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tional Conference on Performance Engineering (ICPE’14), Dublin, 2014. ACM Press.

[Bingham et al., 1993] Tim Bingham, Nancy Hobbs, and Dave Husson. Experiences developing and

using an object-oriented library for program manipulation. In OOPSLA 1993 [OOPSLA 19931993].

[Birkedal et al., 1996] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inference to von

Neumann machines via region representation inference. In POPL 1996 [POPL 19961996].

[Birkedal et al., 2004] Lars Birkedal, Noah Torp-Smith, and John C. Reynolds. Local reasoning about a

copying garbage collector. In POPL 2004 [POPL 20042004], pages 220–231.

17



[Birman, 1987] K. Birman. Exploiting virtual synchrony in distributed systems. ACM SIGOPS Operat-

ing Systems Review, 21(5):123–138, November 1987.

[Birrell and Needham, 1978] Andrew D. Birrell and Roger M. Needham. An asynchronous garbage

collector for the CAP filing system. ACM SIGOPS Operating Systems Review, 12(2):31–33, April

1978.

[Birrell et al., 1993] Andrew Birrell, David Evers, Greg Nelson, Susan Owicki, and Edward Wobber.

Distributed garbage collection for network objects. Technical Report 116, DEC Systems Research

Center, 130 Lytton Avenue, Palo Alto, CA 94301, December 1993.

[Birrell et al., 1994a] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network ob-

jects. Technical Report 115, DEC Systems Research Center, Palo Alto, CA, February 1994.

[Birrell et al., 1994b] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network ob-

jects. In 14th ACM SIGOPS Symposium on Operating Systems Principles, pages 217–230, Asheville,

NC, December 1994. ACM Press.

[Birrell et al., 1995] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network objects.

Software: Practice and Experience, 25(4):87–130, December 1995. Also appeared as SRC Research

Report 115.

[Bishop, 1975] Peter B. Bishop. Garbage collection in a very large address space. Working paper 111,

AI Laboratory, MIT, Cambridge, MA, September 1975.

[Bishop, 1977] Peter B. Bishop. Computer Systems with a Very Large Address Space and Garbage

Collection. PhD thesis, MIT Laboratory for Computer Science, May 1977. Technical report

MIT/LCS/TR–178.

[Björnerstedt, 1989] Anders Björnerstedt. Secondary storage garbage collection for decentralized

object-based systems. In D. Tsichritzis, editor, Object Oriented Development, pages 277–319. Centre

Universitaire d’Informatique, University of Geneva, July 1989.

[Björnerstedt, 1990] Anders Björnerstedt. Secondary Storage Garbage Collection for Decentralized

Object-Based Systems. PhD thesis, Royal Institute of Technology and Stockholm University, Swe-

den, June 1990. Technical Report 77.

[Bjornsson and Shrira, 2002] Magnus Bjornsson and Liuba Shrira. BuddyCache: High performance

object storage for collaborative strong-consistency applications in a WAN. In OOPSLA 2002

[OOPSLA 20022002].

[Black et al., 1986] Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object structure in

the Emerald system. In OOPSLA 1986 [OOPSLA 19861986], pages 78–86.

[Black et al., 1987] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter. Dis-

tribution and abstract types in Emerald. ACM Transactions on Software Engineering, 13(1):65–76,

January 1987.

[Black, 2005] Andrew P. Black, editor. 19th European Conference on Object-Oriented Programming,

volume 3586 of Lecture Notes in Computer Science, Glasgow, Scotland, July 2005. Springer-Verlag.

[Blackburn and Hosking, 2004] Stephen M. Blackburn and Antony L. Hosking. Barriers: Friend or foe?

In Bacon and Diwan [Bacon and Diwan2004], pages 143–151.

[Blackburn and McKinley, 2002] Stephen M. Blackburn and Kathryn S. McKinley. In or out? putting

write barriers in their place. In Boehm and Detlefs [Boehm and Detlefs2002], pages 175–184.

