
TEACHING PROGRAMMING – A JOURNEY FROM TEACHER TO

MOTIVATOR

Tony Jenkins
School of Computing
University of Leeds

Leeds, UK.
 tony@comp.leeds.ac.uk

 http://www.comp.leeds.ac.uk/tony/

ABSTRACT
Few would disagree that learning to program is a
fundamental part of degree-level education in
computing.  Fewer would disagree that teaching
programming effectively in today’s mass Higher
Education is a problem.  The graduating student who
professes a complete inability to write the simplest
program is commonplace.

This paper argues that the primary role of a teacher
of programming is not as a communicator of
information, as in many other subjects or areas of
computing.  Rather, the teacher’s main role is that of
a motivator.  The students must be motivated to
engage in tasks that will make them learn, and it is
the teacher’s job to ensure this.  The role of
communicating information such as the basics of
syntax in a lecture theatre is very much secondary.

Keywords
Programming, Motivation, Expectancy, Diversity.

1. INTRODUCTION
Few of those who have tried to teach it in Higher
Education would argue that the teaching of
introductory programming in post-18 education is a
problem.  Instructors will be familiar with the
struggles of students as they try in vain to come to
terms with this elementary part of our discipline.  The
phenomenon of the final year student, about to
graduate, determined to avoid programming in any
final year courses will also be familiar to many.

At first sight, teaching programming appears to be a
straightforward task.  Most staff who might be asked
to teach a programming course will be fluent in at

least one language, and will probably not be
concerned at the prospect of learning another if
necessary.  There are plentiful textbooks covering all
languages, paradigms and approaches.  The material
itself can be arranged neatly to fit into a lecture
course over one or two semesters, and can be readily
arranged in order of increasing complexity.
Assessment is a simple matter of devising some
suitable programming tasks.

This model, with slight local variations, is widespread.
It is so widespread that it must be safe to assume
that those teaching to it believe it works, or at least
have had experience that it has worked in the past.
How does this view fit with the phenomenon of the
final year computing student who simply cannot
program?

Can it be that the teaching techniques that were
devised and first deployed in a Higher Education
available only to an academic elite are no longer
appropriate in these times of mass access?

2. A TEACHER OF PROGRAMMING
I have been teaching introductory programming in one
of the largest Computing departments in the UK for
some eight years.  I came to the task by accident  –
a colleague was unavailable for one year, and I was
asked to fill in.  My teaching background was limited,
and what I had was in the area of databases and
fourth generation languages.  Still, it was explained to
me, teaching such basic material as programming is
not a problem.

For my first delivery of the module, the language was
Pascal in a Unix environment.  I presented the
lectures following the materials provided by my
predecessor, and I dealt with the steady flow of
students knocking on my door.  Coursework was
issued and marked, and I enthusiastically checked
through it for evidence of plagiarism.

It was with genuine surprise that I discovered at the
end of the module that many of my students simply
could not write even the simplest programs.  They
had completed my assessments well enough and

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission.

2nd Annual LTSN-ICS Conference, London

© 2001 LTSN Centre for Information and Computer Sciences



secured sufficient marks to pass (which was in itself
worrying!), but they still could not program in any
meaningful sense.  What was I doing wrong?

Since this first outing I have spent many hours
thinking about the ways in which I teach
programming and have, I think, achieved some
modest success.  While taking a year’s break from
teaching programming (a shortfall in staff to teach
computer graphics!), I found myself reading a section
in John Biggs’ Teaching for Quality Learning at
University [3], which very closely mirrored what I had
been doing over the previous few years.

2.1 Levels of Thinking about Teaching
Biggs presents three “levels” at which teachers may
reflect on their teaching.  He argues that the third
level is the best (if not the only one that can be
successful), and the first is the worst, being far too
superficial.  A teacher will tend to move through these
levels, in order, as they gain more experience.

2.1.1 Level 1 – What the Student is
This is, for many teachers, the first and most
attractive explanation for a group of students’ failure
to learn.  There is simply something inherently wrong
with the class – they lack motivation, they lack
aptitude, or they are just not interested.  There is
nothing that the teacher could have done to make
them learn.  A teacher taking this view will habitually
divide a class into “good students” and “bad
students”, the classification depending largely on
perceived academic ability or summative results.

