
THE MOTIVATION OF STUDENTS OF PROGRAMMING

a thesis submitted to

The University of Kent at Canterbury

in the subject of computer science

for the degree

of master of science.

By

Tony Jenkins

September 2001



Contents

List of Tables viii

List of Figures x

Abstract xii

Acknowledgments xiii

More Acknowledgments xv

Publications xvi

More Publications xvii

Trademarks xviii

1 Introduction 1

2 Background 9

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 The Value of Learning . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Expectancy and Value . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Factors in Motivation . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 Locus of Control and Personal Causation . . . . . . . . . . . . 17

2.1.5 Learned Helplessness . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Experiential Learning and Constructivism . . . . . . . . . . . . . . . 20

ii



2.3 Learning Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Deep and Surface Learning . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Operational and Comprehension Learning . . . . . . . . . . . 24

2.3.3 Engagement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Conceptions of Learning and Teaching . . . . . . . . . . . . . . . . . 27

2.4.1 Level 1: what the student is . . . . . . . . . . . . . . . . . . . 30

2.4.2 Level 2: what the teacher does . . . . . . . . . . . . . . . . . . 31

2.4.3 Level 3: what the student does . . . . . . . . . . . . . . . . . 32

2.5 Theory X and Theory Y . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Theory X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.2 Theory Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 The Changing Student . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7.1 Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7.2 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7.3 ‘Full-Time’ Students . . . . . . . . . . . . . . . . . . . . . . . 38

2.7.4 The Institution . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Learning to Program 41

3.1 Experienced and Novice Programmers . . . . . . . . . . . . . . . . . 44

3.2 The Programming Environment . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.3 Language and Platform . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Learning Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Conceptions of Learning and Teaching . . . . . . . . . . . . . . . . . 59

3.6 Theory X and Theory Y . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 Metaphor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

iii



3.8 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.9 The Difficulty of Learning to Program . . . . . . . . . . . . . . . . . 68

3.9.1 Multiple Skill . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.9.2 Multi-layered Skill . . . . . . . . . . . . . . . . . . . . . . . . 71

3.9.3 Multiple Processes . . . . . . . . . . . . . . . . . . . . . . . . 72

3.9.4 Misleading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.9.5 Educational Novelty . . . . . . . . . . . . . . . . . . . . . . . 74

3.9.6 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.9.7 Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.9.8 Reputation and Image . . . . . . . . . . . . . . . . . . . . . . 76

3.9.9 Peers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.9.10 Pace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Value – The Class 80

4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.1 Programming at Leeds . . . . . . . . . . . . . . . . . . . . . . 85

4.1.2 Programming at Kent . . . . . . . . . . . . . . . . . . . . . . 88

4.1.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Before the Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.1 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Halfway Through the Module . . . . . . . . . . . . . . . . . . . . . . 99

4.3.1 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 After the Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

iv



4.4.1 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 Expectancy – The Individual 119

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 The Year After . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.1 Nikki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2.2 David . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2.3 Kelly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2.4 Mike . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2.5 Josh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2.6 Keera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2.7 Harri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2.8 Kirsty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2.9 Siân . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2.10 The Veterans’ Experience . . . . . . . . . . . . . . . . . . . . 130

5.3 The Novices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3.1 Lenny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3.2 Jackie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.3.3 Will . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3.4 James . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3.5 Steve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.3.6 Karen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.3.7 Michelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.3.8 Cynthia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.3.9 Anne-Marie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.3.10 Ieuan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

v



5.3.11 Carol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.3.12 John . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.3.13 Nigel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.3.14 Max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.3.15 Lizzie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.3.16 The Novices’ Experience . . . . . . . . . . . . . . . . . . . . . 163

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6 Conclusions 174

6.1 Teaching (and Learning) Programming . . . . . . . . . . . . . . . . . 176

6.1.1 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.1.2 Aptitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.1.3 Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.1.4 Control and Learned Helplessness . . . . . . . . . . . . . . . . 180

6.1.5 Programming in Context . . . . . . . . . . . . . . . . . . . . . 181

6.1.6 “Boring and Difficult” . . . . . . . . . . . . . . . . . . . . . . 183

6.1.7 Learning Styles and Activities . . . . . . . . . . . . . . . . . . 183

6.1.8 Educational Novelty . . . . . . . . . . . . . . . . . . . . . . . 184

6.1.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.2 The Motivation of the Students . . . . . . . . . . . . . . . . . . . . . 186

6.3 Motivating the Students . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.5 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.6 The Final Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

References 196

A Class Questionnaires A1

B Words and Categories B1

C Individual Questionnaires C1

vi



D Leeds and Kent Results D1

E Detailed Results E1

vii



List of Tables

1 Before the Module – Motivation for Degree . . . . . . . . . . . . . . . 96

2 Before the Module – Motivation for Programming . . . . . . . . . . . 96

3 Before the Module – Attitude to Studies . . . . . . . . . . . . . . . . 97

4 Halfway Through the Module – Looking Back . . . . . . . . . . . . . 103

5 Halfway Through the Module – Looking Forward . . . . . . . . . . . 103

6 Halfway Through the Module – Attitude to Studies . . . . . . . . . . 104

7 Halfway Through the Module – Looking Back (Summary) . . . . . . 104

8 Halfway Through the Module – Looking Forward (Summary) . . . . . 105

9 Halfway Through the Module – Change in Attitude . . . . . . . . . . 106

10 After the Module – Looking Back . . . . . . . . . . . . . . . . . . . . 110

11 After the Module – Attitude to Programming . . . . . . . . . . . . . 110

12 After the Module – Attitude to Career . . . . . . . . . . . . . . . . . 110

13 After the Module – Attitude to Studies . . . . . . . . . . . . . . . . . 110

14 After the Module – Never Again . . . . . . . . . . . . . . . . . . . . . 111

15 After the Module – Looking Back (Summary) . . . . . . . . . . . . . 112

16 Trends in the Students’ Attitude . . . . . . . . . . . . . . . . . . . . 115

17 Classification of Student Experiences . . . . . . . . . . . . . . . . . . 170

18 Programming Ability and Course Experience . . . . . . . . . . . . . . 171

D1 Before the Module – Motivation for Degree (By Institution) . . . . . D1

D2 Before the Module – Motivation for Programming (By Institution) . . D2

D3 Before the Module – Attitude to Studies (By Institution) . . . . . . . D2

D4 Halfway Through the Module – Looking Back (By Institution) . . . . D3

D5 Halfway Through the Module – Looking Forward (By Institution) . . D3

viii



D6 Halfway Through the Module – Attitude to Studies (By Institution) . D4

D7 After the Module – Looking Back (By Institution) . . . . . . . . . . . D4

D8 After the Module – Attitude to Programming (By Institution) . . . . D5

D9 After the Module – Attitude to Career (By Institution) . . . . . . . . D5

D10 After the Module – Attitude to Studies (By Institution) . . . . . . . . D6

E1 Before the Module – Motivation for Degree (Responses) . . . . . . . . E2

E2 Before the Module – Motivation for Programming (Responses) . . . . E2

E3 Before the Module – Attitude to Studies (Responses) . . . . . . . . . E3

E4 Halfway Through the Module – Looking Back (Responses) . . . . . . E3

E5 Halfway Through the Module – Looking Forward (Responses) . . . . E3

E6 Halfway Through the Module – Attitude to Studies (Responses) . . . E4

E7 After the Module – Looking Back (Responses) . . . . . . . . . . . . . E4

E8 After the Module – Attitude to Programming (Responses) . . . . . . E4

E9 After the Module – Attitude to Career (Responses) . . . . . . . . . . E5

E10 After the Module – Attitude to Studies (Responses) . . . . . . . . . . E5

ix



List of Figures

1 Kolb’s Learning Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Kolb’s Learning Styles . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Levels of Engagement and Teaching Methods . . . . . . . . . . . . . . 26

4 Developing a Web Page . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Skills Required for Programming . . . . . . . . . . . . . . . . . . . . 69

6 The Process of Programming . . . . . . . . . . . . . . . . . . . . . . 72

7 Results Scale for Grade Predictions . . . . . . . . . . . . . . . . . . . 137

8 Lenny’s Predicted Grades . . . . . . . . . . . . . . . . . . . . . . . . 140

9 Jackie’s Predicted Grades . . . . . . . . . . . . . . . . . . . . . . . . 142

10 Will’s Predicted Grades . . . . . . . . . . . . . . . . . . . . . . . . . 143

11 James’s Predicted Grades . . . . . . . . . . . . . . . . . . . . . . . . 145

12 Steve’s Predicted Grades . . . . . . . . . . . . . . . . . . . . . . . . . 146

13 Karen’s Predicted Grades . . . . . . . . . . . . . . . . . . . . . . . . 147

14 Michelle’s Predicted Grades . . . . . . . . . . . . . . . . . . . . . . . 149

15 Cynthia’s Predicted Grades . . . . . . . . . . . . . . . . . . . . . . . 151

16 Anne-Marie’s Predicted Grades . . . . . . . . . . . . . . . . . . . . . 152

17 Ieuan’s Predicted Grades . . . . . . . . . . . . . . . . . . . . . . . . . 154

18 Carol’s Predicted Grades . . . . . . . . . . . . . . . . . . . . . . . . . 156

19 John’s Predicted Grades . . . . . . . . . . . . . . . . . . . . . . . . . 157

20 Nigel’s Predicted Grades . . . . . . . . . . . . . . . . . . . . . . . . . 158

21 Max’s Predicted Grades . . . . . . . . . . . . . . . . . . . . . . . . . 160

22 Lizzie’s Predicted Grades . . . . . . . . . . . . . . . . . . . . . . . . . 162

A1 Questionnaire – Before the Module . . . . . . . . . . . . . . . . . . . A2

x



A2 Questionnaire – The Halfway Point . . . . . . . . . . . . . . . . . . . A3

A3 Questionnaire – After the Module . . . . . . . . . . . . . . . . . . . . A4

C1 Questionnaire – The Veterans’ Experience . . . . . . . . . . . . . . . C2

C2 Questionnaire – The Novices Before the Module . . . . . . . . . . . . C3

C3 Questionnaire – The Novices’ Weekly Experience . . . . . . . . . . . C4

C4 Questionnaire – The Novices After the Module . . . . . . . . . . . . . C5

xi



Abstract

Teaching (or, perhaps more accurately, learning) computer programming is a problem.

Many students struggle when they first encounter a programming course and many

graduate with little confidence in their programming ability. Since programming is

a fundamental part of the discipline of computing and since skilled programmers are

much in demand in the IT industry this represents a singularly depressing state of

affairs for computing educators.

This thesis presents an investigation into a key psychological factor in programming

students – their motivation. The students at two UK universities were surveyed at

three important points in their programming courses during the 2000/01 session. The

surveys focused on the reasons why these students had chosen to study an IT degree

and on the development of their feelings about their degree course (and about the

programming in particular) through their first year. This research was complemented

by a further study of a smaller group of students who were followed in detail on a

weekly basis through their programming course. Their aspirations, struggles, and

experiences were recorded.

Students of any subject will not learn if they are not motivated. This thesis highlights

a number of issues surrounding the motivation of programming students. They appear

to value the outcome of their course throughout but they often lose motivation because

they cease to believe that they will succeed. If they lose motivation they will not learn.

A teacher of programming has a responsibility to pass on that skill to the students.

But there is a more important responsibility. A teacher of programming must above

all make sure that the students are motivated. The students must value the learning

outcomes and they must also expect success.

Teaching programming is only a small part of the story. Motivating students as they

learn programming is a bigger, much more important, part.

xii



Acknowledgments

There are many people I need to thank for their help during this work and so I make

no apology for the length of this section.

First, thanks go to Janet Carter and Ken Brodlie. Without you I wouldn’t have

finished this. Thanks. Thanks also to Janet for lending me the corner of her office

when I was in Kent and thanks to Janet and Mark Wheadon for lending me their

spare room and making sure I was fed and ‘watered’. A special nod goes to Mark’s

quite extraordinary garlic bread.

My supervisors, Ursula Fuller and Stefan Kahrs, provided many useful ideas, much

advice, and (successfully) challenged my initial ideas. Thanks also to others who

helped at Kent: Ian Utting kindly distributed the questionnaires and sent them back

to me with quite amazing speed, Sally Fincher and John Slater started the whole

thing off, and Simon Thompson provided encouragement and travel money. Roger

Boyle and David Hogg at Leeds also prodded things along. Karim Djemame, John

Davy, and John Hodrien tolerated interruptions to their lectures in Leeds and helped

with collecting the questionnaires.

Thanks also to the proofreading team – in vague order of pedantry, Stan Jenkins,

Simon Myers, Janet Carter (again), Dave Ansley, and Rik Wade. Any errors that

remain have presumably been inserted by my enemies.

Jemma Pauley kindly did most of the things that I should have been doing this

summer. And she didn’t get too upset when I got grumpy. Ta – you’re a star.

xiii



This work would not have been possible without Stacey Lewis, Clare Viner, Ian

Fletcher, Jill Shutt, Ozzie Thomas, Rachel Wottge, Simon Cubitt, John Kelly, Dan

Sherburn, Richard Whitefoot, Lucy McGregor, Sophie Cottam, Liran Kessler, Neil

Meikle, Roni Chakrabarti, Caroline Wells, Phil Mellor, Shane Seddon, Adam Rideout,

Herry Basuki, Leanne Freedland, Simon Perry, and (last and far from least) the twins

– Louise Manley and Tessa Price. They may recognise themselves in chapter 5.1

Thank you all – I don’t deserve you.

Much the same goes for all the students at Leeds and Kent who kindly completed the

questionnaires. Many thanks for your time.

Thanks also to Dave Ansley and John Wallace for selflessly agreeing to consume large

amounts of fine ales and beers so that I didn’t spend too much time worrying about

the last full stop. 251 – not bad. Dave also provided the document solution.

Much assistance with the mysteries and black arts of LATEX was received from Henry

Bell, Nick Efford, Sarah Fores, Chris Goodyer, Chris Needham, David Pashley, Rick

Peterson, Qef Richards, and Mark Walkley. Thanks. LATEX is indeed, as Rick noted,

“a worthy adversary”. Chris, Chris, and Mark also sorted me out with the intricacies

of gnuplot. Sarah frequently lent me her ruler.

Carlos Fandango, Steve Harris, and William Towle helped with a tricky reference [125].

Thanks, chaps.

Finally, in no particular order, respectful thanks to John Pemberton, Joshua Tetley,

the person-who-invented-coffee, Dylan Thomas, Ron Ridout, the Leeds and Liverpool

canal, S. A. Brain, Jack, Scott Adams, whoever it is that pays for email, and everyone

else I’ve forgotten.

If I’m allowed a dedication this is for Dominique and Stacey. Diolch yn fawr i chi’ch

dwy.

Tony Jenkins
Leeds, September 2001

1 There is actually a trick to working out who’s who (I would have gone mad without one) but it’s
a secret.

xiv



More Acknowledgments

I must record thanks to my examiners, Pete Thomas and David Barnes, for their

constructive comments on the first version of this thesis. Thanks are also due to David

for his prompt help and advice while I was carrying out the required corrections.

I now realise that I forgot to acknowledge the Staff and Departmental Development

Unit at the University of Leeds for partly funding this work. Thanks and apologies.

Thanks are now due to former feedback-meister Matthew Hubbard for his in-depth

knowledge of the UNIQoLL project.

Mark Conmy provided some singularly arcane Perl to deal with the thorny problem

of the ‘Oxford commas’ in the references. It seems a shame that I eventually put

them back in.

Mark Wiggins sorted me out with some useful information about juggling.

Thanks once again to the proofreading team – (once more in order of pedantry)

Heather Gulliver, Stan Jenkins, Simon Myers, and Dave Ansley. Special thanks to

Dad, Smylers, and Dave, who all did the job for the second time. I blame the errors

that remain on the printer elves. Dave also once again supplied a document solution.

I realise that I still have Sarah’s ruler. I must return it.

I never did find out whether I was allowed a dedication but just in case this time it’s

for Heather. Ta. You is a star.

