, Reno, NV, October 2010. ACM Press.

[OOPSLA 2011, 2011] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, Portland, OR, October 2011. ACM Press.

[OOPSLA 2012, 2012] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, Tuscon, AZ, October 2012. ACM Press.

[OOPSLA 2013, 2013] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, Indianapolis, IN, October 2013. ACM Press.

[OOPSLA 2014, 2014] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, Portland, OR, October 2014. ACM Press.

[OOPSLA 2015, 2015] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, Pittsburgh, PA, October 2015. ACM Press.

[OOPSLA 2016, 2016] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, Amsterdam, October 2016. ACM Press.

[OOPSLA 2017, 2017] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, Vancouver, October 2017. ACM Press.

111



[OOPSLA 2018, 2018] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications. ACM Press, October 2018.

[OOPSLA 2020, 2020] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications. ACM Press, November 2020.

[OOPSLA 2021, 2021] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, Chicago, IL, October 2021. ACM Press.

[OOPSLA 2022, 2022] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, Auckland, New Zealand, December 2022. ACM Press.

[OOPSLA 2023, 2023] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, Cascais, Portugal, October 2023. ACM Press.

[OOPSLA 2024, 2024] ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, Pasadena, CA, October 2024. ACM Press.

[Operowsky, 1989] H.L. Operowsky. Optimization and Garbage Collection in Ada Programs on Shared

Memory Computers. PhD thesis, New York Academy of Sciences, New York, 1989.

[OptimizeIt, ] Borland. OptimizeIt. Was at http://www.optimizeit.com.

[Oracle Corporation, 2008] Mission-critical Java. Oracle white paper, Oracle Corporation, October

2008. Describes Oracle JRockit Real Time.

[Oracle JNI, 2015] Java Native Interface 6.0 API Specification, 2015.

[Organick, 1983] E.I. Organick. A Programmer’s View of the Intel 432 System. McGraw-Hill, 1983.

[Orlovich and Rugina, 2006] M. Orlovich and R. Rugina. Memory leak analysis by contradiction. In

International Static Analysis Symposium (SAS), Seoul, South Korea, August 2006.

[Ossia et al., 2002] Yoav Ossia, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner, Victor Leikehman,

and Avi Owshanko. A parallel, incremental and concurrent GC for servers. In PLDI 2002

[PLDI 20022002], pages 129–140.

[Ossia et al., 2004] Yoav Ossia, Ori Ben-Yitzhak, and Marc Segal. Mostly concurrent compaction for

mark-sweep GC. In Bacon and Diwan [Bacon and Diwan2004], pages 25–36.

[Österlund and Löwe, 2012] Erik Österlund and Welf Löwe. Analysis of pure methods using garbage

collection. In Mutlu and Zhang [Mutlu and Zhang2012], pages 48–57.

[Österlund and Löwe, 2015] Erik Österlund and Welf Löwe. Concurrent compaction using a field pin-

ning protocol. In Bond and Hosking [Bond and Hosking2015], pages 56–69.

[Österlund and Löwe, 2016] Erik Österlund and Welf Löwe. Block-free concurrent GC: Stack scanning

and copying. In Zhang and Flood [Zhang and Flood2016], pages 1–12.

[Österlund, 2018] Erik Österlund. JEP 376: ZGC:concurrent thread-stack processing. Technical report,

OpenJDK, 2018.

[Österlund, 2019] Erik Österlund. Going Beyond on-The-Fly Garbage Collection and Improving Self-

Adaption with Enhanced Interfaces. PhD thesis, Linnaeus University, 2019.

[O’Toole and Nettles, 1993a] James W. O’Toole and Scott M. Nettles. Concurrent replicating garbage

collection. Technical Report MIT–LCS–TR–570 and CMU–CS–93–138, MIT and CMU, 1993. Also

LFP94 and OOPSLA93 Workshop on Memory Management and Garbage Collection.

[O’Toole and Nettles, 1993b] James W. O’Toole and Scott M. Nettles. Real-time replication GC: An

implementation report. Technical Report MIT–LCS–TR–568 and CMU–CS–93–136, MIT and CMU,

1993. WWW page says this is unpublished.

[O’Toole et al., 1993] James W. O’Toole, Scott M. Nettles, and David Gifford. Concurrent compacting

garbage collection of a persistent heap. In SOSP 1993 [SOSP 19931993], pages 161–174. Also

MIT/CMU Technical report MIT–LCS–TR–569. The same paper as [Nettles et al., 1993].

[O’Toole, 1990] James W. O’Toole. Garbage collecting locally. Area Exam, Department of Electrical

Engineering and Computer Science, MIT, December 1990.

[O’Toole, 1993] James W. O’Toole. Garbage collecting an object cache. Technical Report

MIT/LCS/TM–485, MIT Press, April 1993.

112



[Ournani et al., 2021] Zakaria Ournani, Mohammed Chakib Belgaid, Romain Rouvoy, Pierre Rust, and

Joël Penhoat. Evaluating the impact of Java virtual machines on energy consumption. In Proceedings

of the 15th ACM / IEEE International Symposium on Empirical Software Engineering and Measure-

ment (ESEM), Bari, Italy, 2021. ACM Press.

[Ovm, ] The Ovm virtual machine. Technical report, Purdue University.

[Owicki and Gries, 1976] Susan Owicki and David Gries. Verifying properties of parallel programs: An

axiomatic approach. Communications of the ACM, 19(5):279–285, May 1976.

[Owicki and Lamport, 1982] Susan Owicki and Leslie Lamport. Proving liveness properties of con-

current programs. ACM Transactions on Programming Languages and Systems, 4(3):455–495, July

1982.

[Owicki, 1981] Susan Owicki. Making the world safe for garbage collection. In POPL 1981

[POPL 19811981], pages 77–86.

[Ozawa et al., 1989] Toshihiro Ozawa, Akira Hosoi, and Akira. Hattori. Generation type garbage col-

lection for parallel logic languages. ICOT technical report TR-512, Institute for New Generation

Computer Technology, October 1989.

[PACT 2018, 2018] 27th International Conference on Parallel Architectures and Compilation Tech-

niques, Limassol, Cyprus, November 2018. ACM Press.

[Page and Hagins, 1986] Ivor P. Page and Jeff Hagins. Improving the performance of buddy systems.

IEEE Transactions on Computers, C-35(5):441–447, May 1986.

[Page, 1982] Ivor P. Page. Optimal fit of arbitrary sized segments. Computer Journal, 25(1), January

1982.

[Page, 1984] Ivor P. Page. Analysis of a cyclic placement scheme. Computer Journal, 27(1):18–25,

January 1984.

[Palacharla and Kessler, 1994] S. Palacharla and R.E. Kessler. Evaluating stream buffers as a secondary

cache replacement. In ISCA 1994 [ISCA 19941994], pages 24–33.

[Palacz et al., 1994] Krzysztof Palacz, Jan Vitek, Grzegorz Czajkowski, and Laurent Daynès. Incom-

municado: efficient communication for isolates. In OOPSLA 1994 [OOPSLA 19941994], pages 262–

274.

[Pallas and Ungar, 1988] Joseph Pallas and David Ungar. Multiprocessor Smalltalk: A case study of a

multiprocessor-based programming environment. In PLDI 1988 [PLDI 19881988], pages 268–277.

[Pan, 1986] Wilson Pan. Designing an operating system kernal based on concurrent garbage collection.

Technical Report 86-04, University of Iowa, Department of Computer Science, 1986.

[Panzer, 1986] Edward J. Panzer. Execution time of marking algorithms during garbage collection in

LISP. Master’s thesis, California State Polytechnic University, 1986.

[Papadakis et al., 2023] Orion Papadakis, Andreas Andronikakis, Nikos Foutris, Michail Papadimitriou,

Athanasios Stratikopoulos, Foivos S. Zakkak, Polychronis Xekalakis, and Christos Kotselidis. A

multifaceted memory analysis of Java benchmarks. In Moss [Moss2023].

[Parents, 1968] R.J. Parents. A simulation oriented memory allocation algorithm. In J.M. Buxton, editor,

Simulation Programming Languages, pages 199–209. North-Holland, Amsterdam, 1968.

[Pareto, 2001] Lars Pareto. Sized region types. In SPACE 2001 [SPACE 20012001].

[Park and Goldberg, 1991] Young Gil Park and Benjamin Goldberg. Reference escape analysis: Opti-

mizing reference counting based on the lifetime of references. In Symposium on Partial Evaluation

and Semantics-Based Program Manipulation, pages 178–189, New Haven, CT, June 1991.

[Park and Goldberg, 1992] Young G. Park and Benjamin Goldberg. Escape analysis on lists. ACM

SIGPLAN Notices, 27(7):116–127, June 1992.

[Park and Goldberg, 1995] Young G. Park and Benjamin Goldberg. Static analysis for optimising refer-

ence counting. Information Processing Letters, 55(4):229–234, August 1995.

[Park et al., 2013] H. Park, C. Lee, S.H. Kim, W.W. Ro, and J. Gaudiot. Mark-sharing: A parallel

garbage collection algorithm of low synchronization overhead. In International Conference on Paral-

lel and Distributed Systems (ICPADS). IEEE Press, 2013.

[Park, 1991] Young Gil Park. Semantic Analyses for Storage Management Optimizations in Functional

Language Implementations. PhD thesis, New York University, 1991.

113



[Parkinson et al., 2024a] Matthew J. Parkinson, Sylvan Clebsch, and Ben Simner. Wait-free weak refer-

ence counting. In Bond et al. [Bond et al.2024], page 8596.

[Parkinson et al., 2024b] Matthew J. Parkinson, Sylvan Clebsch, and Tobias Wrigstad. Reference

counting deeply immutable data structures with cycles: An intellectual abstract. In Bond et al.

[Bond et al.2024], pages 131–141.

[PASTE 1998, 1998] ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering (PASTE), ACM SIGPLAN Notices 33(7), Montréal, Canada, 1998. ACM Press.

[PASTE 2001, 2001] ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering (PASTE), Snowbird, UT, June 2001. ACM Press.

[Patil and Fischer, 1997] Harish G. Patil and Charles N. Fischer. Low-cost, concurrent checking of

pointer and array accesses in C programs. Software: Practice and Experience, 27(12):87–110, De-

cember 1997.

[Patterson, 1983] David A. Patterson. Smalltalk on a RISC: Architectural investigations. Technical

Report CS292R, Computer Science Division, University of California, Berkeley, April 1983.

[Pavlovic et al., 2003] Dusko Pavlovic, Peter Pepper, and Doug Smith. Colimits for concurrent collec-

tors. In Nachum Dershowitz, editor, Verification: Theory and Practice, essays dedicated to Zohar

Manna on the occasion of his 64th birthday, volume 2772 of Lecture Notes in Computer Science,

pages 568–597. Springer-Verlag, 2003.

[Pavlovic et al., 2010a] Dusko Pavlovic, Peter Pepper, and Douglas R. Smith. Formal derivation of con-

current garbage collectors. In 10th International Conference on Mathematics of Program Construction

(MPC), number 6120 in Lecture Notes in Computer Science, pages 353–376, Québec City, Canada,

June 2010. Springer-Verlag.

[Pavlovic et al., 2010b] Dusko Pavlovic, Peter Pepper, and Douglas R. Smith. Formal derivation of

concurrent garbage collectors. Technical report, Cornell University, 2010. The short version of this

paper appeared in MPC 2010.

[Pawlam, 1999] Monica Pawlam. Reference Objects and Garbage Collection, 1999.

[Payer and Ana, 2007] Hannes Payer and Ana. A compacting real-time memory management system.

Master’s thesis, University of Salzburg, 2007.

[Payer and Sartor, 2018] Hannes Payer and Jennifer Sartor, editors. 17th ACM SIGPLAN International

Symposium on Memory Management, Philadelphia, June 2018. ACM Press.

[Paz and Petrank, 2007] Harel Paz and Erez Petrank. Using prefetching to improve reference-counting

garbage collectors. In CC 2007 [CC 20072007], pages 48–63.

[Paz et al., 2003] Harel Paz, David F. Bacon, Elliot K. Kolodner, Erez Petrank, and V.T. Rajan. Efficient

on-the-fly cycle collection. Technical Report CS–2003–10, Technion University, 2003.

[Paz et al., 2005a] Harel Paz, Erez Petrank, David F. Bacon, Elliot K. Kolodner, and V.T. Rajan. An

efficient on-the-fly cycle collection. In CC 2005 [CC 20052005], pages 156–171.

[Paz et al., 2005b] Harel Paz, Erez Petrank, and Stephen M. Blackburn. Age-oriented concurrent

garbage collection. In CC 2005 [CC 20052005], pages 121–136.

[Paz et al., 2007] Harel Paz, David F. Bacon, Elliot K. Kolodner, Erez Petrank, and V.T. Rajan. An

efficient on-the-fly cycle collection. ACM Transactions on Programming Languages and Systems,

29(4):1–43, August 2007.

[Paz, 2006] Harel Paz. Efficient Memory Management for Servers. PhD thesis, Technion, Israel Institute

of Technology, 2006.

[Pearlmutter, 1996] B. Pearlmutter. Garbage collection with pointers to individuals cells. Communica-

tions of the ACM, 39(12), December 1996.

[Peck, 1971] J.E.L. Peck, editor. Algol–68 implementation. North-Holland, Amsterdam, 1971.

[Pedersen and Schoeberl, 2006] Rasmus Pedersen and Martin Schoeberl. Exact roots for a real-time

garbage collector. In 4th International Workshop on Java Technologies for Real-time and Embedded

Systems, pages 77–84, 2006.

[Peir et al., 1998] Jih-Kwon Peir, Yongjoon Lee, and Windsor W. Hsu. Capturing dynamic memory

reference behavior with adaptive cache topology. In ASPLOS 1998 [ASPLOS 19981998], pages

250–250.

114



[Peng and Sohi, 1989] Chih-Jui Peng and Gurindar S. Sohi. Cache memory design considerations to

support languages with dynamic heap allocation. Technical Report 860, Computer Sciences Depart-

ment, University of Wisconsin-Madison, July 1989.

[Pepels et al., 1988] E.J.H. Pepels, M.C.J.D. van Eekelen, and M.J. Plasmeijer. A cyclic reference count-

ing algorithm and its proof. Technical Report 88–10, Computing Science Department, University of

Nijmegen, 1988.

[Per-øAke Larson and Krishnan, 1998] Paul Per-øAke Larson and Murali Krishnan. Memory allocation

for long-running server applications. In Peyton Jones and Jones [Peyton Jones and Jones1998], pages

176–185.

[Pereira and Aycock, 2002] D. Pereira and J. Aycock. Dynamic region inference. Technical Report 2002

709 12, University of Calgary, 2002.

[Persson, 1999] Patrik Persson. Live memory analysis for garbage collection in embedded systems. In

LCTES 1999 [LCTES 19991999], pages 45–54.

[Persson, 2006a] Mattias Persson. Java Technology, IBM style: Garbage Collection Policies, May 2006.

Garbage collection in the IBM SDK 5.0.

[Persson, 2006b] Mattias Persson. Java technology, IBM style: Garbage collection policies, part 1. IBM

developerWorks, 2006.

[Peterson and Norman, 1977] James L. Peterson and Theodore A. Norman. Buddy systems. Communi-

cations of the ACM, 20(6):421–431, 1977.

[Peterson et al., 2003] Leaf Peterson, Robert Harper, Karl Crary, and Frank Pfenning. A type theory for

memory allocation and data abstraction. In POPL 2003 [POPL 20032003].

[Petit-Bianco, 1998] Alexandre Petit-Bianco. Java garbage collection for real-time systems. Dr. Dobb’s

Journal, October 1998.

[Petrank and Cheng, 2013] Erez Petrank and Perry Cheng, editors. 12th ACM SIGPLAN International

Symposium on Memory Management, Seattle, WA, June 2013. ACM Press.

[Petrank and Kolodner, 2004] Erez Petrank and Elliot K. Kolodner. Parallel copying garbage collection

using delayed allocation. Parallel Processing Letters, 14(2):271–286, June 2004.

[Petrank and Lea, 2011] Erez Petrank and Doug Lea, editors. 7th ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments, Newport Beach, CA, March 2011. ACM Press.

[Petrank and Moss, 2006] Erez Petrank and J. Eliot B. Moss, editors. 5th ACM SIGPLAN International

Symposium on Memory Management, Ottawa, Canada, June 2006. ACM Press.

[Petrank and Rawitz, 2002a] Erez Petrank and Dror Rawitz. The hardness of cache conscious data place-

ment. In POPL 2002 [POPL 20022002], pages 101–112.

[Petrank and Rawitz, 2002b] Erez Petrank and Dror Rawitz. The hardness of cache conscious data place-

ment. In POPL 2002 [POPL 20022002]. Extended Abstract.

[Petrank and Rawitz, 2003] Erez Petrank and Dror Rawitz. The hardness of cache conscious data place-

ment. Technical report, Technion — Israel Institute of Technology, Haifa, Israel, 2003.

[Petrank et al., 2014] Erez Petrank, Dan Tsafrir, and Martin Hirzel, editors. 10th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environments, Salt Lake City, UT,

March 2014. ACM Press.

[Petrank et al., 2017] Erez Petrank, Dan Tsafrir, and Martin Hirzel, editors. 13th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environments, Xi’an, China, March

2017. ACM Press.

[Petricek and Syme, 2010] Tomas Petricek and Don Syme. Collecting Hollywood’s garbage: Avoiding

space-leaks in composite events. In Vitek and Lea [Vitek and Lea2010], pages 53–62.

[Petrov and Vechev, 2002] Peter D. Petrov and Martin T. Vechev. Embedded JVM concurrent garbage

collector internals. In IASTED Networks, Parallel and Distributed Processing, and Applications

(NPDPA’02), 2002.

[Peyton Jones and Jones, 1998] Simon L. Peyton Jones and Richard Jones, editors. 1st ACM SIG-

PLAN International Symposium on Memory Management, ACM SIGPLAN Notices 34(3), Vancouver,

Canada, October 1998. ACM Press.

115



[Peyton Jones and Ramsey, 1998] Simon L. Peyton Jones and Norman Ramsey. Machine-independent

support for garbage collection, debugging, exception handling and concurrency. Technical Report

MSR-TR-1998-1, Microsoft, January 1998.

[Peyton Jones et al., 1991] Simon L. Peyton Jones, G. Hutton, and C.K. Hols, editors. 3rd Annual Glas-

gow Workshop on Functional Programming. Springer-Verlag, 1991.

[Peyton Jones et al., 1992] Simon L. Peyton Jones, G. Hutton, and C.K. Hols, editors. 4th Annual Glas-

gow Workshop on Functional Programming, Workshops in Computer Science. Springer-Verlag, 1992.

[Peyton Jones et al., 1999] Simon L. Peyton Jones, Norman Ramsey, and Fermin Reig. C--: a portable

assembly language that supports garbage collection. In International Conference on Principles and

Practice of Declarative Programming, September 1999.

[Peyton Jones et al., 2000] Simon L. Peyton Jones, Simon Marlow, and Conal Elliott. Stretching the

storage manager: Weak pointers and stable names in Haskell. In 11th International Workshop on the

Implementation of Functional Languages, volume 1868 of Lecture Notes in Computer Science, pages

37–58. Springer-Verlag, 2000.

[Peyton Jones, 1992] Simon L. Peyton Jones. Implementing lazy functional languages on stock hard-

ware: The Spineless Tagless G-machine. Journal of Functional Programming, 2(2):127–202, April

1992.

[Pfalz, 1977] J.L. Pfalz. Computer Data Structures. McGraw-Hill, 1977.

[Phalke and Gopinath, 1995] Vidyadhar Phalke and B. Gopinath. A miss history-based architecture for

cache prefetching. In Baker [Baker1995b], pages 381–398.

[Phan et al., 2008] Quan Phan, Gerda Janssens, and Zoltan Somogyi. Runtime support for region-based

memory management in Mercury. In Jones and Blackburn [Jones and Blackburn2008], pages 61–70.

[Philippsen, 2000] Michael Philippsen. Cooperating distributed garbage collectors for clusters and be-

yond. Concurrency and Computation: Practice and Experience, 12(7):595–610, May 2000. Also

published in 8th Int. Workshop on Compilers for Parallel Computers CPC’2000, Aussois, France.

[Phipps, 1999] G. Phipps. Comparing observed bug and productivity rates for Java and C++. Software:

Practice and Experience, 29(4):345–358, April 1999.

[Pieper, 1993] Pieper. Compiler techniques for managing data motion. Technical Report CMU-CS-93-

217, Carnegie Mellon University, December 1993.

[Pimás et al., 2017] Javier Pimás, Javier Burroni, Jean Baptiste Arnaud, and Stefan Marr. Garbage

collection and efficiency in dynamic metacircular runtimes: An experience report. In DLS 2017

[DLS 20172017], pages 39–50.

[Pique, 1992] Jean François Pique. Dynamic revision of choice points during garbage collection in

Prolog. In Bekkers and Cohen [Bekkers and Cohen1992], pages 330–343.

[Piquer, 1990a] José M. Piquer. Sharing date structures in distributed Lisp. In High Performance and

Parallel Computing in Lisp Workshop, London, November 1990.

[Piquer, 1990b] José M. Piquer. Un GC parallèle pour un Lisp distribué. Journées francophones des

langages applicatifs, January 1990. Also Bigre 69, July 1990.

[Piquer, 1991a] José M. Piquer. Indirect reference counting: A distributed garbage collection algorithm.

In Aarts et al. [Aarts et al.1991], pages 150–165.

[Piquer, 1991b] José M. Piquer. Parallélisme et Distribution en Lisp. PhD thesis, Ecole Polytecnique,

Massy, France, January 1991.

[Piquer, 1995] José M. Piquer. Indirect mark and sweep: A distributed GC. In Baker [Baker1995b],

pages 267–282.

[Piquer, 1996] José M. Piquer. Indirect distributed garbage collection: Handling object migration. ACM

Transactions on Programming Languages and Systems, 18(5):615–647, September 1996.

[Pirinen, 1998] Pekka P. Pirinen. Barrier techniques for incremental tracing. In Peyton Jones and Jones

[Peyton Jones and Jones1998], pages 20–25.

[Pirkelbauer et al., 2017] Peter Pirkelbauer, Amalee Wilson, Hadia Ahmed, and Reed Milewicz. Mem-

ory management for concurrent data structures on hardware transactional memory. In TRANSACT

2017 [TRANSACT 20172017].

116



[Pittomvils et al., 1985] Edwin Pittomvils, Maurice Bruynooghe, and Yves D. Willems. Towards a real

time garbage collector for PROLOG. In 1985 Symposium on Logic Programming. Boston, 1985 Jul

15–18, pages 185–198. IEEE Press, 1985.

[Piumarta et al., 1995] Ian Piumarta, Marc Shapiro, and Paulo Ferreira. Garbage collection in distributed

object systems. In Workshop on Reliability and Scalability in Distributed Object Systems, OOP-

SLA’95, Austin, TX, October 1995.

[Piumarta, 1995] Ian Piumarta. Ssp chains – from mobile objects to mobile computing (position paper).

In ECOOP Workshop on Mobility, 1995, 1995.

[Pixley, 1988] C. Pixley. An incremental garbage collection algorithm for multi-mutator systems. Dis-

tributed Computing, 3(1):41–50, 1988.

[Pizlo and Vitek, 2006] Filip Pizlo and Jan Vitek. An empirical evaluation of memory management

alternatives for real-time Java. In 27th IEEE Real-Time Systems Symposium (RTSS), 2006.

[Pizlo and Vitek, 2008] Filip Pizlo and Jan Vitek. Memory management for real-time Java: State of the

art. In ISORC 2008 [ISORC 20082008], pages 248–254.

[Pizlo et al., 2004] Filip Pizlo, J.Fox, David Holmes, and Jan Vitek. Real-time java scoped memory:

Design patterns, semantics. In ISORC 2004 [ISORC 20042004], pages 101–112.

[Pizlo et al., 2007a] Filip Pizlo, Daniel Frampton, Erez Petrank, and Bjarne Steensgard. Stopless: A

real-time garbage collector for multiprocessors. In Morrisett and Sagiv [Morrisett and Sagiv2007],

pages 159–172.

[Pizlo et al., 2007b] Filip Pizlo, Antony L. Hosking, and Jan Vitek. Hierarchical real-time garbage col-

lection. In LCTES 2007 [LCTES 20072007], pages 123–133.

[Pizlo et al., 2008a] Filip Pizlo, Erez Petrank, and Bjarne Steensgaard. Path specialization: Reducing

phased execution overheads. In Jones and Blackburn [Jones and Blackburn2008], pages 81–90.

[Pizlo et al., 2008b] Filip Pizlo, Erez Petrank, and Bjarne Steensgaard. A study of concurrent real-time

garbage collectors. In Gupta and Amarasinghe [Gupta and Amarasinghe2008], pages 33–44.

[Pizlo et al., 2010a] Filip Pizlo, Lukasz Ziarek, Ethan Blanton, Petr Maj, and Jan Vitek. High-level

programming of embedded hard real-time devices. In EuroSys 2010 [EuroSys 20102010], pages 69–

82.

[Pizlo et al., 2010b] Filip Pizlo, Lukasz Ziarek, Petr Maj, Antony L. Hosking, Ethan Blanton, and Jan

Vitek. Schism: Fragmentation-tolerant real-time garbage collection. In PLDI 2010 [PLDI 20102010],

pages 146–159.

[Pizlo, 2017] Filip Pizlo. Introducing Riptide: WebKit’s retreating wavefront concurrent garbage collec-

tor. Technical report, Apple, January 2017.

[Plainfoseé and Shapiro, 1992] David Plainfoseé and Marc Shapiro. A distributed GC in an object-

support operating system. In Cabrera et al. [Cabrera et al.1992].

[Plainfoseé and Shapiro, 1994] David Plainfoseé and Marc Shapiro. A survey of distributed garbage

collection techniques. In 2nd Closed BROADCAST Workshop, Bruxelles (Belgique), November 1994.

Broadcast Basic Research Action. Superseded by [Plainfossé and Shapiro, 1995].

[Plainfossé and Shapiro, 1991a] David Plainfossé and Marc Shapiro. A distributed garbage collection as

an operating system component. In Wilson and Hayes [Wilson and Hayes1991a].

[Plainfossé and Shapiro, 1991b] David Plainfossé and Marc Shapiro. Distributed garbage collection in

the system is good. In Cabrera et al. [Cabrera et al.1991], pages 94–99.

[Plainfossé and Shapiro, 1992] David Plainfossé and Marc Shapiro. Experience with fault-tolerant

garbage collection in a distributed Lisp system. In Bekkers and Cohen [Bekkers and Cohen1992],

pages 116–133.

[Plainfossé and Shapiro, 1995] David Plainfossé and Marc Shapiro. A survey of distributed garbage

collection techniques. In Baker [Baker1995b], pages 211–249.

[Plainfossé, 1994] David Plainfossé. Distributed Garbage Collection and Reference Management in the

Soul Object Support System. PhD thesis, Université Paris-6, Pierre-et-Marie-Curie, Paris (France),

June 1994. Available from INRIA as TU-281, ISBN-2-7261-0849-0.

117



[Plakal and Fischer, 2000] Manoj Plakal and Charles N. Fischer. Concurrent garbage collection using

program slices on multithreaded processors. In Chambers and Hosking [Chambers and Hosking2000],

pages 94–100.

[Plauger, 1994] P.J. Plauger. Managing the heap. Journal of C Language Translation, 6(1), September

1994.

[PLDI 1988, 1988] ACM SIGPLAN Conference on Programming Language Design and Implementation,

ACM SIGPLAN Notices 23(7), Atlanta, June 1988. ACM Press.

[PLDI 1989, 1989] ACM SIGPLAN Conference on Programming Language Design and Implementation,

ACM SIGPLAN Notices 24(7), Portland, OR, June 1989. ACM Press.

[PLDI 1990, 1990] ACM SIGPLAN Conference on Programming Language Design and Implementation,

ACM SIGPLAN Notices 25(6), White Plains, NY, June 1990. ACM Press.

[PLDI 1991, 1991] ACM SIGPLAN Conference on Programming Language Design and Implementation,

ACM SIGPLAN Notices 26(6), Toronto, Canada, June 1991. ACM Press.

[PLDI 1992, 1992] ACM SIGPLAN Conference on Programming Language Design and Implementation,

ACM SIGPLAN Notices 27(7), San Francisco, CA, June 1992. ACM Press.

[PLDI 1993, 1993] ACM SIGPLAN Conference on Programming Language Design and Implementation,

ACM SIGPLAN Notices 28(6), Albuquerque, NM, June 1993. ACM Press.

[PLDI 1994, 1994] ACM SIGPLAN Conference on Programming Language Design and Implementation,

ACM SIGPLAN Notices 29(6), Orlando, FL, June 1994. ACM Press.

[PLDI 1995, 1995] ACM SIGPLAN Conference on Programming Language Design and Implementation,

ACM SIGPLAN Notices 30(6), La Jolla, CA, June 1995. ACM Press.

[PLDI 1996, 1996] ACM SIGPLAN Conference on Programming Language Design and Implementation,

ACM SIGPLAN Notices 31(5), Philadelphia, PA, May 1996. ACM Press.