[Blackburn and McKinley, 2003] Stephen M. Blackburn and Kathryn S. McKinley. Ulterior reference

counting: Fast garbage collection without a long wait. In OOPSLA 2003 [OOPSLA 20032003], pages

344–458.

[Blackburn and McKinley, 2008] Stephen Blackburn and Kathryn S. McKinley. Immix: a mark-region

garbage collector with space efficiency, fast collection, and mutator performance. In Gupta and Ama-

rasinghe [Gupta and Amarasinghe2008], pages 22–32.

[Blackburn and Petrank, 2023] Stephen M. Blackburn and Erez Petrank, editors. 22nd ACM SIGPLAN

International Symposium on Memory Management. ACM Press, June 2023.

[Blackburn et al., 2001] Stephen M. Blackburn, Sharad Singhai, Matthew Hertz, Kathryn S. McKinley,

and J. Eliot B. Moss. Pretenuring for Java. In OOPSLA 2001 [OOPSLA 20012001], pages 342–352.

18



[Blackburn et al., 2002] Stephen M. Blackburn, Richard E. Jones, Kathryn S. McKinley, and J. Eliot B.

Moss. Beltway: Getting around garbage collection gridlock. In PLDI 2002 [PLDI 20022002], pages

153–164.

[Blackburn et al., 2003] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. A garbage

collection design and bakeoff in JMTk: An extensible Java memory management toolkit. Technical

Report TR–CS–03–02, Australian National University, February 2003.

[Blackburn et al., 2004a] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Myths and

realities: The performance impact of garbage collection. In ACM SIGMETRICS International Confer-

ence on Measurement and Modeling of Computer Systems, ACM SIGMETRICS Performance Evalu-

ation Review 32(1), pages 25–36. ACM Press, June 2004.

[Blackburn et al., 2004b] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Oil and water?

High performance garbage collection in Java with MMTk. In ICSE 2004 [ICSE 20042004], pages

137–146.

[Blackburn et al., 2006a] Stephen M. Blackburn, Robin Garner, Chris Hoffman, Asjad M. Khan,

Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.

Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,
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[Böttcher et al., 2019] Jan Böttcher, Viktor Leis, Thomas Neumann, and Alfons Kemper. Scalable

garbage collection for in-memory MVCC systems. Proceedings of the VLDB Endowment, 13(2):128–

141, October 2019.

[Bowman et al., 1993] Howard Bowman, John Derrick, and Richard E. Jones. Modelling garbage collec-

tion algorithms. In International Workshop on Concurrency in Computational Logic, City University,

London, 13 December 1993, December 1993.

[Boyapati et al., 2003] Chandrasekhar Boyapati, Alexandru Salcianu, William Beebee, Jr., and Martin

Rinard. Ownership types for safe region-based memory management in Real-Time Java. In PLDI

2003 [PLDI 20032003], pages 324–337.

[Boyer and Moore, 1972] R.S. Boyer and J.S. Moore. The sharing of structure in theorem-proving pro-

grams. In B. Meltzer and Donald Michie, editors, Machine Intelligence, pages 101–116. Edinburgh

University Press, 1972.

[Boysen and Shah, 1993] P. Boysen and P. Shah. Reducing object storage requirements in a multi-user

environment. Software: Practice and Experience, 23(2):243–253, March 1993.

[Bozman et al., 1984] G. Bozman, W. Buco, T.P. Daly, and W.H. Tetzlaff. Analysis of free storage

algorithms — revisited. IBM Systems Journal, 23(1):44–64, 1984.

[Bozman, 1984] Gerald Bozman. The software lookaside buffer reduces search overhead with linked

lists. Communications of the ACM, 27(3):222–227, March 1984.