Tony Jenkins
Leeds, July 2002

xv



Publications

While none of this thesis has been published elsewhere in its present form, work based

on that presented here (and some preliminary findings) has been published, as follows:

• A preliminary version of Section 4.2 formed the basis of The Motivation of

Students of Programming, which is published in the Proceedings of ITiCSE 2001,

Canterbury, UK, June 2001, pages 53–56. This is included in the references

as [74]. This paper is c© ACM.

• Some of the observations about motivation in Chapter 3 were used in a poster –

Motivation = Value × Expectancy – the abstract for which is published in the

Proceedings of ITiCSE 2001, Canterbury, UK, June 2001, page 174.

xvi



More Publications

Since the first submission of this thesis the work presented here has formed the basis

of a few conference papers and other presentations as follows:

• The overall experience led to the writing of Teaching programming – A Journey

from Teacher to Motivator. This is published in the Proceedings of the 2nd

Annual Conference of the LTSN Centre for Information and Computer Sciences,

September 2001, pages 65–71. The text of this paper is also available on-line at

http://www.ics.ltsn.ac.uk/pub/conf2001/. This paper is c© LTSN-ICS.

• This work, especially the reflections on Dijkstra’s classic paper, also inspired

On the Cruelty of Really Teaching Programming, which was presented at the

2nd LTSN-ICS One Day Conference on the Teaching of Programming at the

University of Wolverhampton in March 2002. Enthusiasts can find the slides

from this talk at http://www.ics.ltsn.ac.uk/pub/prog2/.

• The section on the difficulties inherent in learning to program is the basis of

On the Difficulty of Learning to Program, which will be presented at the 3rd

Annual Conference of the LTSN Centre for Information and Computer Sciences,

at Loughborough in August 2002. This paper will be c© LTSN-ICS.

xvii



Trademarks

The following trademarks are used in this thesis and are acknowledged. It is possible

that other trademarks, of which the author is not currently aware, may have been

unintentionally missed.

• Acorn is a trademark of Element 14 Ltd.

• CodeWarrior is as trademark of Metrowerks Inc.

• Delphi and Turbo Pascal are trademarks of Borland International.

• Frisbee is a trademark of WHAM-O Inc.

• Icky Poo is a trademark of Klutz.

• Java and JavaScript are trademarks of Sun Microsystems Inc.

• Linux is a registered trademark of Linus Torvalds.

• Microsoft, Microsoft Windows, Microsoft Windows NT, and Microsoft Visual

Basic are trademarks of Microsoft Corporation.

• Unix was a trademark of Unix System Laboratories Inc. and is now registered

to the X/Open Consortium.

These trademarks are denoted R© or TM as appropriate the first time they appear in

the text.

xviii



Chapter 1

Introduction

First Voice: To begin at the beginning . . .

Programming is a subject that lies at the very heart of computing. A computer

is quite useless unless it is running a program and an understanding of how such

programs are written is a key part of the development of any computing student.

As such it is not surprising that one of the fundamental courses in any degree-level

computing programme is one intended to teach the students to program.

In the UK today students approach the study of computing in higher education in

increasing numbers from an increasingly wide variety of backgrounds. They range

from complete novices (few computing degree courses require any formal academic

qualification in the area) to those with substantial experience of working in the IT

industry. Even among those who have studied computing at ‘A’ level or equivalent

there is rarely any extensive experience of programming. The number of students

taking computing degrees is increasing and there is currently no sign of an end to this

trend. As the numbers increase further so will the diversity.

Given its importance it is disappointing to realise that the teaching of programming

(perhaps, more accurately, the learning of programming) is a perennial problem.

1



CHAPTER 1. INTRODUCTION 2

Experienced teachers are all too familiar with the struggles of new students as they

attempt to come to terms with this most basic area of expertise. Many teachers

will have seen students choose course options (or even change degree programme)

in order to avoid more programming and most will have been faced with final-year

students approaching a project or dissertation determined to avoid undertaking any

programming at whatever cost.

The overall objective of this study is to learn more about the experience of students

learning to program in today’s higher education system. Much has been written about

the best language, paradigm, or environment for teaching programming but relatively

little has been done so far to form a solid understanding of the problems, pressures,

and experiences faced by the students as they attempt to learn to program. It is odd

that so many innovations in teaching programming seem to have taken place with

little or no reference to the group that the change arguably affects the most – the

students. Few proposals advocating a change in language, paradigm, or environment

(and there are many) offer any compelling evidence that the argued-for change would

represent an educational advantage for the students.1

The key issue in this study is motivation. In essence, students will not learn if they

are not motivated and they will not be motivated unless they believe that they will

succeed. Little is understood about the reasons why students take programming

courses (or indeed computing courses in general) and there must be a suspicion that

the institutions teaching them have failed to appreciate that the motivation of the

students has changed (or have perhaps failed to understand it in the first place).

Perhaps it is no longer safe to assume that students enrolled on a computing course

have any particular interest in computing, or that students taking a programming

course have any particular interest in learning to program. It may well be that their

main reason (their motivation) for choosing their course is that a degree will give

1 A similar observation has been made in the field of mathematics education [138] – “Study after
study in the math-ed literature produced ‘promising’ results, where teacher and students alike
were happy with the instructions, but where there was little evidence, if any at all, of improved
problem-solving performance.”.



CHAPTER 1. INTRODUCTION 3

them access to a lucrative career and that they see the programming course as simply

one among the many courses that they are required to pass. A teacher faced with

such a class and failing to motivate the students to value the learning is unlikely to

succeed in teaching them to program.

Very little is known in general terms about what motivates students to choose to

start a degree course or to choose a particular subject [72]. A recent study in the

School of Computing at the University of Leeds [28] appears to confirm the suspicion

that a (perhaps the) prime motivator for students taking a computing degree is the

prospect of a highly paid job as a programmer. It certainly appears to be the case

that there are differences in the motivations for choosing different subjects [72] and

in the current social and economic climate it is not an unreasonable hypothesis that

the prospect of a financially rewarding career is a strong motivator for any student

choosing to study computing.

Learning to program can often appear, from the outside at least, to be an extremely

stressful experience. At times it seems to take over the lives of the students as they

lurch unhappily from one summative assessment to the next. At present this view is

anecdotal, and indeed largely personal, albeit based on experience over several years

and confirmed by many teachers at many institutions in many countries [102]. In order

to teach programming better teachers must understand more about the experience of

their learners and more about what motivates these learners. While there is plentiful

research on students’ ‘learning styles’, and the effects of the academic environment on

these styles, there is much less written about what actually happens when students

learn.

The work presented here takes two complementary views of the students’ learning.

The first is a wide view (the experiences of an entire cohort of students) and this is

then complemented by a more detailed view (the weekly experiences and feelings of a

much smaller group). Specifically, this study presents the results of an investigation

into the experiences and attitudes of students studying the introductory computer

programming courses at the University of Kent at Canterbury and at the University



CHAPTER 1. INTRODUCTION 4

of Leeds. These are two ‘traditional’ UK universities, recruiting cohorts of students

of a similar academic standard from roughly the same pool [24]. Previous statistical

work [16] has shown that the two cohorts can reasonably form the basis of such studies.

The wider view is provided by the students at both institutions who were followed

throughout their first programming course by means of questionnaires completed

at three key points. To complement this part of study the more detailed view is

provided by a smaller group of students at the University of Leeds who were followed

on a weekly basis through the first semester of their programming course.

The objectives of this study are, then:

• To understand the experience of learning to program in today’s higher education

system in the UK.

• To understand how the students’ motivation for and attitudes towards their

programming course alter as the course proceeds.

• To understand the reasons why students choose to take programming courses.

These objectives clearly require a definition of programming. This is a difficult thing

to find since it is unlikely that any two educators or programmers would be able to

agree on any precise and unambiguous definition. As a possible starting point the

Oxford English Dictionary [119] provides:

The operation of programming a computer; the writing or preparation of

programs.

But this seems very narrow. Merriam-Webster [108] is scarcely any better, with the

only promising definitions on offer being:

2 : to work out a sequence of operations to be performed by (a mechanism)

: provide with a program;

3 a : to insert a program for (a particular action) into or as if into a

mechanism; b : to control by or as if by a program.



CHAPTER 1. INTRODUCTION 5

Programming is indeed a difficult thing to define! Indeed, one of the examples of usage

given in the OED includes “The final stage of programming must therefore consist in

the translation of the flow diagram into actual coded orders which the machine can

understand” (italics added for emphasis) – a clear implication that there are other

stages involved in this mysterious process.

For the purposes of this study it is hoped that a none-too-contentious definition

of programming can be adopted. Programming is therefore defined here as “the

process of taking a problem specification written in plain language, understanding it,

devising a solution, and then converting the solution into a correct computer program

(usually expressed in some special-purpose programming language)”. This process

encompasses a number of identifiable tasks and phases (which will be discussed in

more detail later on) but in overview this is the definition that applies in this work.

Programming is thus a set of processes that together form an identifiable skill. It can

be described as ‘doing-centred’ [136]. Acquiring this skill requires the development of

a range of abilities of different types and requires a great deal of practice. Applying

such a skill usually becomes much easier and natural after significant practice and

experience.

The acquisition of this skill requires that the learners do several things. They must

master the syntax of a particular programming language and they must understand

the semantics conveyed by the syntax. They must be able to understand and analyse

a problem, devise a solution, and then express their solution in the programming

language. They must be able to demonstrate that their solution is correct and that

their implementation of the solution is correct. Experience shows time and again that

these are difficult things to achieve.

This is a study about motivation. The motivation for carrying out this study comes

from the experience of several years devoted to teaching the various incarnations of

the introductory programming courses in the School of Computing2 at the University

2 Pedantically, for only two years in the School of Computing but for several more in the School of
Computer Studies.



CHAPTER 1. INTRODUCTION 6

of Leeds. I3 have spent many hours presenting an introductory programming course

in one of the most widely respected computing departments in the UK. I came to

the task by accident when a colleague was unavailable for one year and I was asked

to fill in. My teaching background was limited and what I had was concentrated in

the area of databases and fourth generation languages. Still, it was explained to me,

teaching such basic material as programming is not a problem.

For my first delivery of the module the language I taught4 was Pascal in a UnixR©

environment. I presented the lectures following the materials bequeathed to me by

my predecessor and I dealt with a steady flow of students knocking on my door

seeking assistance. Coursework was issued and marked, and I enthusiastically checked

through it for evidence of plagiarism. It was with genuine surprise that I discovered

at the end of my first delivery of the module that many of my students simply could

not write even the simplest of programs. They had completed my assessments well

enough and had secured sufficient marks to pass (which was in itself worrying) but

they still could not program in any meaningful sense. While they might have passed

the assessment to an acceptable extent I would certainly not have employed them as

programmers and I could not see that any self-respecting employer would. What was

I doing wrong?

Since this first outing I have spent many hours thinking and writing about the ways

in which I teach programming and have, I think, achieved some modest success in

devising effective ways to learn and teach. The work described here is largely the

result of the opportunity presented by the chance to take a year’s break from teaching

programming and the resulting chance to see the course once more from the outside. I

have now told several groups of students over several years that teaching programming

is, to me, “the best job in the world”. This is something that I still believe. I doubt

that they believe me but I have missed doing it for a year. Being able to write this

3 To avoid many awkward sentences in what follows the author hopes that he may may be permitted
to use the first person briefly. He will not use it again until the final chapter.

4 I confess. I taught a language. I did not teach programming. Only now do I appreciate the
difference.



CHAPTER 1. INTRODUCTION 7

thesis has helped and I hope that this work has enabled me to become a better teacher

of programming. I also hope that others may find something in it that might improve

their own teaching.

In the thesis that follows chapter 2 presents some of the relevant background issues

and the educational theory. These are made specific to the learning of programming

in chapter 3 which also considers the peculiar features of programming that make it

so difficult to learn. The results of the questionnaires presented to the whole class

are described and discussed in chapter 4 and the experiences of the small group of

individuals is the basis of chapter 5. Finally chapter 6 reflects on what the study has

shown about the learning (and teaching) of programming.

A few specific details of my involvement with the programming course at Leeds follow,

and will help with the understanding of this work as a whole (particularly chapters 4

and 5). I have been involved in teaching the course since the 1994/95 session. The

session in which this work was carried out (1999/2000) was the first for several years

when I had had no direct involvement. During this year I helped out (in a strictly

unofficial capacity) with some of the practical sessions but was not directly involved

with any of the more formal teaching. I was, therefore, only slightly better known to

the students at Leeds surveyed in this work than I was to those at Kent (although I

was presenting a different module to some of the Leeds students).

I had taught the course during 1998/99 and so was able to select the students whose

experiences form the basis of the first part of chapter 5 from my recollections of the

course. They were chosen as names I remembered or recognised from the class lists

and thus represent a true range of experience.

The individual novice programmers in chapter 5 formed my first year tutorial groups

in the 1999/2000 session (there were three groups). I had no direct responsibility for

teaching them programming but they did seem to call by with their C++ problems

from time to time. They were effectively selected from the whole class at random.



CHAPTER 1. INTRODUCTION 8

The students whose experiences formed the basis for this work were all students of

programming. During their time on a programming course they faced a range of

challenges, not all of which were directly related to their course or to programming in

particular. Other students on other courses were also trying to come to terms with

the usual problems and pressures of student life and of the first year of a university

course. They too were very probably presented with difficulties quite peculiar to their

own chosen disciplines.

It is not claimed that all the experiences of the students recorded here are unique

to students of programming. Far from it. However, the subjects of this study are

programming students and the focus is on all their experiences.



Chapter 2

Background

First Voice: Listen. Time Passes. Listen . . .

A single monolithic model or view of learning is an unattainable objective and so this

study will need to draw on several areas of background research. To this end this

chapter begins by describing some of the relevant theories and ideas from motivational

theory. It then introduces the various aspects of the theory of learning, which will

be referred to in later chapters. The chapter concludes with a consideration of some

of the more recent changes in higher education in the UK and the impact that these

have had on the academic and institutional climate in which students now learn to

program.

A common theme in these sections is assessment. Assessment provides the basis

of the final measure of a student’s ability or learning and is, as such, extremely

important. It has an impact on the way in which students study and learn, on the

students’ motivation, and on the crucial relationship between the teacher and the

students. The students are normally more than a little interested in the results of

the final assessment (the grade that they receive at the end of the module). In

these sections ‘final assessment’ refers to just this and nothing more. This result

9



CHAPTER 2. BACKGROUND 10

may well be the cumulative result of a number of assessment methods, including

continuous assessment and perhaps formal examination. The precise method will

differ for different institutions and different subjects. The importance of assessment

as a background theme in this chapter cannot be overstated.

2.1 Motivation

The motivation (or otherwise) of students is the key issue in this study. There is an

intentional double meaning here. The two issues are motivation as an attribute of

students (that which makes them want to succeed or makes them work and learn) and

the teacher’s crucial rôle in motivating a class of students. To succeed in any academic

task students must be motivated and they must want to succeed. Biggs [14] neatly

defines a teacher’s motivational rôle as “getting students to agree that appropriate

task engagement is a good idea”. If the teacher can devise suitable teaching (or

learning) tasks, and can then persuade the students to engage in them, the students

will learn (or will be unable to avoid learning).

While it may be reasonable to assume that all the students studying a course are

motivated to succeed1 (at the outset at least), it is unreasonable to assume that

they are all motivated for the same reasons. Certainly it is completely wrong to

assume that they are interested in learning the content of the course for its own sake!

An understanding of what motivates students is essential if they are to be taught

effectively and if they are to learn [29].

Unfortunately, motivation is an inherently abstract concept that is difficult to measure

or identify in any meaningful way [4]. It is possible to observe behaviour and from

that to infer an individual’s likely motivation but it is never possible for an observer

to be certain. Motivation is a deeply personal concept [49]. If subjects are questioned

directly about their motivation the questioner can never be totally certain that the

1 This is probably debatable (but a student who had no motivation to succeed would almost certainly
soon drop out).



CHAPTER 2. BACKGROUND 11

subjects are telling the truth and can never be completely sure that the inferences

made on the basis of the questioning are correct. Even if the answers given are

completely honest there still remains the need for some speculation on the part of the

questioner and therefore some uncertainty always remains.

It is more straightforward to provide a taxonomy of possible motivations for some

person undertaking some task. Of particular interest for this study are, of course, the

general categories of motivation that can be observed in an attempt to describe why

students might value learning (and so engage in those tasks and activities intended

to make them learn).