This is an attractive, simple, explanation with the
added benefit that the “blame” is laid firmly on the
students.  The teaching has remained constant, so
the change must be in the nature of the students.
Typically, this view sees teaching as a process of
transmitting information – programming is a skill, not
a collection of information.

If this view is to hold, then we must presumably
accept that University entry standards are too low
and should be raised.  We must accept that only a
small percentage of the population can ever hope to
learn to program, and that these are the only
students we can hope to teach.

My own development in thinking about my teaching of
programming started with these “level 1” thoughts.
The students would learn from my lectures if they
applied themselves, or if they were sufficiently
motivated, or if they had an aptitude.  On reflection,
this view is far too simplistic.  Any class of students
starting an undergraduate degree is a body of
intelligent people, who have excelled in their
education to date.  The only reason I happen to be
teaching them is that I am somewhat (probably) older
and possess a skill they do not.  Can it really be the

case that students today are less intelligent than
students, say, fifteen years ago?  Surely not!

2.1.2 Level 2 – What the Teacher Does
This view sees the learning of the class as a factor
depending directly on the activities of the teacher (it
follows that there are “good teachers” and “bad
teachers”, measured presumably in terms of the
summative results of their students).  This view
remains firmly based on the concept of transmission,
but now concentrates on the transmission of
understanding rather than mere information.  This
seems to be much closer to that which we need to
transmit when we teach programming.

Teachers thinking at this level will adopt innovative
techniques.  They will reject formal lectures and
choose more participative methods, perhaps using
physical props and entertaining demonstrations.
These activities, the arguments goes, will engage the
enthusiasm of the students, will motivate them, and
they will learn.

This thinking leads to much of the published research
in innovative methods for teaching programming (for
example [1], [10], [15]).  The problem with the
majority of this work is that there is rarely any
compelling evidence that these techniques bring with
them any concrete educational benefit.  It is true that
students enjoy such classes, and so are more likely
to remember them, but there is limited evidence
indeed that they learn any more.  These innovations
have a place, but only as an “educational novelty”
[13] – if they are overused they lose this novelty value
and hence their effectiveness.

I have thought at this level.  I have made students join
in lectures, I have thrown frisbees at them to illustrate
parameter passing, I have worn hats to indicate flow
of control, and I have acted out algorithms.  I have
enjoyed these sessions, and I believe the students
have enjoyed them too.  But where is my evidence
that they have learned?

No less a figure than Edsger Dijkstra held that any
teacher resorting to metaphor in order to explain a
programming concept was guilty of “contempt of the
student body” [6].  Dijkstra’s views on the teaching of
programming are extreme, and are presented so as
to deliberately provoke debate, but the suspicion
must remain that some of the techniques proposed in
the literature run the risk of trivialising the subject.

2.1.3 Level 3 – What the Student Does
This is the deepest and, according to Biggs, the best
level.  Here the focus is firmly on the activities in
which the student engages as part of their learning.
The teacher’s role is to devise suitable tasks, to
make sure that the students do indeed engage in
them and to, as Biggs neatly puts it “get the students



to agree that appropriate task engagement is a good
idea” [3].  At the end of a course the degree to which
a student has engaged will determine their final mark.
There is no longer emphasis on transmission –
teaching is much more a process of motivation.

In the context of teaching programming, it is trivial to
identify the appropriate tasks.  If a student is to learn
to program, then they must write programs.  A
teacher’s job is not to communicate the minutiae of
syntax or the nuances of some particular language,
but to persuade the students that learning to program
(and so programming) would be a good thing.  This is
very different to “level 1” thinking.

If I see before me now an introductory programming
class, I can no longer assume that those present
have the slightest interest in learning to program (or
indeed very much idea about what this entails).  My
first, perhaps only, task is to motivate them to want
to learn, to engage their curiosity and interest, and to
make them want to go away and write some
programs.  I can then move on to talk about some
programming concepts, and even some details of
syntax, but I can do this only when I have a suitably
prepared, receptive and motivated audience.