[Braberman et al., 2008] Vı́ctor Braberman, Federico Fernández, Diego Garbervetsky, and Sergio

Yovine. Parametric prediction of heap memory requirements. In Jones and Blackburn

[Jones and Blackburn2008], pages 141–150.

[Braginsky et al., 2013] Anastasia Braginsky, Alex Kogan, and Erez Petrank. Drop the anchor:

Lightweight memory management for non-blocking data structures. In SPAA 2013 [SPAA 20132013],

pages 33–42.

[Brandt et al., 2014] Steven R. Brandt, Hari Krishnan, Gokarna Sharma, and Costas Busch. Concurrent,

parallel garbage collection in linear time. In Guyer and Grove [Guyer and Grove2014], pages 47–58.

[Brandt et al., 2018] Steven R. Brandt, Hari Krishnan, Costas Busch, and Gokarna Sharma. Distributed

garbage collection for general graphs. In Payer and Sartor [Payer and Sartor2018], pages 29–44.

[Branquart and Lewi, 1971] P. Branquart and J. Lewi. A scheme of storage allocation and garbage col-

lection for Algol–68. In Peck [Peck1971], pages 198–238.

[Brecht et al., 2001] Tim Brecht, Eshrat Arjomandi, Chang Li, and Hang Pham. Controlling garbage

collection and heap growth to reduce the execution time of Java applications. In OOPSLA 2001

[OOPSLA 20012001], pages 353–366.

[Brecht et al., 2006] Tim Brecht, Eshrat Arjomandi, Chang Li, and Hang Pham. Controlling garbage

collection and heap growth to reduce the execution time of Java applications. ACM Transactions on

Programming Languages and Systems, 28(5):908–941, September 2006.

[Brega and Rivera, 2000] Roberto Brega and Gabrio Rivera. Dynamic memory management with

garbage collection for embedded applications. In Proc. of the USENIX Workshop on Industrial Expe-

riences with Systems Software (WIESS 2000), San Diego, CA, October 2000.

22



[Brent, 1989] R.P. Brent. Efficient implementation of the first-fit strategy for dynamic storage allocation.

ACM Transactions on Programming Languages and Systems, 11(3):388–403, July 1989.

[Briot, 2012a] Emmanuel Briot. Gem #100: Reference counting in Ada — part 3: Weak references.

SIGADA Ada Letters, 32(2):33–34, August 2012.

[Briot, 2012b] Emmanuel Briot. Gem #97: Reference counting in Ada — part 1. SIGADA Ada Letters,

32(2):24–27, January 2012.

[Briot, 2012c] Emmanuel Briot. Gem #99: Reference counting in Ada — part 2: task safety. SIGADA

Ada Letters, 32(2):31–32, August 2012.

[Brisset, 1992] P. Brisset. Compilation de λProlog. PhD thesis, Université de Rennes, 1992.
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garbage collection and execution models in ElipSys. In A. Beaumont and G. Gupta, editors, ICLP’91

Workshop on Parallel Execution of Logic Programs, volume 569 of Lecture Notes in Computer Sci-

ence, pages 17–28. Springer-Verlag, 1991.

[Douglass, 2002] Bruce Powel Douglass. Real-Time Design Patterns: Robust Scalable Architecture for

Real-Time Systems, chapter 6. Addison-Wesley, 2002.

43



[Douglis et al., 1991] Fred Douglis, M. Frans Kaashoek ad John K. Ousterhout, and Andrew S. Tanen-

baum. A comparison of two distributed operating systems : Amoeba and Sprite. Computing Systems,

4(4):353–384, September 1991.

[Douglis, 1993] Fred Douglis. The compression cache: Using on-line compression to extend physi-

cal memory. In 1993 Winter USENIX Conference, pages 519–529, San Diego, CA, January 1993.

USENIX Association.

[Drexler and Miller, 1988] K. Eric Drexler and Mark S. Miller. Incentive engineering: for computational

resource management. In Bernardo Huberman, editor, The Ecology of Computation. Elsevier-North

Holland, 1988.