2.1.1 The Value of Learning

As a starting point, Fallows and Ahmet [53] propose a rather informal list of reasons

(presented in no particular order of importance) why a student might value learning:

• the learner’s desire to please the teacher.

• perceived need [to understand] the material presented.

• each learner’s degree of interest in the subject material.

• the personal philosophical values and beliefs of the learner.

• the learner’s attitudes to the materials being delivered.

• the academic and career aspirations of the learner.

• incentives and rewards which are expected to accrue from the learning.

Clearly some of these factors will be stronger than others (and some are unlikely in a

higher education context where it is hard to imagine many students setting out mainly

to please their lecturer). The degree to which each factor will have an influence over a

particular student’s motivation will be different in each case. It is also likely that for

some students some factors will be completely absent. The key task for the teacher



CHAPTER 2. BACKGROUND 12

faced with this complex situation is to inspire the students by maximising the positive

effect of each of these factors for each individual.

Entwistle [50] takes a more general view and so describes three rather more generic

types of motivation (or reasons for valuing learning):

• extrinsic – the desire to complete the course for some expected reward.

• intrinsic – deriving from interest in the subject.

• achievement – based on a desire to ‘do well’ and (sometimes) perform better

than peers.

It is clear that students motivated primarily by any one of these three types of factor

will have very different approaches to their studies. A student motivated primarily

by extrinsic factors, for example, would probably do very little for which there was no

summative assessment credit. Students with intrinsic motivation could be expected

to read around the subject and form their own views on the material that they were

learning. If achievement is the prime motivator the students will adopt whatever

strategy they think will gain the best rewards, or the approach that will allow them

to perform ‘best’ (as measured in the final summative assessment). All these students

will engage and will probably learn. It is their reason for engaging (and learning) that

is different.

These three examples represent stereotypes. Each of these three factors will exercise

an influence over each learner to some extent, although for most learners one factor

will be of most importance [53]. In computing in particular it is hard to see that

extrinsic motivation would be totally absent for any student but until some evidence

emerges one way or the other this must remain a distinct possibility.

Entwistle’s list omits the “desire to please to teacher” proposed by Fallows and Ahmet.

While it is unlikely that students will be motivated first and foremost to please their

lecturer, as suggested by Fallows and Ahmet, it seems quite likely that they would

be motivated to please some other party whose views are important to them or to



CHAPTER 2. BACKGROUND 13

whom they feel in some sense accountable (their family or sponsor are the obvious

possibilities). Biggs calls this social motivation [14].

Social motivation might also include to some extent the fear of failure (a very strong

motivator for some (especially women [60])). In any case, some students may be

highly motivated simply because they do not want to fail and so be a disappointment

to someone whose opinions they value. They may even be responding to threats of

dire consequences should they fail [113]. Biggs’s social motivation, as a factor that

makes a student value a learning experience, can therefore be extended to include the

fear of failure and its possible consequences. This also adds to the more specific list

of Fallows and Ahmet and to Entwistle’s more general offering.

There remains the final (rather unhappy) possibility that there will be students who

are completely lacking in motivation. This might be for a variety of reasons. They

may just be disenchanted with education or they may believe that they are taking

the wrong course. Hopefully there are very few such students but it is a possibility.

To account for this eventuality a fifth category, null, will also be used in this study

to cover those students who have no particular motivation at all.

This gives the following five categories of motivation:

• extrinsic – the primary motivation is the career and associated rewards that

will follow from the successful completion of the course.

• intrinsic – the primary motivation is a deep interest in computing (or specifically

programming) for its own sake.

• achievement – the primary motivation is to perform well for personal satisfaction

(this satisfaction may also derive from out-performing peers).

• social – the primary motivation is a desire to please some third party whose

opinion is valued.

• null – there is no particular motivation (such a negative view might at best be

characterised by the statement “I just want to pass”).



CHAPTER 2. BACKGROUND 14

It is important to emphasise that programming students falling into the first four

categories all value the learning to be gained from a programming course. Even

students in the final category attach some sort of value to it but it is reasonable to

suppose that this is in some sense less (in both magnitude and desirability) than the

students in the other four. This study will argue that in many ways it matters not

why students value a learning opportunity (and its outcomes) just so long as they do.

This list is somewhat simplistic but this is only to be expected with any taxonomy of so

abstract a concept as motivation. It must be emphasised that it is likely that students

will derive their motivation from more than one of these categories. A particular

example might be a deep interest in a subject (intrinsic motivation) developing as a

result of expected eventual rewards (extrinsic motivation). Nevertheless, the present

taxonomy will serve to identify a student’s dominant motivation.

2.1.2 Expectancy and Value

These views of motivation attempt to define how or why a learner values a learning

opportunity. This is only one part of the story. For students to be properly motivated

they must also be able to expect success. There is no point in students being highly

motivated to succeed in something that they also view as impossible. A task may well

be viewed as very difficult (indeed, this could be an additional motivator for some

who may relish a challenge) but a student must always regard the learning task as

possible.

The recognition of the existence of these two interacting factors leads to the popular

expectancy-value theory of motivation (for example [81]). This theory provides a

view of the extent of motivation as a function of two connected factors:

• the value that the learners attach to the outcome.

• the extent to which they expect to be successful in the final assessment.



CHAPTER 2. BACKGROUND 15

These two crucial components2 are said to multiply rather than add:

motivation = expectancy × value

They must both be positive (and non-zero) for there to be true positive and effective

motivation. It follows that if either of the factors falls to zero so does the product.

Students who do not expect to succeed will not be motivated no matter how much

they value the potential outcome. Similarly, students who attach no value to the

outcome will not be motivated no matter how much they expect that they might

succeed.

If it is safe to assume that all students who start a course of study have some sort

of motivation that makes them value the outcome of their learning the question of

expectancy then becomes critical. Students must believe that it is possible to achieve

a reasonable result (with ‘reasonable’ defined as that standard which meets their own

expectations or aspirations). Their initial views on their likely chances of achieving

this will come from the teacher – academic success may not be easy to achieve but

it should not be impossible. This message must be conveyed to the students but

with care. This also has clear implications for the way in which assessment, and

feedback on assessment (which contains the important message about a student’s

likely success), is carried out. A teacher has a crucial rôle to play in ensuring that

the students expect success.

2.1.3 Factors in Motivation

If motivation is seen as a multiplicative function of two factors two questions arise:

• What affects the magnitude of the factors?

• What influence can a teacher hope to exercise over the factors?

2 A few writers include a third factor in this equation, affect. This covers a student’s emotional
response to the learning experience. This factor is more usually omitted, as in this work.



CHAPTER 2. BACKGROUND 16

An attempt to answer these questions can be based on the existing wide body of

literature on motivational factors in employment. This can reasonably be applied to

student learning since, effectively, a student’s employment is learning [49].

In the workplace an employee’s level of motivation is influenced by many factors.

Only some of these are under the employee’s direct control. Working conditions, for

example, can have an impact on motivation but are often something that the worker

cannot directly change. Other factors – such as ‘sense of achievement’ – are internal

to the worker and as such cannot be directly affected by the employer.

Applying this observation to learning, there are factors that can be affected by the

teacher (‘the way the students are taught’). Equally, many factors cannot be explicitly

addressed by the teacher, such as the students’ level of interest in the material being

taught. At the same time a teacher can still attempt to exercise some influence over

the internal factors. Teachers who appear enthusiastic, and who appear to enjoy their

subject, can hope to pass some of their enthusiasm and enjoyment on to students. A

less enthusiastic teacher is unlikely to have the same inspirational effect.

In the 1950s Herzberg [66] argued that the factors affecting motivation fall into two

distinct categories. The first of these, which he called motivator factors, brings great

satisfaction, while the second, hygiene factors, can lead to dissatisfaction. He argued

that each set of factors functions over only half of the motivational scale (this has

since been disputed [49]). The absence of motivator factors, for example, would lead

to a neutral state of motivation rather than an unmotivated state. In the case of

students the most significant hygiene (negative) factor is generally held to be a lack

of preparation for summative assessment (and is therefore closely linked with the

expectancy part of the motivation equation).

When considering the factors that have an influence on motivation (and also when

attempting to identify those that a teacher or manager can hope to influence) a

popular view in management science is Maslow’s hierarchy of needs [99]. Maslow

holds that individuals will not be interested in satisfying their higher-level needs

(such as achievement, recognition, and advancement) until their lower-level needs

(for example food and warmth) have been met.



CHAPTER 2. BACKGROUND 17

Elton [49] applies this hierarchy to the case of students who “cannot be expected to

be interested in learning for learning’s sake until they are satisfied that their needs to

learn in order to pass the examination have been met”. It follows from this that one

of a teacher’s key responsibilities (perhaps the key responsibility) must be to ensure

that students believe (expect) that they will pass the course’s final assessment. This

is something that seems to be more an aspect of a tutor’s pastoral support rôle rather

than of a teacher’s instructional rôle.3 Once this basic need has been met the teacher

can move on to attempt to stimulate higher-level factors. This involves inspiring the

students with a genuine interest in the subject. They will hopefully then engage more,

but only after their most basic need has been satisfied.

Of course, many other factors will have an impact on a student’s motivation. The

list of possibilities is practically endless – personal life, financial pressures, family

problems – and a teacher can probably hope to address only the academic side to

any significant extent. It is crucial to ensure that the students value the learning and

expect success in the assessment. The teacher must, therefore, attempt to influence

the behaviour of the student and thus exercise some sort of control.

2.1.4 Locus of Control and Personal Causation

Control in an academic context is crucial. In this setting it is the students’ basic

responsibility to demonstrate to the teacher that they should be awarded a pass.

Correspondingly, it is the teacher’s responsibility to ensure that the students achieving

a pass do indeed merit it. This raises the issue of where the control in this somewhat

delicate relationship lies. The idea of locus of control [90] addresses this. Loosely,

individuals may be internally oriented and view success as a direct result of personal

efforts or they may be externally oriented and view success as being in the gift of

some powerful individual, available on a whim, and quite independent of their own

3 There is the possibility that a student is in a position where there is simply no possibility of success
because of previous performance. In this case a teacher should surely not lie. The key is to make
sure that the student never reaches this state (which should be possible if it is accepted that all
students are capable of passing at the start of the course).



CHAPTER 2. BACKGROUND 18

efforts. Thus, internally oriented students will believe that they will succeed if they

work hard whereas externally oriented students will see success as a gift bestowed

randomly by the teacher.

This idea is closely connected to the concept of personal causation [39]. In this

view individuals are either identified as pawns (whose behaviour and objectives are

determined by others) or origins (who are more in control of their actions).4 The

feeling of being a pawn can lead to rebellion [49] and eventual drop-out or failure.

For effective learning, students must feel in control or else they will quickly become

disillusioned. They must feel as if the locus of control lies firmly with them and not

the teacher, and also that their success (or otherwise) depends on their own efforts

rather than on the perhaps arbitrary decisions of the teacher. In personal causation

terms students must be origins in that they must take responsibility for their own

learning. This necessity (or expectation) often comes as a shock to students used

to the school environment where they are much more like pawns. The teacher has

an important rôle here. The students must be persuaded to take control and accept

responsibility for their own learning. Some teachers may also find this difficult as

they may not be prepared to relinquish control (or even power [48]).

In a teaching relationship the teachers clearly have some power over the students,

essentially because they control the students’ assessment. Internal orientation (or

origin behaviour) is clearly preferable for a student from a learning perspective. A

teacher’s challenge becomes to ensure that the students feel in control of their own

destiny. A powerful and aloof teacher is unlikely to be able to achieve this easily.

2.1.5 Learned Helplessness

Seligman [124] has identified the concept of learned helplessness, which is connected

to pawn behaviour. This term describes a feeling that develops when an individual

4 A similar concept to the pawn is sometimes expressed as amotivation [40]. This is a state where
individuals can see no link between their actions and the outcomes that result from them.



CHAPTER 2. BACKGROUND 19

is motivated to succeed in an activity (value) but finds it totally impossible to do

so (expectancy). Keller [81] gives the example of a child studying algebra who for

whatever reason misses some vital fundamental concept. The child wants to pass in

algebra, and cannot avoid attending classes, but finds it quite impossible to succeed

without some additional information (information that the child may well not even

realise is missing). This leads to the conviction that the child “just can’t do algebra”.

Keller’s example will strike a chord with any teacher who has been faced with a final-

year student approaching a final-year dissertation determined to avoid programming

because of a firm conviction that they “just can’t do it”. Programming is based on

a series of fundamental concepts. It is all too easy to see how it would be quite

impossible for a student to write a program requiring functions with parameters

without a knowledge of variables and data types, or a program including conditional

statements with no concept of even the simplest Boolean expression. The learned

helplessness response provides a convenient explanation for a student’s failure to

succeed. It is for many an attractive and reassuring explanation. They may have

failed in something, but they have failed in something that was quite impossible for

them to pass.

The learned helplessness response is, like motivation, a deeply personal thing. As

with motivation it is possible for an observer to suspect that a subject is experiencing

learned helplessness, but it is never possible to be sure. Moreover, subjects displaying

this type of response will be unaware that this is the case. The problem is simply

and genuinely that they “just can’t do it”. It is only when the subjects are closely

questioned (and perhaps even receive some form of counselling) that the observer’s

suspicions can start to approach a certainty.

Sometimes the student will have missed the basic material through some omission or

unexcused absence. In many cases, though, there will have been a good reason such

as illness. The progress of some topics in mathematics and computing can often be

seen as relentless. Concept builds upon concept as the teacher heads inexorably to

the end of the syllabus. In this situation it is not surprising that some students feel



CHAPTER 2. BACKGROUND 20

lost and helpless. Learned helplessness is a difficult condition to reverse, but it is not

impossible to do so. In attempting to reverse it the teacher’s crucial rôle is that of a

motivator, providing comfort, reassurance, and encouragement [1].

2.2 Experiential Learning and Constructivism

It is widely argued that learning comes about through a complex process based around

experience [43] and reflection [139]. The prevailing view of this process is summarised

by Kolb’s Learning Cycle Model [86] (figure 1). In this model a student undergoes

some learning experience, reflects on it, forms abstractions from it, and is then able

to construct and carry out experiments. These experiments in turn produce more

experiences which can be the basis for further reflection and abstraction.5

Experience

Reflection

Abstract

Experiment

Figure 1: Kolb’s Learning Cycle

Other work by Kolb [87] adds four distinct learning styles to the cycle of figure 1. One

is placed in each quadrant, as shown in figure 2 on the next page. The position of each

style in the cycle illustrates the learning strengths of that style. A diverger excels in

the process of reflecting on an experience, an assimilator has a strength in forming

5 Kolb’s model has been widely applied and cited in similar studies to this (for example [21], [27],
[69], [73], and [91]).



CHAPTER 2. BACKGROUND 21

abstractions from this reflection, a converger can develop practical experiments from

these abstractions, and an accommodator is able to adapt existing knowledge on the

basis of an experiment.

Experience

Reflection

Abstract

Experiment

Diverger

AssimilatorConverger

Accommodator

Figure 2: Kolb’s Learning Styles

Kolb also associates personalities with each of these rôles. A diverger is a ‘people

person’, an assimilator likes to work with detailed and logical information, a converger

does not enjoy working with people (and prefers situations where there is just one

answer), and an accommodator is able to adapt quickly to new information.

A complementary view of education (and one that has clear parallels with Kolb’s

cycle) is constructivism. According to this view each learner’s knowledge is built

up (constructed) as a result of experiences and reflection. Lectures and textbooks

have only a passive rôle in this – the process of learning is very much a personal

one. It follows that each learner’s epistemological view is personal and, as such, is

unique to each learner. A teacher’s task in a constructivist setting is to facilitate the

learner’s building of this view. In Kolb’s terms this means that the teacher guides the

students as they progress round the cycle. This view of the teaching process is similar

to Laurillard’s model of teaching as conversation [89] or indeed the classic Socratic

approach of teaching by participation in debate.

Ideal students would pass through the phases of Kolb’s cycle as a natural part of

every learning experience. Their rôle in this is what Schön has called a reflective

practitioner [139]. The rôle of an ideal teacher, teaching ideal students, is simply to

guide them through this process. The task of teaching is to guide the student through

the four learning styles in Kolb’s model.