[PLDI 1997, 1997] ACM SIGPLAN Conference on Programming Language Design and Implementation,

ACM SIGPLAN Notices 32(5), Las Vegas, NV, June 1997. ACM Press.

[PLDI 1998, 1998] ACM SIGPLAN Conference on Programming Language Design and Implementation,

ACM SIGPLAN Notices 33(5), Montreal, Canada, June 1998. ACM Press.

[PLDI 1999, 1999] ACM SIGPLAN Conference on Programming Language Design and Implementation,

ACM SIGPLAN Notices 34(5), Atlanta, GA, May 1999. ACM Press.

[PLDI 2000, 2000] ACM SIGPLAN Conference on Programming Language Design and Implementation,

ACM SIGPLAN Notices 35(5), Vancouver, Canada, June 2000. ACM Press.

[PLDI 2001, 2001] ACM SIGPLAN Conference on Programming Language Design and Implementation,

ACM SIGPLAN Notices 36(5), Snowbird, UT, June 2001. ACM Press.

[PLDI 2002, 2002] ACM SIGPLAN Conference on Programming Language Design and Implementation,

ACM SIGPLAN Notices 37(5), Berlin, Germany, June 2002. ACM Press.

[PLDI 2003, 2003] ACM SIGPLAN Conference on Programming Language Design and Implementation,

ACM SIGPLAN Notices 38(5), San Diego, CA, June 2003. ACM Press.

[PLDI 2009, 2009] ACM SIGPLAN Conference on Programming Language Design and Implementation,

ACM SIGPLAN Notices 44(6), Dublin, Ireland, June 2009. ACM Press.

[PLDI 2010, 2010] ACM SIGPLAN Conference on Programming Language Design and Implementation,

ACM SIGPLAN Notices 45(6), Toronto, Canada, June 2010. ACM Press.

[PLDI 2011, 2011] ACM SIGPLAN Conference on Programming Language Design and Implementation,

ACM SIGPLAN Notices 46(6), San Jose, CA, June 2011. ACM Press.

[PLDI 2012, 2012] ACM SIGPLAN Conference on Programming Language Design and Implementation,

Beijing, China, June 2012. ACM Press.

[PLDI 2013, 2013] ACM SIGPLAN Conference on Programming Language Design and Implementation,

Seattle, WA, June 2013. ACM Press.

[PLDI 2015, 2015] ACM SIGPLAN Conference on Programming Language Design and Implementation,

Portland, OR, June 2015. ACM Press.

[PLDI 2016, 2016] ACM SIGPLAN Conference on Programming Language Design and Implementation,

Santa Barbara, CA, June 2016. ACM Press.

118



[PLDI 2018, 2018] ACM SIGPLAN Conference on Programming Language Design and Implementation,

Philadelphia, PA, June 2018. ACM Press.

[PLDI 2019, 2019] ACM SIGPLAN Conference on Programming Language Design and Implementation,

Phoeniz, AZ, June 2019. ACM Press.

[PLDI 2020, 2020] ACM SIGPLAN Conference on Programming Language Design and Implementation,

London, June 2020. ACM Press.

[PLDI 2021, 2021] ACM SIGPLAN Conference on Programming Language Design and Implementation,

London, June 2021. ACM Press.

[PLDI 2022, 2022] Proceedings of the 43rd ACM SIGPLAN Conference on Programming Language

Design and Implementation, San Diego, CA, June 2022. ACM Press.

[PLDI 2023, 2023] Proceedings of the 44th ACM SIGPLAN Conference on Programming Language De-

sign and Implementation, Orlando, FL, June 2023. ACM Press.

[PLDI 2024, 2024] Proceedings of the 45th ACM SIGPLAN Conference on Programming Language De-

sign and Implementation, Copenhagen, Denmark, June 2024. ACM Press.

[PLDI 2025, 2025] Proceedings of the 46th ACM SIGPLAN Conference on Programming Language De-

sign and Implementation, Seoul, Korea, June 2025. ACM Press.

[Plyukhin et al., 2025] Dan Plyukhin, Gul Agha, and Fabrizio Montesi. CRGC: Fault-recovering Actor

garbage collection in Pekko. In PLDI 2025 [PLDI 20252025].

[PODC 1983, 1983] ACM SIGPLAN Symposium on Principles of Distributed Computing. ACM Press,

August 1983.

[PODC 1992, 1992] 11th ACM SIGPLAN Symposium on Principles of Distributed Computing, Vancou-

ver, Canada, August 1992. ACM Press.

[PODC 1995, 1995] 14th ACM SIGPLAN Symposium on Principles of Distributed Computing. ACM

Press, August 1995.

[PODC 1997, 1997] 16th ACM SIGPLAN Symposium on Principles of Distributed Computing, Santa

Barbara, CA, August 1997. ACM Press.

[PODC 2000, 2000] 19th ACM SIGPLAN Symposium on Principles of Distributed Computing. ACM

Press, July 2000.

[PODC 2001, 2001] 20th ACM SIGPLAN Symposium on Principles of Distributed Computing, Newport,

Rhode Island, August 2001. ACM Press.

[Pollack et al., 1982] Fred J. Pollack, George W. Cox, Dan W. Hammerstein, Kevin C. Kahn, Konrad K.

Lai, and Justin R. Rattner. Supporting Ada memory management in the iAPX–432. In ASPLOS 1982

[ASPLOS 19821982], pages 117–131.

[Pomerene et al., 1985a] J. Pomerene, T.R. Puzak, R.N. Rechtshaffen, and F.J. Sparacio. Shadow struc-

ture to perform D-line prefetching. IBM Technical Disclosure Bulletin, 27(5):2987–2988, 1985.

[Pomerene et al., 1985b] J.H. Pomerene, T.R. Puzak, R.N. Rechtshaffen, and F.J. Sparacio. Prefetching

confirmation array. IBM Technical Disclosure Bulletin, 27(5):2786–2787, 1985.

[Pomerene et al., 1985c] J.H. Pomerene, T.R. Puzak, R.N. Rechtshaffen, and F.J. Sparacio. Prefetching

pacing buffer to reduce cache misses. IBM Technical Disclosure Bulletin, 27(5):2773–2774, 1985.

[Poon and Peyton Jones, 1985] E.K.Y. Poon and Simon L. Peyton Jones. Cache memories in a func-

tional programming environment. In Aspenäs Workshop on Implementation of Functional Languages,

Göteborg, 1985. Also UCL Computer Science Internal Note 1680.

[POPL 1981, 1981] 8th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

Williamsburg, VA, January 1981. ACM Press.

[POPL 1982, 1982] 9th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

Albuquerque, NM, January 1982. ACM Press.

[POPL 1983, 1983] 10th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

Austin, TX, January 1983. ACM Press.

[POPL 1984, 1984] 11th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

Salt Lake City, UT, January 1984. ACM Press.

119



[POPL 1985, 1985] Twelfth Annual ACM SIGPLAN Symposium on Principles of Programming Lan-

guages, New Orleans, LA, January 1985. ACM Press.

[POPL 1986, 1986] 13th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

St Petersburg Beach, FL, January 1986. ACM Press.

[POPL 1987, 1987] 14th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

Munich, Germany, January 1987. ACM Press.

[POPL 1988, 1988] 15th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

San Diego, CA, January 1988. ACM Press.

[POPL 1989, 1989] 16th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

Austin, TX, January 1989. ACM Press.

[POPL 1990, 1990] 17th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

San Francisco, CA, January 1990. ACM Press.

[POPL 1991, 1991] 18th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

Orlando, FL, January 1991. ACM Press.

[POPL 1992, 1992] 19th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

Albuquerque, NM, January 1992. ACM Press.

[POPL 1993, 1993] 20th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

Charleston, SC, January 1993. ACM Press.

[POPL 1994, 1994] 21st Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

Portland, OR, January 1994. ACM Press.

[POPL 1995, 1995] 22nd Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

San Francisco, CA, January 1995. ACM Press.

[POPL 1996, 1996] 23rd Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

St Petersburg Beach, FL, January 1996. ACM Press.

[POPL 1997, 1997] 24th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

Paris, France, January 1997. ACM Press.

[POPL 1998, 1998] 25th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

San Diego, CA, January 1998. ACM Press.

[POPL 1999, 1999] Twenty-sixth Annual ACM SIGPLAN Symposium on Principles of Programming

Languages, San Antonio, TX, January 1999. ACM Press.

[POPL 2000, 2000] Twenty-sixth Annual ACM SIGPLAN Symposium on Principles of Programming

Languages, Boston, MA, January 2000. ACM Press.

[POPL 2001, 2001] Twenty-eighth Annual ACM SIGPLAN Symposium on Principles of Programming

Languages, ACM SIGPLAN Notices 36(3), London, England, January 2001. ACM Press.

[POPL 2002, 2002] Twenty-ninth Annual ACM SIGPLAN Symposium on Principles of Programming

Languages, ACM SIGPLAN Notices 37(1), Portland, OR, January 2002. ACM Press.

[POPL 2003, 2003] 30th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

ACM SIGPLAN Notices 38(1), New Orleans, LA, January 2003. ACM Press.

[POPL 2004, 2004] 31st Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

ACM SIGPLAN Notices 39(1), Venice, Italy, January 2004. ACM Press.

[POPL 2005, 2005] 32nd Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

ACM SIGPLAN Notices 40(1), Long Beach, CA, January 2005. ACM Press.

[POPL 2006, 2006] 33rd Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

ACM SIGPLAN Notices 41(1), Charleston, SC, January 2006. ACM Press.

[POPL 2007, 2007] 34th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

ACM SIGPLAN Notices 42(1), Nice, France, January 2007. ACM Press.

[POPL 2008, 2008] 35th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

ACM SIGPLAN Notices 43(1), San Francisco, CA, January 2008. ACM Press.

[POPL 2009, 2009] 36th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

Savannah, GA, January 2009. ACM Press.

120



[POPL 2010, 2010] 37th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

Madrid, January 2010. ACM Press.

[POPL 2011, 2011] 38th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

Austin, TX, January 2011. ACM Press.

[POPL 2012, 2012] 39th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

Philadelphia, PA, January 2012. ACM Press.

[POPL 2019, 2019] 46th Annual ACM SIGPLAN Symposium on Principles of Programming Languages.

ACM Press, January 2019.

[POPL 2021, 2021] 48th Annual ACM SIGPLAN Symposium on Principles of Programming Languages.

ACM Press, January 2021.

[POPL 2022, 2022] 49th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

Philadelphia, PA, January 2022. ACM Press.

[POPL 2023, 2023] 50th Annual ACM SIGPLAN Symposium on Principles of Programming Languages,

Boston, MA, January 2023. ACM Press.

[Portillo-Dominguez et al., 2014] A. Omar Portillo-Dominguez, Miao Wang, D. Magoni, P. Perry, and

J. Murphy. Load balancing of Java applications by forecasting garbage collections. In 13th Inter-

national Symposium on Parallel and Distributed Computing (ISPDC), pages 127–134. IEEE Press,

2014.

[Portillo-Dominguez et al., 2015] A. Omar Portillo-Dominguez, Miao Wang, J. Murphy, and D. Mag-

oni. Adaptive GC-aware load balancing strategy for high-assurance Java distributed systems. In 16th

International Symposium on High Assurance Systems Engineering (HASE), pages 68–75, 2015.

[Portillo-Dominguez et al., 2016] A. Omar Portillo-Dominguez, Philip Perry, Damien Magoni, Miao

Wang, and John Murphy. TRINI: An adaptive load balancing strategy based on garbage collection for

clustered Java systems. Software: Practice and Experience, 46(12):1705–1733, December 2016.

[Poss et al., 2012] Raphael Poss, Clemens Grelck, Stephan Herhut, and Sven-Bodo Scholz. Lazy ref-

erence counting for the Microgrid. In Proceedings of the 16th Workshop on on Interaction between

Compilers and Computer Architectures (INTERACT’16), pages 41–48. IEEE Press, 2012.

[Potanin et al., 2005] Alex Potanin, James Noble, Marcus Frean, and Robert Biddle. Scale-free geome-

try in OO programs. Communications of the ACM, 48(5):99–103, May 2005.

[Powers et al., 2019] Bobby Powers, David Tench, Emery D. Berger, and Andrew McGregor. Mesh:

Compacting memory management for C/C++ applications. In PLDI 2019 [PLDI 20192019].

[Pozo and Miller, 2000] Roldan Pozo and Bruce Miller. SciMark 2.0 Benchmarks, 2000.

[PPOPP 1990, 1990] 2nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, ACM SIGPLAN Notices 25(3), Seattle, WA, March 1990. ACM Press.

[PPOPP 1991, 1991] 3rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, ACM SIGPLAN Notices 26(7), Williamsburg, VA, April 1991. ACM Press.

[PPOPP 1993, 1993] 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, ACM SIGPLAN Notices 28(7), San Diego, CA, May 1993. ACM Press.

[PPOPP 1995, 1995] 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, ACM SIGPLAN Notices 30(8), Santa Barbara, CA, July 1995. ACM Press.

[PPOPP 1997, 1997] 6th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, ACM SIGPLAN Notices 32(7), Las Vegas, NV, June 1997. ACM Press.

[PPOPP 1999, 1999] 7th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, ACM SIGPLAN Notices 34(8), Atlanta, GA, May 1999. ACM Press.

[PPOPP 2001, 2001] 8th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, ACM SIGPLAN Notices 36(7), Snowbird, UT, June 2001. ACM Press.

[PPOPP 2007, 2007] ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

San Jose, CA, March 2007. ACM Press.

[PPOPP 2008, 2008] ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

Salt Lake City, UT, February 2008. ACM Press.

121



[PPOPP 2018, 2018] ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

Vienna, February 2018. ACM Press.

[PPOPP 2021, 2021] 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming. ACM Press, February 2021.

[PPPJ 2002, 2002] ACM International Symposium on Principles and Practice of Programming in Java,

volume 25 of ACM International Conference Proceeding Series, Dublin, Ireland, June 2002.

[PPPJ 2003, 2003] ACM International Symposium on Principles and Practice of Programming in Java,

volume 42 of ACM International Conference Proceeding Series, Kilkenny City, Ireland, June 2003.

[PPPJ 2004, 2004] ACM International Symposium on Principles and Practice of Programming in Java,

volume 91 of ACM International Conference Proceeding Series, Las Vegas, NV, June 2004.

[PPPJ 2006, 2006] ACM International Symposium on Principles and Practice of Programming in Java,

volume 178 of ACM International Conference Proceeding Series, Mannheim, Germany, September

2006.

[PPPJ 2007, 2007] ACM International Symposium on Principles and Practice of Programming in Java,

volume 272 of ACM International Conference Proceeding Series, Lisbon, Portugal, September 2007.

[PPPJ 2008, 2008] ACM International Symposium on Principles and Practice of Programming in Java,

volume 347 of ACM International Conference Proceeding Series, Modena, Italy, September 2008.

[PPPJ 2010, 2010] ACM International Symposium on Principles and Practice of Programming in Java,

volume 347 of ACM International Conference Proceeding Series, Vienna, Austria, September 2010.

[PPPJ 2011, 2011] ACM International Symposium on Principles and Practice of Programming in Java,

Kongens Lyngby, Denmark, August 2011.

[PPPJ 2013, 2013] ACM International Symposium on Principles and Practice of Programming in Java,

volume 347 of ACM International Conference Proceeding Series, Stuttgart, Germany, September

2013.

[PPPJ 2015, 2015] ACM International Symposium on Principles and Practice of Programming in Java.

ACM, September 2015.

[PPPJ 2016, 2016] ACM International Symposium on Principles and Practice of Programming in Java,

Lugano, Switzerland, August 2016. ACM.

[Prakash et al., 1994] S. Prakash, Y.-H. Lee, and T. Johnson. A nonblocking algorithm for shared queues

using compare-and-swap. IEEE Transactions on Computers, 43(5):548–559, May 1994.

[Prensa Nieto and Esparza, 2000] Leonor Prensa Nieto and Javier Esparza. Verifying single and multi-

mutator garbage collectors with Owicki-Gries in Isabelle/HOL. In M. Nielsen and B. Rovan, editors,

Mathematical Foundations of Computer Science (MFCS 2000), volume 1893 of Lecture Notes in

Computer Science, pages 619–628, Bratislava, Slovakia, August/September 2000. Springer-Verlag.

[Preußer et al., 2010] Thomas Preußer, Peter Reichel, and Rainer Spallek. An embedded GC module

with support for multiple mutators and weak references. Architecture of Computing Systems (ARCS

2010), pages 25–36, 2010.

[Price et al., 2003] D. Price, A. Rudys, and D. Wallach. Garbage collector memory accounting in

language-based systems. In IEEE Symposium on Security and Privacy, pages 263–274, Oakland,

CA, May 2003. IEEE Computer Society Press.

[Printezis and Cutts, 1996] Tony Printezis and Quentin Cutts. Measuring the allocation rate of Napier88.

Technical report, Department of Computer Science, University of Glasgow, November 1996.

[Printezis and Detlefs, 2000] Tony Printezis and David Detlefs. A generational mostly-concurrent

garbage collector. In Chambers and Hosking [Chambers and Hosking2000], pages 143–154.

[Printezis and Garthwaite, 2002] Tony Printezis and Alex Garthwaite. Visualising the Train garbage

collector. In Boehm and Detlefs [Boehm and Detlefs2002], pages 100–105.

[Printezis and Jones, 2002a] Tony Printezis and Richard Jones. GCspy: An adaptable heap visualisation

framework. Technical Report 5–02, University of Kent, March 2002. Also University of Glasgow

Technical Report.

[Printezis and Jones, 2002b] Tony Printezis and Richard Jones. GCspy: An adaptable heap visualisation

framework. In OOPSLA 2002 [OOPSLA 20022002], pages 343–358.

122



[Printezis et al., 1997] Tony Printezis, Malcolm P. Atkinson, Laurent Daynès, Susan Spence, and Pete

Bailey. The design of a new persistent object store for PJama. In 2nd International Workshop on

Persistence and Java (PJW2), Half Moon Bay, CA, August 1997.

[Printezis, 1996] Tony Printezis. Disk garbage collection strategies for persistent Java. In 1st Interna-

tional Workshop on Persistence and Java, Drymen, Scotland, September 1996.

[Printezis, 2000] Tony Printezis. Management of Long-Running High-Performance Persistent Object

Stores. PhD thesis, University of Glasgow, May 2000.

[Printezis, 2001] Tony Printezis. Hot-Swapping between a Mark&Sweep and a Mark&Compact

Garbage Collector in a Generational Environment. In JVM 2001 [JVM 20012001].

[Printezis, 2004] Tony Printezis. Garbage Collection in the Java HotSpot Virtual Machine, 2004.

[Printezis, 2006] Tony Printezis. On measuring garbage collection responsiveness. Science of Computer

Programming, 62(2):164–183, October 2006.

[Programming 2025, 2025] Programming 2025, Prague, Czechia, June 2025.

[Programming 2045, 2024] Programming 2024, Lund, Sweden, March 2024.

[Prokopec et al., 2011] Aleksandar Prokopec, Phil Bagwell, Tiark Rompf, and Martin Odersky. A

generic parallel collection framework. In Proceedings of 17th International Conference Parallel Pro-

cessing (Euro-Par 2011), Part II, pages 136–147, 2011.

[Prokopec et al., 2019] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq,

Petr Tůma, Martin Studener, Lubomı́r Bulej, Yudi Zheng, Alex Villazón, Doug Simon, Thomas

Würthinger, and Walter Binder. Renaissance: Benchmarking suite for parallel applications on the

JVM. In PLDI 2019 [PLDI 20192019].

[Protić et al., 1995] J. Protić, M. Tomas̆ević, and V. Milutinović. A survey of distributed shared memory

systems. In 28th Annual Hawaii International Conference on System Science (HICSS), volume I

(architecture), pages 74–84, 1995.

[Protić et al., 1997] J. Protić, M. Tomas̆ević, and V. Milutinović. Distributed Shared Memory: Concepts

and Systems. IEEE Press, August 1997.

[Przybylski et al., 1988] Stephen A. Przybylski, Mark Horowitz, and John Hennessy. Performance

tradeoffs in cache design. In ISCA 1988 [ISCA 19881988], pages 290–298.

[Przybylski, 1990a] Stephen Przybylski. The performance impact of block sizes and fetch strategies. In

ISCA 1990 [ISCA 19901990], pages 160–169.

[Przybylski, 1990b] Steven A. Przybylski. Cache and Memory Hierarchy Design: A Performance-

Directed Approach. Morgan Kaufman, Palo Alto, CA, 1990.

[Puaut, 1992] Isabelle Puaut. Distributed garbage collection of active objects with no global synchroni-

sation. In Bekkers and Cohen [Bekkers and Cohen1992], pages 148–164.

[Puaut, 1993] Isabelle Puaut. Gestion d’objets actifs dans les systèmes distribués: problématique et mise

en oeuvre. PhD thesis, Université de Rennes I, 1993.

[Puaut, 1994a] Isabelle Puaut. A distributed garbage collector for active objects. In Halatsis et al.

[Halatsis et al.1994], pages 539–552. Also INRIA UCIS-DIFUSION RR 2134.

[Puaut, 1994b] Isabelle Puaut. A distributed garbage collector for active objects. In OOPSLA 1994

[OOPSLA 19941994], pages 113–128.

[Pufek et al., 2019] Paula Pufek, H. Grgić, and Branko Mihaljević. Analysis of garbage collection algo-

rithms and memory management in Java. In International Convention on Information and Commu-

nication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, July 2019. IEEE

Press.

[Puffitsch and Schoeberl, 2008] Wolfgang Puffitsch and Martin Schoeberl. Non-blocking root scanning

for real-time garbage collection. In JTRES 2008 [JTRES 20082008], pages 68–76.

[Puffitsch et al., 2010] Wolfgang Puffitsch, Benedikt Huber, and Martin Schoeberl. Worst-case analysis

of heap allocations. In Proceedings of the 4th International Conference on Leveraging Applications of

Formal Methods, Verification, and Validation - Volume Part II, ISoLA’10, pages 464–478, Heraklion,

Crete, Greece, 2010. Springer-Verlag.

123



[Puffitsch, 2008] Wolfgang Puffitsch. Decoupled root scanning in multi-processor systems. In 2008

International Conference on Compilers, Architectures and Synthesis for Embedded Systems, pages

91–98, Atlanta, GA, 2008. ACM Press.

[Puffitsch, 2009] Wolfgang Puffitsch. Data caching, garbage collection, and the Java memory model. In

JTRES 2009 [JTRES 20092009], pages 90–99.

[Puffitsch, 2011] Wolfgang Puffitsch. Hard real-time garbage collection for a Java chip multi-processor.

In JTRES 2011 [JTRES 20112011], pages 64–73.

[Puffitsch, 2012] Wolfgang Puffitsch. Hard Real-Time Garbage Collection on Chip Multi-Processors.

PhD thesis, Technische Universität Wien, Institut für Technische Informatik, 2012.

[Puffitsch, 2013] Wolfgang Puffitsch. Design and analysis of a hard real-time garbage collector for a Java

chip multi-processor. Concurrency and Computation: Practice and Experience, 25(16):2269–2289,

2013.

[Pugh and Chambers, 2004] William Pugh and Craig Chambers, editors. ACM SIGPLAN Conference

on Programming Language Design and Implementation, ACM SIGPLAN Notices 39(6), Washington,

DC, June 2004. ACM Press.

[Purdom and Stigler, 1970] P.W. Purdom and S.M. Stigler. Statistical properties of the buddy system.

Journal of the ACM, 17(4):683–697, October 1970.

[Purdom et al., 1971] P.W. Purdom, S.M. Stigler, and Tat-Ong Cheam. Statistical investigation of three

storage allocation algorithms. BIT, 11:187–195, 1971.

[Purify, 1992] Pure Software, Los Altos, CA. Purify, 1992.

[Puschner et al., 2003] P. Puschner, T. Nakajima, and A. Ghafoor, editors. 6th International Symposium

on Object-Oriented Real-Time Distributed Computing. IEEE Press, May 2003.

[Puzak, 1985] Thomas R. Puzak. Analysis of Cache Replacement Algorithms. PhD thesis, University of

Massachusetts, Department of Electrical and Computer Engineering, February 1985.

[Qian and Hendren, 2002] Feng Qian and Laurie Hendren. An adaptive, region-based allocator for Java.

In Boehm and Detlefs [Boehm and Detlefs2002], pages 127–138. Sable Technical Report 2002–1

provides a longer version.

[Qian et al., 2002] Yang Qian, Witawas Srisa-an, T. Skotiniotis, and J. Morris Chang. Java virtual ma-

chine timing probes — a study of object life span and GC. In 21st IEEE International Performance,

Computing and Communications Conference (IPCCC), April 2002.

[Qian et al., 2015] Junjie Qian, Witawas Srisa-an, Du Li, Hong Jiang, Sharad Seth, and Yaodong Yang.

SmartStealing: Analysis and optimization of work stealing in parallel garbage collection for Java VM.

In PPPJ 2015 [PPPJ 20152015], pages 170–181.

[Qian et al., 2016] Junjie Qian, Witawas Srisa-an, Sharad Seth, Hong Jiang, Du Li, and Pan Yi.

Exploiting FIFO scheduler to improve parallel garbage collection performance. In VEE 2016

[VEE 20162016].

[Qiu and Blackburn, 2025] Tianle Qiu and Stephen M. Blackburn. Iso: Request-private garbage collec-

tion. In PLDI 2025 [PLDI 20252025].

[Queinnec and Moreau, 1999] Christian Queinnec and Luc Moreau. Graceful disconnection. In

Takayasu Ito and Taiichi Yuasa, editors, Parallel and Distributed Computing for Symbolic and Irregu-

lar Applications, PDCSIA’99, pages 242–252, Sendai, Japan, July 1999. World Scientific Publishing.

[Queinnec et al., 1989] Christian Queinnec, Barbara Beaudoing, and Jean-Pierre Queille. Mark DUR-

ING sweep rather than mark THEN sweep. In Odijk et al. [Odijk et al.1989], pages 224–237.

[Queinnec, 1988] Christian Queinnec. Dynamic extent objects. Lisp Pointers, 2(1), 1988.

[Queinnec, 1994] Christian Queinnec. Sharing mutable objects and controlling groups of tasks in a

concurrent and distributed language. In Takayasu Ito and Akinori Yonezawa, editors, Workshop on

Theory and Practice of Programming (TPPP), volume 700 of Lecture Notes in Computer Science,

pages 70–93, Sendai, Japan, November 1994. Springer-Verlag.

[Rafkind et al., 2009] Jon Rafkind, Adam Wick, John Regehr, and Matthew Flatt. Precise garbage col-

lection for C. In Kolodner and Steele [Kolodner and Steele2009], pages 39–48.

[Raghunathan et al., 2016] Ram Raghunathan, Stefan K. Muller, Umut A. Acar, and Guy Blelloch. Hier-

archical memory management for parallel programs. In ICFP 2016 [ICFP 20162016], pages 392–406.

124



[Ram and Patel, 1984] Ashwin Ram and Janak H. Patel. Parallel garbage collection without synchro-

nization overhead. Technical Report CSG-35, University of Illinois, 1984.

[Ram and Patel, 1985] Ashwin Ram and Janak H. Patel. Parallel garbage collection without synchro-

nization overhead. In ISCA 1985 [ISCA 19851985], pages 84–90.

[Ramachandran et al., 2006] Umakishore Ramachandran, Kathleen Knobe, Nissim Harel, and Has-

nain A. Mandviwala. Distributed garbage collection algorithms for timestamped data. IEEE Transac-

tions on Parallel and Distributed Systems, 17(10):1057–1071, October 2006.

[Ramakrishna, 2002] Y. Srinivas Ramakrishna. Automatic memory management in the Java HotSpot

virtual machine. In JavaOne Conference, 2002.

[Ramalhete and Correia, 2017] Pedro Ramalhete and Andreia Correia. Brief announcement: Hazard

eras — non-blocking memory reclamation. In SPAA 2017 [SPAA 20172017], pages 367–369.

[Ramesh and Mehndiratta, 1983] S. Ramesh and S.L. Mehndiratta. The liveness property of on-the-fly

garbage collector — a proof. Information Processing Letters, 17(4):189–195, November 1983.

[Ramsay and Stewart, 2024] Craig Ramsay and Rob Stewart. Cloaca: A concurrent hardware garbage

collector for non-strict functional languages. In ICFP 2024 [ICFP 20242024].

[Ramsey et al., 2001] Norman Ramsey, Simon L. Peyton Jones, C. Lindig, T. Nordin, D. Oliva, and

P. Nogueira Iglesias. C-- Reference Manual, November 2001.

[Rana, 1983] S.P. Rana. A distributed solution to the distributed termination problem. Information

Processing Letters, 17:43–46, July 1983.

[Randell and Kuehner, 1968] Brian Randell and C.J. Kuehner. Dynamic storage allocation systems.

Communications of the ACM, 12(7):297–306, May 1968.

[Randell, 1969] Brian Randell. A note on storage fragmentation and program segmentation. Communi-

cations of the ACM, 12(7):365–372, July 1969.

[Rao, 1978] G.S. Rao. Performance analysis of cache memories. Journal of the ACM, 25(3):378–395,

July 1978.

[Rashid et al., 1987] Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert Baron,

David Black, William Bolosky, and Jonathan Chew. Machine-independent virtual mem-

ory management for paged uniprocessor and multiprocessor architectures. In ASPLOS 1987

[ASPLOS 19871987], pages 31–39.