It follows, then, that in my new role as a motivator, I
must understand what motivates a programming
student in the 21st century.

3. MOTIVATION
Measuring motivation, or discovering what motivates
an individual is far from straightforward.  It is possible
to observe or interview an individual and from this
deduce their motivations, but one can never be sure
[2].  Moreover, in an increasingly diverse student
population [11], we might expect to find increasingly
diverse motivations.

Much has been written about the factors that might
make a learner value a learning opportunity (for
example [7] and [8]), and it is possible to extract
some broad categories [12]:

• extrinsic – the motivation comes from some
external source, probably an expected future
reward (usually financial).

• intrinsic – the key is an interest in the subject
itself.

• social – the main motivator is a desire to please
some third party whose opinion is valid (family,
sponsor, teacher).

• achievement – the motivation comes from the
sense of “doing well” academically, and possibly
the satisfaction of doing better than peers (this is
sometimes called “competitive” motivation).

• null – there is no clear motivation (the student
may have simply “drifted into” a programme of

study, and may have no clear idea of why they
did this).

It is clear that an accurate understanding of the main
motivators of a class could inform the way in which a
teacher approaches a subject.  A student with
extrinsic motivation, for example, will be keen to hear
about lucrative careers in programming and will want
to learn the very latest “in demand” skills.  On the
other hand, achievement motivation would lead a
student to concentrate solely on those activities that
were perceived to lead to high marks, and a desire
that the teacher would dwell on these.  Such a
student would not necessarily want to “learn”.

A level 1 teacher would assume that most students
taking computing degrees are extrinsically motivated,
with the main aim of securing financial rewards in a
good job.  Indeed, I have suggested this myself [11]
as a primary cause behind the increasing diversity in
the student population.  However, more recent work
[12] has indicated that, while eventual employment is
indeed the most important factor for many, almost
half our students remain committed to learning for its
own sake, and profess an interest in the subject.
The downside is that over half see their programming
module simply as another subject to be studied –
they do not share the perception of their teachers
that this is a fundamental part of their education in
computing.

While understanding how a student is motivated is
useful, we would also like to have some measure, no
matter how crude, of the extent to which a student is
motivated.  This is, of course, impossible – there is
no scale of motivation.  What we can have, though, is
an understanding of the factors that control the extent
of motivation.

The extent of motivation can be seen as a function of
two factors, expectancy and value (for example [3],
[13]):

Motivation = Expectancy x Value

It is important that these two factors are seen to
multiply rather than add.  If either factor falls to zero
there will be no motivation, no matter how high the
other factor becomes.

The second factor is closely related to those already
identified; it is the reason why a student values
success.  In a programming context this might be
future employment, high marks, and so on – it
matters not why a student values success as long as
they do.  In this context it is important that a teacher
also appreciates that different students will have
different views of what constitutes success; some
may be content to pass, some may demand first
class results.  A teacher’s job should be to ensure
that each student can achieve success, defined in
the student’s own terms.



It follows that a student must expect to succeed.  If a
student does not expect to pass a programming
module then, no matter how much they value
success, they will not be motivated, and will not
engage in the tasks the teacher devises.  There is a
huge implication here for the way in which we teach,
and in particular assess, programming.

It is, I suggest, safe to assume that at the start of a
programming module all the students value the
potential outcome.  What is less certain is that they
all expect to succeed.  The first weeks of a degree
course are a worrying, stressful time for many as
they seek to find their feet in a new environment.  In
my institution, programming has a reputation for
being “hard” and there is a powerful student grapevine
that communicates this to the new recruits.  I doubt
very much that all the students who start a
programming course expect to succeed.

A concept closely related to the expectancy element
of motivation is personal causality [5].  If a student is
to expect success they must believe that the factors
that will determine their success or failure are within
their own control.  Again, there is an implication for
the assessment of students here – the assessment
must never be such that a student can feel there is
no way they can complete the module successfully.