[Drezner and Barak, 1986] Z. Drezner and A. Barak. An asynchronous algorithm for scattering infor-

mation between the active nodes of a multi-computer system. Journal of Parallel and Distributed

Computing, 3(3):344–351, September 1986.

[Drossopoulou, 2009] Sophia Drossopoulou, editor. 23rd European Conference on Object-Oriented Pro-

gramming, volume 5653 of Lecture Notes in Computer Science, Genoa, Italy, July 2009. Springer-

Verlag.

[D’Souza, 2017] Irwin D’Souza. How concurrent scavenge using the Guarded Storage Facility works.

Technical report, IBM Corp., October 2017.

[Du Bois et al., 2013] Kristof Du Bois, Jennifer B. Sartor, Stijn Eyerman, and Lieven Eeckhout. Bot-

tle graphs: visualizing scalability bottlenecks in multi-threaded applications. In OOPSLA 2013

[OOPSLA 20132013].
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Loosemore, Niklas Röjemo, Manuel Serrano, Jean-Pierre Talpin, Jon Thackray, Pierre Weis, and Peter

Wentworth. Pseudoknot: A float-intensive benchmark for functional compilers. In J.R.W. Glauert, ed-

itor, 6th Implementation of Functional Languages, pages 13.1–13.34. School of Information Systems,

University of East Anglia, Norwich, UK, September 1994.

59



[Hartel et al., 1996] Pieter H. Hartel, Marc Feeley, Martin Alt, Lennart Augustsson, Peter Baumann,

Marcel Beemster, Emmanuel Chailloux, Christine H. Flood, Wolfgang Grieskamp, John H.G. van

Groningen, Kevin Hammond, BogumiłHausman, Melody Y. Ivory, Richard Jones, Peter Lee, Xavier

Leroy, Rafael Lins, Sandra Loosemore, Niklas Röjemo, Manuel Serrano, Jean-Pierre Talpin, Jon
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[Kluźniak, 1988] F. Kluźniak. Compile-time garbage collection for ground Prolog. In 5th International

Conference and Symposium on Logic Programming, pages 1490–1505, 1988.

[Knight, 1974] Tom Knight. CONS. Working Paper 80, MIT AI Laboratory, November 1974.

[Knowlton, 1965] Kenneth C. Knowlton. A fast storage allocator. Communications of the ACM,

8(10):623–625, October 1965.

[Knudsen, 2001] Jørgen Lindskov Knudsen, editor. 15th European Conference on Object-Oriented

Programming, volume 2072 of Lecture Notes in Computer Science, Budapest, Hungary, June 2001.

Springer-Verlag.

[Knuth, 1973a] Donald E. Knuth. The Art of Computer Programming, volume I: Fundamental Algo-

rithms. Addison-Wesley, second edition, 1973.

[Knuth, 1973b] Donald E. Knuth. Lists and Garbage Collection, chapter 2, pages 408–423. Volume I:

Fundamental Algorithms of Knuth Volume 1 [Knuth1973a], second edition, 1973.

[Ko et al., 2008] Sohyang Ko, Seonsoo Jun, Kiyong Kim, and Yeonseung Ry. Study on garbage collec-

tion schemes for flash-based linux swap system. In Advanced Software Engineering and Its Applica-

tions, ASEA 2008, pages 13–16, December 2008.

[Koch et al., 1991] B. Koch, T. Schunke, A. Dearle, F. Vaughan, C. Marlin, R. Fazekerley, and

C. Barter. Cache coherence and storage management in a persistent object system. In Dearle et al.

[Dearle et al.1991], pages 99–109.

[Kogan and Schuster, 1997a] Dmitry Kogan and Assaf Schuster. Collecting garbage pages in a dis-

tributed shared memory system. In 5th European Symposium on Algorithms, pages 308–325, Graz,

September 1997.