[Rathi et al., 1987] B.D. Rathi, J.C. Browne, and G.J. Lipovski. Design of a self-managing secondary

memory. In 20th Hawaii International Conference on System Sciences 1987. (Volume 1 = Architecture,

Decision Support Systems and Knowledge-Based Systems.), pages 293–302, Kailua-Kona, HI, January

1987. Western Periodicals Co.

[Rau, 1977] B.R. Rau. Program Behavior and the Performance of Memory Systems. PhD thesis, Stanford

University, 1977.

[Ravindar and Srikant, 2005] A. Ravindar and Y.N. Srikant. Static analysis for identifying and allocating

clusters of immortal objects. In .NET Technologies 2005, Plzen, Czech Republic, 2005.

[Ravitch and Liblit, 2013] Tristan Ravitch and Ben Liblit. Analyzing memory ownership patterns in C

libraries. In Petrank and Cheng [Petrank and Cheng2013].

[Reames and Necula, 2013] Philip Reames and George Necula. Towards hinted collection: Annotations

for decreasing garbage collector pause times. In Petrank and Cheng [Petrank and Cheng2013].

[Reddy, 2004] Uday Reddy. Semantic models of storage. In SPACE 2004 [SPACE 20042004]. Invited

talk.

[Reed and Kanodia, 1979] David P. Reed and Rajendra K. Kanodia. Synchronization with eventcounts

and sequencers. Communications of the ACM, 22(2):115–123, February 1979.

[Reeves, 1979] C.M. Reeves. Free store distribution under random-fit allocation. Computer Journal,

22(4):346–351, November 1979.

[Reeves, 1980] C.M. Reeves. Free store distribution under random-fit allocation: Part 2. Computer

Journal, 23(4):298–306, November 1980.

[Reeves, 1982] C.M. Reeves. A lumped-state model of clustering in dynamic storage allocation. Com-

puter Journal, 27(2):135–142, 1982.

125



[Reeves, 1983] C.M. Reeves. Free store distribution under random-fit allocation, part 3. Computer

Journal, 26(1):25–35, February 1983.

[Reichenbach et al., 2010] C. Reichenbach, Eddie Aftandilian, Nl Immerman, Sam Guyer, and Yannis

Smaragdakis. What can the GC compute efficiently? a language for heap assertions at GC time. In

OOPSLA 2010 [OOPSLA 20102010].

[Reid et al., 1999] Alastair Reid, John McCorquodale, Jason Baker, Wilson Hsieh, and Joseph Zachary.

The need for predictable garbage collection. In ACM SIGPLAN Workshop on Compiler Support for

System Software (WCSSS), May 1999.

[Reingold, 1973] E.M. Reingold. A non-recursive list moving algorithm. Communications of the ACM,

16(5):305–307, May 1973.

[Reinhold, 1993] Mark B. Reinhold. Cache Performance of Garbage-Collected Programming Lan-

guages. PhD thesis, MIT Laboratory for Computer Science, September 1993. Also Technical Memo

MIT/LCS/TR–581.

[Reinhold, 1994] Mark B. Reinhold. Cache performance of garbage-collected programs. In PLDI 1994

[PLDI 19941994], pages 206–217.

[Reinking et al., 2021] Alex Reinking, Ningning Xie, Leonardo de Moura, and Daan Leijen. Perceus:

Garbage free reference counting with reuse. In PLDI 2021 [PLDI 20212021].

[Reitbauer et al., 2012] Alois Reitbauer, Klaus Enzenhofer, Andreas Grabner, Michael Kopp, Stephen

Pierzchala, and Steve Wilson. Java Enterprise Performance, chapter Memory Management. dyba-

trace, 2012.

[Reppy and Gansner, 1986] John H. Reppy and E.R. Gansner. Pegasus: A foundation for programming

environments. Technical memorandum, AT&T Bell Laboratories, December 1986. An earlier ver-

sion appeared in the 2nd ACM/SIGSOFT/SIGPLAN Symposium on Practical Software Development

Environments, December 1986, 218–227.

[Reppy, 1993] John H. Reppy. A high-performance garbage collector for Standard ML. Technical mem-

orandum, AT&T Bell Laboratories, Murray Hill, NJ, December 1993.

[Reynolds and O’Hearn, 2001] John C Reynolds and Peter O’Hearn. Reasoning about shared mutable

data structure. In SPACE 2001 [SPACE 20012001]. Invited talk.

[Ribeiro et al., 1989] J.C.D.F. Ribeiro, C.D. Stormon, J.V. Oldfield, and M.R. Brule. Content-

addressable memories applied to execution of logic programs. IEE Proceedings, Part E: Computers

and Digital Techniques, 136(5):383–388, 1989.

[Ricci et al., 2013] Nathan P. Ricci, Samuel Z. Guyer, and J. Eliot B. Moss. Elephant Tracks: Portable

production of complete and precise GC traces. In Petrank and Cheng [Petrank and Cheng2013].

[Ricci, 2016] Nathan P. Ricci. Determining When Objects Die to Improve Garbage Collection. PhD

thesis, Tufts University, 2016.

[Richard et al., 2016] Adam Richard, Lai Nguyen, Peter Shipton, Kenneth B. Kent, Azden Bierbrauer,

Konstantin Nasartschuk, and Marcel Dombrowski. Inter-JVM sharing. Software: Practice and Expe-

rience, 46(9):1285–1296, 2016.

[Richer and Shapiro, 2001] Nicolas Richer and Marc Shapiro. The memory behaviour of the WWW, or

the WWW considered as a persistent store. In Kirby et al. [Kirby et al.2001], pages 136–146.

[Richer, 2002] Nicolas Richer. Stratégies de Gestion Mémoire dans les Mémoires d’Objets Persistantes

Automatiques Partitionnées. PhD thesis, Université Pierre et Marie Curie — Paris VI, May 2002.

[Richter, 2000a] Jeffrey Richter. Garbage collection – part 2: Automatic memory management in the

Microsoft .NET framework. MSDN Magazine, 15(13):82–92, December 2000.

[Richter, 2000b] Jeffrey Richter. Garbage collection: Automatic memory management in the Microsoft

.NET framework. MSDN Magazine, 15(11):82–92, November 2000.

[Richthofer, 2015] Stefan Richthofer. Garbage collection in JyNI — how to bridge mark/sweep and

reference counting GC. In 8th European Conference on Python in Science (EuroSciPy 2015), pages

39–47, 2015.

[Ridoux, 1976] Olivier Ridoux. Deterministic and stochastic modeling of parallel garbage collection:

Towards real-time criteria. In ISCA 1987 [ISCA 19871976], pages 128–136.

126



[Ripley et al., 1978] G. David Ripley, Ralph E. Griswold, and David R. Hanson. Performance of storage

management in an implementation of SNOBOL4. ACM Transactions on Software Engineering, SE–

4(2):130–137, March 1978.

[Ritson et al., 2014] Carl G. Ritson, Tomoharu Ugawa, and Richard Jones. Exploring garbage collection

with Haswell hardware transactional memory. In Guyer and Grove [Guyer and Grove2014], pages

105–115.

[Ritzau and Fritzson, 2002] Tobias Ritzau and Peter Fritzson. Decreasing memory overhead in hard

real-time garbage collection. In A. Sangiovanni-Vincentelli and J. Sifakis, editors, 2nd International

Workshop on Embedded Software (EMSOFT), volume 2491 of Lecture Notes in Computer Science,

Grenoble, October 2002. Springer-Verlag.

[Ritzau, 1999a] Tobias Ritzau. Real-time reference counting — automatic memory management with

short and predictable interruptions. In Svenska Nationella Realtidsföreningen (SNART) Conference,

Linköping, August 1999.

[Ritzau, 1999b] Tobias Ritzau. Real-time reference counting for RT-Java. Master’s thesis, Linköping

University, March 1999. Licenciate thesis. In Linköping Studies in Science and Technology, No. 748.

[Ritzau, 2000] Tobias Ritzau. Real-time reference counting. In Java for Embedded Systems workshop,

London, May 2000.

[Ritzau, 2001] Tobias Ritzau. Hard real time reference counting without external fragmentation. In Java

Optimization Strategies for Embedded Systems (JOSES) workshop at ETAPS, Genoa, Italy, 2001.

[Ritzau, 2003] Tobias Ritzau. Memory Efficient Hard Real-Time Garbage Collection. PhD thesis,

Linköping University, May 2003.

[Robertson and Devarakonda, 1990] J. Robertson and M. Devarakonda. Data cache management using

frequency-based replacement. In ACM SIGMETRICS International Conference on Measurement and

Modeling of Computer Systems. ACM Press, 1990.

[Robertson, 1979] Edward L. Robertson. Code generation and storage allocation for machines with

span-dependent instructions. ACM Transactions on Programming Languages and Systems, 1(1):71–

83, July 1979.

[Robertz and Henriksson, 2003] Sven Gestegøard Robertz and Roger Henriksson. Time-triggered

garbage collection: Robust and adaptive real-time GC scheduling for embedded systems. In LCTES

2003 [LCTES 20032003], pages 93–102.

[Robertz, 2002] Sven Robertz. Applying priorities to memory allocation. In Boehm and Detlefs

[Boehm and Detlefs2002], pages 1–11.

[Robertz, 2003] Sven Gestegøard Robertz. Flexible automatic memory management for real-time and

embedded systems. Master’s thesis, Lund University, 2003. Lic. eng. thesis.

[Robinet and Wilhelm, 1986] Bernard Robinet and Reinhard Wilhelm, editors. European Symposium

on Programming, volume 213 of Lecture Notes in Computer Science, Saarbrücken, Germany, March

1986. Springer-Verlag.

[Robson, 1971] J.M. Robson. An estimate of the store size necessary for dynamic storage allocation.

Journal of the ACM, 18(3):416–423, July 1971.

[Robson, 1973] J.M. Robson. An improved algorithm for traversing binary trees without auxiliary stack.

Information Processing Letters, 2(1):12–14, March 1973.

[Robson, 1974] J.M. Robson. Bounds for some functions concerning dynamic storage allocation. Jour-

nal of the ACM, 21(3):419–499, July 1974.

[Robson, 1977a] J.M. Robson. A bounded storage algorithm for copying cyclic structures. Communi-

cations of the ACM, 20(6):431–433, June 1977.

[Robson, 1977b] J.M. Robson. Worst case fragmentation of first fit and best fit storage allocation strate-

gies. Computer Journal, 20(3):242–244, August 1977.

[Robson, 1980] J.M. Robson. Storage allocation is NP-hard. Information Processing Letters, 11(3):119–

125, November 1980.

[Rochfeld, 1971] Arnold Rochfeld. New LISP techniques for a paging environment. Communications

of the ACM, 14(12):791–795, December 1971.

127



[Rodrigues and Jones, 1996] Helena C.C.D. Rodrigues and Richard E. Jones. A cyclic distributed

garbage collector for Network Objects. In Babaoglu and Marzullo [Babaoglu and Marzullo1996],

pages 123–140.

[Rodrigues and Jones, 1998] Helena C.C.D. Rodrigues and Richard E. Jones. Cyclic distributed garbage

collection with group merger. In Jul [Jul1998], pages 249–273. Also UKC Technical report 17–97,

December 1997.

[Rodrigues, 1998] Helena C.C.D. Rodrigues. Cyclic Distributed Garbage Collection. PhD thesis, Com-

puting Laboratory, The University of Kent at Canterbury, 1998.

[Rodriguez-Rivera and Russo, 1997] Gustavo Rodriguez-Rivera and Vince Russo. Non-intrusive

cloning garbage collection with stock operating system support. Software: Practice and Experience,

27(8), August 1997.

[Rodriguez-Rivera et al., 1998] Gustavo Rodriguez-Rivera, Michael Spertus, and Charles Fiter-

man. A non-fragmenting, non-moving garbage collector. In Peyton Jones and Jones

[Peyton Jones and Jones1998], pages 79–85.

[Rodriguez-Rivera et al., 2000] Gustavo Rodriguez-Rivera, Mike Spertus, and Charles Fiterman.

Conservative garbage collection for general memory allocators. In Chambers and Hosking

[Chambers and Hosking2000], pages 71–79.

[Rodriguez-Riviera and Russo, 1997] Gustavo Rodriguez-Riviera and Vince Russo. Cyclic dis-

tributed garbage collection without global synchronization in CORBA. In Dickman and Wilson

[Dickman and Wilson1997].

[Rodriguez-Riviera, 1995] Gustavo Rodriguez-Riviera. Cyclic distributed garbage collection without

global synchronisation. PhD preliminary examination report, 1995.

[Rogers, 2011a] Ian Rogers, editor. Implementation, Compilation, Optimization of Object-Oriented Lan-

guages, Programs and Systems (ICOOOLPS’11), Nantes, July 2011.

[Rogers, 2011b] Ian Rogers. Reducing and eliding read barriers for concurrent garbage collectors. In

ICOOOLPS 2011 [Rogers2011a].

[Roh et al., 2009] Yangwoo Roh, Jaesub Kim, and Kyu Ho Park. A phase-adaptive garbage collector

using dynamic heap partitioning and opportunistic collection. IEICE Transactions on Information

and Systems, E92-D(10):2053–2063, October 2009.

[Röjemo and Runciman, 1996] Niklas Röjemo and Colin Runciman. Lag, drag, void, and use: heap

profiling and space-efficient compilation revisited. In ICFP 1996 [ICFP 19961996], pages 34–41.

[Röjemo, 1992] Niklas Röjemo. A concurrent generational garbage collector for a parallel graph reducer.

In Bekkers and Cohen [Bekkers and Cohen1992], pages 440–453.

[Röjemo, 1993] Niklas Röjemo. Generational garbage collection is leak-prone. Draft paper, Department

of Computer Science, Chalmers University, January 1993.

[Röjemo, 1994] Niklas Röjemo. nhc: A space-efficient haskell compiler. In Workshop on Implemen-

tation of Functional Languages, School of Information Systems, Univ. of East Anglia, Norwich,

September 1994.

[Röjemo, 1995a] Niklas Röjemo. Garbage Collection, and Memory Efficiency, in Lazy Functional Lan-

guages. PhD thesis, Chalmers University of Technology, Goteborg, Sweden, 1995.

[Röjemo, 1995b] Niklas Röjemo. Generational garbage collection without temporary space leaks for

lazy functional languages. In Baker [Baker1995b], pages 145–162.

[Röjemo, 1995c] Niklas Röjemo. Highlights from nhc – a space-efficient Haskell compiler. In FPCA

1995 [FPCA 19951995].

[Ronsse and De Bosschere, 1998] Michiel Ronsse and Koen De Bosschere. JiTi: Tracing memory ref-

erences for data race detection. In E. D’Hollander, F.J. Joubert, and U. Trottenberg, editors, Parallel

Computing: Fundamentals, Applications and New Directions, volume 12 of Advances in Parallel

Computing, pages 327–334. North Holland, February 1998.

[Rose and Muller, 1992] John H. Rose and Hans Muller. Integrating the Scheme and C languages. In

LFP 1992 [LFP 19921992], pages 247–259.

[Rosenberg and Keedy, 1987] John Rosenberg and J.L. Keedy. Object management and addressing in

the MONADS architecture. In Carrick and Cooper [Carrick and Cooper1987].

128



[Rosenberg and Koch, 1989] John Rosenberg and David Koch, editors. 3rd International Workshop on

Persistent Object Systems (January, 1989), Workshops in Computing, Newcastle, NSW, Australia,

1989. Springer.

[Rosenberg et al., 1990] J. Rosenberg, F.A. Henskens, A.L. Brown, Ron Morrison, and David Munro.

Stability in a persistent store based on a large virtual memory. In International Workshop on Archi-

tectural Support for Security and Pe rsistence of Information, pages 229–245. Springer Verlag and the

British Computer Society, 1990.

[Rosenberg, 1991] John Rosenberg. Architectural support for persistent objects. In Cabrera et al.

[Cabrera et al.1991], pages 48–60.

[Ross, 1967] D.T. Ross. The AED free storage package. Communications of the ACM, 10(8):481–492,

August 1967.

[Ross, 1983] R.A. Ross. A garbage collecting associative memory for interactive database systems.

In P. Degano and E. Sandewall, editors, European Conference on Integrated Interactive Computing

Systems (ECICS), pages 109–123, Stresa, Italy, September 1983. Elsevier-North Holland.

[Roth and Wise, 1998] David J. Roth and David S. Wise. One-bit counts between unique and sticky. In

Peyton Jones and Jones [Peyton Jones and Jones1998], pages 49–56.

[Roth et al., 1998] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Dependence based prefetching

for linked data structures. In ASPLOS 1998 [ASPLOS 19981998], pages 115–126.

[Roussel, 1975] P. Roussel. Prolog: Manuel de référence et d’utilisation. Technical report, G.I.A. Uni-

versité Aix-Marseille, 1975.

[Rovner et al., 1985] Paul Rovner, Roy Levin, and John Wick. On extending Modula-2 for building

large, integrated systems. Technical Report 3, DEC Systems Research Center, Palo Alto, CA, Palo

Alto, CA, 1985.

[Rovner, 1985] Paul Rovner. On adding garbage collection and runtime types to a strongly-typed,

statically-checked, concurrent language. Technical Report CSL–84–7, Xerox PARC, Palo Alto, CA,

July 1985.

[Roy et al., 1998] P. Roy, S. Seshadri, A. Silberschatz, S. Sudarshan, and S. Ashwin. Garbage collection

in object-oriente databases using transactional cyclic reference counting. VLDB Journal: Very Large

Databases, 7(3):129–193, 1998.

[RTCSA 1999, 1999] IEEE Press. 6th International Workshop on Real-Time Computing Systems and

Applications (RTCSA), Hong Kong, 1999. IEEE Computer Society Press.

[RTCSA 2000, 2000] IEEE Press. 7th International Workshop on Real-Time Computing Systems and

Applications (RTCSA). IEEE Computer Society Press, 2000.

[RTCSA 2002, 2002] IEEE Press. 8th International Conference on Embedded and Real-Time Comput-

ing Systems and Applications (RTCSA). IEEE Computer Society Press, March 2002.

[RTCSA 2003, 2003] IEEE Press. 9th International Conference on Embedded and Real-Time Comput-

ing Systems and Applications (RTCSA). IEEE Computer Society Press, August 2003.

[RTCSA 2005, 2005] IEEE Press. 11th International Conference on Embedded and Real-Time Comput-

ing Systems and Applications (RTCSA). IEEE Computer Society Press, August 2005.

[RTCSA 2007, 2005] IEEE Press. 13th International Conference on Embedded and Real-Time Comput-

ing Systems and Applications (RTCSA), Daegu, Korea, August 2005. IEEE Computer Society Press.

[Ruby, 1987] J. Ruby. Liveness property of a parallel algorithm. Information Processing Letters,

24(4):275–277, 1987.

[Rudalics, 1986] M. Rudalics. Distributed copying garbage collection. In LFP 1986 [LFP 19861986],

pages 364–372.

[Rudalics, 1990] M. Rudalics. Correctness of distributed garbage collection algorithms. Technical Re-

port 90–40.0, Johannes Kepler Universität, Linz, 1990.

[Ruf, 2000] Erik Ruf. Effective synchronization removal for Java. In PLDI 2000 [PLDI 20002000],

pages 208–218.

[Ruggieri and Murtagh, 1988] Christina Ruggieri and Thomas P. Murtagh. Lifetime analysis of dynam-

ically allocated objects. In POPL 1988 [POPL 19881988], pages 285–293.

129



[Ruggieri, 1987] Christina Ruggieri. Dynamic Memory Allocation Techniques Based on the Lifetimes of

Objects. PhD thesis, Purdue University, West Lafayette, IN, August 1987.

[Runciman and Röjemo, 1995] Colin Runciman and Niklas Röjemo. Lag, drag and post-mortem heap

profiling. In Implementation of Functional Languages Workshop, Bøastad, Sweden, September 1995.

[Runciman and Röjemo, 1996a] Colin Runciman and Niklas Röjemo. Heap profiling for space effi-

ciency. In J. Launchbury, E. Meijer, and T. Sheard, editors, 2nd International School on Advanced

Functional Programming, volume 1129 of Lecture Notes in Computer Science, pages 34–41, Olympia,

WA, August 1996. Springer-Verlag.

[Runciman and Röjemo, 1996b] Colin Runciman and Niklas Röjemo. New dimensions in heap profil-

ing. Journal of Functional Programming, 6(4):587–620, 1996.

[Runciman and Röjemo, 1996c] Colin Runciman and Niklas Röjemo. Two-pass heap profiling – a mat-

ter of life and death. In W. Kluge, editor, Selected Papers from the 8th International Workshop on the

Implementation of Functional Languages, volume 1168 of Lecture Notes in Computer Science, pages

222–232, Bonn-Bad-Godesberg, September 1996. Springer-Verlag.

[Runciman and Wakeling, 1992] Colin Runciman and David Wakeling. Heap profiling of lazy functional

programs. Technical Report YCS-92-172, University of York, 1992.

[Runciman and Wakeling, 1993a] Colin Runciman and David Wakeling. Heap profiling of a lazy func-

tional compiler. In GWFP 1993 [GWFP 19931993], pages 203–214.

[Runciman and Wakeling, 1993b] Colin Runciman and David Wakeling. Heap profiling of lazy func-

tional programs. Journal of Functional Programming, 3(2):217–245, April 1993.

[Runciman, 1995] Colin Runciman. New dimensions in heap profiling. Technical Report YCS-95-256,

University of York, 1995.

[Runciman, 2001] Colin Runciman. Heap profiling for theoreticians. In SPACE 2001

[SPACE 20012001]. Invited talk.

[Russell, 1977] D.L. Russell. Internal fragmentation in a class of buddy systems. SIAM J. Comput.,

6(4):607–621, December 1977.

[Russinoff, 1994] David M. Russinoff. A mechanically verified incremental garbage collector. Formal

Aspects of Computing, 6(4):359–390, 1994.

[Russo, 1991] Vincent F. Russo. Garbage collecting and object-oriented operating system kernel. In

Wilson and Hayes [Wilson and Hayes1991a].

[Ryu and Neuman, 1998] Sung-Wook Ryu and B. Clifford Neuman. Garbage collection for distributed

persistent objects. In Workshop on Compositional Software Architectures, Monterey, CA, January

1998.

[Sachindran and Moss, 2003] Narendran Sachindran and Eliot Moss. MarkCopy: Fast copying GC with

less space overhead. In OOPSLA 2003 [OOPSLA 20032003], pages 326–343.

[Sachindran et al., 2004] Narendran Sachindran, J. Eliot B. Moss, and Emery D. Berger. MC2:

High-performance garbage collection for memory-constrained environments. In OOPSLA 2004

[OOPSLA 20042004], pages 81–98.

[Sachs and Llad’o, 2015] Kai Sachs and Catalina M. Llad’o, editors. 6th ACM/SPEC on International

Conference on Performance Engineering (ICPE’15), Austin, TX, 2015. ACM Press.

[Sagiv et al., 1999] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. In

POPL 1999 [POPL 19991999]. statically analyse heap paths.

[Sagonas and Wilhelmsson, 2004] Konstantinos Sagonas and Jesper Wilhelmsson. Message analysis-

guided allocation and low-pause incremental garbage collection in a concurrent language. In Bacon

and Diwan [Bacon and Diwan2004], pages 1–12.

[Sagonas and Wilhelmsson, 2006a] Konstantinos Sagonas and Jesper Wilhelmsson. Efficient memory

management for concurrent programs that use message passing. Science of Computer Programming,

62(2):98–121, October 2006.

[Sagonas and Wilhelmsson, 2006b] Konstantinos Sagonas and Jesper Wilhelmsson. Mark and split. In

Petrank and Moss [Petrank and Moss2006], pages 29–39.

[Sahlin and Carlsson, 1991] Dan Sahlin and Mats Carlsson. Variable shunting for the WAM. Research

report SICS/R91–07, Swedish Institute of Computer Science, March 1991.

130



[Sahlin, 1987] Dan Sahlin. Making garbage collection independent of the amount of garbage. Research

Report SICS/R–87/87008, SICS, 1987. Appendix to SICS research report R86009 “Garbage collec-

tion for Prolog based on WAM.”.

[Saiki et al., 2005] Hideaki Saiki, Yoshiharu Konaka, Tsuneyasu Komiya, Masahiro Yasugi, and Tai-

ichi Yuasa. Real-time GC in JeRTy™VM using the return-barrier method. In Proceedings of the

8th IEEE International Symposium on Object-oriented Real-time distributed Computing (ISORC’05),

pages 140–148. IEEE, 2005.

[Sakamoto and Furumoto, 2012] Kazuki Sakamoto and Tomohiko Furumoto. Life Before Automatic Ref-

erence Counting, pages 1–29. Apress, Berkeley, CA, 2012.

[Salagnac et al., 2005] Guillaume Salagnac, Sergio Yovine, and Diego Garbervetsky. Fast escape anal-

ysis for region-based memory management. In 1st International Workshop on Abstract Interpretation

of Object-Oriented Languages (AIOOL), Paris, January 2005.

[Salagnac et al., 2006] Guillaume Salagnac, Chaker Nakhli, Christophe Rippert, and Sergio Yovine. Ef-

ficient region-based memory management for resource-limited real-time embedded systems. In Zen-

dra [Zendra2006a], page 8.

[Salagnac et al., 2007] Guillaume Salagnac, C. Rippert, and S. Yovine. Semi-automatic region-based

memory management for real-time Java embedded systems. In Embedded and Real-Time Computing

Systems and Applications, pages 73–80. IEEE Computer Society, 2007.

[Salagnac, 2004] Guillaume Salagnac. Gestion automatique de la mémoire dynamique pour des pro-

grammes Java temps-réel embarqués. Report de d.e.a., Université Joseph Fourier, June 2004.

[Salcianu, 2001] Alexandru Salcianu. Pointer analysis and its applications for Java programs. Master’s

thesis, MIT Press, September 2001.

[Salkild, 1987] Jon D. Salkild. Implementation and analysis of two reference counting algorithms. Mas-

ter’s thesis, University College, London, 1987.

[Sallé, 1984] Patrick Sallé. Syntaxe et sémantique de PLASMA et ALOG. Technical report, LSI-

ENSEEIHT, Toulouse, 1984.

[Samples et al., 1986] A. Dain Samples, David M. Ungar, and Paul Hilfinger. SOAR: Smalltalk without

bytecodes. In OOPSLA 1986 [OOPSLA 19861986], pages 107–118.

[Samples, 1992] A. Dain Samples. Garbage collection-cooperative C++. In Bekkers and Cohen

[Bekkers and Cohen1992], pages 315–329.

[Sanchez et al., 2001] Alfonso Sanchez, Luı́s Veiga, and Paulo Ferreira. Distributed garbage collection

for wide area replicated memory. In 6th USENIX Conference on Object-Oriented Technologies and

Systems (COOTS), San Antonio, TX, January 2001. USENIX Association.

[Sands, 2001] David Sands. Spikes and ballast: The algebra of space. In SPACE 2001

[SPACE 20012001].

[Sankaran, 1994] Nandakumar Sankaran. A bibliography on garbage collection and related topics. ACM

SIGPLAN Notices, 29(9):140–148, September 1994. A small collection!

[Sansom and Peyton Jones, 1993] Patrick M. Sansom and Simon L. Peyton Jones. Generational garbage

collection for Haskell. In Hughes [Hughes1993], pages 106–116.

[Sansom and Peyton Jones, 1994] Patrick M. Sansom and Simon L. Peyton Jones. Time and space pro-

filing for non-strict, higher-order, functional languages. Research Report FP–1994–10, University of

Glasgow, 1994.

[Sansom, 1991] Patrick M. Sansom. Dual-mode garbage collection. Technical Report CSTR 91-07,

Department of Electronics and Computer Science, University of Southampton, June 1991. 3rd Inter-

national Workshop on Implementation of Functional Languages on Parallel Architectures.

[Sansom, 1992] Patrick M. Sansom. Combining copying and compacting garbage collection. In Peyton

Jones et al. [Peyton Jones et al.1992].

[Sansom, 1994] Patrick M. Sansom. Execution Profiling for Non-Strict Functional Languages. PhD

thesis, University of Glasgow, 1994.

[Sareen and Blackburn, 2022] Kunal Sareen and Stephen M. Blackburn. Better understanding

the costs and benefits of automatic memory management. In Wrigstad and Gonzalez Boix

[Wrigstad and Gonzalez Boix2022].

131



[Sareen et al., 2024] Kunal Sareen, Stephen M. Blackburn, Sara S. Hamouda, and Lokesh Gidra. Mem-

ory management on mobile devices. In Bond et al. [Bond et al.2024], pages 15–29.

[Sareen, 2022] Kunal Sareen. How much does garbage collection cost? a study on the effects of garbage

collection. Honours thesis, Australian National University, November 2022.

[Sarkar and Hall, 2005] Vivek Sarkar and Mary W. Hall, editors. ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, ACM SIGPLAN Notices 40(6), Chicago, IL, June

2005. ACM Press.

[Sarkis and Bielak, 1995] Jean-Pierre Sarkis and Richie Bielak. Implementing stacks. Eiffel Outlook,

4(6):6–9, September 1995.

[Sartor and Eeckhout, 2012] Jennifer B. Sartor and Lieven Eeckhout. Exploring multi-threaded Java

application performance on multicore hardware. In OOPSLA 2012 [OOPSLA 20122012], pages 281–

296.