As a motivator rather than just a teacher, my role is
now very different.  I must understand why the
students are taking this programming course, and I
must exploit this to make them value the outcome.
At the same time, I must ensure that they expect to
succeed in whatever terms they choose to define.  I
must make sure that the assessment I devise gives
them every chance of success but does not distract
from the most important aspect – the learning.

4. TRUST
Teachers are figures of authority.  Motivators are
rather different, and are more like trusted friends.  If I
am to successfully motivate students, they must, in
some sense at least, trust me and I must trust them.

McGregor [14] describes two climates that may be
found in an organisation, and these can be readily
applied to the teaching relationship.  The two
climates, Theory X and Theory Y are based on
different levels of trust.

In a theory X climate, the student is not trusted.  The
teacher makes the assumption that the students are
taking the module simply to pass (level 1 thinking
again), do not want to learn and will cheat if they
believe they will not be caught.  This leads to an
environment where assessments are rigorously
defined, deadlines ruthlessly enforced, and plagiarism
zealously detected.  It is hard to see how many
students could like, let alone trust, their teacher in
this climate.

Theory Y is the opposite.  Here, the teacher believes
the students want to learn, and trusts them.
Assessments are devised to be loosely defined and
interesting [9], a certain flexibility with deadlines may
be allowed (after all, is it important that a student
does a task or that they do it before some
deadline?), and it will be assumed that students will
not cheat.

Theory Y also satisfies personal causality – the
students are much more in control of their own
destinies than they would be under theory X.  The
teacher trusts them to take this control, and
effectively delegates it.

Admittedly, it is unlikely that a strictly theory Y
environment could ever be introduced.  Academic
standards demand attention to plagiarism and
enforcement of deadlines. At the same time,
students finding themselves in a world that is more
theory Y than theory X are much more likely to trust
their teacher.  It follows that they are much more
likely to be easily motivated.

5. IMPLICATIONS
Teaching programming is a problem.  Over several
years of attempts to impart basic Pascal or C++ I
find that I have come to believe this more and more,
but also that my views on the causes of the problem
have changed.  I have followed Biggs’ three levels of
teaching (without knowing of them at the time!), and
now find myself, I think, at level 3.

Level 3 is a systemic view.  The problem in teaching
programming lies in a system of connected factors.  I
summarise these factors under three headings.

5.1 Expectations
Students and teachers both have expectations at the
start of a programming course.  Teachers need to be
sure of what they expect from the class – they need
to understand why the class are there, and what they
are hoping for from the course.

We must acknowledge that many students are
expecting programming to be difficult.  While we
would be wrong to tell them that it is easy, we must
reassure them, we must provide support, and we
must make them expect that they will succeed.

Teachers must ensure that students know why they
are learning to program, and must make them value
the outcome, ideally in terms above mere marks.  It
is no longer safe (if indeed it ever was) to assume
that the students arrive expecting to learn to program
and interested in doing so.

At the same time, it is to be hoped that students
become more certain in their expectations [4].
Computing is still, for many, a course they chose for



no clear reason, and programming is simply one part
of that.

5.2 Motivation
I find that I had views about why students were
motivated to be in my class.  My views were
anecdotal, based on what I heard in tutorials or
deduced from what I saw.  When I had the time to
investigate this properly, I was amazed by what I
found [12].  It appeared that I did not have a class
determined to jump through “academic hoops” until
they could command enormous salaries in industry,
but a class many of whom were genuinely interested
in learning what I was trying to teach them.

If I come to learn a new language I do not
immediately seek out a lecture course.  I buy a book
and I spend a few days writing some sample
programs.  My book then becomes a reference, and I
claim to know the language, safe in the knowledge
that my skill will grow as I use it more.  Why, then,
can my students not learn in the same way?  There
is no reason; the only thing they lack is motivation.

My job as teacher has moved away from presenting
lectures on syntax (which it has to be said are very
boring lectures), to motivating students to engage in
those activities from which I know they will learn.

5.3 Relationship
If this approach is to work, there must be a particular
relationship between the teacher and the students.
This relationship must be based on trust and,
perhaps as part of this, mutual respect.

I trust my students not to cheat.  At the same time,
those who do not cheat trust me to seek out the
ones that do.  When these are found, as they
inevitably are every year, my interest is very much in
why they cheated rather than in applying penalties.