[Kogan and Schuster, 1997b] Dmitry Kogan and Assaf Schuster. Remote reference counting: Dis-

tributed garbage collection with reduced memory and communication overhead. In 5th European

Symposium on Algorithms, pages 308–325, Graz, September 1997.

[Koide and Noshita, 1993] Hiroshi Koide and K. Noshita. On the copying garbage collection which pre-

serves the genetic order. Transaction of Information Processing (IPSJ), 34(11):2395–2400, November

1993. In Japanese.

[Koide, 1993] Hiroshi Koide. Hybrid garbage collection. Master’s thesis, University of Electro-

Communications, Tokyo, 1993.

[Kokosa, 2018] Konrad Kokosa. Pro .NET Memory Management: For Better Code, Performance, and

Scalability. Apress, November 2018.
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Petr Tůma, Martin Studener, Lubomı́r Bulej, Yudi Zheng, Alex Villazón, Doug Simon, Thomas

Würthinger, and Walter Binder. Renaissance: Benchmarking suite for parallel applications on the

JVM. In PLDI 2019 [PLDI 20192019].
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[Röjemo, 1992] Niklas Röjemo. A concurrent generational garbage collector for a parallel graph reducer.

In Bekkers and Cohen [Bekkers and Cohen1992], pages 440–453.
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[Röjemo, 1995c] Niklas Röjemo. Highlights from nhc – a space-efficient Haskell compiler. In FPCA

1995 [FPCA 19951995].

[Ronsse and De Bosschere, 1998] Michiel Ronsse and Koen De Bosschere. JiTi: Tracing memory ref-

erences for data race detection. In E. D’Hollander, F.J. Joubert, and U. Trottenberg, editors, Parallel

Computing: Fundamentals, Applications and New Directions, volume 12 of Advances in Parallel

Computing, pages 327–334. North Holland, February 1998.

[Rose and Muller, 1992] John H. Rose and Hans Muller. Integrating the Scheme and C languages. In

LFP 1992 [LFP 19921992], pages 247–259.

[Rosenberg and Keedy, 1987] John Rosenberg and J.L. Keedy. Object management and addressing in

the MONADS architecture. In Carrick and Cooper [Carrick and Cooper1987].

128



[Rosenberg and Koch, 1989] John Rosenberg and David Koch, editors. 3rd International Workshop on

Persistent Object Systems (January, 1989), Workshops in Computing, Newcastle, NSW, Australia,

1989. Springer.

[Rosenberg et al., 1990] J. Rosenberg, F.A. Henskens, A.L. Brown, Ron Morrison, and David Munro.

Stability in a persistent store based on a large virtual memory. In International Workshop on Archi-

tectural Support for Security and Pe rsistence of Information, pages 229–245. Springer Verlag and the

British Computer Society, 1990.

[Rosenberg, 1991] John Rosenberg. Architectural support for persistent objects. In Cabrera et al.

[Cabrera et al.1991], pages 48–60.

[Ross, 1967] D.T. Ross. The AED free storage package. Communications of the ACM, 10(8):481–492,

August 1967.

[Ross, 1983] R.A. Ross. A garbage collecting associative memory for interactive database systems.

In P. Degano and E. Sandewall, editors, European Conference on Integrated Interactive Computing

Systems (ECICS), pages 109–123, Stresa, Italy, September 1983. Elsevier-North Holland.

[Roth and Wise, 1998] David J. Roth and David S. Wise. One-bit counts between unique and sticky. In

Peyton Jones and Jones [Peyton Jones and Jones1998], pages 49–56.

[Roth et al., 1998] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Dependence based prefetching

for linked data structures. In ASPLOS 1998 [ASPLOS 19981998], pages 115–126.
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Técnico, March 2007.

[Veillon, 1976] G. Veillon. Transformations de programmes recursifs. R.A.I.R.O. Informatique, 10(9):7–

20, September 1976.
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