[Sartor et al., 2008a] Jennifer B. Sartor, Martin Hirzel, and Kathryn S. McKinley. No bit left behind:

Limits of heap data compression. In Jones and Blackburn [Jones and Blackburn2008], pages 111–

120.

[Sartor et al., 2008b] Jennifer B. Sartor, Martin Hirzel, and Kathryn S. McKinley. No bit left behind:

The limits of heap data compression (extended version). Technical Report TR–08–17, University of

Texas at Austin, 2008.

[Sartor et al., 2010] Jennifer B. Sartor, Stephen M. Blackburn, Daniel Frampton, Martin Hirzel, and

Kathryn S. McKinley. Z-rays: Divide arrays and conquer speed and flexibility. In PLDI 2010

[PLDI 20102010], pages 471–482.

[Sartor et al., 2014] Jennifer B. Sartor, Wim Heirman, Stephen M. Blackburn, Lieven Eeckhout, and

Kathryn S. McKinley. Cooperative cache scrubbing. In Proceedings of the 23rd International Con-

ference on Parallel Architectures and Compilation (PACT’14), pages 15–26. ACM Press, 2014.

[Sartor et al., 2019] Jennifer B. Sartor, Mayur Naik, and Chris Rossbach, editors. 15th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environments, Providence, RI, USA,

April 2019. ACM Press.

[Sasada, 2019] Koichi Sasada. Gradual write-barrier insertion into a Ruby interpreter. In Xu and Singer

[Xu and Singer2019], pages 115–121.

[Satishkumar, 1994] S. Satishkumar. Register allocation for accurate garbage collection of C++. Mas-

ter’s thesis, Iowa State University, July 1994. Technical report ISUTR 94–12.

[Saunders, 1974] Robert A. Saunders. The LISP system for the Q–32 computer. In Berkeley and Bobrow

[Berkeley and Bobrow1974], pages 220–231.

[SC 1991, 1991] 5th ACM/IEEE Conference on Supercomputing, Cologne, West Germany, June 1991.

[SC 1997, 1997] ACM/IEEE Conference on Supercomputing, San Jose, CA, November 1997.

[SC 2001, 2001] ACM/IEEE Conference on Supercomputing, Denver, CO, November 2001.

[Schapiro, 1986] E. Schapiro, editor. 3rd International Conference on Logic Programming, volume 225,

London, 1986. Springer-Verlag.

[Schatzl et al., 2011] Thomas Schatzl, Laurent Daynès, and Hanspeter Mössenböck. Optimized memory

management for class metadata in a jvm. In PPPJ 2011 [PPPJ 20112011], page 151160.

[Schatzl, 2021] Thomas Schatzl. Heap regions X-large. https://tschatzl.github.io/2021/11/15/heap-

regions-x-large.html, November 2021.

[Schatzl, 2022a] Thomas Schatzl. Card table card size shenanigans.

https://tschatzl.github.io/2022/02/15/card-table-card-size.html, February 2022.

[Schatzl, 2022b] Thomas Schatzl. Concurrent marking in G1. https://tschatzl.github.io/2022/02/15/card-

table-card-size.html, August 2022.

[Schelter and Ballantyne, 1988] W.F. Schelter and M. Ballantyne. Kyoto Common Lisp. AI Expert,

3(3):75–77, 1988.

[Schelvis and Bledoeg, 1988] M. Schelvis and E. Bledoeg. The implementation of a distributed

Smalltalk. Lecture Notes in Computer Science, 322:212–232, 1988.

132



[Schelvis, 1989] M. Schelvis. Incremental distribution of timestamp packets — a new approach to dis-

tributed garbage collection. ACM SIGPLAN Notices, 24(10):37–48, 1989.

[Schimpf, 1990] J. Schimpf. Garbage collection for Prolog based on twin cells. In 2nd NACLP Workshop

on Logic Programming Architectures and Implementations. MIT Press, 1990.

[Schmidt and Nilsen, 1992] William J. Schmidt and Kelvin Nilsen. Experimental measurements of a

real-time garbage collection architecture. Technical report, Iowa State University, 1992. Technical

report ISUTR 92-26.

[Schmidt and Nilsen, 1994] William J. Schmidt and Kelvin D. Nilsen. Performance of a hardware-

assisted real-time garbage collector. In ASPLOS 1994 [ASPLOS 19941994], pages 76–85.

[Schmidt, 1992] William J. Schmidt. Issues in the Design and Implementation of a Real-Time Garbage

Collection Architecture. PhD thesis, Iowa State University, Ames, Iowa, 1992. Technical report

ISUTR 92-25.

[Schneider et al., 2001] Daniel Schneider, Bernd Mathiske, Matthias Ernst, and Matthew Seidl. Auto-

matic persistent memory management for the Spotless Java virtual machine on the Palm connected

organizer. In JVM 2001 [JVM 20012001].

[Schneider et al., 2006] Scott Schneider, Christos Antonopoulos, and Dimitrios Nikolopoulos. Scalable

locality-conscious multithreaded memory allocation. In Petrank and Moss [Petrank and Moss2006],

pages 84–94.

[Schoeberl and Puffitsch, 2008] Martin Schoeberl and Wolfgang Puffitsch. Non-blocking object copy

for real-time garbage collection. In JTRES 2008 [JTRES 20082008], pages 77–84.

[Schoeberl and Puffitsch, 2010] Martin Schoeberl and Wolfgang Puffitsch. Non-blocking real-time

garbage collection. ACM Transactions on Embedded Computer Systems, 10(1):6:1–6:28, August

2010.

[Schoeberl and Vitek, 2007] Martin Schoeberl and Jan Vitek. Garbage collection for safety critical Java.

In JTRES 2007 [JTRES 20072007], pages 85–93.

[Schoeberl, 2006] Martin Schoeberl. Real-time garbage collection for Java. In ISORC 2006

[ISORC 20062006], pages 424–432.

[Schoeberl, 2010] Martin Schoeberl. Scheduling of hard real-time garbage collection. Real-Time Sys-

tems, 45(3):176–213, 2010.

[Schoettner et al., ] M. Schoettner, R. Goeckelman, S. Fren, M. Fakler, and P. Schulthess. Incremental

distributed garbage collection using reverse reference tracking. In Euro-Par 2006 Parallel Processing,

pages 571–581.

[Schooler and Stamos, 1987] R. Schooler and James W. Stamos. Proposal for a small Scheme imple-

mentation. Technical Memo MIT/LCS/TM–267, MIT Laboratory for Computer Science, October

1987.

[Schorr and Waite, 1967] H. Schorr and W. Waite. An efficient machine independent procedure for

garbage collection in various list structures. Communications of the ACM, 10(8):501–506, August

1967.

[Schreiner, 1994] Wolfgang Schreiner. Garbage collection on a stack. Technical report, Research In-

stitute for Symbolic Computation (RISC-Linz), Johannes Kepler University, Linz, Austria, January

1994.

[Schulte, 1994] Wolfram Schulte. Deriving reference count garbage collectors. In 6th International

Symposium on Programming Language Implementation and Logic Programming, pages 102–116,

September 1994.

[Schwartz, 1974] Jacob T. Schwartz. More on copy optimization of SETL programs. SETL Newsletter

131, Courant Inst. of Mathematical Sciences, New York University, June 1974.

[Schwartz, 1976] Jacob T. Schwartz. A coarser, but simpler and considerably more efficient copy opti-

mization technique. SETL Newsletter 176, Courant Inst. of Mathematical Sciences, New York Uni-

versity, August 1976.

[Schwartzbach and Ball, 2006] Michael I. Schwartzbach and Thomas Ball, editors. ACM SIGPLAN

Conference on Programming Language Design and Implementation, ACM SIGPLAN Notices 41(6),

Ottawa, Canada, June 2006. ACM Press.

133



[Schwarz, 1978] Jerald Schwarz. Verifying the safe use of destructive operations in applicative pro-

grams. In Program Transformations — Proceedings of the 3rd International Symposium on Program-

ming, pages 395–411, 1978.

[Seidl and Zorn, 1997] Matthew L. Seidl and Benjamin Zorn. Predicting references to dynamically al-

located objects. Technical Report CU-CS-826-97, University of Colorado, January 1997.

[Seidl and Zorn, 1999a] Matthew L. Seidl and Benjamin Zorn. Implementing heap-object behavior pre-

diction efficiently and effectively. Technical Report CU-CS-893-99, University of Colorado, dec 1999.

Submitted to Software - Practice and Experience.

[Seidl and Zorn, 1999b] Matthew L. Seidl and Benjamin Zorn. Low cost methods for predicting heap

object behavior. In 2nd Workshop on Feedback Directed Optimization, pages 83–90, Haifa, Israel,

November 1999.

[Seliger, 1990] Robert Seliger. Extending C++ to support remote procedure call, concurrency, exception

handling and garbage collection. In Usenix C++ Conference, pages 241–264. USENIX Association,

1990.

[Seligmann and Grarup, 1995] Jacob Seligmann and Steffen Grarup. Incremental mature garbage col-

lection using the Train Algorithm. In Nierstrasz [Nierstrasz1995], pages 235–252.

[Serrano and Boehm, 2000] Manuel Serrano and Hans-J Boehm. Understanding memory allocation of

Scheme programs. In ICFP 2000 [ICFP 20002000].

[Serrano and Feeley, 1996] Manuel Serrano and Marc Feeley. Storage use analysis and its applications.

In ICFP 1996 [ICFP 19961996].

[Serrano and Zhuang, 2009] Mauricio J. Serrano and Xiaotong Zhuang. Placement optimization using

data context collected during garbage collection. In Kolodner and Steele [Kolodner and Steele2009],

pages 69–78.

[Serrano, 1994] Manuel Serrano. Vers un Compilation Portable et Performante des Langages Fonction-

nels. PhD thesis, Université Paris 6, December 1994.

[Seward, 1992] Julian Seward. Generational garbage collection for lazy graph reduction. In Bekkers and

Cohen [Bekkers and Cohen1992], pages 200–217.

[Sewe et al., 2010] Andreas Sewe, Dingwen Yuan, Jan Sinschek, and Mira Mezini. Headroom-

based pretenuring: Dynamically pretenuring objects that live “long enough”. In PPPJ 2010

[PPPJ 20102010], pages 29–38.

[Sewe et al., 2011] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. Da Capo con

Scala: Design and analysis of a Scala benchmark suite for the Java virtual machine. In OOPSLA 2011

[OOPSLA 20112011], pages 657–676.

[Sewe et al., 2012] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, Danilo Ansaloni, Walter Binder,

Nathan Ricci, and Samuel Z. Guyer. new scala() instanceof Java: a comparison of the memory be-

haviour of Java and Scala programs. In McKinley and Vechev [McKinley and Vechev2012], pages

97–108.

[Sewe, 2012] Andreas Sewe. Design and Analysis of a Scala Benchmark Suite for the Java Virtual

Machine. PhD thesis, Technische Universität Darmstadt, November 2012.

[Shaham et al., 2000] Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv. On the effectiveness of GC in

Java. In Chambers and Hosking [Chambers and Hosking2000], pages 12–17.

[Shaham et al., 2001] Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv. Heap profiling for space-

efficient Java. In PLDI 2001 [PLDI 20012001], pages 104–113.

[Shaham et al., 2002] Ran Shaham, Elliot Kolodner, and Mooly Sagiv. Estimating the impact of liveness

information on space consumption in Java. In Boehm and Detlefs [Boehm and Detlefs2002], pages

64–75.

[Shaham et al., 2003] Ran Shaham, E. Yahav, Elliot Kolodner, and Mooly Sagiv. Establishing local tem-

poral heap safety properties with applications to compile-time memory. In Static Analysis Symposium

(SAS), volume 2694 of Lecture Notes in Computer Science, pages 483–503. Springer-Verlag, June

2003.

[Shahriyar et al., 2012] Rifat Shahriyar, Stephen M. Blackburn, and Daniel Frampton. Down

for the count? Getting reference counting back in the ring. In McKinley and Vechev

[McKinley and Vechev2012], pages 73–84.

134



[Shahriyar et al., 2013] Rifat Shahriyar, Stephen Michael Blackburn, Xi Yang, and Kathryn S. McKin-

ley. Taking off the gloves with reference counting Immix. In OOPSLA 2013 [OOPSLA 20132013],

pages 93–110.

[Shahriyar et al., 2014] Rifat Shahriyar, Stephen M. Blackburn, and Kathryn S. McKinley. Fast conser-

vative garbage collection. In OOPSLA 2014 [OOPSLA 20142014], pages 121–139.

[Shahriyar, 2015] Rifat Shahriyar. High Performance Reference Counting and Conservative

Garbage Collection. PhD thesis, Australian National University, April 2015. Code at

https://github.com/rifatshahriyar/JikesRVM-3.1.4.

[Shang, 1989] Heping Shang. Consistent global state algorithms and an application in distributed

garbage collection. Master’s thesis, Concordia University, Canada, 1989.

[Shankar et al., 2008] Ajeet Shankar, Matthew Arnold, and Rastislav Bodik. Jolt: Lightweight dynamic

analysis and removal of object churn. In OOPSLA 2008 [OOPSLA 20082008], pages 127–142.

[Shao and Lee, 2003] Zhong Shao and Peter Lee, editors. ACM SIGPLAN International Workshop on

Types in Language Design and Implementation, ACM SIGPLAN Notices 38(3), New Orleans, LA,

January 2003. ACM Press.

[Shapiro and Ferreira, 1994] Marc Shapiro and Paulo Ferreira. Larchant–RDOSS: a distributed shared

persistent memory and its garbage collector. Technical report, Institut National de la Recherche en

Informatique et Automatique (INRIA), November 1994. Superseded by [Shapiro and Ferreira, 1995].

[Shapiro and Ferreira, 1995] Marc Shapiro and Paulo Ferreira. Larchant–RDOSS: a distributed shared

persistent memory and its garbage collector. In J.-M. Hélary and M. Raymond, editors, Workshop on

Distributed Algorithms, number 972 in Lecture Notes in Computer Science, pages 198–214, Le Mont

Saint-Michel, September 1995. Springer-Verlag.

[Shapiro et al., 1990] Marc Shapiro, Olivier Gruber, and David Plainfossé. A garbage detection protocol

for a realistic distributed object-support system. Rapports de Recherche 1320, INRIA-Rocquencourt,

November 1990. Superseded by [Shapiro, 1991].

[Shapiro et al., 1992a] Marc Shapiro, Peter Dickman, and David Plainfossé. Robust, distributed refer-

ences and acyclic garbage collection. In PODC 1992 [PODC 19921992], pages 135–146. Superseded

by [Shapiro et al., 1992b].

[Shapiro et al., 1992b] Marc Shapiro, Peter Dickman, and David Plainfossé. SSP chains: Robust, dis-

tributed references supporting acyclic garbage collection. Rapports de Recherche 1799, Institut Na-

tional de la Recherche en Informatique et Automatique (INRIA), November 1992.

[Shapiro et al., 1992c] Marc Shapiro, Julien Maisonneuve, and Pierre Collet. Implementing references

as chains of links. In Cabrera et al. [Cabrera et al.1992].

[Shapiro et al., 1994] Marc Shapiro, David Plainfossé, Paulo Ferreira, and Laurent Amsaleg. Some key

issues in the design of distributed garbage collection and references. In Unifying Theory and Practice

in Distributed Systems, Dagstuhl (Germany), September 1994.

[Shapiro et al., 1997] Marc Shapiro, Sytse Kloosterman, and Fabio Riccardi. PerDiS — a persistent

distributed store for cooperative applications. In 3rd Cabernet Plenary Workshop, Rennes (France),

April 1997.

[Shapiro et al., 2000] Marc Shapiro, Fabrice Le Fessant, and Paulo Ferreira. Recent advances in dis-

tributed garbage collection. In Krakowiak and Shrivastava [Krakowiak and Shrivastava2000], pages

104–126.

[Shapiro, 1991] Marc Shapiro. A fault-tolerant, scalable, low-overhead distributed garbage collection

protocol. In 10th Symposium on Reliable Distributed Systems, Pisa, September 1991.

[Shapiro, 1993] Marc Shapiro. Flexible bindings for fine-grain and fragmented objects in distributed sys-

tems. Rapports de Recherche 2007, Institut National de la Recherche en Informatique et Automatique

(INRIA), 1993.

[Sharma and Soffa, 1991] Ravi Sharma and Mary Lou Soffa. Parallel generational garbage collection.

In OOPSLA 1991 [OOPSLA 19911991], pages 16–32.

[Shaw, 1987] Robert A. Shaw. Improving garbage collector performance in virtual memory. Technical

Report CSL-TR-87-323, Stanford University, March 1987. Also Hewlett-Packard Laboratories report

STL–TM–87–05, Palo Alto, 1987.

135



[Shaw, 1988] Robert A. Shaw. Empirical Analysis of a Lisp System. PhD thesis, Stanford University,

1988. Technical Report CSL-TR-88-351.

[Shen and Martonosi, 2006] John Paul Shen and Margaret Martonosi, editors. Twelfth International

Conference on Architectural Support for Programming Languages and Operating Systems, ACM SIG-

PLAN Notices 41(11), San Jose, CA, October 2006. ACM Press.

[Shen and Peterson, 1974] K.K. Shen and J.L. Peterson. A weighted buddy method for dynamic storage

allocation. Communications of the ACM, 17(10):558–562, October 1974.

[Shen et al., 2004] Xipeng Shen, Yutao Zhong, and Chen Ding. Locality phase prediction. In Mukherjee

and McKinley [Mukherjee and McKinley2004], pages 165–176.

[Shen et al., 2009] Xipeng Shen, Feng Mao, Kai Tian, and Eddy Zheng Zhang. The study and han-

dling of program inputs in the selection of garbage collectors. SIGOPS Operating Systems Review,

43(3):48–61, July 2009.

[Shen et al., 2018] Xipeng Shen, James Tuck, Ricardo Bianchini, and Vivek Sarkar, editors. 23rd Inter-

national Conference on Architectural Support for Programming Languages and Operating Systems,

Williamsburg, VA, March 2018. ACM Press.

[Sherwood et al., 2021] Tim Sherwood, Emery D. Berger, and Christos Kozyrakis, editors. 26th Inter-

national Conference on Architectural Support for Programming Languages and Operating Systems.

ACM Press, April 2021. ASPLOS 2021 was a virtual event.

[Shidal et al., 2014] Jonathan Shidal, Zachary Gottlieb, Ron K. Cytron, and Krishna M. Kavi. Trash in

cache: Detecting eternally silent stores. In MSPC 2014 [MSPC 20142014].

[Shidal et al., 2015] Jonathan Shidal, Ari J. Spilo, Paul T. Scheid, Ron K. Cytron, and Krishna M. Kavi.

Recycling trash in cache. In Bond and Hosking [Bond and Hosking2015], pages 118–130.

[Shimchenko et al., 2022] Marina Shimchenko, Mihail Popov, and Tobias Wrigstad. Analyzing and

predicting energy consumption of garbage collectors in OpenJDK. In Wrigstad and Gonzalez Boix

[Wrigstad and Gonzalez Boix2022].

[Shimchenko et al., 2024] Marina Shimchenko, Erik Österlund, and Tobias Wrigstad. Scheduling

garbage collection for energy efficiency on asymmetric multicore processors. In Programming 2045

[Programming 20452024].

[Shimchenko et al., 2025] Marina Shimchenko, Erik Österlund, and Tobias Wrigstad. Monk: Oppor-

tunistic scheduling to delay horizontal scaling. In Programming 2025 [Programming 20252025].

[Shin and Malek, 1985] Heonshik Shin and Miroslaw Malek. Parallel garbage collection with associa-

tive tag. In IEEE Conference on Parallel Processing, pages 369–375, Chicago, 1985. IEEE Press.

[Shin et al., 2019] Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil Cho, and Yunheung Paek.

CRCount: Pointer invalidation with reference counting to mitigate use-after-free in legacy C/C++. In

Network and Distributed Systems Security (NDSS) Symposium, San Diego, CA, 2019.

[Shivaratri et al., 1992] N.G. Shivaratri, P. Krueger, and M. Singhal. Load distributing for locally dis-

tributed systems. Computer, 25(12):33–44, December 1992.

[Shivers et al., 1999] O. Shivers, J.W. Clark, and R. McGrath. Atomic heap transactions and fine-grain

interrupts. In ICFP 1999 [ICFP 19991999].

[Shore, 1975] J.E. Shore. On the external storage fragmentation produced by first-fit and best-fit alloca-

tion strategies. Communications of the ACM, 18(8):433–440, August 1975.

[Shore, 1977] J.E. Shore. Anomalous behavior of the fifty-percent rule in dynamic memory allocation.

Communications of the ACM, 20(11):558–562, November 1977.

[Shuf et al., 2001] Yefim Shuf, Mauricio Serrano, Manish Gupta, and Jaswinder Pal Singh. Characteriz-

ing the memory behavior of Java workloads: A structured view and opportunities for optimizations. In

ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems,

June 2001.

[Shuf et al., 2002a] Yefim Shuf, Manish Gupta, Rajesh Bordawekar, and Jaswinder Pal Singh. Exploit-

ing prolific types for memory management and optimizations. In POPL 2002 [POPL 20022002].

[Shuf et al., 2002b] Yefim Shuf, Manish Gupta, Hubertus Franke, Andrew Appel, and Jaswinder Pal

Singh. Creating and preserving locality of Java applications at allocation and garbage collection times.

In OOPSLA 2002 [OOPSLA 20022002], pages 13–25.

136



[Shull et al., 2019] Thomas Shull, Jian Huang, and Josep Torrellas. AutoPersist: an easy-to-use Java

NVM framework based on reachability. In PLDI 2019 [PLDI 20192019], pages 316–332.

[Shultis, 1985] Jon. Shultis. Imminent garbage collection. Technical Report CU-CS-305-85, University

of Colorado, Department of Computer Science, 1985.

[Siebert and Walter, 2001] Fridtjof Siebert and Andy Walter. Deterministic execution of Java’s primitive

bytecode operations. In JVM 2001 [JVM 20012001].

[Siebert, 1997] Fridtjof Siebert. Implementierung eines eiffel-compilers für sun/sparc. Master’s thesis,

Universitaet Stuttgart, 1997. Diplomarbeit 1484. In German.

[Siebert, 1998] Fridtjof Siebert. Guaranteeing non-disruptiveness and real-time deadlines in an incre-

mental garbage collector. In Peyton Jones and Jones [Peyton Jones and Jones1998], pages 130–137.

[Siebert, 1999a] Fridtjof Siebert. Hard real-time garbage collection in the Jamaica Virtual Machine. In

RTCSA 1999 [RTCSA 19991999], pages 96–102.

[Siebert, 1999b] Fridtjof Siebert. Real-time garbage collection in multi-threaded systems on a single

processor. In 20th IEEE Real-Time Systems Symposium (RTSS), pages 277–278, Phoenix, AZ, De-

cember 1999.

[Siebert, 2000] Fridtjof Siebert. Eliminating external fragmentation in a non-moving garbage collector

for Java. In Compilers, Architecture, and Synthesis for Embedded Systems (CASES), pages 9–17, San

Jose, CA, November 2000. ACM Press.

[Siebert, 2001] Fridtjof Siebert. Constant-time root scanning for deterministic garbage collection. In CC

2001 [CC 20012001].

[Siebert, 2002] Fridtjof Siebert. Hard Realtime Garbage Collection in Modern Object Oriented Pro-

gramming Languages. PhD thesis, University of Karlsruhe, 2002. Published by aicas Books.

[Siebert, 2004] Fridtjof Siebert. The impact of realtime garbage collection on realtime Java program-

ming. In ISORC 2004 [ISORC 20042004], pages 33–40.

[Siebert, 2007] Fridtjof Siebert. Realtime garbage collection in the JamaicaVM 3.0. In JTRES 2007

[JTRES 20072007], pages 94–103.

[Siebert, 2008] Fridtjof Siebert. Limits of parallel marking collection. In Jones and Blackburn

[Jones and Blackburn2008], pages 21–29.

[Siebert, 2010] Fridtjof Siebert. Concurrent, parallel, real-time garbage-collection. In Vitek and Lea

[Vitek and Lea2010], pages 11–20.

[Siebert, 2012] Fridtjof Siebert. Parallel real-time garbage collection. In Distributed, Embedded and

Real-time Java Systems, chapter 4, pages 79–99. Springer, 2012.

[Siegwart and Hirzel, 2006] David Siegwart and Martin Hirzel. Improving locality with parallel hierar-

chical copying GC. In Petrank and Moss [Petrank and Moss2006], pages 52–63.

[SIGMOD 1916, 2016] ACM SIGMOD International Conference on Management of Data, ACM SIG-

MOD Record, San Francisco, USA, June 2016.

[SIGMOD 1989, 1989] ACM SIGMOD International Conference on Management of Data, ACM SIG-

MOD Record 18(2), Snowbird, Utah, June 1989.

[SIGPLAN 1979, 1979] ACM SIGPLAN Symposium on Compiler Construction, ACM SIGPLAN No-

tices 14(7), Denver, CO, August 1979. ACM Press.

[SIGPLAN 1986, 1986] ACM SIGPLAN Symposium on Compiler Construction, ACM SIGPLAN No-

tices 21(7), Palo Alto, CA, June 1986. ACM Press.

[SIGPLAN 1987, 1987] Symposium on Interpreters and Interpretive Techniques, ACM SIGPLAN No-

tices 22(7), St Paul, MN, June 1987. ACM Press.

[Siklossy, 1972] L. Siklossy. Fast and readonly algorithms for traversing trees without an auxiliary stack.

Information Processing Letters, 1(4):149–152, June 1972.

[Singer and Jones, 2011] Jeremy Singer and Richard Jones. Economic theory for memory management

optimization. In Rogers [Rogers2011a], pages 182–196. Position paper.

[Singer and Kirkham, 2006a] Jeremy Singer and Chris Kirkham. Visualized adaptive runtime subsys-

tems. In ACM Symposium on Software Visualization, pages 195–196, Brighton, UK, 2006.

137



[Singer and Kirkham, 2006b] Jeremy Singer and Chris C. Kirkham. Dynamic analysis of program con-

cepts in Java. In PPPJ 2006 [PPPJ 20062006], pages 31–39.

[Singer et al., 2007a] Jeremy Singer, Gavin Brown, Mikel Lujan, and Ian Watson. Towards intelligent

analysis techniques for object pretenuring. In PPPJ 2007 [PPPJ 20072007], pages 203–208.

[Singer et al., 2007b] Jeremy Singer, Gavin Brown, Ian Watson, and John Cavazos. Intelligent selection

of application-specific garbage collectors. In Morrisett and Sagiv [Morrisett and Sagiv2007], pages

91–102.

[Singer et al., 2008] Jeremy Singer, Sebastien Marion, Gavin Brown, Richard Jones, Mikel Lújan, Chris

Ryder, and Ian Watson. An information theoretic evaluation of software metrics for object lifetime

prediction. In 2nd Workshop on Statistical and Machine Learning Approaches to Architectures and

Compilation (SMART’08), page 15, Goteborg, Sweden, January 2008.

[Singer et al., 2010] Jeremy Singer, Richard Jones, Gavin Brown, and Mikel Luján. The economics of

garbage collection. In Vitek and Lea [Vitek and Lea2010], pages 103–112.

[Singer et al., 2011] Jeremy Singer, George Kovoor, Gavin Brown, and Mikel Luján. Garbage collection

auto-tuning for Java MapReduce on multi-cores. In Boehm and Bacon [Boehm and Bacon2011],

pages 109–118.

[Singh et al., 1992] Jaswinder Pal Singh, Harold S. Stone, and Dominique Thiebaut. A model of work-

loads and its use in miss-rate prediction for fully-associative caches. IEEE Transactions on Computers,

41(7):811–825, July 1992.

[Singh, 1988] Ramanand Singh. A realization of multiprocessing garbage collection algorithm for rule-

based expert systems. Master’s thesis, West Virginia University, 1988.

[Singh, 1990] Tajinder P. Singh. Hardware design of a real-time copying garbage collection system.

Master’s thesis, Iowa State University, Department of Computer Science, August 1990.

[Singhal et al., 1992] Vivek Singhal, Sheetal V. Kakkad, and Paul R. Wilson. Texas: an efficient,

portable persistent store. In Albano and Morrison [Albano and Morrison1992], pages 11–33.

[Sirer et al., 1996] Emin Gün Sirer, Stefan Savage, Przemyslaw Pardyak, Greg P. DeFouw, and Brian N.

Bershad. Writing an operating system using Modula-3. In Workshop on Compiler Support for Systems

Software, 1996.

[Sivaramakrishnan et al., 2012] KC Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. Elim-

inating read barriers through procrastination and cleanliness. In McKinley and Vechev

[McKinley and Vechev2012], pages 49–60.

[Skotiniotis and Chang, 2002] Therapon Skotiniotis and J. Morris Chang. Estimating internal memory

fragmentation for Java programs. Journal of Systems and Software, 64(3):235–246, December 2002.

[Skubiszewski and Porteix, 1996] M. Skubiszewski and N. Porteix. GC-consistent cuts of databases.

Rapport de Recherche 2681, Institut National de la Recherche en Infromatique et Automatique, Roc-

quencourt, April 1996.