Operating a system based on trust would not come
naturally to all.  Many staff (and students) would
prefer to operate a “them and us”, theory X, climate.
This might well be possible, or even appropriate, in
some subjects or disciplines, but surely it is not in
programming.  Programming is a skill, not a subject.
It is best learnt when the learner has ready access to
a skilled programmer for advice.  This will not be the
case in a theory X climate.

6. CONCLUSIONS
I talk to many students during their first year.  If I
mention their academic progress, the talk will always
turn to programming.  More often than not, the
programming course is seen as a nightmare that has
(hopefully) passed, and the student is keen to see
how they can avoid programming in the future.  I have
on several occasions seen students leave the
university simply to avoid programming.  Every year I

see students spending untold hours on their
assignments.  I see suffering.

This cannot be right.  One topic should not dominate
the curriculum, and the student experience, to this
extent.  It has to be the case that there is something
fundamentally wrong with the way we teach
programming.  One step (and I do not claim a
panacea) is to appreciate the crucial role that
motivation has to play in teaching programming.

A student will not learn unless they are motivated.  It
must be a teacher’s main task, therefore, to ensure
that all their students are properly motivated.

7. ACKNOWLEDGMENTS
I am indebted to all the students who have tolerated
my attempts at teaching them to program.

This paper is based on a presentation I gave at the
First LTSN-ICS Conference on Teaching
Programming.  My thanks to LTSN-ICS for provoking
me into writing it.

Thanks are also due to Ken Brodlie for letting me
take a year away from teaching it to allow for some
serious thinking.

8. REFERENCES
[1] Astrachan, Owen. Hooks and Props in Teaching

Programming.  In Proceedings of ITiCSE ’98, pp
21-24, ACM, 1998

[2] Ball, Samuel. Motivation in Education. Academic
Press, 1977.

[3] Biggs, John. Teaching for Quality Learning at
University. OUP / SRHE, 1999.

[4] Clark, Martyn and Jenkins, Tony. What are they
going to do now? In L Brooks and C Kimble
(eds), UKAIS ’99: Information Systems The Next
Generation, pp 755-764, McGraw-Hill, 1999.

[5] DeCharms, Richard. Personal Causation – The
Internal Effective Determinants of Behavior.
Academic Press, 1968.

[6] Dijkstra, Edsger W. On the Cruelty of really
Teaching Computer Science. Communications of
the ACM, 32 (12), pp 1398-1404, 1989.

[7] Entwisle, Noel. Motivation and Approaches to
Learning: Motivation and Conceptions of
Teaching. In Sally Brown et al (eds), “Motivating
Students”, pp 15-23, Kogan Page 1998.

[8] Fallows, Stephen and Ahmet, Kemal (eds).
Inspiring Students: Case Studies in Motivating
the Learner. Kogan Page, 1998.

[9] Greening, Phil. Students seen Flocking in
Programming Assignments. Proceedings of
ITiCSE 2000, pp 93-96, ACM, 2000.



[10] Jenkins, Tony.  A Participative Approach to
Teaching Programming. In Proceedings of
ITiCSE ’98, pp 125-129, ACM, 1998.

[11] Jenkins, Tony and Davy, John. Dealing with
Diversity in Introductory Programming. In
Proceedings of 1st Annual LTSN-ICS Conference,
pp 81-87, 2000.

[12] Jenkins, Tony. The Motivation of Students of
Programming.  In Proceedings of ITiCSE 2001,
pp 53-56, ACM, 2001.

[13] Keller, John M. Motivational Design of
Instruction. In Charles M Reigeluth (ed),
“Instructional Design Theories and Models – An
Overview of the Current Status”, pp 383-434,
Lawrence Erlbaum Associates, 1983.

[14] McGregor, D. The Human Side of Enterprise.
McGraw-Hill, 1960.

[15] Siegel, Eric V. Why do fools fall into infinite
loops: Singing to Your Computer Science Class.
In Proceedings of ITiCSE ’99, pp 167-170, ACM,
1999.