CHAPTER 2. BACKGROUND 22

2.3 Learning Styles

Kolb’s cycle highlights the fact that different students learn best in different ways (or

at least that different people will excel in different quadrants of Kolb’s cycle). Some

can learn effectively from reading books while others prefer to learn by discussing

material with other learners. Some learning tasks may be best approached in a

particular manner. (The alphabet, for example, is something that can only be learned

by rote and memorised.) More complex learning requires a more complex process, the

development of an understanding. For example in history it is possible to memorise

the dates of the events leading to some battle but it is far more complex to develop an

understanding of the causes of the battle. The transition to more complex learning

is a process which will develop in any learner over a period of time (and will develop

over a student’s course, becoming more specific to the chosen area of study [117]). In

the early stages of any educational endeavour simple learning by rote is likely to be

considered acceptable and a necessary precursor to more sophisticated learning.

The manner in which material is conveyed or taught can have a strong influence on

the learning strategies adopted by students [104]. If material is covered as a litany

of dates or facts then students will be encouraged (perhaps implicitly) to concentrate

on memorising those facts, especially if the assessment focuses on the ability to recall

them quickly and accurately. On the other hand, if a subject is taught in a more

discursive or analytical way, and this is mirrored in the assessment, students will

focus more on understanding.

While learning style is very much a personal attribute of a learner, a teacher can

exercise some influence, perhaps by stealth [97], over the learner’s activities. This in

turn can influence the way in which the learner learns. Students given lists of dates

will memorise them, while those engaged in more complex activities will come to

achieve an understanding. “To assume that one must teach to a particular learning

style misses the point that a given student may be best taught by one method early

in learning and by another after the student has gained some confidence” [104].



CHAPTER 2. BACKGROUND 23

It is too simplistic to suggest that any single activity will promote a particular type

of learning [149]. The same applies to any particular form of teaching [155]. Learning

is a highly individual concept and each learner can be expected to take something

different from each learning experience. What is important is that all learners are

encouraged to engage in the activities that result in the best and most appropriate

learning for them.

There is no implied quality judgement here that more complex levels of learning

are in some sense better than learning by rote. The way in which learning will be

assessed has a significant influence on the sort of approach that is best in any learning

situation. If a learner is to be assessed in a way that requires precise recall of facts

there is no point in the learner aiming for an understanding.

The following sections describe the most popular models of student learning. It is

important to emphasise that none of these models provide convenient pigeon-holes

into which a student’s preferred learning style can be slotted. Rather they provide a

framework for understanding how and why different learners learn in different ways.

2.3.1 Deep and Surface Learning

The classification of learning styles into deep and surface learning (first described by

Marton and Säljö [98]) is well known and is reputed to be the most widely cited work

in education. A surface approach is characterised by attempts to memorise material

so that it can be repeated verbatim in assessment. Deep learning, on the other hand,

concentrates on understanding, which leads to knowledge that can then be applied

to new situations when called on or assessed.

It is important to realise that Marton and Säljö did not did not identify generic types

of student. There is no such thing as a ‘deep student’ or a habitual ‘surface learner’.

They identified learning styles and showed how students tend to adopt the style most

suited to the assessment at hand (a so-called strategic approach). Nor do the styles

offer a simple black and white classification – rather they each represent a range or

scale of approaches [104].



CHAPTER 2. BACKGROUND 24

Ramsden and Entwistle [128] have shown that deep approaches are more likely to

be adopted in disciplines that have a fairly low formal workload (notably arts-based

courses). Conversely, students are much more likely to adopt surface approaches

where the workload and contact time are higher – in broad terms this points to

disciplines in science and engineering. They also showed that departmental culture

can significantly affect students’ approaches. For example a deep approach is more

likely to be fostered in an open and friendly teaching department.

It has also been observed that some teachers may tend to teach to a preferred learning

style [104] or can tend to teach to accommodate the style that they believe their

students prefer. It is a mistake to do this and also a mistake to believe that all

members of a class of students have the same style. This approach can lead to a

vicious circle of events [156] where students are almost coerced into the learning style

expected of them, which in turn reinforces their teacher’s expectations.

Some teachers may be tempted to view deep learning as necessarily good and surface

learning as always bad. Further they may come to believe that academically able

students will always use a deep approach and weak students a surface approach. This

is not the case. There are some things that are best learned by rote or simply have

to be memorised (for example the alphabet). A student should be encouraged to

use the style that is most appropriate to the subject that is being learned. This

encouragement does not, of course, come in the form of some florid exhortation to

a class to “learn deeply!”. It comes from the activities and assessments devised by

the teacher. Activities and assessments can be developed that encourage a student

to engage in a way that fosters a particular form of learning.

2.3.2 Operational and Comprehension Learning

A similar but less well known view of learning is that developed by Pask [122]. This

identifies two learning strategies: the serialist (operation learning) and the holist

(comprehension learning). The serialist approach focuses on detail and often overlooks



CHAPTER 2. BACKGROUND 25

the overall picture whereas the holist works on a wider front and looks for general

patterns in a problem. The holistic approach therefore makes more use of analogies

and previous experience (and is close to Kolb’s cycle model). These forms of learning

appear, in fact, to be specific forms of the learning styles identified by Marton and

Säljö. The serialist is a form of surface learning (with the focus on memorising detail)

and the holist is similar to deep learning (with the focus firmly on understanding).

There is no such thing as a student who will always adopt, for example, a holistic

approach. While students may tend to prefer a particular approach it is their teacher’s

responsibility to make sure that they engage in learning activities that promote the

type of learning that is most appropriate to a particular learning task.

2.3.3 Engagement

Writing from a firmly constructivist standpoint, Biggs [14] describes the concept of

students’ levels of engagement in their learning and shows how the teaching context

can impact on this engagement. The higher levels of engagement are associated with

students taking the knowledge they have gained and using it in new situations, while

low levels are associated with simple rote learning. The close parallels between these

levels and the deep and surface forms of learning are clear. Biggs writes that high

levels of engagement promote deep learning and lower levels tend to promote surface

learning. The relationship between these levels of engagement and teaching methods

is presented graphically in figure 3 on the next page.

Biggs argues that a student’s level of engagement will increase as the teaching method

used becomes less passive and more active. Passive teaching consists of activities such

as the traditional lecture6 while active methods include problem-based and discovery

learning techniques. He also suggests that this is the case for all students, whether or

not they are particularly well motivated to learn the material being taught, or whether

6 “Traditional Lecture” here refers to that quaint (yet surprisingly popular) activity where one
person enters a room and there displays a series of notes for a large number of other people to
copy down.



CHAPTER 2. BACKGROUND 26

High Level Engagement

Low Level Engagement

Passive Active
Student Activity Required

Teaching Method

theorising

reflecting

generating

applying

relating

recognising

note taking

memorising

Figure 3: Levels of Engagement and Teaching Methods (adapted from [14])

or not they are particularly academically able. Some students (Biggs calls them

“academic”) will naturally function at higher levels of engagement (deep learning)

even if the teaching is totally passive. They are probably academically able and are

interested in the subject. They are well (probably intrinsically) motivated. Their

less well motivated (and perhaps less academically able) peers will tend to operate

at the lowest level they believe they can get away with and will tend to rely on the

simple memorising of notes if at all possible (surface learning). What is needed is

active teaching that requires these latter students to engage at a higher level. The

two types of student will never engage at the same level but, according to Biggs, the

gap in their levels of engagement is the smallest when the teaching is the most active.

Biggs’s levels of engagement are similar to the stages in another model – Bloom’s

taxonomy of educational objectives [15]. Bloom suggests that an individual learner

passes through a series of stages, each one of which represents a different form of

engagement. This is in contrast to Biggs’s model, where a student operates at only

one level. Bloom uses a series of six sequential stages to model the way in which

a learner develops: knowledge, comprehension, application, analysis, synthesis, and



CHAPTER 2. BACKGROUND 27

finally evaluation. This sequence emphasises that learning is a continuous process

and not a discrete event.

It follows that a teaching environment and learning activities must be devised that

effectively coerce students into a high level of engagement (or to operate at the highest

level possible). The teaching methods used and the overall environment and culture

(not least that of the teaching department and the institution itself) have a very

strong influence on a student’s level of engagement. If they are suitably directed all

students can learn in the most effective way.

2.4 Conceptions of Learning and Teaching

Students learn in different ways and teachers teach in different ways. Schmeck [137]

observes that “the way we go about accomplishing learning will of course depend on

what we conceive learning to be”. It is easy to see that the students approach to

learning (or their level of engagement) will depend on how they view the activity

and on their motivation. Similarly the main factor that determines how a particular

teacher teaches is that individual’s view of what teaching is.

Biggs [14] argues that teachers will change in the way in which they think about

teaching as they progress through their career. He provides a framework of three

levels to describe this development:

1. Learning is a function of differences between students.

2. Learning is a function of teaching.

3. Learning is the result of students’ learning-focused activities, which are engaged

in by students as a result both of their own perceptions and inputs, and the

total teaching context.

These levels are presented in order of complexity and depth, with level 3 the most

likely to promote good learning. Biggs’s model of career development suggests that



CHAPTER 2. BACKGROUND 28

a novice teacher will tend to start at level 1 and will move steadily towards level 3 as

a result of more experience, reflection, and professional development.

Prosser and Trigwell [126] present a similar list (written from a less constructivist

standpoint than Biggs) of teachers’ views of teaching in terms of what they call

conceptions. These are:

1. Teaching as transmitting concepts of the syllabus.

2. Teaching as transmitting the teacher’s knowledge.

3. Teaching as helping students acquire concepts of the syllabus.

4. Teaching as helping students acquire teacher’s knowledge.

5. Teaching as helping students develop conceptions.

6. Teaching as helping students change conceptions.

This list is complemented with a further classification of how teachers can view the

learning of their students:

1. Learning as accumulating more information to satisfy external demands.

2. Learning as acquiring concepts to satisfy external demands.

3. Learning as acquiring concepts to satisfy internal7 demands.

4. Learning as conceptual development to satisfy internal demands.

5. Learning as conceptual change to satisfy internal demands.

Both these lists are presented in order of depth. Prosser and Trigwell have also

demonstrated that a teacher holding deeper views of teaching is more likely to hold

deeper views of learning and vice versa.

7 This entry and the previous one call to mind extrinsic and intrinsic motivation and seem to imply
that the latter is preferable.



CHAPTER 2. BACKGROUND 29

The work of Prosser and Trigwell drew on that of Dall’Alba [35]. Dall’Alba undertook

one of the earliest studies into teachers’ conceptions of teaching and identified seven

views (again presented in order of complexity):

1. Teaching as presenting information.

2. Teaching as transmitting information (from teacher to students).

3. Teaching as illustrating the application of theory to practice.

4. Teaching as developing concepts/principles and their relations.

5. Teaching as developing the capacity to be expert.

6. Teaching as exploring ways of understanding from different perspectives.

7. Teaching as bringing about conceptual change.

Dall’Alba also suggests that the deepest conception is “focused on the relationship

between teacher, students and content”, a systemic view that has clear parallels with

Biggs’s level 3 and Prosser and Trigwell’s deepest levels. Similarly, the shallowest

views in each classification are effectively the same, viewing teaching as simply the

one-way transmission of information from the teacher to the student for eventual

verbatim reproduction.

While they use different terminology, there are clear parallels between these three

models. The lower levels in each focus on facts and memorising (surface learning) and

the higher levels introduce more complex notions such as understanding. In presenting

his model Biggs argues that many teachers will pass through the phases as they

develop their teaching. There are many recorded examples of this (for example [116]),

although they are not always written in Biggs’s terms. It is not unreasonable to

suggest that the same is true of the other models and that teachers will also reflect and

gradually develop deeper conceptions from the other schemes. It would be unrealistic

to claim that there is such a thing as a ‘level 1 teacher’ who cannot change but there



CHAPTER 2. BACKGROUND 30

certainly do seem to exist teachers who see their rôle (perhaps subconsciously) simply

as presenting information to students for them to memorise.

The following sections consider Biggs’s levels in more detail. This discussion provides

a suitable framework for a consideration of how a teacher’s conceptions of teaching

programming may develop.

2.4.1 Level 1: what the student is

This view is based on the fundamental assumption that some students are in some

sense naturally academically able and well motivated while others are not. The basic

actions required of students are to attend lectures, to take sensible notes, to learn

these for the examination, and to repeat them for the summative assessment. Some

students will engage in these activities and some will not. The best students (and

Biggs writes that the assumption here is that some students are simply ‘best’ by their

very nature) will engage in these activities, will do additional work outside lectures,

and will eventually score the best marks. There is little or nothing the teacher can do

to influence the behaviour of the students. In effect the students’ success or failure

is determined before the course starts. This view clearly corresponds with the lowest

views in the models developed by Prosser and Trigwell and Dall’Alba.

This view sees the teaching activity as simply the strictly one-way process of the

communication of information (or, worse, the communication of facts). It can be

characterised by the old cliché of the transmission of information ‘from the lecturer’s

slides into the students’ notes passing through the minds of neither’. Material is

‘covered’, not taught [156], and the teaching objective is to “transfer the knowledge

from the textbook to the minds of the students” [116]. The final summative results

are seen as depending solely on a student’s application and aptitude.

It follows that student failure is effectively a preordained event. Students have failed

because they are bad students, as a result of attributes they possessed before the

teaching started. Those students who have done well are simply good students and



CHAPTER 2. BACKGROUND 31

were good students before the course began. The teacher’s rôle has been merely to

communicate the appropriate information (or to cover the required material) – the

teacher has had no influence on the students’ results. It appears that the teacher is

effectively taking the view that both parties are a pawn in the process, both unable

to exercise any influence.

Biggs writes that this view of teaching is far too simplistic and yet it remains an easy

and attractive explanation (particularly in a course, such as programming, when very

many students appear to struggle [102]). But there are flaws to this explanation. It

seems reasonable to assume that no-one starts a course at university with the intention

of failing and presumably admissions systems (and previous summative assessments)

are such that everyone starting the course has the intellectual ability to succeed. It

simply cannot be the case that some students are doomed to failure before they start.

This view is likely to be taken by a new teacher presenting a course for the first time.

It is a straightforward explanation for the variation in student performance in the

class. The students who fail will always fail – the worker blames the raw material.

2.4.2 Level 2: what the teacher does

After some reflection, and probably a few more years’ experience, a teacher will move

on to this view (and the corresponding middle conceptions in the other models) [31].

The reason for the failure of some of the students is that the teacher (now thinking as

an origin rather than as a pawn) has failed in some way or, perhaps less self-critically,

that the teacher was teaching in an inappropriate way. This thinking leads to the use

of more active teaching techniques. The teacher hopes that these changes will help

the students to engage more and so learn better. They may inspire the students or

may provide more motivation. The worker seeks some better tools.

The first two levels in Biggs’s model attempt to attach the blame for the students’

failure to either the students or the teacher. Level 2 thinking shifts this blame from

the students to the teacher. Reflective teachers operating at this level will consider



CHAPTER 2. BACKGROUND 32

what went wrong in a course. They will collect feedback, analyse it, and from this

they will plan how to teach their courses differently next time. After all, it must

always be possible to do things better. However, one problem remains. The students

are the same and will negotiate the same academic course. It is highly debatable

whether or not changes in the teaching methods can make any significant difference

to the overall performance of the students.

It is a shame that much of the current research in computing education (especially

in programming [75]) appears to be operating at this level. Such research often

describes interesting and innovative new ways to present material but there is rarely

any compelling evidence of the effectiveness of these approaches.

So the teacher can change the presentation of a course and can introduce exciting new

activities, assessments, or assignments. But the teacher soon discovers that there is

scant evidence that all this effort has had any significant impact on the learning of

the students. After time for some more reflection the teacher will progress to level 3.

2.4.3 Level 3: what the student does

The first two levels in this model are disjoint. They both look to allocate the blame

for student failure to one of the two participants in the learning scheme and succeed

in nothing more than shifting it around. This final view ignores blame and instead

focuses on how teaching activities can promote learning in students. What can be

done to make sure that the students learn? More to the point, what can be done to

make sure that they cannot avoid learning?