[Skubiszewski and Valduriez, 1997] M. Skubiszewski and P. Valduriez. Concurrent garbage collection

in O2. In M. Jarke, M.J. Carey, K.R. Dittrich, F.H. Lochovsky, P. Loucopoulos, and M.A. Jeusfeld,

editors, 23rd International Conference on Very Large Databases (VLDB), pages 356–365, Athens,

May 1997. Morgan Kaufman.

[Slater, 1991] Michael Slater. PA workstations set price/performance records. Microprocessor Report,

5(6), April 1991.

[Sleator and Tarjan, 1985] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary

search trees. Journal of the ACM, 32(3):562–686, July 1985.

[Slusarek, 1987] Maciej Slusarek. An off-line storage allocation algorithm. Information Processing

Letters, 24(2):71–75, January 1987.

[Smaragdakis, 2004] Yannis Smaragdakis. General adaptive replacement policies. In Bacon and Diwan

[Bacon and Diwan2004], pages 108–119.

[Smetsers et al., 1993] S. Smetsers, E. Barendsen, M.J.C. D van Eekelen, and R. Plasmeijer. Guarantee-

ing safe destructive updates through a type system with uniqueness information for graphs. Technical

Report 93–4, University of Nijmegen, 1993.

138



[Smith and Morrisett, 1997] Frederick Smith and Greg Morrisett. Mostly copying collection: A viable

alternative to conservative mark-sweep. Technical report, Cornell University, 1997.

[Smith and Morrisett, 1998] Frederick Smith and Greg Morrisett. Comparing mostly-copying and mark-

sweep conservative collection. In Peyton Jones and Jones [Peyton Jones and Jones1998], pages 68–78.

[Smith et al., 2001] L.A. Smith, J.M. Bull, and J. Obdrzalek. A parallel Java Grande benchmark suite.

In SC 2001 [SC 20012001].

[Smith, 1976] Alan J. Smith. A modified working set paging algorithm. IEEE Transactions on Software

Engineering, C-25(9):907–914, September 1976.

[Smith, 1978] Alan J. Smith. Sequential program prefetching in memory hierarchies. IEEE Transactions

on Computers, 11(12):7–21, December 1978.

[Smith, 1982] Alan J. Smith. Cache memories. ACM Computing Surveys, 14(3):473–530, September

1982.

[Smith, 1985] Alan J. Smith. Cache evaluation and the impact of workload choice. In ISCA 1985

[ISCA 19851985], pages 64–73.

[Smith, 1986] Alan J. Smith. Bibliography and readings on cpu cache memories and related topics.

Computer Architecture News, 14(1):22–42, January 1986.

[Smith, 1987] Alan J. Smith. Line (block) size choice for cpu cache memories. IEEE Transactions on

Computers, C-36(9):1063–1075, September 1987.

[Smith, 1989] Jane Smith. A garbage collector for FP9. Technical report, University of New Dundee,

1989.

[Snyder, 1979] A. Snyder. A machine architecture to support an object-oriented language. Technical

Memo MIT/LCS/TR–209, MIT Laboratory for Computer Science, March 1979.

[Sobalvarro, 1988] Patrick Sobalvarro. A lifetime-based garbage collector for Lisp systems on general-

purpose computers. Bachelor of Science thesis AITR-1417, MIT AI Lab, February 1988.

[Soffa, 2008] Mary Lou Soffa, editor. 14th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ACM SIGPLAN Notices 43(3), Seattle, WA, March

2008. ACM Press.

[Soldevila et al., 2020] Mallku Soldevila, Beta Ziliani, and Daniel Fridlender. Understanding Lua’s

garbage collection: Towards a formalized static analyzer. In 22nd International Symposium on Prin-

ciples and Practice of Declarative Programming (PPDP’20), Bologna, Italy, 2020.

[Soman and Krintz, 2006] Sunil Soman and Chandra Krintz. Efficient and general on-stack replacement

for aggressive program specialization. In International Conference on Software Engineering Research

and Practice (SERP) & Conference on Programming Languages and Compilers, Volume 2, pages

925–932, Las Vegas, NV, June 2006. CSREA Press.

[Soman et al., 2004a] Sunil Soman, Chandra Krintz, and David Bacon. Dynamic selection of

application-specific garbage collectors. Technical Report 2004–09, UCSB, January 2004.

[Soman et al., 2004b] Sunil Soman, Chandra Krintz, and David Bacon. Dynamic selection of

application-specific garbage collectors. In Bacon and Diwan [Bacon and Diwan2004], pages 49–60.

[Soman et al., 2006] Sunil Soman, Laurent Daynès, and Chandra Krintz. Task-aware garbage collection

in a multi-tasking virtual machine. In Petrank and Moss [Petrank and Moss2006], pages 64–73.

[Soman et al., 2008] Sunil Soman, Chandra Krintz, and Laurent Daynès. MTM2: Scalable memory

management for multi-tasking managed runtime environments. In Vitek [Vitek2008], pages 335–361.

[Soman, 2008] Sunil Soman. Memory Management for Multi-Application Managed Runtime Environ-

ments. PhD thesis, University of California at Santa Barbara, 2008.

[SOSP 1993, 1993] 14th ACM SIGOPS Symposium on Operating Systems Principles, ACM SIGOPS

Operating Systems Review 27(5), Asheville, NC, December 1993. ACM Press.

[Sotoudeh, 2025] Matthew Sotoudeh. Pathological cases for a class of reachability-based garbage col-

lectors. Proceedings of the ACM on Programming Languages, 9(OOPSLA1), April 2025.

[Sousa, 1993] Pedro Sousa. Garbage collection of persistent objects in a distributed object-oriented

platform. In Moss et al. [Moss et al.1993].

139



[SPAA 2013, 2013] 25th ACM Symposium on Parallelism in Algorithms and Architectures, Montréal,

Canada, 2013. ACM Press.

[SPAA 2017, 2017] 29th ACM Symposium on Parallelism in Algorithms and Architectures, Washington,

DC, 2017. ACM Press.

[SPAA 2019, 2019] 31st ACM Symposium on Parallelism in Algorithms and Architectures, Phoenix, AZ,

June 2019. ACM Press.

[SPACE 2001, 2001] 1st Workshop on Semantics, Program Analysis, and Computing Environments for

Memory Management (SPACE), London, England, January 2001.

[SPACE 2004, 2004] 2nd Workshop on Semantics, Program Analysis, and Computing Environments for

Memory Management (SPACE), Venice, Italy, January 2004.

[SPACE 2006, 2006] 3rd Workshop on Semantics, Program Analysis, and Computing Environments for

Memory Management (SPACE), Charleston, SC, January 2006.

[Spalding and Jia, 2006] Frances Spalding and Limin Jia. Asserting memory shape using linear logic.

In SPACE 2006 [SPACE 20062006], pages 2–13.

[Sparud, 1993] Jan Sparud. Fixing some space leaks without a garbage collector. In Hughes

[Hughes1993].

[SPECjvm2008, 1998] SPEC JVM2008 benchmarks, 1998.

[SPECjvm98, 1998] SPEC JVM98 benchmarks, 1998.

[Spertus, 1996a] Michael Spertus. Automating memory management. Object Currents, January 1996.

[Spertus, 1996b] Michael Spertus. Garbage collection in C++. Object magazine, 5(9), March 1996.

[Spertus, 1997] Michael Spertus. C++ and garbage collection. Dr. Dobb’s Journal, 22(12):36–41, De-

cember 1997.

[SPIN, ] The SPIN operating system. A collection of papers available on the WWW.

[Spoonhower et al., 2004] Daniel Spoonhower, Guy Blelloch, and Robert Harper. Incremental copying

collection with pinning (progress report). In SPACE 2004 [SPACE 20042004].

[Spoonhower et al., 2005] Daniel Spoonhower, Guy Blelloch, and Robert Harper. Using page residency

to balance tradeoffs in tracing garbage collection. In Hind and Vitek [Hind and Vitek2005], pages

57–67.

[Spoonhower et al., 2006] Daniel Spoonhower, Joshua Auerbach, David F. Bacon, Perry Cheng, and

David Grove. Eventrons: A safe programming construct for high-frequency hard real-time applica-

tions. In Schwartzbach and Ball [Schwartzbach and Ball2006], pages 283–294.

[Spoonhower et al., 2008] Daniel Spoonhower, Guy E. Blelloch, Robert Harper, and Phillip B. Gibbons.

Space profiling for parallel functional programs. In 13th ACM SIGPLAN International Conference on

Functional Programming, pages 253–264, Victoria, BC, Canada, September 2008.

[Springer and Masuhara, 2019] Matthias Springer and Hidehiko Masuhara. Massively parallel GPU

memory compaction. In Xu and Singer [Xu and Singer2019], pages 14–26.

[Srikant and Shankar, 2008] Y.N. Srikant and Priti Shankar. The Compiler Design Handbook: Optimiza-

tions and Machine Code Generation, chapter Garbage Collection Techniques. CRC Press, second

edition, 2008.

[Srisa-an and Oey, 2005] Witiwas Srisa-an and M. Oey. Remote objects: The next garbage collection

challenge. Journal of Object Technology, 4(4):155–172, May–June 2005.

[Srisa-an et al., 1999a] Witiwas Srisa-an, C.D. Lo, and J. Morris Chang. A hardware implementation of

realloc function. Integration, the VLSI Journal, 28:173–184, 1999.

[Srisa-an et al., 1999b] Witiwas Srisa-an, C.D. Lo, and J. Morris Chang. A hardware implementation

of realloc function. In IEEE Annual Workshop on VLSI (WVLSI), pages 697–699, Orlando, FL, April

1999.

[Srisa-an et al., 2000a] Witiwas Srisa-an, J. Morris Chang, and Chia-Tien Dan Lo. Do generational

schemes improve the garbage collection efficiency? In ISPASS 2000 [ISPASS 20002000], pages

58–63.

140



[Srisa-an et al., 2000b] Witiwas Srisa-an, Chia-Tien Dan Lo, and J. Morris Chang. Active memory:

Garbage-collected memory for embedded systems. In Second Annual Workshop on Hardware Support

for Objects and Microarchitectures for Java, pages 11–15, Austin, TX, September 2000.

[Srisa-an et al., 2000c] Witiwas Srisa-an, Chia-Tien Dan Lo, and J. Morris Chang. Scalable hardware-

algorithm for mark-sweep garbage collection. In Euromicro Conference on Digital System Design,

pages 274–279, Maastricht, Netherlands, September 2000.

[Srisa-an et al., 2002a] Witiwas Srisa-an, Chia-Tien Dan Lo, and J. Morris Chang. Object resizing and

reclamation through the use of hardware bit-maps. International Journal of Microprocessors and

Microsystems, 25:459–467, 2002.

[Srisa-an et al., 2002b] Witiwas Srisa-an, Chia-Tien Dan Lo, and J. Morris Chang. Performance en-

hancements to the active memory system. In IEEE International Conference on Computer Design

(ICCD), pages 249–256, Freiburg, Germany, September 2002.

[Srisa-an et al., 2002c] Witiwas Srisa-an, Chia-Tien Dan Lo, and J. Morris Chang. A performance per-

spective on the active memory system. International Journal of Microprocessors and Microsystems,

26(9–10):421–432, December 2002.

[Srisa-an et al., 2003] Witiwas Srisa-an, Chia-Tien Dan Lo, and J. Morris Chang. Active memory pro-

cessor: A hardware garbage collector for real-time Java embedded devices. IEEE Transactions on

Mobile Computing, 2(2):89–101, April–June 2003.

[Srisa-an et al., 2005] Witiwas Srisa-an, M. Oey, and S. Elbaum. Garbage collection in the presence of

remote objects: A case study. In International Symposium on Distributed Objects and Applications,

pages 1065–1082, Agia Napa, Cyprus, October 2005.

[Srisa-an et al., to appear] Witiwas Srisa-an, Chia-Tien Dan Lo, and J. Morris Chang. Hardware support

for garbage collection in embedded systems using the active memory module. International Journal

of Microprocessors and Microsystems, to appear.

[Stallman, 1980] Richard M. Stallman. Phantom stacks: If you look too hard, they aren’t there. AI

Memo 556, MIT AI Laboratory, July 1980.

[Stamos, 1982] James William Stamos. A large object-oriented virtual memory: Grouping strategies,

measurements, and performance. Master’s thesis, Department of Electrical Engineering and Computer

Science, Massachusetts Institute of Technology, April 1982.

[Stamos, 1984] James W. Stamos. Static grouping of small objects to enhance performance of a paged

virtual memory. ACM Transactions on Computer Systems, 2(3):155–180, May 1984.

[Stamos, 1986] James W. Stamos. Programmer-invoked local garbage collection: A design. Technical

Report unpublished draft, MIT, 1986.

[Stanchina and Meyer, 2007] Sylvain Stanchina and Mattias Meyer. Mark-sweep or copying? a “best of

both worlds” algorithm and a hardware-supported real-time implementation. In Morrisett and Sagiv

[Morrisett and Sagiv2007], pages 173–182.

[Stancu et al., 2015] Codruţ Stancu, Christian Wimmer, Stefan Brunthaler, Per Larsen, and Michael

Franz. Safe and efficient hybrid memory management for java. In Bond and Hosking

[Bond and Hosking2015], pages 81–92.

[Standish, 1980] Thomas A. Standish. Data Structure Techniques. Addison-Wesley, 1980.

[Stapleton, 1990] Sue M Stapleton. Real-time garbage collection for general purpose languages. Mas-

ter’s thesis, Iowa State University, Department of Computer Science, August 1990.

[Steele, 1975] Guy L. Steele. Multiprocessing compactifying garbage collection. Communications of

the ACM, 18(9):495–508, September 1975.

[Steele, 1976] Guy L. Steele. Corrigendum: Multiprocessing compactifying garbage collection. Com-

munications of the ACM, 19(6):354, June 1976.

[Steele, 1977] Guy L. Steele. Data representation in PDP-10 MACLISP. AI Memo 421, MIT AI Labo-

ratory, 1977.

[Steele, 1978] Guy L. Steele. RABBIT: A compiler for SCHEME. Technical report, MIT Press, May

1978.

[Steele, 1984] Guy L. Steele, editor. ACM Conference on LISP and Functional Programming, Austin,

TX, August 1984. ACM Press.

141



[Steenkiste and Hennessy, 1987] Peter Steenkiste and John Hennessy. Tags and type checking in LISP:

Hardware and software approaches. In ASPLOS 1987 [ASPLOS 19871987], pages 50–59.

[Steenkiste and Hennessy, 1988] Peter Steenkiste and John Hennessy. Lisp on a reduced-instruction-set

processor: Characterization and optimization. IEEE Computer, 21(7):34–45, July 1988.

[Steenkiste, 1987] Peter Steenkiste. Lisp on a Reduced-Instruction-Set Processor: Characterization and

Optimization. PhD thesis, Stanford University, March 1987. Available as Technical Report CSL-TR-

87-324.

[Steenkiste, 1989] Peter Steenkiste. The impact of code density on instruction cache performance. In

ISCA 1989 [ISCA 19891989], pages 252–259.

[Steensgaard, 2000] Bjarne Steensgaard. Thread-specific heaps for multi-threaded programs. In Cham-

bers and Hosking [Chambers and Hosking2000], pages 18–24.

[Stefanović and Moss, 1994] Darko Stefanović and J. Eliot B. Moss. Characterisation of object be-

haviour in Standard ML of New Jersey. In LFP 1994 [LFP 19941994], pages 43–54.

[Stefanović et al., 1998a] Darko Stefanović, J. Eliot B. Moss, and Kathryn S. McKinley. Oldest-first

garbage collection. Technical Report 98–81, University of Massachusetts, April 1998.

[Stefanović et al., 1998b] Darko Stefanović, J. Eliot B. Moss, and Kathryn S. McKinley. On models for

object lifetime. Technical report, University of Massachusetts, February 1998.

[Stefanović et al., 1999a] Darko Stefanović, Kathryn S. McKinley, and J. Eliot B. Moss. Age-based

garbage collection. In OOPSLA 1999 [OOPSLA 19991999], pages 370–381.

[Stefanović et al., 1999b] Darko Stefanović, J. Eliot B. Moss, and Kathryn S. McKinley. Age-based

garbage collection. Technical report, University of Massachusetts, April 1999. preliminary version of

a paper to appear in OOPSLA’99.

[Stefanović et al., 2000] Darko Stefanović, Kathryn S. McKinley, and J. Eliot B. Moss. On models for

object lifetime distributions. In Chambers and Hosking [Chambers and Hosking2000], pages 137–

142.

[Stefanović et al., 2002] Darko Stefanović, Matthew Hertz, Stephen Blackburn, Kathryn McKinley, and

J. Eliot Moss. Older-first garbage collection in practice: Evaluation in a Java virtual machine. In MSP

2002 [MSP 20022002], pages 25–36.

[Stefanović, 1993a] Darko Stefanović. The garbage collection toolkit as an experimentation tool. In

Moss et al. [Moss et al.1993].

[Stefanović, 1993b] Darko Stefanović. Generational copying garbage collection for Standard ML: a

quantitative study. Master’s thesis, University of Massachusetts, 1993.

[Stefanović, 1999] Darko Stefanović. Properties of Age-Based Automatic Memory Reclamation Algo-

rithms. PhD thesis, University of Massachusetts, 1999.

[Stenning, 1976] V. Stenning. On-the-fly garbage collection. Unpublished notes, cited by [Gries, 1977a],

1976.

[Stephenson, 1983] C.J. Stephenson. New methods of dynamic storage allocation (fast fits). In 9th ACM

SIGOPS Symposium on Operating Systems Principles, ACM SIGOPS Operating Systems Review

17(5), pages 30–32, Bretton Woods, NH, October 1983. ACM Press.

[Stichnoth et al., 1999] James M. Stichnoth, Guei-Yuan Lueh, and Michal Cierniak. Support for garbage

collection at every instruction in a Java compiler. In PLDI 1999 [PLDI 19991999], pages 118–127.

[Stilkerich et al., 2014] Isabella Stilkerich, Michael Strotz, Christoph Erhardt, and Michael Stilk-

erich. RT-LAGC: Fragmentation-tolerant real-time memory management revisited. In JTRES 2014

[JTRES 20142014].

[Stone et al., 1992] Harold S. Stone, John Turek, and Joel L. Wolf. Optimal partitioning of cache mem-

ory. IEEE Transactions on Computers, 41(9):1054–1068, September 1992.

[Stone, 1982] Harold S. Stone. Parallel memory allocation using the FETCH-AND-ADD instruction.

Technical report, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, November 1982.

[Stoutamire, 1997] David Stoutamire. Portable, Modular Expression of Locality. PhD thesis, University

of California, Berkeley, 1997.

[Stoye et al., 1984] Will R. Stoye, T.J.W. Clarke, and Arthur C. Norman. Some practical methods for

rapid combinator reduction. In Steele [Steele1984], pages 159–166.

142



[Strandh, 2014] Robert Strandh. An improvement to sliding garbage collection. In Proceedings of ILC

2014 on 8th International Lisp Conference, page 97102, Montreal, QC, Canada, 2014. ACM Press.

[Straw et al., 1989] A. Straw, F. Mellender, and S. Riegel. Object management in a persistent Smalltalk

system. Software: Practice and Experience, 19(8):719–737, 1989.

[Strobl, 2007] Torsten Strobl. Modern Concepts Applied to C++ — Object Persistence, Reflection,

Events, Garbage Collection and Thread Safety in C++. Verlag, August 2007.

[Stroustrup, 1991] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, second edi-

tion, December 1991.

[Stroustrup, 1996] Bjarne Stroustrup. Proposal to acknowledge that garbage collection for C++ is pos-

sible. Technical report, AT&T Research, Murray Hill, NJ, May 1996. From the C++ core language

mailing list, 27 May 1996.

[Stuckey, 2002] P.J. Stuckey, editor. 18th International Conference on Logic Programming, volume

2401 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

[Stumm and Zhou, 1990a] M. Stumm and Songnian Zhou. Algorithms implementing distributed shared

memory. IEEE Computing, 23(5), May 1990.

[Stumm and Zhou, 1990b] Michael Stumm and Songnian Zhou. Fault tolerant distributed shared mem-

ory. In IEEE International Conference on Parallel Distributed Computing. IEEE Press, December

1990.

[Stutterheim and Chin, 2019] Jurrieë Stutterheim and Wei Ngan Chin, editors. 31st International Sym-

posium on Implementation and Application of Functional Languages, Singapore, 2019. ACM Press.

[Stygar, 1967] P. Stygar. LISP 2 garbage collector specifications. Technical Report TN-3417/500/00,

System Development Corporation, April 1967.

[Subramanian, 1991] Indira Subramanian. Managing discardable pages with an external pager. In

USENIX Mach Symposium, pages 77–85, Monterey, CA, November 1991. USENIX Association.

[Suganuma et al., 2003] Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani. A region-based com-

pilation technique for a Java just-in-time compiler. In PLDI 2003 [PLDI 20032003], pages 312–323.

[Sugimoto and others, 1983] S. Sugimoto et al. A multi-microprocessor system for Concurrent Lisp. In

ICPP 1983 [ICPP 19831983].

[Sullivan and Chillarege, 1991] Mark Sullivan and Ram Chillarege. Software defects and their impact on

system availability – a study of field failures in operating systems. In Digest of the 21st International

Symposium on Fault Tolerant Computing, pages 2–9, June 1991.

[Sultan et al., 2002a] Florin Sultan, Thu D. Nguyen, and Liviu Iftode. Lazy garbage collection of recov-

ery state for fault-tolerant distributed shared memory. IEEE Transactions on Parallel and Distributed

Systems, 13(10):673–686, October 2002. This paper contains some errors which led to the paper being

reprinted in [Sultan et al., 2002b].

[Sultan et al., 2002b] Florin Sultan, Thu D. Nguyen, and Liviu Iftode. Lazy garbage collection of recov-

ery state for fault-tolerant distributed shared memory. IEEE Transactions on Parallel and Distributed

Systems, 13(10):1085–1098, October 2002.

[Sun and Gehringer, 1997] Jingyu Sun and Edward F. Gehringer. A Smalltalk memory profiler and its

performance enhancement. In Dickman and Wilson [Dickman and Wilson1997].

[Sun JNI, 1997, 1997] Java Native Interface, 1997. Javasoft’s Native Interface for Java.

[Sun Microsystems, 2001] Sun Microsystems. The Java HotSpot Virtual Machine, 2001. Technical

White Paper.

[Sun Microsystems, 2006] Sun Microsystems. Memory Management in the Java HotSpot Virtual Ma-

chine, April 2006. Technical White Paper.

[Sun Microsystems, 2009] Sun Microsystems. Java SE 6 HotSpot Virtual Machine garbage Collection

Tuning, 2009.

[Sun, 2002a] Sun Microsystems. Java 2 Platform, Enterprise Edition (J2EE), 1.4 Specification, 2002.

[Sun, 2002b] Sun Microsystems. Java 2 Platform, Standard Edition, v 1.4.0: API Specification, 2002.

[Sundell, 2005] H. Sundell. Wait-free reference counting and memory management. In 19th Inter-

national Parallel and Distributed Processing Symposium (IPDPS), Denver, CO, April 2005. IEEE

Computer Society Press.

143



[Suo et al., 2018] Kun Suo, Jia Rao, Hong Jiang, and Witawas Srisa-an. Characterizing and optimizing

HotSpot parallel garbage collection on multicore systems. In EuroSys 2018 [EuroSys 20182018],

pages 35:1–35:15.

[Suzuki and Terashima, 1995] Mitsugu Suzuki and Motoaki Terashima. Time- and space-efficient

garbage collection based on sliding compaction. Transaction of Information Processing (IPSJ),

36(4):925–931, 1995.

[Suzuki et al., 1995] Mitsugu Suzuki, Hiroshi Koide, and Motoaki Terashima. MOA — a fast sliding

compaction scheme for a large storage space. In Baker [Baker1995b], pages 197–210.

[Swamy et al., 2006] Nikhil Swamy, Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim.

Safe manual memory management in Cyclone. Science of Computer Programming, 62(2):122–144,

October 2006.

[Swanson, 1986] M. Swanson. An improved portable copying garbage collector. OPnote 86–03, Uni-

versity of Utah, February 1986.

[Swinehart et al., 1986] Daniel C. Swinehart, Polle T. Zellweger, Richard J. Beach, and Robert B. Hag-

mann. A structural view of the Cedar programming environment. Technical Report CSL–86–1, Xerox

Corporation, 1986.

[Szöke, 1977] Péter Szöke. Some remarks on new instances and garbage collection. ACM SIGPLAN

Notices, 12(6), June 1977. Strathclyde Algol-68 Conference.

[Szymanek and Kuchcinski, 1999] Radoslaw Szymanek and Krzysztof Kuchcinski. Design space ex-

ploration in system level synthesis under memory constraints. In Euromicro 35, Milan, September

1999.

[Szymanek and Kuchcinski, 2000] Radoslaw Szymanek and Krzysztof Kuchcinski. Task assignment

and scheduling under memory constraints. In Euromicro 2000, 2000.

[Szymanek and Kuchcinski, 2001] Radoslaw Szymanek and Krzysztof Kuchcinski. A constructive al-

gorithm for memory-aware task assignment and scheduling. In 9th International Symposium on Hard-

ware/Software Codesign, Copenhagen, April 2001.

[Szymanek, 2001] Radoslaw Szymanek. Memory aware task assignment and scheduling for multipro-

cessor embedded systems. Master’s thesis, Department of Computer Science, Lund University, June

2001.

[Tabassum et al., 2023] Faria Tabassum, Md Islam, Md Rahman, and Jimmy Majumder. A comprehen-

sive study on different optimizations of pure reference counting garbage collectors. In International

Conference on Computational Intelligence, Networks and Security (ICCINS), Mylavaram, AP, India,

March 2023.

[Tadman, 1978] M. Tadman. Fast-fit: A new hierarchical dynamic storage allocation technique. Master’s

thesis, University of California, Irvine, 1978.

[Takahashi and Hagiya, 2000] Koichi Takahashi and Masami Hagiya. Abstraction of link structures by

regular expressions and abstract model checking of concurrent garbage collection. In Asian Sympo-

sium on Programming Languages and Systems (APLAS’00), pages 1–8, 2000.

[Takeda et al., 1991] Tomohiro Takeda, Toshiyuki Kamada, Norihisa Doi, and Yasushi Kodama. A

Garbage Collecting Method for Object-Oriented Concurrent Languages, pages 51–64. Springer-

Verlag, 1991.

[Takeda, 1990] Tomohiro Takeda. A garbage collecting method for object-oriented concurrent lan-

guages. In Jul and Juul [Jul and Juul1990].

[Tanenbaum, 1988] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, second edition, 1988.

[Tang et al., 2008] Yan Tang, Qi Gao, and Feng Qin. LeakSurvivor: Towards safely tolerating memory

leaks for garbage-collected languages. In USENIX Annual Technical Conference, pages 307–320.

USENIX Association, 2008.

[Tang et al., 2012a] Cheng-Hsien Tang, Ting-Yuan Song, Meng-Feng Tsai, and Wei-Jen Wang. Collect-

ing mobile-agent garbage using actor-based weighted reference counting. Advanced Science Letters,

9(1):157–161, April 2012.

[Tang et al., 2012b] Daniel Tang, Ales Plsek, and Jan Vitek. Memory safety for safety critical Java. In

Distributed, Embedded and Real-time Java Systems, chapter 10, pages 235–264. Springer, 2012.

144



[Tarau, 1992] Paul Tarau. Ecological memory management in a continuation passing Prolog engine. In

Bekkers and Cohen [Bekkers and Cohen1992], pages 344–356.

[Tarau, 2011] Paul Tarau. Integrated symbol table, engine and heap memory management in multi-

engine Prolog. In Boehm and Bacon [Boehm and Bacon2011], pages 129–138.

[Tarditi and Diwan, 1993] David Tarditi and Amer Diwan. The full cost of a generational copying

garbage collection implementation. In Moss et al. [Moss et al.1993].

[Tarditi and Diwan, 1994] David Tarditi and Amer Diwan. Measuring the cost of storage management.

Technical Report CMU-CS-94-201, Carnegie Mellon University, 1994. Accepted for publication in

Lisp and Symbolic Computation.

[Tarditi and Diwan, 1996] David Tarditi and Amer Diwan. Measuring the cost of storage management.

Lisp and Symbolic Computation, 9(4), 1996.

[Tarditi, 2000] David Tarditi. Compact garbage collection tables. In Chambers and Hosking

[Chambers and Hosking2000], pages 50–58.

[Tarjan, 1992] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of Computing,

1(2), 1992.

[Tärnlund, 1984] S.-A. Tärnlund, editor. 2nd International Conference on Logic Programming, Uppsala,

Finland, 1984.

[Tasneem et al., 2019] Kashif Tasneem, Ayesha Siddiqui, and Anum Liaquat. Android memory opti-

mization. International Journal of Computer Applications, 182(41):36–43, February 2019.

[Tasos et al., 2020] Alexandros Tasos, Juliana Franco, Sophia Drossopoulou, Tobias Wrigstad, and Su-

san Eisenbach. Reshape your layouts, not your programs: A safe language extension for better cache

locality. SCP, 197:1–57, May 2020.

[Taura and Yonezawa, 1997a] Kenjiro Taura and Akinori Yonezawa. An effective garbage collection

strategy for parallel programming. In PPOPP 1997 [PPOPP 19971997], pages 264–275.