To address these issues a teacher needs to be able to answer various questions. An

attempt must be made to define the level of understanding and ability (perhaps skill)

that students should reach when they have completed a course. This leads once

again to the definition of suitable activities that the students must engage in so as to

achieve this degree of understanding and ability (but this time there is a more focused

direction to this process). Finally (and this is important – the definition of assessment

comes after the definition of the learning objectives) assessment mechanisms can be



CHAPTER 2. BACKGROUND 33

devised that will reliably ascertain whether or not this level has indeed been attained.

The three key questions that emerge from this are:

• What skills, knowledge, or understanding should students possess at the end of

this course?

• What activities must students engage in to obtain these skills?

• What does the teacher have to do to assess whether or not these skills are indeed

possessed?

This view sees the learning process as a combination of many things – as a system.

The effectiveness of the learning will depend on many factors. These do indeed include

the nature of the students but the system also encompasses the teaching activities, the

organisational context, and perhaps the course’s place in the wider curriculum. There

are more – for example the personalities of all concerned and the relationship between

the students and the teacher (Where is the control? How is it to be exercised?). This

is far from an exhaustive list but it does begin to hint at the complexity of the teaching

system.

Biggs’s deepest level corresponds with the deeper levels in the other classifications.

At this level of thinking the students and teacher are engaged together in what might

be called a systemic relationship. Teachers are no longer simply communicating the

necessary information to the students – the teachers’ rôle has become much more

that of facilitators. They must facilitate learning by devising suitable activities for the

students to engage in and learn from. They must motivate the students to engage [75].

The students then become active and reflective learners.

2.5 Theory X and Theory Y

Building on this systemic view of teaching Biggs [14] argues that the climate within

which teaching and learning takes place is crucial. Drawing on management science



CHAPTER 2. BACKGROUND 34

he applies the theory X and theory Y ideas of McGregor [103] about different forms

of trustworthiness in the workplace to an academic environment so as to characterise

what ought to constitute a good teaching climate.

2.5.1 Theory X

The basic premise of theory X applied in an academic climate is that the teacher

does not trust the students. The underlying assumption made by the teacher is that

the students are wholly unmotivated, that they do not want to learn, and that they

will cheat if at all possible. They will have to be forced to work. Deadlines will

be strictly enforced and regulations relating to such matters as plagiarism will be

ruthlessly enforced. This view is characterised by statements such as “I have to give

them plenty of assessed work, or they won’t do anything at all”. This would lead

naturally to regular summatively assessed exercises, specified in minute detail and

held perhaps as often as weekly. These exercises would be examined zealously for

evidence of plagiarism. Taken to extremes the exercises would be reinforced with

regular supervised examinations to verify that the students understood the work that

they had submitted and that it was thus their own.

A theory X view of the teaching and learning system has clear similarities with the

lower-level conceptions presented in the preceding sections of this study. The teacher

and the student are not working together in a productive system to the extent that

it is almost as if the two are in direct conflict. They certainly do not have the same

aim. Control in this relationship clearly lies very much with the teacher.

2.5.2 Theory Y

This is, not surprisingly, the opposite view. Applying the theory once more to an

academic setting, a theory Y teacher assumes that the students can be trusted and will

work. There is an implicit assumption that students are well motivated. Moreover,

it is believed that the students will work better if they are trusted and given more



CHAPTER 2. BACKGROUND 35

freedom. In this climate assessed assignments will be fewer (although there may still

be the same number of assignments some will just not be (summatively) assessed)

and will be loosely specified. There will be more freedom with deadlines. Plagiarism

will not be an issue as the students will be trusted not to cheat in assessments.

This view is similar to the higher-level conceptions. Here the teacher is taking much

more of a facilitating rôle and is quite happy to let the students learn in their own

way. Control has thus passed somewhat to the students. Provided that the students

appreciate this, and respond to it, the two parties are working much more together

towards a common goal.

There are many reasons why a theory Y approach seems preferable to one based

more on theory X. For one thing the climate offered is much more open and friendly

and the idea of students happily working away on interesting and loosely specified

assignments is very appealing. However, in practice a totally theory Y course would

most probably be a disaster. Then again, much the same can be said about a totally

theory X course. The ideal climate needs to draw on both but probably draws more

from theory Y than theory X.

2.6 Assessment

Assessment has many purposes [20]. It provides feedback, allows a teacher to classify

students, provides a formal record for various external bodies, and much more. The

classification of assessment into two basic types – summative and formative – is

well known. Summative assessment provides some (probably numeric) measure of a

student’s success that is then used in some classification. This typically contributes

to some end-of-course score. The main usefulness of this form of assessment lies in

the information it conveys to, for example, a future employer. Formative assessment

is different in that the main purpose is to give students feedback on their progress.

This feedback can be far more useful (in the short term at least). Of course, some

students will be motivated very much by their scores in the summative assessment



CHAPTER 2. BACKGROUND 36

(achievement motivation) and these scores also provide feedback (but often in only a

very crude form).

Assessment has a powerful motivational rôle although the relationship is not always a

happy one. At the simplest level students who perform badly in summative assessment

can quickly lose motivation. Even the way in which results are published (for example

whether publicly or privately) can have a powerful effect [135].

Assessment also has a part to play in learning. The feedback from assessment, whether

in the form of a simple grade or a more detailed report, can trigger the reflection that

is such a vital phase of effective learning. Even a low grade can have merits since it

can prompt the students to consider where they have made errors, perhaps to seek

advice or help, and hopefully to perform summatively better in the next assessment.

At the very lowest level the prospect of assessment can coerce a student into working

and hopefully learning. The process of working towards an assessment can be as

important, in terms of learning at least, as the grade awarded.

There must be assessment and its positive effects are welcome. At the same time

there should not to so much assessment that it detracts from the learning. Above all

assessment should not be conducted (or the results reported) in such a way as to risk

damaging the motivation of any of the students.

2.7 The Changing Student

The preceding discussion has shown that in an educational setting the teacher and

student are working together within a system. They are, however, only a small part

of the larger system provided by the learning environment. The physical environment

and aspects of the institutional environment or culture in which they operate all have

a rôle to play. These three factors – student, teacher, and environment – together form

the overall learning system. Things are changing rapidly in the UK higher education

system of the early 21st century and the impact of these changes on teaching and

learning cannot be overlooked. The following sections briefly discuss some of the more

significant changes.



CHAPTER 2. BACKGROUND 37

2.7.1 Expansion

In the 1980s about 15% of school leavers went into higher education. Today the

number is closer to 40% and there are calls for it to increase beyond 50% [7]. There

is no sign of an end to this trend, especially in computing courses. The most obvious

result of this is that class sizes are now much larger [110]. At Leeds in the mid-1980s

there were some 120 students in the introductory programming class whereas in 2001

there will be over 300 [74]. Expansion brings obvious pressures of scale [32]. More

facilities of all kinds are needed, lecture rooms are bigger (and more crowded and

uncomfortable), tutors are busier, and support is harder to find. The modern student

is often made to feel anonymous [48] and can be just an insignificant name on a list.

Much learning requires easy access to an expert. This is a rôle traditionally filled

by the lecturer or tutor. With a large class the teacher is not going to be able to

provide time and guidance to all students. Worse, it has been suggested that the

culture of anonymity may well mean that students can sometimes feel threatened if

such help is offered [48] (although this suggestion is contradicted in a more recent

study [59]). Moreover, many staff report [70] that the expansion in numbers has

driven them back from innovative teaching (perhaps using problem-based techniques)

towards the traditional lecture-based approaches, with assessment designed for ease of

marking rather than learning value. Consequently, expansion seems to drive teachers

away from deep conceptions of teaching towards lower conceptions and the hoped-for

economies of scale.

2.7.2 Diversity

This expansion in numbers clearly leads to increased diversity in the student body [96].

Obviously, universities are now recruiting lower into the ‘A’ level pool8 and are thus

enrolling less academically able (in terms of previous summative results) students.

At the same time, as access widens, there are more students from non-traditional

8 Either by lowering offers or by ignoring the popular belief that ‘A’ levels have become easier.



CHAPTER 2. BACKGROUND 38

backgrounds, many of whom will have taken a break from studying (and there is

government pressure to increase the numbers of students from such backgrounds [8]).

All the students in a more diverse class will be asked to negotiate the same course (it

is rarely possible to tailor a learning experience to individuals when operating at this

scale [63]). The class will include students who prefer to learn in different ways and

who learn better in different ways [77]. This raises the question of whether or not it

is sensible to believe that a single course can suit all students. While the answer to

this is probably a resounding negative there is seldom any practical alternative for, if

nothing else, purely economic reasons.

A more diverse population of students means that students have a greater diversity

of motivation for choosing and following the course [114]. Some will undoubtedly

still come with a genuine interest in their subject but many (perhaps, in the case of

computing, most [28]) may well be more interested in the potentially lucrative career

they expect to embark upon after graduation. In 1997 The Independent newspaper

(quoted in [114]) wrote of what it described as the “disturbing picture” of students

who had set aside the traditional student activities of “sex and drugs” and become

“ambitious, materialistic individuals”. This surely points to a change in motivation.

There is little evidence that these changes have been properly appreciated or reflected

in any changes to the ways in which the students are taught or assessed, or indeed in

any of the teaching institution’s (or wider society’s) expectations and procedures. The

expectation remains that universities will produce graduates irrespective of changes

in the students.

2.7.3 ‘Full-Time’ Students

Today’s students are expected to spend the same amount of time on their studies as

were their predecessors in the 1980s. Herein lies a problem. The financial conditions

under which the two groups operate are very different [9]. In the 1980s few students

had part-time jobs, while today most do [10] and many (in computing at least) are



CHAPTER 2. BACKGROUND 39

running their own businesses. Students in 2001 need part-time jobs so that they can

eat [6] and so the job is often more important to them than their studies (in Maslow’s

terms it provides the means to satisfy a lower-level need). If students have less time

to devote to their course they will do less and it follows that they will learn less. They

are also likely to be pushed towards a short-term surface learning approach.

At the same time, and also usually for financial reasons, an increasing number of

students choose to attend a university near their home [83]. Some of these students

will miss part of the whole culture of university. They will not be members of the

community. In practice the students of the 1980s were students all the time whereas

today this is definitely not the case.

2.7.4 The Institution

Many aspects of the institution’s rules, regulations, expectations, and procedures have

failed to react to these changes. It is still assumed that students are devoting all their

time to their course when they are not [47]. Academic institutions and departments

may bemoan the financial poverty of their students but they seldom change their

procedures to alleviate the pressure or show much consideration. Some staff appear

to be unaware of the reality of student existence today. They do not make allowances

and appear to see the rigorous enforcement of rules and regulations as more important

than student learning (theory X).

The present environment in higher education in the UK is very far from conducive

to improvements in learning and teaching [85]. With the increasing emphasis on

research, and bearing in mind the often uncomfortable relationship between teaching

and research [134], teachers often have more work and are under considerably more

pressure to produce high quality research. There is thus little time to reflect on their

teaching or to plan improvements. The institution itself is driven by many concerns

(mostly financial in origin) and the well-being of the students can sometimes be

overlooked. While higher education has undoubtedly come a long way from a system



CHAPTER 2. BACKGROUND 40

that “mostly worked by the age old method of putting a lot of young people in the

vicinity of a lot of books and hoping that something would pass from one to the

other” [125], there is still a great deal of need for change.

2.8 Summary

This chapter has discussed various issues and models related to teaching and learning

so as to provide a framework for a discussion of the way in which programming is

taught (or, equally, the system or climate in which programming is learned). The

environment in which students operate in today’s mass higher education system in the

UK is indeed very different from that of only a few years ago and, perhaps importantly,

is very different from that which most of their teachers would have encountered and

remember. The effect of this on the students, or on the way in which they approach

their studies, is unclear but it is apparent that the cohort is now much more diverse

and is faced with many more challenges and pressures outside their studies.

The system within which a student learns in crucial. An environment is required

that fosters a high level of engagement and where students engage in well planned

learning activities. Ramsden and Entwistle’s observation that an open and friendly

teaching department is more likely to promote good learning has clear links with

Biggs’s application of theory X and theory Y to the teaching climate.

The next stage is to take these ideas and to attempt to apply them to the learning

and teaching of programming. Programming is an activity with its own distinctive

features, so these concepts must be applied with care.



Chapter 3

Learning to Program

First Voice: Come closer now . . .

Programming is traditionally taught in higher education by means of a series of

lectures. These lectures cover the basic concepts of programming (variables, loops,

conditionals, and so on) in some convenient order based on assumed complexity and

also on the particular programming paradigm being taught. These concepts are

illustrated using the syntax of a particular language and more details of the language

are added gradually as the students become more proficient. The students learn from

the lectures, from reading textbooks, and from completing various exercises. Some

or all of the exercises form the basis of summative assessment.

This model is so widespread that it seems reasonable to assume that at some point

in the past it worked or, at least, that the students learned to program (although

perhaps not as a direct result of the teaching). Now, however, evidence abounds, in

the form of students who simply cannot program, to suggest that this tried-and-tested

scheme does not work. What has changed?

One obvious change is the place of computing in the academic world. Computing is

still very much a new subject with a short history. In many traditional universities

41



CHAPTER 3. LEARNING TO PROGRAM 42

a computing department has almost evolved rather than having been deliberately

created. In the last decades the importance of the subject has increased as it has

moved from a niche subject taken by few students to one of the mainstream subjects

with almost all students having the opportunity to study computing in some way.

While there have been many changes that have affected all students (outlined in

section 2.7) the nature of the students who choose to take computing degrees has

also changed. Even as short a time ago as the 1980s those who chose to study this

relatively new subject probably had of necessity a strong interest. It is likely that

these students had computers at home (when this was a rarity) and had spent many

hours programming them. Today, computing is a mainstream and expanding subject

with students coming from a variety of backgrounds. There will be some who have

spent many years working in the IT industry and others who have never used a

computer before. Many of those who have a computer at home will have used it to

do no more than run packages and play games – they will rarely have written any

programs. The audience to which programming is taught has changed and a first

programming course now has to be able to meet the needs of a highly diverse set of

students.

Computing is also a degree subject that is assumed by many to lead directly to a

lucrative career in the IT industry. This is more than likely to be in the minds of

students of today especially considering the poverty that many will endure in order to

get their qualification. It follows logically (but this remains to be proven in practice)

that many students will embark on the course with the prospect of gaining a highly

paid job as the sole aim. These students will have little interest in computing (or

programming) other than as a means to an end. Their motivation is very different to

that of the computing students of the 1980s.

There is an expanding research literature on the best way to teach programming.

Sadly considerably less has been written on the best way to learn programming and

what there is tends to be in the cognitive psychology literature rather than in that of

computing education. Much has been written about the most appropriate language,



CHAPTER 3. LEARNING TO PROGRAM 43

environment, and paradigm to use, and the trade-off between choosing a language

based on its pedagogical suitability or on the extent of its use in industry. There is an

increasing literature on innovative techniques to support introductory programming

– suggestions have included the use of visual props [2] such as FrisbeesR© and Icky

PooR©, participative theatre [73], and even singing [144].

These entertaining teaching methods have their place. They serve as what Keller

has called an educational novelty and can have a short-term beneficial effect on the

students’ motivation [81]. They are popular with students, who claim1 to remember

more from the teaching sessions delivered with their aid than from more traditional

lectures [111]. Yet there is precious little tangible evidence that they improve the

students’ learning (although there may be some indirect effect as they may well make

students more likely to attend).

The language and paradigm debate is interesting (and at times fierce) but there is

little evidence that any particular language or paradigm is best suited for teaching.

There exist languages designed specifically for teaching (for example BASIC, LOGO,

and Pascal) but few higher education institutions would seriously consider using them

due to their lack of industrial application.

Even with these changes and debates the underlying way in which programming is

taught remains largely the same. A typical programming course still begins with a

consideration of the nature of the task and then introduces programming concepts

(in whatever language and paradigm) in sequence. Students are then expected to

practise by undertaking exercises. An alternative top-down approach based on data

structures and design has been proposed [131] but has not gained wide acceptance.

Lectures are an ineffective way of teaching programming. This was argued as long

ago as 1971 (albeit by a psychologist) [154] and it is surprising that it is a method

apparently still in widespread use some three decades later. It has also been argued

(and this time at least in a computing science education setting) that this approach

1 They claim to. It is unclear how this claim can be measured. This highlights a problem with
much research describing innovative ways to teach programming – it is difficult to evaluate.



CHAPTER 3. LEARNING TO PROGRAM 44

leads to many difficulties including “passive learning”, “premature complexity”, and

“premature abstraction” [58].

Of course, the best way to learn how to program will be different for different people

but any scheme must surely involve elements of:

• hands-on practice – programming is a skill and the only way to acquire and

develop such a skill is practice.

• use of reference material – even experienced programmers will work with a

language reference at their side.

• access to, and advice from, a programming ‘guru’ – an effective way to acquire

a skill is by an apprenticeship.

The rôle of a teacher of programming is to provide an environment where the students

have access to these things and then to ensure that they use them in what is, for them,

the most effective way. It is senseless to argue that a single teaching scheme can be

equally effective for all learners but this is what most student programmers encounter.

To set the context, this chapter first considers how an experienced programmer would

go about learning a new language and contrasts this with the experiences of a novice.

The theory from the previous chapter is then applied to the particular case of learning

to program and the chapter concludes with a discussion of what precisely it is that

makes learning to program so difficult.

3.1 Experienced and Novice Programmers

Before considering and investigating the process (or indeed the processes) by which

a novice will learn to program it is useful to start by considering the processes that

an experienced programmer would follow in order to acquire a level of proficiency in

a new language. An understanding of these processes may well provide the basis of a

discussion of the difficulties facing novices as they attempt to learn to program.



CHAPTER 3. LEARNING TO PROGRAM 45

Experienced programmers organise their knowledge by remembering a collection of

tried-and-tested ‘chunks’ of program (algorithms, recipes) which they can apply to

new programming problems. These chunks (which are sometimes called plans [146]

or templates [94]) might even correspond to physical libraries of actual working code

ready for re-use. Experienced programmers often, if not usually, create a program as

an adaptation of an existing program following a similar algorithm.

Following an essentially constructivist argument, experienced programmers already

possess a relevant body of knowledge and all they need to do in order to learn a

new language is bring this knowledge to some new situation (in this case the new

language). They will go through processes similar to those in Kolb’s learning cycle

and will adapt their knowledge.

Experienced programmers have relatively simple needs when they come to learn a new

language. They simply need to know how their existing mental model of programming

translates into the new language. For example at the lowest level they know what

a conditional statement is and so just need to know how to implement one in this

new language. A reference text will be sufficient, a guru would be useful but not

essential, and the rest will come with some hands-on activity. Such learning is often

driven by commercial considerations [154] and so may well take place ‘on the job’.

This process would not take place in the traditional order of a programming course

(variables, statements, program flow, procedures, and so on). It is a holistic process

of changing, almost translating, existing chunks of knowledge.

Experienced programmers also possess some sort of mental model of the mysterious

inner workings of the computer. They will understand at some level at least how

computer memory is organised and how instructions are executed. This knowledge,

even if it is only at a superficial level, can be invaluable in tracing errors in programs

or in understanding why a program does not appear to work. Moreover, much of this

knowledge is quite independent of a programming language and it is more knowledge

that can be readily mapped to a new environment. In addition the programmers will

have some level of understanding of the workings of a compiler – how the program



CHAPTER 3. LEARNING TO PROGRAM 46

source is parsed, compiled, and linked to give an executable version. They have

learned the rules of the game.

The experienced programmer also has confidence. No programmer possessing any

significant experience of, say, C++ should be very much daunted by the prospect of

learning JavaTM for some new project2 (it has been suggested that the biggest obstacle

is likely to be the programmer’s own reluctance to change [67]). Once again it is simply

a case of taking existing tried-and-tested knowledge and skills and applying them in

a new context.

Even if an experienced programmer is changing paradigm (most likely from purely

procedural to object-oriented) the change is reasonably straightforward. Most of the

mental model and existing skills will translate and what remains to be mastered is

a new syntax and perhaps a new design strategy. There are, of course, new skills

to be learned (and there may be problems along the way) but any programmer with

any significant experience would be expected to master the new paradigm reasonably

quickly and with limited suffering.3

When compared to experienced programmers novices have many disadvantages when

it comes to learning a programming language. It has been shown that novices tend to

adopt a very different way of organising their programming knowledge to that adopted

by more experienced programmers [105]. Novices have no collection of chunks of code

(physical or otherwise) and nowhere obvious to start one. Nor do novices have any

sort of model of the programming process [11] to help them, and they often fail to

have an overall mental picture of the activity that they are trying to master. Worse,

2 This is perhaps not the best example. Java is a pure object-oriented language while C++ is
essentially a hybrid between an object-oriented and a procedural language (or perhaps a procedural
language with some object-oriented features added). Many C++ programmers use the language
as what amounts to a procedural language with some additional object-oriented facilities. Such
programmers would have to learn to think in a more object-oriented manner when approaching
Java and this would represent a not insignificant paradigm shift. Java programmers coming to
C++ may well find similar problems in programming in a less object-oriented way.

3 An interesting side issue here is whether this is a situation where a novice with no prior experience
has some sort of advantage over an experienced programmer. A novice learning to use an object-
oriented language knows of no other way to think or program – is this a better situation than
being proficient in a procedural language?



CHAPTER 3. LEARNING TO PROGRAM 47

a novice may have an inaccurate model of the processes underlying programming – a

sure recipe for disaster.

Novices generally lack any concrete starting point for their programming. They have

never programmed before and so do not have any library of templates or program

code from previous experience. The novice is lost without these chunks of knowledge

or libraries of programs. A side issue is that the programming process is so natural

to the experienced programmer that novices struggling with the same problem can

sometimes see the expert in action and quickly become disheartened. They cannot

adapt knowledge that they do not possess and it all seems so easy for the expert.4

A mental model of the inner workings of the computer is something else that a novice

often lacks. Without such a model some of the most basic elements of programming

seem arcane and mysterious but with a model they make perfect sense. The process

of compilation will seem equally arcane and mysterious as the compiler takes the

novice’s code and then spits forth error messages that are quite unintelligible to the

novice. The novice is playing a game without knowing the rules.

The novice is clearly at a distinct disadvantage in several important departments

when compared to the experienced programmer. The challenges facing a novice when

learning Java from scratch, for example, are very different indeed from those faced

by an experienced programmer already fluent in C++ embarking on the same task.

The process that an expert would use to learn a new language is not going to map

directly into a scheme for teaching novices but it throws some light on what novices

must be taught or on what they must somehow acquire before they become in some

sense experienced. They must acquire the all-important chunks from which they can

build programs, they must acquire some sort of mental model of the workings of

the computer and of the programming process, and, perhaps above all, they must

acquire confidence. Some of these things will be acquired during an introductory

programming course while others will come over a number of years and probably only

4 A good analogy here is juggling. Imagine watching a skilled juggler juggle five balls [141]. The
balls are handed over for a novice to try. . .



CHAPTER 3. LEARNING TO PROGRAM 48

as the result of extensive practical experience. Nevertheless it is clear that novices

and experienced programmers face very different challenges as they approach a new

language.

3.2 The Programming Environment

When devising a system in which a novice learns to program the most important

element is arguably the programming environment – the language, operating system,

editor, and compiler. There is an immense (and still expanding) literature on the best

language for teaching and a smaller, but still extensive, amount on the best platform.

More recently this has been extended to include discussion of the best paradigm5

and whether this ought to be strictly procedural or object-oriented (and in the latter

case whether ‘objects first’, ‘objects last’, or ‘objects at all’ [33]). In some cases a

functional approach has been proposed but acceptance of this is not widespread.

3.2.1 Language

It is important that a distinction is made (in the minds of both teacher and student)

between learning to program and learning a particular programming language. It

should always be first and foremost the skill of programming that is being learned.

It is to be hoped and expected that a competent student could then easily move to

a new language. Nevertheless a novice will naturally have to get to grips with the

syntax of a particular language as a first step. There are two basic factors to consider

when a language is chosen:

• pedagogy – the language’s suitability for teaching. Languages that rely heavily

on symbolism or neat tricks are unlikely to be suitable for novices.

• commercial use – the extent of industry demand for programmers skilled in

the language. As many students supposedly see an IT-related degree more and

5 A hideously misused word.



CHAPTER 3. LEARNING TO PROGRAM 49

more as a first step towards securing a lucrative job they demand to be taught

current commercially relevant skills. To some extent the industry itself adds to

this pressure.

There are some other technicalities to consider. For example the language must be

available on the appropriate platforms, it must support the paradigm to be taught,

there must be suitable textbooks, and so on. Nevertheless pedagogy and commercial

use are the most important even if they are sometimes at odds.

In 1971 Wirth [159] recognised these issues in his original paper describing the Pascal

language. He identified a vicious circle whereby industry dictates the most commonly

taught programming language. The most popular language in industry will be the

most used and therefore the language most in demand. In response to this demand

the most taught language will be the one most used in industry. He deprecated what

he called “this stagnation” and as a solution proposed Pascal as a language designed

specifically for teaching.

Pascal still has something to offer as a language with which a novice can learn the

basic principles of programming. It is a small language but it neatly illustrates all the

fundamental concepts of programming using an English-like syntax. A programmer

with a sound knowledge of Pascal should be able to abstract the basic principles and

move on to other similarly structured languages with a minimum of difficulty.

Current development environments derived from Pascal such as DelphiTM and Turbo

PascalTM offer the potential for interesting and inspiring graphical assignments carried

out using an interactive development environment. Of course, the language remains

only a small part of the overall system in which a novice learns and the novice will

have to be able to abstract the principles learned from Pascal and apply them in

other languages, but Pascal would still seem to offer a reasonable setting in which to

learn these principles.

However, a survey in 1996 [18] noted that use of Pascal in teaching was decreasing in

favour of C or C++. The reasons cited are partly technical and concern Pascal’s lack



CHAPTER 3. LEARNING TO PROGRAM 50

of support for data abstraction. Significantly, a prime reason cited for the change given

is Pascal’s “failure as a real world language” but this is a purpose it was never intended

to fulfil! Data abstraction is supported in the latest language in the Pascal family,

Oberon [51], but the use of this language is also limited by the rush to use industrially

popular tools. Anecdotally, Java is today becoming the dominant language used for

teaching. This is a change driven to no little extent by the increasing use of Java in

industry – Wirth’s vicious circle prevails!.

The use of a commercially popular language is undoubtedly attractive to students.

Experience at Stanford University [133] was that student enrolment on programming

courses increased dramatically when ANSI C (a commercial skill greatly in demand at

the time) was introduced as the teaching language. Students certainly seem to show

a reluctance to learn anything that they do not see as useful in their future career, so

it is perhaps an unfortunate consequence that a commercially popular language will

have to be chosen as the basis for teaching programming.

Many institutions teach more than one programming language. There is an initial

language, used as a vehicle for the introductory programming course, and then other,

perhaps more specialised, languages used in later courses. It was once quite common

to learn Pascal initially and then to move on to learn C for more serious programming.

This structure (where it is used) means that, in theory at least, the first language

taught could be chosen for its pedagogic suitability. Later languages could be chosen

for their appropriateness to a real application and would, by implication, be more

focused on real world considerations.

This is an appealing idea. Critics would argue that it is foolish to teach one language

and then another but these critics would be mixing the teaching of a language with

the teaching of programming. Students might also complain about being asked to

learn an additional language – it does seem rather like extra work. The increasing

use and ubiquitous nature of Java also mitigate against this approach.

It is possible to make arguments for and against all other languages (and indeed

all combinations) and it is certainly most unlikely that any particular language or



CHAPTER 3. LEARNING TO PROGRAM 51

combination will ever gain universal approval. In essence the problem is insoluble

and it seems likely that, for the foreseeable future, educators will be driven largely

by the ‘flavour of the month’ in industry. At present this appears to be C++ or Java

although an interesting case has been made for HTML and JavaScriptTM [107].

Initially the idea of using HTML as an introductory programming language seems

very strange. HTML is just a mark-up language and as such it supports none of

the fundamental concepts of programming. However, at first sight the process of

producing an HTML implementation of a web page appears to be very similar to that

of producing a program (assuming that the HTML is written using only a standard

text editor). It is shown in figure 4.

Design Implement View
Result

Change

Figure 4: Developing a Web Page

This process – where an HTML file is written, the results are viewed in a browser, and

the file is then changed if necessary – is very broadly equivalent to the central part

of the programming process where a program file is written, compiled, tested, and

then perhaps altered. Moreover, the basic tools that are used (text editors, operating

system commands, windowing environments) are the same in each case.

As part of their induction process all the new entrants to the School of Computing’s

degree programmes at Leeds are asked to complete a short questionnaire about their

previous programming experience. Many of the 2000 intake responded to this question

with the comment that they had programmed in HTML. This raises two issues:



CHAPTER 3. LEARNING TO PROGRAM 52

• On entry the students have little idea of what programming is in the context

that they are about to learn it.

• They do have some experience, however slight, of an activity closely related to

programming that uses many of the same skills and requires much the same

overall process.

Perhaps HTML has something to offer as an introductory language or at least as a

vehicle for some pre-programming course. The process of producing a web page is

similar to the familiar ‘edit-compile-test’ cycle of developing a program, and this is a

cycle that programming students will have to master. While HTML does not support

procedural code, JavaScript does. It may be possible (as described in [107]) to use a

combination of the two. This issue also starts to raise the question of whether or not

programming is most sensibly taught at the very start of a degree course.6

However, the idea of using HTML (with or without JavaScript to introduce some

procedural elements) to teach programming to mainstream computing students is

unlikely to be widely acceptable. It is too drastic a change in practice. For the

moment the trend will continue to be to choose from the languages most in demand

in industry. It is a huge shame, and an additional unnecessary obstacle for students,

that these languages were designed for commercial use by experienced programmers

rather than for use by novices in education.

3.2.2 Platform

Novices not only have to master a language. They also have to learn how to use the

platform provided for them to develop their programs. This involves learning how to

enter their program, compile it, and find the output. Indeed, in their classic book

describing C, Kernighan and Ritchie [82] considered these mechanical problems the

first “basic hurdle” in learning to program and then optimistically suggested that

everything else is “comparatively easy”.

6 This issue will be discussed in more detail later.



CHAPTER 3. LEARNING TO PROGRAM 53

There are two extreme approaches in choosing a platform:

• sackcloth – using basic operating system-level tools. This will probably be a

Unix system using vi as the editor and a standard compiler.

• cosy – using some sort of interactive development environment (IDE) most

usually in a Microsoft WindowsR© setting.

The choice between these is not obvious. There are undoubtedly many more skills and

ideas for novices to master in the first case but the second may well make them feel

too secure and may not prepare them for further programming in a less protective

environment. In many ways the environment in which programs are written is as

important as the programming language itself. For example it is senseless for a

programmer to be able to develop using C++ in a particular visual environment if

that programmer cannot use C++ on a Unix platform using a standard text editor.

At the same time the complexities of using such a Unix environment can often get

in the way of the process of learning the language and learning to program when a

more visual environment is probably to be preferred.

The ideal choice is clearly somewhere between the two. There are versions of vi

(for example VIM [62]) that can be configured to function as rudimentary IDEs and

the use of these can readily support the novice. The choice of Microsoft Windows

is attractive not least because it is reasonably safe to assume that most students

arriving at university will already be familiar with it. Conversely a Unix platform is

more flexible and powerful and provides students with a skill in demand in industry.

Most commercial compilers and program development environments have been, very

reasonably, designed for commercial use by experienced programmers7 (and this also

includes most available on a MicrosoftR© platform). It is surely curious, then, that

many of these same tools are often used to teach novices. These systems often produce

7 Although some vendors have started to expend considerable efforts on marketing some of their
commercial development products and environments to the academic community (for example
Metrowerks’ CodeWarriorR© [109]).



CHAPTER 3. LEARNING TO PROGRAM 54

error messages that are incomprehensible to the novice, sometimes perhaps because

the novice makes errors that an experienced programmer never would. A case in

point is the use of a reserved language word as a variable identifier [92] where very

few compilers manage to produce a meaningful message (although an experienced

programmer would quickly realise what was wrong even without a meaningful error

message). Even when an experienced programmer does not immediately understand

an error it is normally a reasonably simple matter to find out what is wrong. These

systems offer power and flexibility way beyond what a novice learning the language

could possibly need and with this power comes more scope for confusion.