[Taura and Yonezawa, 1997b] Kenjiro Taura and Akinori Yonezawa. Efficient and Reusable Implemen-

tation of Fine-Grain Multithreading and Garbage Collection on Distributed-Memory Parallel Com-

puters. PhD thesis, University of Tokyo, 1997.

[Tavakolisomeh et al., 2023] Sanaz Tavakolisomeh, Marina Shimchenko, Erik Österlund, Rodrigo

Bruno, Paulo Ferreira, and Tobias Wrigstad. Heap size adjustment with CPU control. In Moss

[Moss2023].

[Tay et al., 2013] Y.C. Tay, Xuanran Zong, and Xi He. An equation-based heap sizing rule. Performance

Evaluation, 70(11):948–964, 2013.

[Taylor et al., 1986] George S. Taylor, Paul N. Hilfinger, James R. Larus, David A. Patterson, and Ben-

jamin G. Zorn. Evaluation of the SPUR Lisp architecture. In ISCA 1986 [ISCA 19861986].

[Taylor, 1989] S. Taylor. Parallel Logic Programming Techniques. Prentice-Hall, 1989.

[Tel and Mattern, 1991] Gerard Tel and Friedmann Mattern. The derivation of distributed termination

detection algorithms from garbage collection schemes. In Aarts et al. [Aarts et al.1991], pages 137–

149.

[Tel and Mattern, 1993] Gerard Tel and Friedmann Mattern. The derivation of distributed termination

detection algorithms from garbage collection schemes. ACM Transactions on Programming Lan-

guages and Systems, 15(1), January 1993.

[Tel et al., 1987] Gerard Tel, Richard B. Tan, and Jan van Leeuwen. The derivation of on-the-fly garbage

collection algorithms from distributed termination detection protocols. Lecture Notes in Computer

Science, 247:445–455, 1987.

[Tel et al., 1988] Gerard Tel, Richard B. Tan, and Jan van Leeuwen. The derivation of graph marking

algorithms from distributed termination detection protocols. Science Of Computer Programming,

10(2):107–137, 1988.

[Tel, 1991] Gerard Tel. Topics in Distributed Algorithms, volume 1 of Cambridge international series

on parallel computation. Cambridge University Press, New York, 1991.

[Tel, 1994] Gerard Tel. Introduction to Distributed Algorithms. Cambridge University Press, 1994.

145



[Templ, 1991] Josef Templ. Garbage collection on open arrays. In Cuno Pfister, Beat Heeb, and Josef

Templ, editors, Oberon Technical Notes, pages 51–57. ETH Eidgenössische Technische Hochschule

Zürich, March 1991. ETHZ Technical Report 156.

[Tene et al., 2011] Gil Tene, Balaji Iyengar, and Michael Wolf. C4: The continuously concurrent com-

pacting collector. In Boehm and Bacon [Boehm and Bacon2011], pages 79–88.

[Terashima and Goto, 1978] Motoaki Terashima and Eiichi Goto. Genetic order and compactifying

garbage collectors. Information Processing Letters, 7(1):27–32, January 1978.

[Terauchi and Aiken, 2004] T. Terauchi and Alex Aiken. Memory management with use-counted re-

gions. Technical report, University of California, Berkeley, March 2004.

[Terei and Levy, 2015] David Terei and Amit Levy. Blade: A data center garbage collector.

http://arxiv.org/pdf/1504.02578v1.pdf, April 2015.

[Terei et al., 2014] David Terei, Alex Aiken, and Jan Vitek. M3: High-performance memory manage-

ment from off-the-shelf components. In Guyer and Grove [Guyer and Grove2014], pages 2–13.

[Terry and Swinehart, 1988] Douglas B. Terry and Daniel C. Swinehart. Managing stored voice in the

etherphone system. ACM Transactions on Computer Systems, 6(1):3–27, February 1988.

[Thacker and Stewart, 1987] Charles P. Thacker and Lawrence C. Stewart. Firefly: A multiprocessor

workstation. In ASPLOS 1987 [ASPLOS 19871987], pages 164–172. Also DEC SRC Research

report 23, December 1987.

[Thazhuthaveetil and Pleszkun, 1987] M.J. Thazhuthaveetil and A.R. Pleszkun. On the structural local-

ity of reference in Lisp list access streams. Information Processing Letters, 26(2):105–110, 1987.

[Thesen and Pinkerton, 1977] Arne Thesen and Tad Pinkerton. Predicting the availability of contiguous

memory. International Journal of Computer and Information Sciences, 6(4), December 1977.

[Thiebaut et al., 1992] Dominique Thiebaut, Joel L. Wolf, and Harold S. Stone. Synthetic traces for

trace-driven simulation of cache memories. IEEE Transactions on Computers, 41(4):388–410, April

1992.

[Thiebaut, 1989] Dominique Thiebaut. The fractal dimension of computer programs and its application

to the prediction of the cache miss ratio. IEEE Transactions on Computers, pages 1012–1026, July

1989.

[Thomas and Jones, 1994] Stephen P. Thomas and Richard E. Jones. Garbage collection for shared envi-

ronment closure reducers. Technical Report 31–94, University of Kent and University of Nottingham,

December 1994.

[Thomas et al., 1998] S.P. Thomas, W.T. Charnell, S. Darnell, B.A.A. Dias, P.J. Guthrie, J.P. Kramskoy,

J.J. Sexton, M.J. Wynn, K. Rautenbach, and W. Plummer. Low-contention grey object sets for con-

current, marking garbage collection. United States Patent 6925637, 1998.

[Thomas et al., 2013] J.R. Thomas, M. Cantu, and A. Bauer. Reference counting and object harvesting

in Delphi. Dr. Dobb’s Journal, May 2013.

[Thomas, 1981] R.E. Thomas. A dataflow computer with improved asymptotic performance. Technical

Report MIT/LCS/TR–265, MIT Laboratory for Computer Science, 1981.

[Thomas, 1993] Stephen P. Thomas. The Pragmatics of Closure Reduction. PhD thesis, The Computing

Laboratory, University of Kent at Canterbury, October 1993.

[Thomas, 1995a] Stephen P. Thomas. Garbage collection in shared-environment closure reducers:

Space-efficient depth first copying using a tailored approach. Information Processing Letters, 56(1):1–

7, October 1995.

[Thomas, 1995b] Stephen P. Thomas. Having your cake and eating it: Recursive depth-first copying

garbage collection with no extra stack. Personal communication, May 1995.

[Thomborson, 1996] Clark D. Thomborson. When virtual memory isn’t enough. Technical Report 136,

University of Auckland, November 1996.

[Thompson and Lins, 1988] Simon J. Thompson and Rafael D. Lins. Cyclic reference counting: A

correction to Brownbridge’s algorithm. Unpublished notes, 1988.

[Thompson, 1987] James G. Thompson. Efficient Analysis of Caching Systems. PhD thesis, University

of California, Berkeley, October 1987. Also technical report UCB/CSD 87/374.

146



[Thorelli, 1972] Lars-Erik Thorelli. Marking algorithms. BIT, 12(4):555–568, 1972.

[Thorelli, 1976] Lars-Erik Thorelli. A fast compactifying garbage collector. BIT, 16(4):426–441, 1976.

[Tick, 1988] E. Tick. Memory performance of Prolog Architectures. Kluwer, 1988.

[Tikir and Hollingsworth, 2005] Mustafa M. Tikir and Jeffery K. Hollingsworth. NUMA-aware Java

heaps for server applications. In 19th IEEE International Parallel and Distributed Processing Sympo-

sium (IPDPS), page 108.2, Denver, CO, 2005. IEEE Computer Society Press.

[Ting, 1975] D.W. Ting. Some results of the space requirements of dynamic memory allocation algo-

rithms. Technical Report 75-229, Cornell University, February 1975.

[T.J.Bailey, 1975] Norman T.J.Bailey. The Mathematical Theory of Infectious Diseases and its Applica-

tions. Griffin, 2nd edition, 1975.

[Tofte and Birkedal, 1998] Mads Tofte and Lars Birkedal. A region inference algorithm. ACM Transac-

tions on Programming Languages and Systems, 20(4):734–767, July 1998.

[Tofte and Hallenberg, 2001] Mads Tofte and Niels Hallenberg. Region-based memory management in

perspective. In SPACE 2001 [SPACE 20012001]. Invited talk.

[Tofte and Talpin, 1993] Mads Tofte and Jean-Pierre Talpin. A theory of stack allocation in polymor-

phically typed languages. Technical Report Computer Science 93/15, University of Copenhagen, July

1993.

[Tofte and Talpin, 1994] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value

λ-calculus using a stack of regions. In POPL 1994 [POPL 19941994], pages 188–201.

[Tofte and Talpin, 1997] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Infor-

mation and Computation, 132(2):109–176, February 1997. An earlier version of this was presented at

[POPL 1994, 1994].

[Tofte et al., 1997] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Højfeld Ole-

sen, Peter Sestoft, and Peter Bertelsen. Programming with Regions in the ML Kit. Technical Report

DIKU-TR-97/12, Department of Computer Science (DIKU), University of Copenhagen, April 1997.

[Tofte et al., 2001] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Højfeld Ole-

sen, and Peter Sestoft. Programming with Regions in the ML Kit, version 4. Technical report, IT

University of Copenhagen, October 2001. There are later versions, e.g. https://elsman.com/pdf/mlkit-

4.6.0.pdf, December 2021.

[Tofte et al., 2004] Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. A retrospective

on region-based memory management. Higher-Order and Symbolic Computation, 17(3):245–265,

September 2004.

[Tofte, 1998] Mads Tofte. A brief introduction to Regions. In Peyton Jones and Jones

[Peyton Jones and Jones1998], pages 186–195.

[Tokoro and Pareschi, 1994] M. Tokoro and R. Pareschi, editors. 8th European Conference on Object-

Oriented Programming, volume 821 of Lecture Notes in Computer Science, Bologna, Italy, 1994.

Springer-Verlag.

[Tolmach, 1994] Andrew Tolmach. Tag-free garbage collection using explicit type parameters. In PLDI

1994 [PLDI 19941994], pages 1–11.

[Tong and Lau, 2010a] Liangliang Tong and Francis C.M. Lau. Exploiting memory usage patterns to

improve garbage collections in Java. In PPPJ 2010 [PPPJ 20102010].

[Tong and Lau, 2010b] Liangliang Tong and Francis C.M. Lau. Index-compact garbage collection. In

Proceedings of the Eighth Asian Symposium on Programming Languages and Systems (APLAS’10),

number 6461 in Lecture Notes in Computer Science, pages 271–286, Shanghai, China, 2010.

[Tong and Lau, 2013] Liangliang Tong and Francis C.M. Lau. Skew-space garbage collection. Science

of Computer Programming, May 2013.

[Tong and O’Donnell, 2001] Guanshan Tong and Michael J. O’Donnell. Leveled garbage collection.

The Journal of Functional and Logic Programming, July 2001.

[Tong, 1997] Guanshan Tong. Leveled Garbage Collection For Automatic Memory Management. PhD

thesis, University of Chicago, November 1997.

[Topor, 1979] R. Topor. The correctness of the Schorr–Waite list marking algorithm. Acta Informatica,

11(3), 1979.

147



[Torp-Smith et al., 2008] Noah Torp-Smith, Lars Birkedal, and John C. Reynolds. Local reasoning about

a copying garbage collector. ACM Transactions on Programming Languages and Systems, 30(4), July

2008.

[Touati and Hama, 1988] Hervé Touati and Toshiyuki Hama. A light-weight Prolog garbage collector.

In International Conference on Fifth Generation Computer Systems, pages 922–930, Tokyo, 1988.

[Touati, 1988] Hervé Touati. A prolog garbage collector for Aquarius. Technical Report UCB//CSD-88-

443, University of California, Berkeley, August 1988.

[Touraı̈vane, 1988] Touraı̈vane. La Récupération de Mémoire dans les Machines Non-Déterministes.

PhD thesis, Université d’Aix-Marseille, 1988.

[Traini et al., 2023] Luca Traini, Vittorio Cortellessa, Daniele Di Pompeo, and Michele Tucci. Towards

effective assessment of steady state performance in Java software: Are we there yet? Empirical

Software Engineering, 28(1), January 2023.

[Trancon y Widemann, 2008] Baltasar Trancon y Widemann. A reference counting garbage collection

algorithm for cyclical functional programming. In Jones and Blackburn [Jones and Blackburn2008],

pages 71–80.

[TRANSACT 2011, 2011] 6th ACM SIGPLAN Workshop on Transactional Computing, San Jose, CA,

June 2011.

[TRANSACT 2015, 2015] 10th ACM SIGPLAN Workshop on Transactional Computing, Portland, OR,

June 2015.

[TRANSACT 2017, 2017] 12th ACM SIGPLAN Workshop on Transactional Computing, Austin, TX,

June 2017.

[Tripp et al., 2018] Charles Tripp, David Hyde, and Benjamin Grossman-Ponemon. FRC: A high-

performance concurrent parallel deferred reference counter for C++. In Payer and Sartor

[Payer and Sartor2018], pages 14–28.

[Tsai et al., 2018] Po-An Tsai, Yee Ling Gan, and Daniel Sanchez. Rethinking the memory hierarchy

for modern languages. In 51st Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), Fukuoka, Japan, October 2018. IEEE Press.

[Tullsen and Eggers, 1993] Dean M. Tullsen and Susan J. Eggers. Limitations of cache prefetching on a

bus-based multiprocessor. In ISCA 1993 [ISCA 19931993], pages 278–288.

[Turbak et al., 2008] Franklyn Turbak, David Gifford, and Mark A. Sheldon. Garbage Collection, chap-

ter 18. MIT Press, 2008.

[Turner, 1979] David A. Turner. A new implementation technique for applicative languages. Software:

Practice and Experience, 9:31–49, January 1979.

[Turner, 1981] David A. Turner. Recursion equations as a programming language. In John Darlington,

Peter Henderson, and David Turner, editors, Functional Programming and its Applications, pages

1–28. Cambridge University Press, January 1981.

[Turner, 1985] David A. Turner. Miranda — a non-strict functional language with polymorphic types.

In Jouannaud [Jouannaud1985], pages 1–16.

[Ueda and Morita, 1990] K. Ueda and M. Morita. A new implementation for flat GHC. In Warren and

Szeredi [Warren and Szeredi1990], pages 3–17.

[Ueno and Ohori, 2016] Katsuhiro Ueno and Atsushi Ohori. A fully concurrent garbage collector for

functional programs on multicore processors. In ICFP 2016 [ICFP 20162016], pages 423–433.

[Ueno and Ohori, 2022] Katsuhiro Ueno and Atsushi Ohori. Concurrent and parallel garbage

collection for lightweight threads on multicore processors. In Chisnall and Lippautz

[Chisnall and Lippautz2022], page 2942.

[Ueno et al., 2011] Katsuhiro Ueno, Atsushi Ohori, and Toshiaki Otomo. An efficient non-moving

garbage collector for functional languages. In ICFP 2011 [ICFP 20112011], pages 196–208.

[Ugawa and Jones, 2018] Tomoharu Ugawa and Richard E. Jones. Model checking Transactional Sap-

phire. Technical report, University of Kent, May 2018.

[Ugawa et al., 2010a] Tomoharu Ugawa, Hideya Iwasaki, and Taiichi Yuasa. Improved replication-based

incremental garbage collection for embedded systems. In Vitek and Lea [Vitek and Lea2010], pages

73–82.

148



[Ugawa et al., 2010b] Tomoharu Ugawa, Hideya Iwasaki, and Taiichi Yuasa. Starvation-free heap size

for replication-based incremental compacting garbage collection. In International Conference on Lisp,

pages 43–52, Reno/Sparks, NV, October 2010.

[Ugawa et al., 2012] Tomoharu Ugawa, Hideya Iwasaki, and Taiichi Yuasa. Improvements of recovery

from marking stack overflow in mark sweep garbage collection. IPSJ Online Transactions, 5, 2012.

[Ugawa et al., 2014] Tomoharu Ugawa, Richard Jones, and Carl G. Ritson. Reference object processing

in on-the-fly garbage collection. In Guyer and Grove [Guyer and Grove2014], pages 59–69.

[Ugawa et al., 2017] Tomoharu Ugawa, Tatsuya Abe, and Toshiyuki Maeda. Model checking copy

phases of concurrent copying garbage collection with various memory models. In OOPSLA 2017

[OOPSLA 20172017], page 26.

[Ugawa et al., 2018] Tomoharu Ugawa, Carl G. Ritson, and Richard E. Jones. Transactional Sapphire:

Lessons in high-performance, on-the-fly garbage collection. ACM Transactions on Programming

Languages and Systems, 40(4):15:1–15:56, December 2018.

[Ugawa et al., 2022] Tomoharu Ugawa, Stefan Marr, and Richard E. Jones. Profile guided offline opti-

mization of hidden class graphs for JavaScript VMs in embedded systems. In Proceedings of the 14th

ACM SIGPLAN International Workshop on Virtual Machines and Intermediate Languages, page 11.

ACM Press, 2022.

[Ullrich and de Moura, 2019] Sebastian Ullrich and Leonardo de Moura. Counting immutable beans:

Reference counting optimized for purely functional programming. In Stutterheim and Chin

[Stutterheim and Chin2019].

[Ungar and Adams, 2009] David M. Ungar and S.S. Adams. Hosting an object heap on many-core hard-

ware: an exploration. In 5th Symposium on Dynamic Languages, pages 99–110, 2009.

[Ungar and Jackson, 1988] David M. Ungar and Frank Jackson. Tenuring policies for generation-based

storage reclamation. In OOPSLA 1988 [OOPSLA 19881988], pages 1–17.

[Ungar and Jackson, 1991] David M. Ungar and Frank Jackson. Outwitting GC devils: A hybrid incre-

mental garbage collector. In Wilson and Hayes [Wilson and Hayes1991a].

[Ungar and Jackson, 1992] David M. Ungar and Frank Jackson. An adaptive tenuring policy for gener-

ation scavengers. ACM Transactions on Programming Languages and Systems, 14(1):1–27, 1992.

[Ungar and Patterson, 1983] David M. Ungar and David A. Patterson. Berkeley Smalltalk: Who knows

where the time goes? In Krasner [Krasner1983], pages 189–206.

[Ungar et al., 2017] David Ungar, David Grove, and Hubertus Franke. Dynamic atomicity: Optimizing

Swift memory management. In DLS 2017 [DLS 20172017], pages 15–26.

[Ungar, 1984] David M. Ungar. Generation scavenging: A non-disruptive high performance storage

reclamation algorithm. In ACM/SIGSOFT/SIGPLAN Software Engineering Symposium on Practical

Software Development Environments, ACM SIGPLAN Notices 19(5), pages 157–167, Pittsburgh, PA,

April 1984. ACM Press.

[Ungar, 1986] David M. Ungar. The Design and Evaluation of a High Performance Smalltalk System.

ACM distinguished dissertation 1986. MIT Press, 1986.

[Ungureanu and Goldberg, 1997] Christian Ungureanu and Benjamin Goldberg. Formal models of dis-

tributed memory management. In ICFP 1997 [ICFP 19971997], pages 280–291.

[Unnikrishnan and Stoller, 2009] Leena Unnikrishnan and Scott D. Stoller. Parametric heap usage anal-

ysis for functional programs. In Kolodner and Steele [Kolodner and Steele2009], pages 139–148.

[Unnikrishnan et al., 2000] Leena Unnikrishnan, Scott D. Stoller, and Yanhong A. Liu. Automatic ac-

curate stack space and heap space analysis for high-level languages. Technical Report 538, Indiana

University, April 2000.

[Unnikrishnan et al., 2001a] Leena Unnikrishnan, Scott D. Stoller, and Yanhong A. Liu. Automatic

accurate live memory analysis for garbage-collected languages. In LCTES 2001 [LCTES 20012001],

pages 102–111.

[Unnikrishnan et al., 2001b] Leena Unnikrishnan, Scott D. Stoller, and Yanhong A. Liu. Optimized live

heap bound analysis. Technical Report DAR 01-2, SUNY at Stony Brook, October 2001.

[Valloud, 2020] Andrés Valloud. Linked weak reference arrays: A hybrid approach to efficient bulk

finalization. Science of Computer Programming, 196, 2020.

149



[Valois, 1995a] J.D. Valois. Lock-free data structures. PhD thesis, Rensselaer Polytechnic Institute,

1995.

[Valois, 1995b] J.D. Valois. Lock-free linked lists using compare-and-swap. In PODC 1995

[PODC 19951995], pages 214–222.

[van Assche et al., 2006] Maxime van Assche, Joël Goossens, and Raymond R. Devillers. Joint garbage

collection and hard real-time scheduling. Journal of Embedded Computing, 2(3–4):313–326, 2006.

Also published in RTS’05 International Conference on Real-Time Systems, 2005.

[van de Snepscheut, 1987] Jan van de Snepscheut. Algorithms for on-the-fly garbage collection revis-

ited. Information Processing Letters, 24(4):211–216, March 1987.

[Van der Cruysse, 2019] Jonathan Van der Cruysse. Garbage collection abstractions for high-level GPU

languages. Master’s thesis, Ghent University, 2019.

[Van Es et al., 2019] Noah Van Es, Quentin Stiévenart, and Coen De Roover. Garbage-free abstract

interpretation through abstract reference counting. In Donaldson [Donaldson2019], pages 10:1–10:33.

[van Groningen, 2004] J. van Groningen. Faster garbage collection using prefetching. In C.Grelck and

F. Huch, editors, 16th International Workshop on Implementation and Application of Functional Lan-

guages (IFL), pages 142–152, Lübeck, Germany, 2004.

[Vanderwaart and Crary, 2003] Joseph C. Vanderwaart and Karl Crary. A typed interface for garbage

collection. In Shao and Lee [Shao and Lee2003], pages 109–122.

[Vardhan and Agha, 2002] Abhay Vardhan and Gul Agha. Using passive object garbage collection algo-

rithms. In Boehm and Detlefs [Boehm and Detlefs2002], pages 106–113.

[Varhol, 1997] Peter Varhol. Adapting Java for embedded systems. Computer Design, page 75, October

1997.

[Varming and Birkedal, 2008] Carsten Varming and Lars Birkedal. Higher-order separation logic in is-

abelle/holcf. Electronic Notes in Theoretical Computer Science, 218:371–389, October 2008.

[Vataja and Ukkonen, 1984] P. Vataja and E. Ukkonen. Finding temporary terms in PROLOG programs.

In International Conference on Fifth Generation Computer Systems, pages 275–282, Tokyo, Novem-

ber 1984. Ohmsha Ltd.

[Vaughan and Dearle, 1992] Francis Vaughan and Alan Dearle. Supporting large persistent stores using

conventional hardware. In Albano and Morrison [Albano and Morrison1992], pages 34–53.

[Vaughan et al., 1990] Francis Vaughan, T. Schunke, B. Koch, A. Dearle, C. Marlin, and C. Barter. A

persistent distributed architecture supported by the mach operating system. In 1st USENIX Conference

on the Mach Operating System, pages 123–140. USENIX Association, 1990.

[Vaughan et al., 2000] Francis A. Vaughan, William F. Brodie-Tyrrell, Katrina E. Falkner, and David S.

Munro. Bounded parallel garbage collection: Implementation and adaptation. In 7th Australian

Parallel and Real Time (PART), Sydney, 2000.

[Vechev and Bacon, 2004] Martin Vechev and David F. Bacon. Write barrier elision for concurrent

garbage collectors. In Bacon and Diwan [Bacon and Diwan2004], pages 13–24.

[Vechev and Petrov, 2003] Martin T. Vechev and Peter D. Petrov. Class unloading with a concurrent

garbage collector in an embedded Java VM. In Embedded Systems and Applications 2003 (ESA’03),

2003.

[Vechev et al., 2005] Martin Vechev, David F. Bacon, Perry Cheng, and David Grove. Derivation and

evaluation of concurrent collectors. In Black [Black2005], pages 577–601.

[Vechev et al., 2006] Martin T. Vechev, Eran Yahav, and David F. Bacon. Correctness-

preserving derivation of concurrent garbage collection algorithms. In Schwartzbach and Ball

[Schwartzbach and Ball2006], pages 341–353.

[Vechev et al., 2007] Martin T. Vechev, Eran Yahav, David F. Bacon, and Noam Rinetzky. CGCEx-

plorer: A semi-automated search procedure for provably correct concurrent collectors. In Ferrante

and McKinley [Ferrante and McKinley2007], pages 456–467.

[Vechev et al., 2010] Martin Vechev, Eran Yahav, and Greta Yorsh. Phalanx: parallel checking of ex-

pressive heap assertions. In Vitek and Lea [Vitek and Lea2010], pages 41–50.

[Vechev, 2007] Martin Vechev. Derivation and Evaluation of Concurrent Collectors. PhD thesis, Uni-

versity of Cambridge, 2007.

150



[VEE 2016, 2016] 12th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-

ronments, Atlanta, GA, March 2016. ACM Press.

[Vegdahl and Pleban, 1989] Steven R. Vegdahl and Uwe F. Pleban. The runtime environment of Screme,

a Scheme implementation for the 88000. In ASPLOS 1989 [ASPLOS 19891989], pages 172–182.

[Veiga and Ferreira, 2003] Luı́s Veiga and Paulo Ferreira. Complete distributed garbage collection, an

experience with Rotor. IEE Research Journals – Software, 150(5), October 2003.

[Veiga and Ferreira, 2004] Luı́s Veiga and Paulo Ferreira. Asynchronous, complete distributed garbage

collection. Technical Report RT/11/2004, INESC–ID, Lisboa, June 2004.

[Veiga and Ferreira, 2005a] Luı́s Veiga and Paulo Ferreira. Asynchronous complete distributed garbage

collection. In 19th IEEE International Symposium on Parallel and Distributed Processing, Denver,

CO, April 2005.

[Veiga and Ferreira, 2005b] Luı́s Veiga and Paulo Ferreira. A comprehensive approach for memory man-

agement of replicated objects. Technical Report RT/07/2005, INESC-ID, Lisbon, April 2005.

[Veiga et al., 2007] Luı́s Veiga, P. Pereira, and Paulo Ferreira. Complete distributed garbage collection

using DGC-consistent cuts and .NET AOP-support. IET Software, 1(6):263–279, 2007.

[Veiga, 2007] Luı́s Veiga. OBIWAN: Middleware for Memory Management of Replicated Objects in

Distributed and Mobile Computing. PhD thesis, Univesidade Técnica de Lisboa, Instituto Superior

Técnico, March 2007.

[Veillon, 1976] G. Veillon. Transformations de programmes recursifs. R.A.I.R.O. Informatique, 10(9):7–

20, September 1976.

[Velasco et al., 2004a] José Manuel Velasco, David Atienza, Francky Catthoor, , Francisco Tirado,

Katzalin Olcoz, and Jose Manuel Mendias. Garbage collector refinement for new dynamic multi-

media applications on embedded systems. In 8th Annual Workshop on Interaction between Compilers

and Computer Architecture (INTERACT-8 2004), pages 25–32, Madrid, Spain, February 2004.

[Velasco et al., 2004b] José Manuel Velasco, David Atienza, L. Pinuel, and Francky Catthoor. Energy-

aware modelling of garbage collectors for new dynamic embedded systems. In 1st International

Workshop on Power-Aware Real-Time Computing, Pisa, Italy, 2004.

[Velasco et al., 2004c] José Manuel Velasco, Antonio Ortiz, Katzalin Olcoz, and Francisco Tirado.

Adaptive tuning of reserved space in an Appel collector. In Odersky [Odersky2004], pages 543–559.

[Velasco et al., 2004d] José Manuel Velasco, Antonio Ortiz, Katzalin Olcoz, and Francisco Tirado. Dy-

namic management of nursery space organization in generational collection. In 8th Annual Workshop

on Interaction between Compilers and Computer Architecture (INTERACT-8 2004), pages 33–40,

Madrid, Spain, February 2004.

[Velasco et al., 2005a] José Manuel Velasco, David Atienza, Katzalin Olcoz, and Francky Catthoor. Per-

formance evaluation of barrier techniques for distributed tracing garbage collectors. In International

Conference on Parallel Computing (PARCO), pages 549–556, Malaga, Spain, 2005.

[Velasco et al., 2005b] José Manuel Velasco, David Atienza, Katzalin Olcoz, Francky Catthoor, Fran-

cisco Tirado, and Jose Manuel Mendias. Energy characterization of garbage collectors for dynamic

applications on embedded systems. In International Workshop on Integrated Circuit and System De-

sign, Power and Timing Modeling, Optimization and Simulation PATMOS 2005, pages 69–78, Leuven,

Belgium, 2005.

[Velasco et al., 2009] José Manuel Velasco, David Atienza, and Katzalin Olcoz. Exploration of memory

hierarchy configurations for efficient garbage collection on high-performance embedded systems. In

GLSVLSI, 2009.

[Velasco et al., 2012] José Manuel Velasco, David Atienza Alonso, and Katzalin Olcoz. Memory power

optimization of Java-based embedded systems exploiting garbage collection information. Journal of

Systems Architecture, 58(1):61–72, 2012.

[Veldema and Philippsen, 2007] Ronald Veldema and Michael Philippsen. Supporting huge address

spaces in a virtual machine for Java on a cluster. In LCPC 2007 [LCPC 20072007].

[Veldema and Philippsen, 2011] Ronald Veldema and Michæl Philippsen. Iterative data-parallel

mark&sweep on a GPU. In Boehm and Bacon [Boehm and Bacon2011], page 110.

[Veldema and Philippsen, 2012] Ronald Veldema and Michael Philippsen. Parallel memory defragmen-

tation on a GPU. In Mutlu and Zhang [Mutlu and Zhang2012], pages 38–47.

151



[Vengerov, 2009] David Vengerov. Modeling, analysis and throughput optimization of a generational

garbage collector. In Kolodner and Steele [Kolodner and Steele2009], pages 1–9.

[Venkatasubramanian et al., 1992a] Nalini Venkatasubramanian, Gul Agha, and Carolyn Talcott. Hier-

archical garbage collection in scalable distributed systems. Technical Report UIUCDCS-R-92-1740,

Department of Computer Science, University of Illinois at Urbana-Champaign, April 1992.

[Venkatasubramanian et al., 1992b] Nalini Venkatasubramanian, Gul Agha, and Carolyn Talcott. Scal-

able distributed garbage collection for systems of active objects. In Bekkers and Cohen

[Bekkers and Cohen1992], pages 134–147.

[Venkatasubramanian, 1991] Nalini Venkatasubramanian. Hierarchical garbage collection in scalable

distributed systems. Master’s thesis, University of Illinois, Urbana-Champaign, 1991.

[Venners, 1998a] Bill Venners. Inside the Java Virtual Machine. The Java Masters Series. Computing

McGraw-Hill, February 1998. Chapter 9: Garbage Collection.

[Venners, 1998b] Bill Venners. Object finalization and cleanup, June 1998.

[Venstermans et al., 2005] Kris Venstermans, Lieven Eeckhout, and Koen De Bosschere. Implicit typing

for 64-bit object header reduction in Java. In 5th ACES Symposium, pages 78–81, Gent, September

2005. Academia Press.

[Venstermans et al., 2007a] Kris Venstermans, Lieven Eeckhout, and Koen De Bosschere. Java object

header elimination for reduced memory consumption in 64-bit virtual machines. ACM Transactions

on Architecture and Code Optimization, 4(3):30, 9 2007.

[Venstermans et al., 2007b] Kris Venstermans, Lieven Eeckhout, and Koen De Bosschere. Object-

relative addressing: Compressed pointers in 64-bit Java virtual machines. In Ernst [Ernst2007], pages

79–100.

[Veroy et al., 2013] Raoul L. Veroy, Nathan P. Ricci, and Samuel Z. Guyer. Visualizing the allocation

and death of objects. In Proceedings of the First IEEE Working Conference on Software Visualization,

2013.

[Vestal, 1987] Stephen C. Vestal. Garbage Collection: An Exercise in Distributed, Fault-Tolerant Pro-

gramming. PhD thesis, University of Washington, Seattle, WA, 1987.

[Vetter et al., 2011] Jeffrey Vetter, Madanlal Musuvathi, and Xipeng Shen, editors. Workshop on Mem-

ory System Performance and Correctness, San Jose, CA, June 2011.

[Vicente Franco, 2018] Juliana Patricia Vicente Franco. Orca: Ownership and Reference Count Collec-

tion for Actors. PhD thesis, Imperial College London, 2018.

[Vießmann et al., 2018] Hans-Nikolai Vießmann, Artjoms Šinkarovs, and Sven-Bodo Scholz. Extended

memory reuse: An optimisation for reducing memory allocations. In IFL 2018 [IFL 20182018], pages

107–118.

[Vijaykrishnan et al., 2001] N. Vijaykrishnan, M. Kandemir, S. Kim, S. Tomar, A. Sivasubramaniam,

and M.J. Irwin. Energy behavior of Java applications from the memory perspective. In JVM 2001

[JVM 20012001].

[Virding, 1995] Robert Virding. A garbage collector for the concurrent real-time language Erlang. In

Baker [Baker1995b], pages 343–354.

[Vitek and Lea, 2010] Jan Vitek and Doug Lea, editors. 9th ACM SIGPLAN International Symposium

on Memory Management, Toronto, Canada, June 2010. ACM Press.

[Vitek, 2008] Jan Vitek, editor. 22nd European Conference on Object-Oriented Programming, volume

5142 of Lecture Notes in Computer Science, Paphos, Cyprus, July 2008. Springer-Verlag.

[Vo, 1996] Kiem-Phong Vo. Vmalloc: A general and efficient memory allocator. Software: Practice

and Experience, 26(3):357–374, 1996.

[Voldman et al., 1983] J. Voldman, B. Mandelbrot, L.W. Hoevel, J. Knight, and P. Rosenfeld. Fractal

nature of software-cache interaction. IBM Journal of Research and Development, 27(2):164–170,

March 1983.

[Šor et al., 2015] Vladimir Šor, Satish Narayana Srirama, and Nikita Salnikov-Tarnovski. Memory leak

detection in Plumbr. Software: Practice and Experience, 45(10):1307–1330, October 2015.

[Vuillemin, 1980] Jean Vuillemin. A unifying look at data structures. Communications of the ACM,

29(4):229–239, April 1980.

152



[Wadler, 1976] Philip L. Wadler. Analysis of an algorithm for real-time garbage collection. Communi-

cations of the ACM, 19(9):491–500, September 1976.

[Wadler, 1984] Philip L. Wadler. Listlessness is better than laziness: Lazy evaluation and garbage col-

lection at compile time. In Steele [Steele1984], pages 45–52.

[Wadler, 1987] Philip L. Wadler. Fixing some space leaks with a garbage collector. Software: Practice

and Experience, 17(9):595–609, September 1987.

[Wagner et al., 2011] Gregor Wagner, Andreas Gal, Christian Wimmer, Brendan Eich, and Michael

Franz. Compartmental memory management in a modern web browser. In Boehm and Bacon

[Boehm and Bacon2011], pages 119–128.

[Wagner et al., 2016] Gregor Wagner, Per Larsen, Stefan Brunthaler, and Michael Franz. Thinking in-

side the box: Compartmentalized garbage collection. ACM Transactions on Programming Languages

and Systems, 38(3):9:1–9:37, April 2016.

[Waite, 1973] W.M. Waite. Implementing Software for Nonnumeric Applications. Prentice-Hall, 1973.

[Wakeling and Runciman, 1991] David Wakeling and Colin Runciman. Linearity and laziness. In

Hughes [Hughes1991a], pages 215–240.

[Wakeling, 1990] David Wakeling. Linearity and Laziness. PhD thesis, University of York, November

1990.

[Walden, 1972] O.C. Walden. A note on Cheney’s non-recursive list-compacting algorithm. Communi-

cations of the ACM, 15(4), April 1972.

[Walker et al., 2000] David Walker, Karl Crary, and Greg Morrisett. Typed memory management in a

calculus of capabilities. ACM Transactions on Programming Languages and Systems, 24(4):701–771,

2000.

[Walker, 2001] David Walker. On linear types and regions. In SPACE 2001 [SPACE 20012001].

[Walker, 2004] David Walker. Stacks, heaps and regions: One logic to bind them. In SPACE 2004

[SPACE 20042004]. Invited talk.

[Wall and Schwartz, 1991] Larry Wall and Randal L. Schwartz. Programming Perl. O’Reilly and Asso-

ciates, Inc., 1991.

[Wallace and Runciman, 1993] Malcolm Wallace and Colin Runciman. An incremental garbage collec-

tor for embedded real-time systems. In Chalmers Winter Meeting, pages 273–288, Tanum Strand,

Sweden, 1993. Published as Programming Methodology Group, Chalmers University of Technology,

Technical Report 73.

[Wang and Appel, 1999] Daniel C. Wang and Andrew W. Appel. Safe garbage collection = regions +

intensional type analysis. Technical report, Princeton, July 1999.

[Wang and Appel, 2000] Daniel C. Wang and Andrew W. Appel. Type-preserving garbage collectors

(extended version). Technical report, Department of Computer Science, Princeton University, Decem-

ber 2000.

[Wang and Appel, 2001] Daniel C. Wang and Andrew W. Appel. Type-preserving garbage collectors. In

POPL 2001 [POPL 20012001], pages 166–178.

[Wang and Varela, 2006] W. Wang and C.A. Varela. Distributed garbage collection for mobile actor

systems: the pseudo root approach. In 1st International Conference on Grid and Pervasive Computing

(GPC), Taichung, Taiwan, May 2006. Springer-Verlag.

[Wang et al., 1995] Y. Wang, P. Chung, I. Lin, and W.K.Fuchs. Checkpoint space reclamation for unco-

ordinated checkpointing in message-passing systems. IEEE Transactions on Parallel and Distributed

Systems, 6(5):546–554, May 1995.

[Wang et al., 2008] Xi Wang, Zhilei Xu, Xuezheng Liu, Zhenyu Guo, Xiaoge Wang, and Zheng Zhang.

Conditional correlation analysis for safe region-based memory management. In Gupta and Amaras-

inghe [Gupta and Amarasinghe2008], pages 45–55.

[Wang et al., 2015] Kunshan Wang, Yi Lin, Stephen M. Blackburn, Michael Norrish, and Antony L.

Hosking. Draining the swamp: Micro virtual machines as solid foundation for language development.

In Inaugural Summit on Advances in Programming Languages, SNAPL, Asilomar, California, May

2015.

153



[Wang et al., 2016] Chenxi Wang, Ting Cao, John Zigman, Fang Lv, Yunquan Zhang, and Xiaobing

Feng. Efficient management for hybrid memory in managed language runtime. In 13th IFIP WG 10.3

International Conference on Network and Parallel Computing, pages 29–42, Xi’an, China, October

2016. Springer-Verlag.

[Wang et al., 2019] Chenxi Wang, Huimin Cui, Ting Cao, John Zigman, Haris Volos, Onur Mutlu, Fang

Lv, Xiaobing Feng, and Guoqing Harry Xu. Panthera: Holistic memory management for big data

processing over hybrid memories. In PLDI 2019 [PLDI 20192019], pages 347–362.

[Wang et al., 2020] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh Nguyen,

Michael D. Bond, Ravi Netravali, Miryung Kim, and Guoqing Harry Xu. Semeru: A memory-

disaggregated managed runtime. In 14th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 20), pages 261–280. USENIX Association, November 2020.

[Wang et al., 2025] Kunshan Wang, Stephen M. Blackburn, Peter Zhu, and Matthew Valentine-House.

Reworking memory management in CRuby: A practitioner report. In Harris et al. [Harris et al.2025],

page 109121.

[Wang, 1989] Thomas Wang. The MM garbage collector for C++. Master’s thesis, California State

Polytechnic University, October 1989.

[Wang, 1994a] Thomas Wang. Better C: An object-oriented C language with automatic memory man-

ager suitable for interactive applications. ACM SIGPLAN Notices, 29(11):104–111, December 1994.

[Wang, 1994b] Thomas Wang. Eliminate memory fragmentation through holes in the heap. ACM SIG-

PLAN Notices, 29(11):112–113, December 1994.

[Wang, 2013] W.-J. Wang. Conservative snapshot-based actor garbage collection for distributed mobile

actor systems. Telecommunication Systems, 52(2):647–660, 2013.

[Warren and Szeredi, 1990] D.H.D. Warren and P. Szeredi, editors. 7th International Conference on

Logic Programming, Jerusalem, 1990. MIT Press.

[Warren, 1977] David H.D. Warren. Implementing Prolog — compiling logic programs. D.A.I. Research

Report 39, 40, University of Edinburgh, 1977.

[Warren, 1980] David H.D. Warren. An improved Prolog implementation which optimises tail-recursion.

In Workshop on Logic Programming, Debrecen, Hungary, 1980.

[Warren, 1982] David H.D. Warren. Perpetual processes — an unexploited Prolog technique. Logic

Programming Newsletter, 3, 1982.

[Warren, 1983] David H.D. Warren. An abstract Prolog instruction set. Technical Note 309, SRI Inter-

national, 1983.

[Warren, 1984] David A. Warren. Efficient Prolog memory management for flexible control strategies.

In International Symposium on Logic Programming. IEEE Press, 1984.

[Washabaugh and Kafura, 1990] Douglas Markham Washabaugh and Dennis Kafura. Real-time garbage

collection of actors. In 11th Real-Time Systems Symposium, pages 21–30, December 1990.

[Washabaugh and Kafura, 1991] Douglas M. Washabaugh and D. Kafura. Distributed garbage collection

of active objects. In icdcs11, pages 369–276, May 1991.

[Washabaugh, 1989] Douglas Markham Washabaugh. Real-time garbage collection of actors in a dis-

tributed system. Master’s thesis, Virginia Polytechnic Institute and State University, 1989.

[Watson and Watson, 1987a] Paul Watson and Ian Watson. An efficient garbage collection scheme for

parallel computer architectures. In de Bakker et al. [de Bakker et al.1987], pages 432–443.

[Watson and Watson, 1987b] Paul Watson and Ian Watson. Graph reduction in a parallel virtual memory

environment. In J.H. Fasel and R.M. Keller, editors, Graph Reduction Workshop, volume 279 of

Lecture Notes in Computer Science, pages 265–274, Santa Fe, NM, 1987. Springer-Verlag.

[Watson and Wise, 1976] Watson and David Wise. Tuning Garwick’s algorithm for repacking sequential

storage. BIT, 16(4):442–450, December 1976.

[Watson, 1985] Paul Watson. Garbage collection in a computer system. UK Patent: Dec. 4, 1985 Patent

No. 8529890, 1985.

[Watson, 1986a] Ian Watson. An analysis of garbage collection for distributed systems. Technical report,

Department of Computer Science, University of Manchester, 1986.

154



[Watson, 1986b] Paul Watson. Garbage collection in a computer system. US Patent: Nov. 24 1986

Patent No. 4755939, 1986.

[Watson, 1986c] Paul Watson. The Parallel Reduction of Lambda Calculus Expressions. PhD thesis,

University of Manchester, July 1986. contains a description of the Weighted Reference Count Garbage

Collection.

[Weemeeuw and Demoen, 1990] P. Weemeeuw and B. Demoen. A la recherche de la mémoire perdue,

or: Memory compaction for shared memory multiprocessors — design and specification. In S. Debray

and M. Hermenegildo, editors, 2nd North American Conference on Logic Programming, pages 306–

320, 1990.

[Weemeeuw and Demoen, 1992] Patrick Weemeeuw and Bart Demoen. Garbage collection in Aurora:

An overview. In Bekkers and Cohen [Bekkers and Cohen1992], pages 454–472.

[Wegbreit, 1972a] B. Wegbreit. A generalised compactifying garbage collector. Computer Journal,

15(3):204–208, August 1972.

[Wegbreit, 1972b] B. Wegbreit. A space efficient list structure tracing algorithm. IEEE Transactions on

Computers, pages 1098–1010, September 1972.

[Wegiel and Krintz, 2008a] Michal Wegiel and Chandra Krintz. The mapping collector: Virtual

memory support for generational, parallel, and concurrent compaction. In Eggers and Larus

[Eggers and Larus2008], pages 91–102.

[Wegiel and Krintz, 2008b] Michal Wegiel and Chandra Krintz. XMem: Type-safe, transparent,

shared memory for cross-runtime communication and coordination. In Gupta and Amarasinghe

[Gupta and Amarasinghe2008], pages 327–338.

[Wegiel and Krintz, 2009] Michal Wegiel and Chandra Krintz. The single-referent collector: Optimizing

compaction for the common case. ACM Transactions on Architecture and Code Optimization, 2009.

[Wegiel and Krintz, 2010] Michal Wegiel and Chandra Krintz. Cross-language, type-safe, and transpar-

ent object sharing for co-located managed runtimes. In OOPSLA 2010 [OOPSLA 20102010], pages

223–240.

[Weinreb and Moon, 1981] Daniel Weinreb and David Moon. LISP Machine Manual. MIT AI Labora-

tory, fourth edition edition, July 1981.

[Weinstock and Wulf, 1988] Charles B. Weinstock and William A. Wulf. Quickfit: An efficient algo-

rithm for heap storage allocation. ACM SIGPLAN Notices, 23(10):141–144, 1988.

[Weinstock, 1976] Charles B. Weinstock. Dynamic Storage Allocation Techniques. PhD thesis, Carnegie

Mellon University, Pittsburgh, PA, April 1976.

[Weiser et al., 1989] Mark Weiser, Alan Demers, and Carl Hauser. The Portable Common Runtime

approach to interoperability. In 12th ACM SIGOPS Symposium on Operating Systems Principles.

ACM Press, December 1989.

[Weissman, 1967] C. Weissman. Lisp 1.5 Primer. Dickenson Publ., Belmont, CA, 1967.

[Weizenbaum, 1962] J. Weizenbaum. Knotted list structures. Communications of the ACM, 5(3):161–

165, 1962.

[Weizenbaum, 1963] J. Weizenbaum. Symmetric list processor. Communications of the ACM, 6(9):524–

544, September 1963.

[Weizenbaum, 1964] J. Weizenbaum. More on the reference counter method. Communications of the

ACM, 7(1):38, 1964.

[Weizenbaum, 1969] J. Weizenbaum. Recovery of reentrant list structures in SLIP. Communications of

the ACM, 12(7):370–372, July 1969.

[Welc et al., 2004] Adam Welc, Suresh Jagannathan, and Antony L. Hosking. Transactional monitors

for concurrent objects. In Odersky [Odersky2004], pages 519–542.

[Welc et al., 2005] Adam Welc, Suresh Jagannathan, and Antony L. Hosking. Safe futures for Java. In

OOPSLA 2005 [OOPSLA 20052005], pages 439–453.

[Wen et al., 2018] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H. Alan Beadle, and Michael L. Scott.

Interval-based memory reclamation. In PPOPP 2018 [PPOPP 20182018], pages 1–13.

[Weng, 1979] K.-S. Weng. An abstract implementation for a generalised dataflow language. Technical

Report MIT/LCS/TR228, MIT Laboratory for Computer Science, 1979.

155



[Weninger et al., 2019] Markus Weninger, Elias Gander, and Hanspeter Mssenböck. Detection of sus-

picious time windows in memory monitoring. In Hosking and Finocchi [Hosking and Finocchi2019],

pages 95–104.

[Wentworth, 1988] E.P. Wentworth. An Environment for Investigating Functional Languages and Im-

plementations. PhD thesis, University of Port Elizabeth, South Africa, 1988.

[Wentworth, 1990] E.P. Wentworth. Pitfalls of conservative garbage collection. Software: Practice and

Experience, 20(7):719–727, 1990.

[Westrick et al., 2019] Sam Westrick, Rohan Yadav, Matthew Fluet, and Umut A. Acar. Disentangle-

ment in nested-parallel programs. In POPL 2019 [POPL 20192019].

[Whaley and Rinard, 1999] John Whaley and Martin Rinard. Compositional pointer and escape analysis

for Java programs. In OOPSLA 1999 [OOPSLA 19991999], pages 187–206.

[While and Field, 1992] R. Lyndon While and Tony Field. Incremental garbage collection for the Spine-

less Tagless G-machine. In Evan Ireland and Nigel Perry, editors, Massey Functional Programming

Workshop. Department of Computer Science, Massey University, 1992.

[While, 1992] R. Lyndon While. A viable software read-barrier. Departmental Report DoC 92/12,

Imperial College, London, 1992.

[White and Dewitt, 1992] Seth J. White and David J. Dewitt. A performance study of alternative object

faulting and pointer swizzling strategies. In 18th International Conference on Very Large Data Bases,

Vancouver, British Columbia, Canada, October 1992.

[White and Dewitt, 1994] Seth J. White and David J. Dewitt. Quickstore: A high performance mapped

object store. In SIGMOD94, pages 395–406, 1994.

[White and Garthwaite, 1998] Derek White and Alex Garthwaite. The GC interface in the EVM. Tech-

nical Report SML TR–98–67, Sun Microsystems Laboratories, December 1998.

[White et al., 2013] David R. White, Jeremy Singer, Jonathan M. Aitken, and Richard E. Jones. Control

theory for principled heap sizing. In Petrank and Cheng [Petrank and Cheng2013], pages 27–38.

[White, 1980] Jon L. White. Address/memory management for a gigantic Lisp environment, or, GC

Considered Harmful. In LFP 1980 [LFP 19801980], pages 119–127.

[White, 1990] Jon L. White. Three issues in objected-oriented garbage collection. In Jul and Juul

[Jul and Juul1990].

[White, 1997] Marc White. Deferred garbage collection. MacTech magazine, 13(12), 1997.

[Wholey and Fahlman, 1984] Skef Wholey and Scott E. Fahlman. The design of an instruction set for

Common Lisp. In Steele [Steele1984], pages 150–158.

[Wholey et al., 1985] Skef Wholey, Scott E. Fahlman, and Joseph Ginder. Revised internal design of

Spice Lisp. Technical report, Carnegie Mellon University, January 1985.

[Wick and Flatt, 2004] Adam Wick and Matthew Flatt. Memory accounting without partitions. In Bacon

and Diwan [Bacon and Diwan2004], pages 120–130.

[Wild et al., 1991] J. Wild, Hugh Glaser, and Pieter Hartel. Statistics on storage management in a lazy

functional language implementation. In Sendov, editor, 3rd Workshop on Parallel and Distributed

Processing, Sofia, April 1991. Elsevier-North Holland. Also appears in 4th International Workshop

on Parallel Implementation of Functional Languages, Aachen, September 1992, ed. H. Kuchen and R.

Loogen, Aachener Informatik-Berichte 92–16.

[Wileden et al., 1989] J.C. Wileden, A.L. Wolf, C.D. Fisher, and P.L. Tarr. Pgraphite: An experiment in

persistent typed object management. ACM SIGPLAN Notices, 24(2):130–142, February 1989.

[Wilhelm et al., 2008] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan

Thesing, David B. Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,

Frank Mueller, Isabelle Puaut, Peter P. Puschner, Jan Staschulat, and Per Stenstrøm. The worst-case

execution-time problem — overview of methods and survey of tools. ACM Transactions on Embedded

Computer Systems, 7(3), April 2008.

[Wilhelmsson, 2005] Jesper Wilhelmsson. Efficient Memory Management for Message-Passing Concur-

rency — part I: Single-threaded execution. Licentiate thesis, Uppsala University, May 2005.

[Wilkes, 1964a] Maurice V. Wilkes. An experiment with a self-compiling compiler for a simple list-

processing language. Annual Review in Automatic Programming, 4:1–48, 1964.

156



[Wilkes, 1964b] Maurice V. Wilkes. Lists and why they are useful. In 19th ACM National Conference.

ACM Press, August 1964.

[Willard and Frieder, 1998] B. Willard and O. Frieder. Autonomous garbage collection: Resolving mem-

ory leaks in long running network applications. In International Conference On Computer Communi-

cations and Networks (ICCCN), pages 886–896, Lafayette, LO, October 1998. IEEE Press.

[Willard and Frieder, 2000] B. Willard and O. Frieder. Autonomous garbage collection: Resolving mem-

ory leaks in long-running server applications. Computer Communications, 23(10):887–900, May

2000.

[Williams and Wolczko, 1991] Ifor W. Williams and Mario I. Wolczko. An object-based memory archi-

tecture. In Dearle et al. [Dearle et al.1991], pages 114–130.

[Williams et al., 1987a] Ifor W. Williams, Mario I. Wolczko, and T.P. Hopkins. Realisation of a dynamic

grouped object-oriented virtual memory hierarchy. In Carrick and Cooper [Carrick and Cooper1987],

pages 298–308. Persistent Programming Research Report, Universities of Glasgow and St Andrews,

number PPRR–44–87.

[Williams et al., 1987b] Ifor W. Williams, Mario I. Wolczko, and Trevor P. Hopkins. Dynamic grouping

in an object-oriented virtual memory hierarchy. In Bézivin et al. [Bézivin et al.1987], pages 79–88.

[Williams et al., 1990] Ifor Williams, Mario I. Wolczko, and Trevor Hopkins. Realization of a dynami-

cally grouped object-oriented memory hierarchy. Technical report, University of Manchester Depart-

ment of Computer Science, Manchester, 1990.

[Wilson and Chaudrhy, 1992] Paul R. Wilson and Atif Chaudrhy. Efficient tracing using virtual memory

address protection. In preparation, 1992.

[Wilson and Hayes, 1991a] Paul R. Wilson and Barry Hayes, editors. OOPSLA Workshop on Garbage

Collection in Object-Oriented Systems, October 1991.

[Wilson and Hayes, 1991b] Paul R. Wilson and Barry Hayes. Report on the 1991 workshop on garbage

collection in object-oriented systems. In OOPSLA 1991 [OOPSLA 19911991]. Addendum. Also

distributed as a special issue of ACM SIGPLAN Notices, and OOPS Messenger 3(4), October 1992.

[Wilson and Johnstone, 1993a] Paul R. Wilson and Mark Johnstone. Truly real-time non-moving

implicit-reclamation garbage collection. Rough Draft, March 1993.

[Wilson and Johnstone, 1993b] Paul R. Wilson and Mark S. Johnstone. Real-time non-copying garbage

collection. In Moss et al. [Moss et al.1993].

[Wilson and Kakkad, 1992] Paul R. Wilson and Sheetal V. Kakkad. Pointer swizzling at page fault

time: Efficiently and compatibly supporting huge addresses on standard hardware. In Cabrera et al.

[Cabrera et al.1992], pages 364–377.

[Wilson and Moher, 1989a] Paul R. Wilson and Thomas G. Moher. A card-marking scheme for con-

trolling intergenerational references in generation-based garbage collection on stock hardware. ACM

SIGPLAN Notices, 24(5):87–92, 1989.

[Wilson and Moher, 1989b] Paul R. Wilson and Thomas G. Moher. Design of the opportunistic garbage

collector. In OOPSLA 1989 [OOPSLA 19891989], pages 23–35.

[Wilson et al., 1990] Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Caching consideration for

generational garbage collection: A case study of large and set-associative caches. Technical Report

UIC–EECS–90–5, University of Illinois at Chicago EECS Department, Chicago, IL, December 1990.

Improved version appears in [LFP 1992, 1992].

[Wilson et al., 1991] Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Effective “static-graph”

reorganization to improve locality in garbage-collected systems. In PLDI 1991 [PLDI 19911991],

pages 177–191.

[Wilson et al., 1992a] Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Caching considerations

for generational garbage collection. In LFP 1992 [LFP 19921992], pages 32–42.

[Wilson et al., 1992b] Paul R. Wilson, Shubhendu S. Mukherjee, and Sheetal V. Kakkad. Anomalies and

adaptation in the analysis and development of prepaging p olicies. Journal of Systems and Software,

1992.

[Wilson et al., 1994] Paul R. Wilson, Shubhendu S. Mukherjee, and Sheetal V. Kakkad. Anomalies and

adaptation in the analysis and development of prepaging policies. Journal of Systems and Software,

1994. Technical Communication.

157



[Wilson et al., 1995a] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic

storage allocation: A survey and critical review. In Baker [Baker1995b], pages 1–116.

[Wilson et al., 1995b] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Memory

allocation policies reconsidered. Unpublished manuscript, 1995.

[Wilson, 1988a] Paul R. Wilson. Opportunistic garbage collection. ACM SIGPLAN Notices, 23(12):98–

102, December 1988.

[Wilson, 1988b] Paul R. Wilson. Two comprehensive virtual copy mechanisms. Master’s thesis, Uni-

versity of Illinois at Chicago, Electrical Engineering and Computer Science Department, Chicago, IL,

1988.

[Wilson, 1989] Paul R. Wilson. A simple bucket-brigade advancement mechanism for generation-based

garbage collection. ACM SIGPLAN Notices, 24(5):38–46, May 1989.

[Wilson, 1990a] Paul R. Wilson. Pointer swizzling at page fault time: Efficiently supporting huge ad-

dress spaces on standard hardware. Technical Report UIC–EECS–90–6, University of Illinois at

Chicago, Electrical Engineering and Computer Science Department, Chicago, IL, December 1990.

Also in Computer Architecture News, 19(4):6–13, June 1991.

[Wilson, 1990b] Paul R. Wilson. Some issues and strategies in heap management and memory hierar-

chies. In Jul and Juul [Jul and Juul1990]. Also in SIGPLAN Notices 23(1):45–52, January 1991.

[Wilson, 1991] Paul R. Wilson. Heap Management and Memory Hierarchies. PhD thesis, University of

Illinois at Chicago, December 1991.

[Wilson, 1992a] Paul R. Wilson. Garbage collection and memory hierarchy. In Bekkers and Cohen

[Bekkers and Cohen1992]. Discussion Session.

[Wilson, 1992b] Paul R. Wilson. Operating system support for small objects. In Cabrera et al.

[Cabrera et al.1992].

[Wilson, 1992c] Paul R. Wilson. Uniprocessor garbage collection techniques. In Bekkers and Cohen

[Bekkers and Cohen1992], pages 1–42.

[Wilson, 1994] Paul R. Wilson. Uniprocessor garbage collection techniques. Technical report, Univer-

sity of Texas, January 1994. Expanded version of the IWMM92 paper.

[Wimmer and Mössenböck, 2006] Christian Wimmer and Hanspeter Mössenböck. Automatic object

colocation based on read barriers. In In Proceedings of the 7th Joint Conference on Modular Pro-

gramming Languages (JMLC’06), Lecture Notes in Computer Science, pages 326–345, Berlin, 2006.