A recent innovation has been the emergence of various IDEs developed with the needs

of novice programmers firmly in mind. The most prominent of these at present is

probably BlueJ, described as an “integrated Java environment specifically designed

for introductory teaching” [88]. BlueJ offers an easy-to-use graphical environment

that is tailored to the sort of programming and tasks that novice programmers are

usually asked to complete. Objects can be created, called, and tested all in the same

simple interactive environment, which consists of an integrated editor, compiler, and

debugger. This is an attractive option (although only available for Java at present).

The criticism might be that BlueJ is not going to be widely used in industry (the

same criticism that is levelled at Pascal as a teaching language!) but this is not its

purpose. It remains to be seen how widely BlueJ will be adopted in those institutions

currently teaching Java and whether similar projects for other languages will emerge.

As new programming languages are developed many are accompanied by claims about

their suitability for teaching. A recent example of this is Python with its ‘Computer

Programming for Everybody’ project [151]. Although a relative newcomer, Python

certainly seems to have something to offer as an introductory language – it is fully

object-oriented and useful programs can be written in a very few lines of code. As

with BlueJ it remains to be seen whether or not Python will gain widespread use

as an introductory language – it is certainly starting to gain widespread use in the

commercial world, which is a promising development.



CHAPTER 3. LEARNING TO PROGRAM 55

As with the choice of language the choice of platform is not straightforward. There

are advantages and disadvantages to both extreme approaches described here. But

both the sackcloth and cosy approaches are extremes and so the ideal choice probably

once more lies somewhere between the two.

3.2.3 Language and Platform

The choice of language and platform is not easy. Pascal (or more realistically one

of the more recent languages in the Pascal family) remains attractive as an ideal

language for teaching novices but commercial pressures mean that its use is unlikely.

A similar problem has restricted the use of Ada [18] which promises many of the same

advantages as the Pascal family. It has, sadly, to be accepted that the most taught

language will be one of those used in industry and that pedagogical considerations

are secondary. Wirth was quite correct.

There is more control over the platform. A medium ground must be found between

environments that are too basic and too protective. Commercial products do not

seem to offer very much since their purpose and market are very different to the

needs and characteristics of novice programmers. It may well be that the ideal future

platform will emerge from current initiatives such as BlueJ and Python.

Much has been written about the advantages and disadvantages of many languages

and platforms. Precious little of this research presents any concrete evidence that

any particular environment is better than any other or that there are any significant

advantages to be found in any particular combination. Since many institutions teach

programming using different environments, and students still appear to fail to learn,

the suspicion must be that the programming environment has very little, if any,

influence on the effectiveness of the students’ learning. The cause must lie elsewhere

in the system, perhaps in a less tangible, more psychological, area.



CHAPTER 3. LEARNING TO PROGRAM 56

3.3 Motivation

Students will not learn to program if they are not motivated. They must attach some

sort of value to learning to program. On one level it matters not why they value

learning to program just as long as they do. A teacher might hope for some intrinsic

interest in the subject (and many students will indeed have this) but extrinsic or other

forms of motivation are equally valid. It is fundamentally important that the teacher

appreciates how the class is motivated and manages to tune in to their motivation.

This issue will be investigated in chapter 4.

The expectancy-value model of motivation (section 2.1.2) shows that students must

also believe that they will succeed in the final assessment of their programming.

This is a more personal concept than value and will be investigated in the study of

individual students in chapter 5. For the moment it is sufficient to emphasise that

motivation is essential if a student is to learn to program.

3.4 Learning Styles

It is very difficult to pin down the most appropriate learning style for the learning

of programming. The deep and surface classification (section 2.3.1) seems to work

well for a subject which is essentially a body of knowledge but programming is rather

more complicated than that. On the one hand it might appear that a deep approach

is essential to provide understanding that can be applied in new problem areas. On

the other it could equally be argued that programming can be learned as essentially

a process that amounts to not much more than simple pattern matching (with the

patterns closely corresponding to the expert’s chunks of program code) where common

problems are spotted and known working sections of code applied. This sounds very

much more like a surface approach.

An example illustrates this problem. Understanding, a result of a deep learning

approach, should provide the learner with a generic skill than can be applied in



CHAPTER 3. LEARNING TO PROGRAM 57

new situations. This might appear to be crucial factor for successfully learning to

program where the key skill that is being taught (or learned) – the ability to apply

programming concepts and ability to new problem areas – is indeed highly generic.

Then again it is perfectly possible to produce working programs without ever fully

understanding how they work, perhaps by nothing more than simple trial and error.

A programmer might remember that the C++ code:

for (int i = 0; i < 10; i ++)

produces a loop that executes ten times. It is not necessary to understand how

this loop works to use it in a program. While this tactic at first sight resembles a

surface learning approach it is also close to the experienced programmer’s strategy of

remembering chunks of working programs (a decidedly desirable tactic).

Once again it seems that the best strategy for learning to program lies between these

two extremes. Surface learning can be useful for remembering syntax or issues such

as operator precedence but elements of deep learning (and hence understanding) are

crucial if an understanding of the semantics of the language is to be developed together

with a genuine competence. This complexity begins to hint at the complexity of the

process of learning to program.

The application of Pask’s serialist and holist styles (section 2.3.2) is equally confused.

Is it essential that a programmer takes an overall (holistic) view of a problem or is

the more detailed (serialist) approach to be preferred? It is surely possible to see the

advantages of both approaches. Perhaps a more complex approach is needed where

the programmer can switch between activities that employ the various styles and take

the complementary views offered by each.

If the importance of at least some activities that involve a deep approach is accepted

the work of Ramsden and Entwistle has some implications for the environment in

which programming is taught. An open and friendly environment with plenty of

support is required together with an assessment regime that provides an amount that

does not drive the students towards a potentially catastrophic surface approach. In



CHAPTER 3. LEARNING TO PROGRAM 58

any case, given the importance of access to a guru, presumably in the form of a

lecturer or tutor, an open and friendly environment is essential.

The overall context within which programming is being taught and learned must

also be considered. If a surface learning approach is proving to be successful (and

is perhaps even being encouraged) in other parts of the students’ course it will be

difficult for them to work in a different way for their programming. If it is proving

successful in most other parts of their course it will be very difficult indeed. Students

may be tempted to try to memorise syntax without concentrating on an understanding

of the underlying semantics. Students do not make a conscious effort to engage in

deep or surface learning but habits are hard things to break.

If the learning required is so different it may be that programming is a very different

subject to anything that the students have been asked to learn before. This might

mean that their tried-and-tested learning strategies break down and are no longer

effective.8 This makes learning so very difficult. The learning strategies that have

served a student before (and indeed the learning theory that has identified the learning

styles that classify them) do not seem to map to programming.

If the ideal approach lies somewhere between deep and surface learning (or at least

combines elements of each) Biggs’s diagram of levels of engagement (figure 3 on

page 26) provides a promising model with a scale of intermediate points. A reasonable

argument would be that the learning of programming requires engagement at least

at the applying level and ideally above. A student must learn the required concepts

sufficiently well to be able to apply them to new situations and problems. Biggs’s

diagram suggests that to promote this the teaching cannot be totally passive (and also

that it need not be totally active). A teaching environment that coerces the students

into a reasonably high level of engagement is therefore required. It also follows that

students must be motivated if they are to engage in any learning processes. Recall

Biggs’s neat definition of a teacher’s motivational rôle as “getting students to agree

that appropriate task engagement is a good idea” [14].

8 A similar observation has been made about some problems in geometry [100].



CHAPTER 3. LEARNING TO PROGRAM 59

Bloom’s taxonomy of learning styles and activities has been convincingly applied

to programming [95]. The lower levels correspond to reading, understanding, and

interpreting given program code. The middle levels correspond to the development

of small programs or code fragments. It is not until the higher levels are reached

that complex and original programs can be developed. Since learning to program is

seen as a sequential process of passing through these stages there is much to be done

before original programs are being written.

Successful students of programming must be able to engage in a range of learning

activities designed to exercise a range of learning styles but in a way that is subtly

different to the stereotype of the purely strategic student [84]. They must be able to

operate at a high level of engagement. The teaching methods used and the overall

environment (not least that of the teaching department) have a strong influence in

determining the ways in which a student will learn. If teachers can devise a suitable

set of teaching methods and can produce a suitable teaching environment they can

perhaps hope to motivate the students to study and learn in an appropriate and

effective way.

3.5 Conceptions of Learning and Teaching

The preceding consideration of learning styles attempts to describe how a student

might be expected to behave when learning to program. This ignores the teachers’

side of the system and raises the question of how teachers of programming should

view their teaching.

Using Biggs’s three levels (section 2.4) it is immediately apparent that the level 1

view is far too simplistic an explanation for the problems in teaching introductory

programming. It surely cannot be the case that a significant proportion of the student

intake of today can never hope to become competent programmers. It can be argued

that the expansion in the number of students learning to program and the resulting

diversity of the intake have made the students less well prepared [78]. A related



CHAPTER 3. LEARNING TO PROGRAM 60

suspicion (but by no means a unanimous view) is that the lower levels of mathematical

attainment and ability of the students makes them less able to learn to program [21]

– they have less aptitude.

Level 2 thinking in this area brings with it the introduction of innovative instructional

techniques. These can serve some purpose but as usual there is little convincing

evidence of their value beyond that of simply providing a somewhat diverting novelty.

Programming is a practical discipline. The focus in teaching it should be firmly on

what the student does (in Biggs’s terms that is level 3). A teacher must devise ways

to make sure that the student does certain things. A context must be set where the

students cannot avoid engaging in certain activities and where they cannot escape

without learning something. This presupposes that the students are motivated to do

the necessary work but it still seems reasonable to assume that they are (at least at

the start). Some current approaches to teaching programming (based at level 2 or

even level 1) appear to tend to beat the motivation out of the students with endless

assessment. The result of this sort of approach is, predictably, that only the most

persistent students succeed.

In passing it is interesting to reflect on how the existing research into introductory

programming (and resulting practice in its teaching) at Leeds has progressed through

these three levels [75]. While there is limited evidence of any great time spent at level

1 (Leeds recruits students from the higher end of the ‘A’ level range so they should

at least all be reasonably academically able) there has been plenty of effort at level

2 notably with the use of various participative methods [73] and technology-based

support mechanisms [80]. In the light of the limited evidence of the success of these

approaches it is hoped that efforts are now moving toward level 3 with the focus

firmly on the system and on what the student does.

Teachers of programming must, therefore, have a deep understanding and conception

(based in whichever taxonomy from section 2.4 is chosen) of their own teaching and

of their students’ learning. Teachers of programming cannot afford to view their task

as the simple transmission of information and they must see themselves much more

as a facilitator or motivator [75].



CHAPTER 3. LEARNING TO PROGRAM 61

3.6 Theory X and Theory Y

The discussion in section 3.4 started to identify that the ideal academic climate for

learning and teaching programming was a friendly and open teaching department.

This immediately points to a theory Y model. The theory X and theory Y views

both represent extremes – the ideal climate for teaching introductory programming

lies somewhere between the two but probably does indeed draw rather more from

theory Y than from theory X.

A theory X programming course produces a recipe for stress (for both the students

and the teacher). Students will be driven exclusively by assessment. They will learn

to complete introductory programming exercises, which is a quite different thing to

learning to program. If they retain any motivation it will be to complete the exercises

and gain the reward of marks. They are most unlikely to do any additional work on

their own. Many will probably cheat, sometimes simply through desperation.

A theory X introductory programming assignment might read:

Write a program that accepts a single positive integer greater than one

and displays that number in binary. An example executable is available;

the output of your program should be exactly the same in every respect.

Submit your program before 5pm on Friday 14th April.

For the teacher a theory X approach would bring with it an immense amount of work

in marking programs (and in devising programs that would be easy to assess) and

processing marks. This workload is increased further by the task of monitoring for

plagiarism and dealing with consequent investigations and punishments. However,

a glance at the amount of work published describing convenient automated ways of

marking large numbers of identical assignments and detecting plagiarism suggests

that this theory X view is not uncommon.

At the other extreme a theory Y introductory programming assignment could be:

Write a program that uses all the C++ statements we’ve covered so far. It

can do anything you like. Hand it in some time before the end of semester.



CHAPTER 3. LEARNING TO PROGRAM 62

This appears more attractive at first sight but surely an introductory programming

course based solely on the theory Y view would also be a disaster. At the very least it

is difficult to see how the teachers (or their superiors or any other stakeholders) could

have any confidence whatsoever in the validity of the summative assessment. It would

certainly be a less stressful experience for all concerned and teachers would probably

find that they have more time to help their students. The element of discovery

learning that can be introduced by vaguely defined assignments would motivate and

enable students to learn better and at their own pace [3]. Valid assessment remains

the stumbling block.

Students will learn better if they learn in an informal, theory Y-style, environment.

The potential is there in such an environment to improve their confidence and to

promote questioning and discussion [91]. In such an ideal climate the students should

want to learn to program. The teacher’s rôle will simply be to facilitate this by

providing support and a framework. Some assignments will have to be assessed for

summative purposes but not all of them need be. All the assignments set should give

the students as much flexibility as possible to work on interesting projects. Students

are much more likely to want to program if they are interested in or even inspired by

what they are doing.

Work at Monash University in Australia [65] has reinforced this by showing how

students of programming can benefit from enjoyable informal discussion classes. In

these classes the students work in small groups to solve various problems or carry

out exercises. The academic content is always present but the informal (theory Y)

atmosphere promoted is found to be of great benefit.

The question of the ideal environment for learning to program is based around the

notion of trust [75]. The teacher should be able to trust the students to do their best

and not to cheat. At the same time the students should be able to trust the teacher

to make every effort to catch the students who do still cheat. Students can work

on more interesting problems by being allowed to tackle assessments that are loosely

specified within some sensible limits. This situation is based more on theory Y than

on theory X but is still far from pure theory Y. It is, however, attainable.



CHAPTER 3. LEARNING TO PROGRAM 63

3.7 Metaphor

The question of the use of metaphor when teaching programming has been raised in

passing in a number of the preceding sections. Many of the innovative techniques

proposed for teaching programming involve metaphor in one form or another (either

in the use of physical props or in other forms of analogy). The discussion of levels of

thinking about teaching raises the question of how much the use of metaphor in this

way is desirable in teaching programming. This appears to be a level 2 concept, so

should it be allowed to intrude on level 3 teaching?

At the most basic level a computer program is a set of instructions that manipulates

binary digits. A programmer’s task is essentially simply to create a functionally

correct set of instructions from a specification. Unfortunately, humans find it hard

to think at such a low level and so some higher-level model is needed. This is why

experienced programmers use Java rather than machine-level code. At the same

time the experienced programmers have some mental model of what the program is

actually doing. There is some sort of understanding of registers, program counters,

and memory management. They could program at the lower level if they needed to.

Novice programmers on a higher education course that teaches programming as a

basic subject have none of these advantages (although somewhat curiously they will

probably study the inner workings of computers later on [55]). In particular they lack

an understanding of the “properties of the notional machine implied by the language

they are learning” [46]. This immediately places a barrier between the student and

the teacher to the extent that they have no common terminology, language, or world

view. Laurillard’s view of teaching as a conversational process [89] is an appealing one

for programming where support from a guru is so vital but a meaningful conversation

cannot take place between two people who have no common language. The use of

metaphor could perhaps help to cross this barrier.

Attempts to achieve this have considered the use of physical props such as Icky Poo [2],

acting out algorithms [56], other forms of physical participation [73], and paper-based



CHAPTER 3. LEARNING TO PROGRAM 64

models of the computer [100]. All these focus to an extent on the use of metaphor to

illustrate some basic concept. Variables can be modelled as boxes and the boxes can

have labels (for identifiers) and can be a certain size (a data type). Pointers can be

explored using physical means to establish linked lists between students in a lecture

room and parameter passing can be illustrated by a deft throw of the Frisbee [2].

Proponents of these techniques report that students enjoy them and later give good

course feedback when they are used but there is (as always) little tangible evidence

of their effectiveness.