Springer-Verlag.

[Wimmer et al., 2013] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick Jordan, Lau-

rent Daynès, , and Douglas Simon. Maxine: An approachable virtual machine for, and in, Java. ACM

Transactions on Architecture and Code Optimization, 9(4):1–24, January 2013.

[Winsborough, 1989] William Winsborough. Path-dependent reachability analysis for multiple special-

ization. In E. Lusk and R. Overbeek, editors, North American Conference on Logic Programming,

pages 113–153. MIT Press, 1989.

[Wise and Friedman, 1977a] David S. Wise and Daniel P. Friedman. The one-bit reference count. In BIT

[Wise and Friedman1977b], pages 351–359.

[Wise and Friedman, 1977b] David S. Wise and Daniel P. Friedman. The one-bit reference count. BIT,

17(3):351–359, 1977.

[Wise and Walgenbach, 1996] David S. Wise and J. Walgenbach. Static and dynamic partitioning of

pointers as links and threads. In 1996 ACM SIGPLAN International Conference on Functional Pro-

gramming, ACM SIGPLAN Notices 31(6), pages 42–49. ACM Press, June 1996.

[Wise and Watson, 1976] David S. Wise and Daniel C. Watson. Tuning Garwick’s algorithm for repack-

ing sequential storage. BIT, 16(4):442–450, December 1976.

[Wise et al., 1994] David S. Wise, Brian Heck, Caleb Hess, Willie Hunt, and Eric Ost. Uniprocessor

performance of a reference-counting hardware heap. Technical Report TR-401, Indiana University,

Computer Science Department, May 1994.

[Wise et al., 1997] David S. Wise, Caleb Hess, Willie Hunt, and Eric Ost. Research demonstration of a

hardware reference-counting heap. Lisp and Symbolic Computation, 10(2):151–181, July 1997.

158



[Wise, 1978] David S. Wise. The double buddy-system. Computer Science Technical Report TR79,

Indiana University, Bloomington, IN, December 1978.

[Wise, 1979] David S. Wise. Morris’ garbage compaction algorithm restores reference counts. ACM

Transactions on Programming Languages and Systems, 1:115–120, July 1979.

[Wise, 1985] David S. Wise. Design for a multiprocessing heap with on-board reference counting. In

Jouannaud [Jouannaud1985], pages 289–304.

[Wise, 1993a] David S. Wise. Stop-and-copy and one-bit reference counting. Computer Science Tech-

nical Report 360, Indiana University, March 1993. See also [Wise, 1993b].

[Wise, 1993b] David S. Wise. Stop-and-copy and one-bit reference counting. Information Processing

Letters, 46(5):243–249, July 1993.

[Wiseman, 1966] N.E. Wiseman. A simple list processing package for the PDP–7. In DECUS 2nd

European Seminar, pages 37–42, Aachen, October 1966.

[Wiseman, 1985] Simon R. Wiseman. A garbage collector for a large distributed address space. Techni-

cal Report 85009, Royal Signals and Radar Establishment, Malvern, UK, 1985.

[Wiseman, 1988] Simon R. Wiseman. Garbage Collection in Distributed Systems. PhD thesis, Univer-

sity of Newcastle upon Tyne, 1988.

[Withington, 1991] P. Tucker Withington. How real is “real time” garbage collection? In Wilson and

Hayes [Wilson and Hayes1991a].

[Wodon, 1969] P.L. Wodon. Data structure and storage allocation. BIT, 9(3):270–282, 1969.

[Wodon, 1971] P.L. Wodon. Methods of garbage collection for Algol–68. In Peck [Peck1971], pages

245–262.

[Wolczko and Williams, 1990] Mario I. Wolczko and Ifor Williams. Garbage collection in high perfor-

mance system. In Jul and Juul [Jul and Juul1990].

[Wolczko and Williams, 1992] Mario I. Wolczko and Ifor Williams. Multi-level garbage collection in

a high-performance persistent object system. In Albano and Morrison [Albano and Morrison1992],

pages 396–418.

[Wolczko and Williams, 1993] Mario I. Wolczko and Ifor Williams. An alternative architecture for ob-

jects: Lessons from the MUSHROOM project. In Moss et al. [Moss et al.1993].

[Wolczko, 1990] Mario I. Wolczko. Garbage collection. In Cliff B. Jones and Roger C.F. Shaw, editors,

Case Studies in Systematic Software Development, chapter 8, pages 211–233. Prentice-Hall, 1990.

[Wolf, 1989] W. Wolf. Practical comparison of two object-oriented languages. IEEE Software, 6(5):61–

68, 1989.

[Wollrath et al., 1996] A. Wollrath, R. Riggs, and Jim Waldo. A distributed object model for the Java

system. In Conference on Object-Oriented Technologies, Toronto, Canada, June 1996. USENIX As-

sociation.

[Wong, 1987] K.F. Wong. Garbage collection coprocessor system. Electronics Letters, 23(15):798–800,

1987.

[Woodward, 1981] M.C. Woodward. Multiprocessor garbage collection — a new solution. Computer

Studies, 115, 1981.

[Wright and Baker-Finch, 1993] D.A. Wright and C.A. Baker-Finch. Usage analysis with natural reduc-

tion types. In 3rd International Workshop on Static Analysis, 1993.

[Wright et al., 2005] Gregory Wright, Matthew L. Seidl, and Mario Wolczko. An object-aware memory

architecture. Technical Report SML–TR–2005–143, Sun Microsystems Laboratories, February 2005.

[Wright et al., 2006] Gregory Wright, Matthew L. Seidl, and Mario Wolczko. An object-aware memory

architecture. Science of Computer Programming, 62(2):145–163, October 2006.

[Wright, 2008] Gregory Wright. A hardware-assisted concurrent & parallel GC algorithm. Technical

report, Oracle Laboratories, November 2008.

[Wrigstad and Gonzalez Boix, 2022] Tobias Wrigstad and Elisa Gonzalez Boix, editors. ACM SIGPLAN

International Conference on Managed Programming Languages and Runtimes, Brussels, Belgium,

September 2022. ACM Press.

159



[Wrigstad and Wang, 2021] Tobias Wrigstad and Zhenlin Wang, editors. 20th ACM SIGPLAN Interna-

tional Symposium on Memory Management. ACM Press, June 2021.

[Wu and Ji, 2014] Hao Wu and Zhen-Zhou Ji. A study of lock-free based concurrent garbage collectors

for multicore platform. The Scientific World Journal, 2014:8, June 2014.

[Wu and Ji, 2015] Hao Wu and Zhen-Zhou Ji. Improving trace precision for concurrent garbage col-

lection on multicore platform. In Fifth International Conference on Instrumentation and Measure-

ment, Computer, Communication and Control (IMCCC), pages 1493–1496, Qinhuangdao, 2015. IEEE

Press.

[Wu and Li, 2007] Ming Wu and Xiao-Feng Li. Task-pushing: a scalable parallel GC marking algo-

rithm without synchronization operations. In IEEE International Parallel and Distribution Processing

Symposium (IPDPS), pages 1–10, Long Beach, CA, March 2007.

[Wu et al., 2018] Mingyu Wu, Ziming Zhao, Haoyu Li, Heting Li, Haibo Chen, Binyu Zang, and Haib-

ing Guan. Espresso: Brewing Java for more non-volatility with non-volatile memory. In Shen et al.

[Shen et al.2018], pages 70–83.

[Wu et al., 2020a] Mingyu Wu, Haibo Chen, Hao Zhu, Binyu Zang, and Haibing Guan. GCPersist: An

efficient GC-assisted lazy persistency framework for resilient Java applications on NVM. In Baumann

and Kasikci [Baumann and Kasikci2020].

[Wu et al., 2020b] Mingyu Wu, Ziming Zhao, Yanfei Yang, Haoyu Li, Haibo Chen, Binyu Zang, Haib-

ing Guan, Sanhong Li, Chuansheng Lu, and Tongbao Zhang. Platinum: A CPU-efficient concurrent

garbage collector for tail-reduction of interactive services. In 2020 USENIX Annual Technical Con-

ference (USENIX ATC 20), pages 159–172. USENIX Association, July 2020.

[Wu et al., 2021] Kai Wu, Jie Ren, Ivy Peng, and Dong Li. ArchTM: Architecture-aware, high per-

formance transaction for persistent memory. In Marcos K. Aguilera and Gala Yadgar, editors, 19th

USENIX Conference on File and Storage Technologies, pages 141–153. USENIX Association, Febru-

ary 2021.

[Wu et al., 2024] Mingyu Wu, Liang Mao, Yude Lin, Yifeng Jin, Zhe Li, Hongtao Lyu, Jiawei Tang,

Xiaowei Lu, Hao Tang, Denghui Dong, Haibo Chen, and Binyu Zang. Jade: A high-throughput

concurrent copying garbage collector. In Proceedings of the Nineteenth European Conference on

Computer Systems, EuroSys ’24, pages 1160–1174. ACM Press, 2024.

[Wu, 1989a] Meizhen Wu. A parallel garbage collection algorithm for virtual memory. Master’s thesis,

Auburn University, 1989.

[Wu, 1989b] Zhibo Wu. A real time distributed garbage collection method. Research report R 181,

University of Exeter. Department of Computer Science, 1989. Year maybe 1992.

[Xian and Xiong, 2005] Yuqiang Xian and Guangze Xiong. Minimizing memory requirement of real-

time systems with concurrent garbage collector. ACM SIGPLAN Notices, 40(3):40–48, March 2005.

[Xian et al., 2006] Feng Xian, Witawas Srisa-an, and Hong Jiang. Investigating the throughput degrada-

tion behavior of Java application servers: A view from inside the virtual machine. In 4th International

Conference on Principles and Practices of Programming in Java, pages 40–49, Mannheim, Germany,

2006.

[Xian et al., 2007a] Feng Xian, Witawas Srisa-an, C. Jia, and Hong Jiang. AS-GC: An efficient genera-

tional garbage collector for Java application servers. In Ernst [Ernst2007], pages 126–150.

[Xian et al., 2007b] Feng Xian, Witawas Srisa-an, and Hong Jiang. Allocation-phase aware

thread scheduling policies to improve garbage collection performance. In Morrisett and Sagiv

[Morrisett and Sagiv2007], pages 79–90.

[Xian et al., 2007c] Feng Xian, Witawas Srisa-an, and Hong Jiang. Evaluating hardware support for

reference counting using software configurable processors. In 17th IEEE International Conference on

Application-Specific Systems, Architectures, and Processors, pages 297–302, Steamboat Springs, CO,

September 2007.

[Xian et al., 2007d] Feng Xian, Witawas Srisa-an, and Hong Jiang. MicroPhase: An approach

to proactively invoking garbage collection for improved performance. In OOPSLA 2007

[OOPSLA 20072007], pages 77–96.

[Xian et al., 2008] Feng Xian, Witawas Srisa-an, and Hong Jiang. Garbage collection: Java application

servers’ Achilles heel. Science of Computer Programming, 70(2–3), February 2008.

160



[Xu and Singer, 2019] Harry Xu and Jeremy Singer, editors. 18th ACM SIGPLAN International Sympo-

sium on Memory Management, Phoenix, AZ, June 2019. ACM Press.

[Xu et al., 2011] Guoqing Xu, Michael D. Bond, Feng Qin, and Atanas Rountev. LeakChaser: Helping

programmers narrow down causes of memory leaks. In PLDI 2011 [PLDI 20112011], pages 270–282.

[Xu et al., 2015] Shijie Xu, Qi Guo, Gerhard Dueck, David Bremner, and Yang Wang. Metis: A smart

memory allocator using historical reclamation information. In Morandat [Morandat2015].

[Xu et al., 2019] Lijie Xu, Tian Guo, Wensheng Dou, Wei Wang, and Jun Wei. An experimental evalua-

tion of garbage collectors on big data applications. Proceedings of the VLDB Endowment, 12(5):570–

583, January 2019.

[Xu et al., 2022] Bochen Xu, J. Eliot B. Moss, and Stephen M. Blackburn. Towards a model

checking framework for a new collector framework. In Wrigstad and Gonzalez Boix

[Wrigstad and Gonzalez Boix2022].

[Xu, 2013] Guoqing Xu. Resurrector: A tunable object lifetime profiling technique for optimizing real-

world programs. In OOPSLA 2013 [OOPSLA 20132013], pages 111–130.

[Xu, 2022] Haoran Xu. Understanding GC in JSC from scratch.

https://webkit.org/blog/12967/understanding-gc-in-jsc-from-scratch/, July 2022.

[Yamamoto et al., 1998a] Hirotaka Yamamoto, Kenjiro Taura, and Akinori Yonezawa. Comparing ref-

erence counting and global mark-and-sweep on parallel computers. In Languages, Compilers, and

Run-time Systems (LCR), Lecture Notes in Computer Science. Springer-Verlag, May 1998.

[Yamamoto et al., 1998b] Hirotaka Yamamoto, Kenjiro Taura, and Akinori Yonezawa. Performance

comparison between reference counting and global GC on distributed-memory parallel computers.

In Joint Symposium on Parallel Processing (JSPP), June 1998. In Japanese.

[Yamazaki et al., 2023] Tetsuro Yamazaki, Tomoki Nakamaru, Ryota Shioya, Tomoharu Ugawa, and

Shigeru Chiba. Collecting cyclic garbage across foreign function interfaces. In PLDI 2023

[PLDI 20232023].

[Yang and Wrigstad, 2017] Albert Mingkun Yang and Tobias Wrigstad. Type-assisted automatic

garbage collection for lock-free data structures. In ISMM 2017 [Kirsch and Titzer2017], pages 14–24.

[Yang and Wrigstad, 2022] Albert Mingkun Yang and Tobias Wrigstad. Deep dive into ZGC: A modern

garbage collector in OpenJDK. ACM Transactions on Programming Languages and Systems, 44(4):1–

34, 2022.

[Yang et al., 2002] Qian Yang, Witawas Srisa-an, Therapon Skotiniotis, and J. Morris Chang. Java vir-

tual machine probes — a study of object life span and GC. In 21st IEEE International Performance,

Computing and Communications Conference (IPCCC), Phoenix, AZ, April 2002.

[Yang et al., 2004] Ting Yang, Emery D. Berger, Matthew Hertz, Scott F. Kaplan, and J. Eliot B.

Moss. Autonomic heap sizing: Taking real memory into account. In Bacon and Diwan

[Bacon and Diwan2004], pages 61–72.

[Yang et al., 2006] Ting Yang, Emery D. Berger, Scott F. Kaplan, and J. Eliot B. Moss. CRAMM: Virtual

memory support for garbage-collected applications. In 7th USENIX Symposium on Operating System

Design and Implementation, pages 103–116, Seattle, WA, November 2006. USENIX Association.

[Yang et al., 2010] Wuu Yang, Huei-Ru Tseng, and Rong-Hong Jan. Heap garbage collection with refer-

ence counting. In Proceedings of the 5th International Conference on Software and Data Technologies,

pages 267–270, 2010.

[Yang et al., 2011] Xi Yang, Stephen M. Blackburn, Daniel Frampton, Jennifer B. Sartor, and Kathryn S.

McKinley. Why nothing matters: The impact of zeroing. In OOPSLA 2011 [OOPSLA 20112011],

pages 307–324.

[Yang et al., 2012] Xi Yang, Stephen M. Blackburn, Daniel Frampton, and Antony L. Hosking. Barriers

reconsidered, friendlier still! In McKinley and Vechev [McKinley and Vechev2012], pages 37–48.

[Yang et al., 2015] Xi Yang, Stephen M. Blackburn, and Kathryn S. McKinley. Computer performance

microscopy with Shim. In ISCA 2015 [ISCA 20152015].

[Yang et al., 2020a] Albert Mingkun Yang, Erik Österlund, Jesper Wilhelmsson, Hanna Nyblom, and

Tobias Wrigstad. ThinGC: Complete isolation with marginal overhead. In Maas and Ding

[Maas and Ding2020], pages 74–86.

161



[Yang et al., 2020b] Albert Mingkun Yang, Erik Österlund, and Tobias Wrigstad. Improving program

locality in the GC using hotness. In PLDI 2020 [PLDI 20202020].

[Yang, 2001a] Hongseok Yang. An example of local reasoning in BI pointer logic: the Schorr-Waite

graph marking algorithm. In SPACE 2001 [SPACE 20012001].

[Yang, 2001b] Hongseok Yang. Local Reasoning for Stateful Programs. PhD thesis, University of

Illinois at Urbana-Champaign, 2001.

[Yang, 2025] Albert Mingkun Yang. Design and Implementation of Temperature-Aware Collectors. PhD

thesis, Uppsala University, January 2025.

[Yasugi and Yonezawa, 1991] Masahiro Yasugi and Akinori Yonezawa. Towards user (application)

language-level garbage collection in object-oriented concurrent languages. In Wilson and Hayes

[Wilson and Hayes1991a].

[Ye and Keane, 1997] Xinfeng Ye and John Keane. Collecting cyclic garbage in distributed systems.

In International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN ’97), Taipei,

Taiwan, December 1997.

[Yeates and de Champlain, 1997a] Stuart A. Yeates and Michel de Champlain. Design of a garbage col-

lector using design patterns. In Christine Mingins, Roger Duke, and Bertrand Meyer, editors, 25th

Conference of TOOLS Pacific., pages 77–92, Melbourne, 1997. ISE (Interactive Software Engineer-

ing).

[Yeates and de Champlain, 1997b] Stuart A. Yeates and Michel de Champlain. Design patterns in

garbage collection. In Robert S. Hanmer and Don Roberts, editors, 4th Annual Conference on the Pat-

tern Languages of Programs, volume 6 “General Techniques”, Monticello, IL, 2-5 September 1997.

Published as technical report # WUCS-97-34 of Washington University (not peer reviewed).

[Yeates, 1997] Stuart Yeates. Design patterns in garbage collection. Master’s thesis, University of Can-

terbury, Christchurch, New Zealand, June 1997.

[Yelowitz and Duncan, 1977] L. Yelowitz and A.G. Duncan. Abstractions, instantiations and proofs of

marking algorithms. ACM SIGPLAN Notices, 12(8):13–21, August 1977.

[Yi and Harrison III, 1992] Kwangkeun Yi and Williams Ludwell Harrison III. Interprocedural data flow

analysis for compile-time memory management. Technical Report 1244, Center for Supercomputing

Research and Development, University of Illinois, August 1992.

[Yip, 1991] G. May Yip. Incremental, generational mostly-copying garbage collection in uncooperative

environments. Technical Report 91/8, Digital, Western Research Laboratory, June 1991. Masters

Thesis — MIT, Cambridge, MA, 1991.

[Yong et al., 1994] V.-F. Yong, J. Naughton, and J.-B. Yu. Storage reclamation and reorganization in

client–server persistent object stores. In International Conference on Data Engineering, pages 120–

133, Houston, TX, February 1994.

[Yu and Cox, 1996] W. Yu and A. Cox. Conservative garbage collection on distributed shared memory

system. In 6th International Conference on Distributed Computing Systems (ICDCS), pages 402–410,

May 1996.

[Yu et al., 2003] Dachuan Yu, Nadeem A. Hamid, and Zhong Shao. Building certified libraries for PCC:

Dynamic storage allocation. In Degano [Degano2003], pages 101–127.

[Yu et al., 2008] Zoe C.H. Yu, Francis C.M. Lau, and Cho-Li Wang. Object co-location and memory

reuse for Java programs. ACM Transactions on Architecture and Code Optimization, 4(4):1–36, 2008.

[Yu et al., 2016] Yang Yu, Tianyang Lei, Weihua Zhang, Haibo Chen, and Binyu Zang. Performance

analysis and optimization of full garbage collection in memory-hungry environments. In VEE 2016

[VEE 20162016], page 123130.

[Yuasa and Hagiya, 1985] Taiichi Yuasa and Masumi Hagiya. Kyoto Common Lisp report. Technical

report, Teikoku Insatsu Publishing, Kyoto, 1985.

[Yuasa, 1990] Taiichi Yuasa. Real-time garbage collection on general-purpose machines. Journal of

Systems and Software, 11(3):181–198, March 1990.

[Yuasa, 1992] Taiichi Yuasa. Memory management and garbage collection of an extended Common Lisp

system for massively parallel SIMD architecture. In Bekkers and Cohen [Bekkers and Cohen1992],

pages 490–506.

162



[Yuasa, 2002] Taiichi Yuasa. Return barrier. In International Lisp Conference, 2002.

[Yuhara et al., 1986] M. Yuhara, A. Hattori, M. Niwa, M. Kishimoto, and H. Hayashi. Evaluation of

the Facom Alpha Lisp machine. In 13th Annual International Symposium on Computer Architecture,

Tokyo, June 1986. IEEE Press.

[Yung et al., 2010] Chung Yung, Jheng-Jyun Syu, and Shiang-Yu Yang. A graph-based algorithm of

mostly incremental garbage collection for active object systems. In International Computer Sympo-

sium (ICS), pages 988–996. IEEE Press, 2010.

[Zabel et al., 2007] Martin Zabel, Thomas B. Preuber, Peter Reichel, and Rainer G. Spallek. Secure,

real-time and multi-threaded general-purpose embedded Java microarchitecture. In 10th Euromicro

Conference on Digital System Design Architectures, Methods and Tools, pages 59–62. IEEE Computer

Society Press, 2007.

[Zakowski et al., 2017] Yannick Zakowski, David Cachera, Delphine Demange, Gustavo Petri, David

Pichardie, Suresh Jagannathan, and Jan Vitek. Verifying a concurrent garbage collector using a rely-

guarantee methodology. In ITP 2017 [ITP 20172017], pages 496–513.

[Zave, 1975] Derek A. Zave. A fast compacting garbage collector. Information Processing Letters,

3(6):167–169, July 1975.

[Zee and Rinard, 2002a] Karen Zee and Martin Rinard. Write barrier removal by static analysis. ACM

SIGPLAN Notices, 37(4), April 2002.

[Zee and Rinard, 2002b] Karen Zee and Martin Rinard. Write barrier removal by static analysis. In

OOPSLA 2002 [OOPSLA 20022002], pages 191–210.

[Zendra, 2006a] Olivier Zendra, editor. Implementation, Compilation, Optimization of Object-Oriented

Languages, Programs and Systems (ICOOOLPS’06), Nantes, July 2006.

[Zendra, 2006b] Olivier Zendra. Memory and compiler optimizations for low-power and energy. In

ICOOOLPS 2006 [Zendra2006a], page 8.

[Zhang and Flood, 2016] Zheng Zhang and Christine Flood, editors. 15th ACM SIGPLAN International

Symposium on Memory Management, Santa Barbara, CA, June 2016. ACM Press.

[Zhang and Hirzel, 2008] Chengliang Zhang and Martin Hirzel. Online phase-adaptive data layout se-

lection. In Vitek [Vitek2008], pages 309–334.

[Zhang and Xiong, 2006] Ning Zhang and Guangze Xiong. Minimizing GC work by analysis of live

objects. ACM SIGPLAN Notices, 41(3):20–29, March 2006.

[Zhang et al., 1998] Sean Zhang, Barbara G. Ryder, and William A. Landi. Experiments with combined

analysis for pointer aliasing. In PASTE 1998 [PASTE 19981998], pages 11–18.

[Zhang et al., 2006] Chengliang Zhang, Kirk Kelsey, Xipeng Shen, Chen Ding, Matthew Hertz,

and Mitsunori Ogihara. Program-level adaptive memory management. In Petrank and Moss

[Petrank and Moss2006], pages 174–183.

[Zhao and Blackburn, 2020] Wenyu Zhao and Steve Blackburn. Deconstructing the Garbage-First col-

lector. In Baumann and Kasikci [Baumann and Kasikci2020].

[Zhao et al., 1987] W. Zhao, K. Ramamritham, and J.A. Stankovic. Scheduling tasks with resource

requirements in hard real-time systems. IEEE Transactions on Software Engineering, SE-13(5):564–

577, May 1987.

[Zhao et al., 2009] Yi Zhao, Jin Shi, Kai Zheng, Haichuan Wang, Haibo Lin, and Ling Shao. Allocation

wall: A limiting factor of Java applications on emerging multi-core platforms. In OOPSLA 2009

[OOPSLA 20092009], pages 361–376.

[Zhao et al., 2012] Xufeng Zhao, Syouji Nakamura, and Toshio Nakagawa. Optimal tenuring and major

collection times for a generational garbage collector. Asia-Pacific Journal of Operational Research,

29(3), June 2012.

[Zhao et al., 2022a] Wenyu Zhao, Steve Blackburn, and Kathryn S. McKinley. Low-latency, high-

throughput garbage collection. In PLDI 2022 [PLDI 20222022].

[Zhao et al., 2022b] Wenyu Zhao, Steve Blackburn, and Kathryn S. McKinley. Low-latency,

high-throughput garbage collection (extended version). arXiv:2210.17175v1, October 2022.

https://arxiv.org/abs/2210.17175v1.

163



[zhe Han et al., 2006] Long zhe Han, Yeonseung Ryu, Tae sun Chung, Myungho Lee, and Sukwon

Hong. An intelligent garbage collection algorithm for flash memory storages. In Computational

Science and its Applications, ICCSA 2006, volume 3980 of Lecture Notes in Computer Science, pages

1018–1027. Springer-Verlag, 2006.

[Zhong and Chang, 2008] Yutao Zhong and Wentao Chang. Sampling-based program locality approxi-

mation. In Jones and Blackburn [Jones and Blackburn2008], pages 91–100.

[Zhou and Demsky, 2012] Jin Zhou and Brian Demsky. Memory management for many-core processors

with software configurable locality policies. In McKinley and Vechev [McKinley and Vechev2012],

pages 3–14.

[Zhou et al., 1992] Songnian Zhou, Michael Stumm, Kai Li, and David Wortman. Heterogeneous dis-

tributed shared memory. IEEE Transactions on Parallel and Distributed Systems, 3(5):540–554,

September 1992.

[Zhou, 2000] Neng-Fa Zhou. Garbage collection in B-Prolog. In 1st Workshop on Memory Management

in Logic Programming Implementations, July 2000.

[Zigman et al., 2001] John Zigman, Stephen M. Blackburn, and J. Eliot B. Moss. TMOS: a transactional

garbage collector. In Kirby et al. [Kirby et al.2001], pages 116–135.

[Zigman, 2004] John Zigman. A General Framework for the Description and Construction of Hierar-

chical Garbage Collection Algorithms. PhD thesis, Australian National University, 2004.

[Zilles, 2007] Craig Zilles. Accordion arrays: Selective compression of Unicode arrays in Java. In

Morrisett and Sagiv [Morrisett and Sagiv2007], pages 55–66.

[Zorn and Grunwald, 1992a] Benjamin Zorn and Dirk Grunwald. Empirical measurements of six

allocation-intensive C programs. Computer Science Technical Report CU-CS-604-92, University of

Colorado, July 1992.

[Zorn and Grunwald, 1992b] Benjamin Zorn and Dirk Grunwald. Empirical measurements of six

allocation-intensive C programs. ACM SIGPLAN Notices, 27(12):71–80, 1992.

[Zorn and Grunwald, 1992c] Benjamin Zorn and Dirk Grunwald. Evaluating models of memory alloca-

tion. Computer Science Technical Report CU-CS-603-92, University of Colorado, July 1992.

[Zorn and Grunwald, 1994] Benjamin Zorn and Dirk Grunwald. Evaluating models of memory alloca-

tion. ACM Transactions on Modelling and Computer Simulation, 4(1), 1994.

[Zorn and Hilfinger, 1988] Benjamin Zorn and Paul Hilfinger. A memory allocation profiler for C and

Lisp programs. In Summer USENIX Conference, pages 223–237. USENIX Association, June 1988.

[Zorn and Seidl, 1998] Benjamin Zorn and M. Seidl. Segregating heap objects by reference behavior

and lifetime. In ASPLOS 1998 [ASPLOS 19981998], pages 12–23.

[Zorn et al., 1987] Benjamin Zorn, Paul Hilfinger, Kinson Ho, and James R. Larus. SPUR Lisp: Design

and implementation. Technical Report UCB/CSD 87/373, University of California, Berkeley, October

1987.

[Zorn, 1989] Benjamin G. Zorn. Comparative Performance Evaluation of Garbage Collection Algo-

rithms. PhD thesis, University of California, Berkeley, March 1989. Technical Report UCB/CSD

89/544.

[Zorn, 1990a] B. Zorn. Designing systems for evaluation: A case study of garbage collection. In Jul and

Juul [Jul and Juul1990].

[Zorn, 1990b] Benjamin Zorn. Barrier methods for garbage collection. Technical Report CU-CS-494-

90, University of Colorado, Boulder, November 1990.

[Zorn, 1990c] Benjamin Zorn. Comparing mark-and-sweep and stop-and-copy garbage collection. In

LFP 1990 [LFP 19901990].

[Zorn, 1991] Benjamin Zorn. The effect of garbage collection on cache performance. Technical Report

CU–CS–528–91, University of Colorado at Boulder, May 1991.

[Zorn, 1992] Benjamin Zorn. The measured cost of garbage collection. Technical Report CU–CS–573–

92, University of Colorado at Boulder, Department of Computer Science, Boulder, Colorado, April

1992.

[Zorn, 1993] Benjamin Zorn. The measured cost of conservative garbage collection. Software: Practice

and Experience, 23:733–756, 1993.

164