Keller [81] advocates the use of such physical methods as a technique to be used when

designing teaching programmes that will motivate. However, he also warns against

their over-use and suggests that extensive use will limit their effectiveness and simply

confuse the audience. The value of these novelties depends on what Keller calls their

“judicious use”. There is another danger in the use of metaphor. Novices may come

to rely too much on the metaphor at the expense of a true understanding [45]. At

some point every metaphor breaks down (even a good metaphor) and the novice

must be made aware of when this has happened. Metaphors can be dangerous things,

especially if they are relied on.

No less an authority than Edsger Dijkstra [44] has argued strongly against the use of

such physical approaches, calling them “infantilization” and accusing those who use

them of “contempt of the student body”. In a response to the article in which Dijkstra

made this comments David Parnas [121] agrees that no teacher of engineering would

seriously consider describing “how much the electrons want to get to the opposite side

of a capacitor”. Dijkstra’s suggestion is that programming should be taught as the

process of arriving at a formal mathematical representation of a problem using some

suitable symbolic language. As it is a mathematical representation it will be possible

to test the program for correctness. The final part of Dijkstra’s suggestion for teaching

programming is that the language used should be one for which no implementations

are available. He argues that this would properly emphasise the task of programming

as that of producing error-free code.



CHAPTER 3. LEARNING TO PROGRAM 65

Even though Dijkstra was setting out his views over 20 years ago his ideas are still

relevant today. The higher education system in the UK, and the place of computing

in it, has changed almost beyond all recognition, but the fundamentals of computer

programming are still the same now as then. Teaching programming using one of

today’s high-level languages and environments can often cloud or (worse) totally hide

the fundamental underlying principles. These principles – the very concepts that

would be so closely addressed by Dijkstra’s approach – are the key to a truly deep

understanding of programming.

Dijkstra’s view is extreme and (like much of his other writing on educational matters)

probably deliberately intended to be provocative. It does raise a worthwhile caution

about the use of metaphor and reinforces Keller’s view that it should not be over-

used. Metaphor and other out-of-the-ordinary techniques have a place in teaching

programming but they are not a panacea. Rather their use adds to the smorgasbord

of instructional possibilities for a teacher. Their main purpose should be to aid in

the establishing of common ground between the teacher and the learner. After all,

the learner will have to come to share the teacher’s model at some point and there

is nothing worse than having to ‘un-learn’ something as a metaphor is set aside. A

level 3 teacher must not be afraid to dabble with level 2 ideas but must be prepared

to stop at dabbling.

3.8 Assessment

Assessment has again been a recurring background theme in many of the preceding

sections. To summarise:

• There must be a realistic amount. Too much simply leads to stress and has

little summative value anyway.

• All exercises should inspire and should be interesting.

• All exercises should incorporate some flexibility to allow students to work on



CHAPTER 3. LEARNING TO PROGRAM 66

tasks that they enjoy.

• A more relaxed theory Y attitude to deadlines and procedures is desirable (but

should not be taken to extremes).

A programming course has two distinct objectives. From the teacher’s perspective

the most important intention of the course is hopefully that the students will learn to

program. This aim can be characterised as a learning objective. At the same time the

students must be assessed and allocated a grade for that part of their degree. This

is an assessment objective. Many students will quite naturally regard this second

objective as the more important of the two.

It is not uncommon for these two objectives to conflict [49]. For example a student

will be expected to complete various summative assignments during a course. If one

is found to be particularly difficult and results in a low grade the student may well

seek help from the teacher. The teacher then has a dilemma. It is possible to teach

this student to program but it is also possible to provide coaching to a stage where the

assessment can be successfully passed (in a summative sense at least). The teacher

should value the first of these options more highly. The problem is that the student

is unlikely to engage (or be motivated) unless convinced that the assessment will be

successfully negotiated [49]. The student will thus be more interested in the teacher’s

second option.

As long ago as 1938 Dewey wrote that “all genuine education comes about through

experience” [43], a statement that neatly sums up the constructivist view. It follows

from this that the only way to learn how to program effectively is for the learner to

gain as much experience as possible of writing programs. This process must not be

driven by assessment (or at least not by summative assessment). A theory X model

where students are given weekly tasks to complete for summative credit (“or otherwise

they won’t do it”) is a sure recipe for disaster. Theory Y would also bring chaos but

of a different type. A middle ground is needed. As students learn at different speeds

(and will have different pre-existing skill levels) surely it makes sense to leave all

summative assessment until the end of the course.



CHAPTER 3. LEARNING TO PROGRAM 67

Assessment can also be a powerful motivational tool [135]. It is perhaps idealistic

to suggest that students would still engage in programming exercises even if they

were not being assessed in some way (even if only formatively) but they should be

given the chance. When and if this approach fails more summative assessment could

be judiciously and sparingly applied to make sure that the students are suitably

motivated.

Introductory programming courses often fall back on mathematical examples (largely

because this is all that seems possible with the basic programming concepts and

constructs that have been covered in the early stages of the course). This material is

hardly going to inspire many students. If mathematical examples have to be used it is

surely more interesting to use real data from real life applications such as real NASA

data from the Viking Orbiter [54] or something else similarly interesting. Even basic

algorithms can be explored within the context of encryption [68]. Perhaps the entire

programming process can be set in the environment of a game [112] or anything else

that might maintain interest.

To take this idea further students can be allowed to define their own assignments,

provided that the end results meet some set of criteria specified by the teacher [61].

The teacher provides some sort of framework, probably by giving a list of features

that must be included, and perhaps vets the students’ ideas to make sure that they

are reasonable and possible with the language being taught. The students can then

write a program in an area that interests them to show off the programming they

have learned (as an aside, this also neatly defeats the problem of plagiarism). Surely

this will be more interesting.

The counter-argument is that the reliable assessment of such exercises is difficult.

Indeed it is, so the exercises should be assessed only formatively. The final summative

assessment can be specified as tightly as required, as is usual in formal examinations.

Summative assessment is necessary but zeal in its application must not be allowed to

get in the way of the real business at hand – the learning.



CHAPTER 3. LEARNING TO PROGRAM 68

3.9 The Difficulty of Learning to Program

Programming seems to occupy a particular place of prominence in the first year of

degree-level computing courses. It seems to dominate the students’ experience to

the extent that those teaching other courses often complain that the students are

spending all their time programming. No-one with any substantial experience of

teaching programming would claim that the students find it easy. Some students

seem almost to want to hide from programming as they retreat, mollusc-like, into

their shells in an attempt to deny its very existence.

It is sometimes argued that the students who find programming difficult are simply

those for whom programming is difficult. The argument is simply that some students

have no aptitude for programming. The required skills often cited are problem-

solving ability and mathematical ability but there is little evidence that either has

any significant effect (although a recent study in Ireland [21] has once again hinted

at some connection between programming aptitude and experience in mathematics

and science). An attempt to address the diversity of the class at Leeds [77] employed

simple aptitude testing aimed at these two skills but the final results of the course

showed no significant correlation between the calculated aptitude and the final grade.9

It certainly helps to have some previous experience in programming before starting

a programming course [64] but this is not a measure of aptitude for programming

as such. There exist programming aptitude tests (PAT) produced by IBM but the

evidence for their effectiveness is at best inconclusive [101]. Other work [52] appears

to have shown in addition that no demographic factor is a particularly strong indicator

of likely success in programming.

The focus must then turn to cognitive factors such as learning styles or motivation.

It has been demonstrated that students who fail programming courses are likely to

be more extrinsically motivated than their peers who excel [143] but there is no study

9 More recent work on the diversity of the programming class at the University of Southampton [36],
building on that at Leeds, appears to show that the students’ own assessments of their feelings
about the course is a reasonable predictor of their final performance.



CHAPTER 3. LEARNING TO PROGRAM 69

that shows anything more than possible links between success in programming and

preferred approach to learning or observed learning style.

Perhaps the root of the problem lies in the subject itself. Is it the case that there is

something inherent in programming that makes it difficult to learn? The following

sections consider some of the reasons why this might just be the case.

3.9.1 Multiple Skill

Programming is a complicated business. An experienced programmer draws on many

skills some of which have little obvious relevance to the process of producing working

code for a computer. These skills are depicted in figure 5.

Abstraction
Problem
Solving

Mathematics
Logic

Life SkillsMechanics
Testing

Debugging

Programming

Figure 5: Skills Required for Programming

Problem-solving ability is essential. A programmer must be able to devise ways of

making the computer solve a particular problem sometimes in a particularly neat

or efficient way. This involves abstracting a generalised representation of a problem

from a specification. This expression must be made in logical terms (if . . . then . . . ,

while . . . do) using elements of discrete mathematics and logic. A knowledge of the

mechanics of producing a program (editing the file, compiling, finding the output) is

essential. The ability to test a program thoroughly to find and correct bugs covers

the final stage of the programming process.

Figure 5 also includes life skills which is appropriate only for students. Experienced

programmers do indeed require some life skills, of course, but the skills are rather



CHAPTER 3. LEARNING TO PROGRAM 70

different. Programming is normally taught as a fundamental subject at the start of

an overall programme [55]. This is a difficult time for many students. It is a time of

transition as they adapt to life and study at university and this adjustment requires

that they learn many things. At this point their expected enthusiasm to succeed may

well come into conflict with a fear of losing control [132] resulting in very high levels

of anxiety and distress. A programming course will bring many more new challenges,

both academic and personal. Students will have to learn how and when to seek help,

they will have to learn how to manage their own study and social time effectively, and

they will have to find their place and make new friends. These are difficult enough

things to do when a student is well settled but even harder at a difficult and stressful

transitional time.

The skills required for programming are not applied in isolation. They are applied in

the context of a particular problem or problem area. A programmer must understand

the problem and probably some aspects of the domain in which the problem exists

before these skills can be applied. This introduces even more skills into the picture.

The precise nature of these skills will be different in each case and so the programmer

has to be flexible.

Programming, then, is not a simple single skill (and it is certainly not a discrete body

of knowledge). To become a competent programmer a student must master many

things. Some of these are taught at the same time as programming, some may not be

explicitly taught (for example a teacher may assume that students will simply pick

up the use of an editor), and some are probably regarded as outside the direct remit

of a teaching department. To compound the problem (and somewhat curiously) some

of the skills will be taught after programming. Nevertheless, a student must master

them all.

Of course, some of these skills are required by all students no matter what subject they

have chosen to study. All students need to develop their life skills during their first few

weeks at university so that they are able to adjust to life in a new environment. Many

subjects require problem-solving ability and skills in mathematics. The important



CHAPTER 3. LEARNING TO PROGRAM 71

point is that programming students require all these skills and so find themselves in

an unusual situation.10

3.9.2 Multi-layered Skill

Figure 5 (on page 69) showed the skills needed for programming in a flat structure.

In reality these skills form a hierarchy (or chain [145]) and a programmer will be

using many of them at any single point in time [112]. When faced with learning

a hierarchy of skills a student will generally learn the lower-level skills first before

progressing upwards [12]. In the case of coding this implies that students will first

learn the details of syntax, then semantics, then structure, and finally style. Teachers

will be familiar with students who produce programs with no indentation, intending

to add indentation once the program works, or with no modules, intending to split

the program when it works. No experienced programmer would do these things but

these are bad habits that it is hard to leave behind (as well as habits that make

programming and debugging even more difficult).

It has been shown [94] that novice programmers tend to concentrate on syntax and

that this approach is reinforced by the way in which the topic is presented to them

in both lectures and in textbooks. This approach leads to an unwieldy collection of

knowledge and often almost random attempts to form the remembered syntax into

a working program. Without a knowledge of the higher-level issues of algorithms

students can never hope to write a program in any sensible and structured way.

Programming requires the mastery of many skills and it is far from obvious which is

best learned first.

From the teachers’ perspective it is surely very difficult to devise a lecture that can

deal with skills or information at several levels. For example lectures that focus on

details of syntax cannot really address the higher-level skills of understanding [19].

This multi-layered aspect to the programming skill is not merely a problem for the

learners.

10 A first year student at Leeds once pointed out that the only other discipline that required all these
skills in such profusion was Medicine.



CHAPTER 3. LEARNING TO PROGRAM 72

3.9.3 Multiple Processes

The process of transforming a specification into working program code is not linear

but probably consists of three distinct transitional phases between four identifiable

stages (figure 6).11

Specification

Algorithm

Recipe

Code

Figure 6: The Process of Programming

Starting with the specification (normally written in plain language) the programmer

must first draw on an understanding of the problem domain to devise an appropriate

algorithm. Loosely, this involves the programmer in re-writing the specification in

a precise way that is closer to an implementation. This is the hardest part of the

task and is something that draws heavily on abstraction skills. The final algorithm is

then translated into programming concepts or building blocks. This is a simpler task

for an experienced programmer who has probably seen similar programs before and

has a mental library of code chunks. Finally this design (or recipe) is translated into

actual program code. Given a correct recipe this final stage is trivial and is the only

one completely determined by the programming language being used.

11 Obviously an experienced programmer would not pass through these phases in a particularly linear
manner. This admittedly simplistic view is just intended to illustrate the fact that programming
requires the application of several processes.



CHAPTER 3. LEARNING TO PROGRAM 73

A student must master these three distinct phases. It is therefore unfortunate that

teaching can often concentrate on the low-level minutiae of syntax (something that

is perhaps encouraged by the use of highly symbolic languages and that is definitely

encouraged by many textbooks) at the expense of the higher-level, more complex,

processes of devising an algorithm. The issue arises of whether or not it is sensible

to teach syntax before the whole process has been understood and practised. This

recalls Dijkstra’s suggestion that programming should be taught in an environment

where the programming language is not implemented. There certainly seems to be

very little point in lecturing on syntax to students who do not understand how to

generate an algorithm from a specification.

Students will also tend to learn syntax first. They might therefore be expected to

have some chance with the third transition (given a correct design) but they will never

get there without some skill in the first two transitions. Again this calls to mind the

student hopelessly trying to compose a program by combining what appears to be

completely random syntax.

3.9.4 Misleading

A novice may well at first find the entire concept of programming alien. However,

hidden within this strange world will be some things that look familiar. An example

might be the everyday concept of ‘or’ [147] which has a linguistic meaning as well as

its meaning in Boolean logic and therefore in a programming language. Drawing on

this apparent analogy a novice’s attempt to code the statement ‘if the answer is y or

Y’ in Pascal might well be:

if answer = ’y’ or ’Y’ then

This statement can make perfect sense to a novice programmer because when read

aloud (“if the answer equals a lower case y or an upper case y”) it appears to be

exactly what is required. Worse still is the C++ version of this:



CHAPTER 3. LEARNING TO PROGRAM 74

if (answer == ’y’ || ’Y’)

While this is almost certainly semantic nonsense it is syntactically valid, will compile,

and will appear to work in certain cases.

An experienced programmer would immediately suspect that both these examples

are nonsense and would never consider writing such code. This highlights another

problem in the teaching and learning relationship. Teachers have to learn to trace

errors that they themselves (as experts [13]) would never make. Dijkstra [44] suggests

that this lack of a concrete everyday analogy to the programming process is one factor

which makes learning to program so difficult.

This also raises the problem that programming as an activity is far removed from

much day-to-day activity and hence prior experience. The basic building blocks and

tools of programming have no counterpart in day-to-day experience in any meaningful

sense and, worse, the nearest parallel worlds – arguably mathematics and language

– contain many instances of this negative transfer [112]. Students writing code such

as the Pascal and C++ in this section have simply transferred the semantics of a

linguistic ‘or’ to the domain of programming. It is not unreasonable that they find

this misleading.

3.9.5 Educational Novelty

Dijkstra [44] takes the view that learning is in general the process of transforming the

“novel to the familiar” in a slow and gradual process based on metaphor and analogy

(constructivism again). He argues that programming represents a “radical novelty”

in which this comfortable tried-and-tested learning system no longer works. Further,

adjusting to such a radical novelty is an unpopular activity because it requires a great

deal of hard work. The crux of the problem, according to Dijkstra, is that radical

novelties are so disturbing that “they tend to be suppressed or ignored to the extent

that even the possibility of their existence . . . is more often denied than admitted”.



CHAPTER 3. LEARNING TO PROGRAM 75

A feature of programming is that it is “problem-solving intensive” [123] in that it

requires a significant amount of effort (in several different skill areas) for often a

very small return. At the same time it is “precision intensive” [123] meaning that the

modest success that can be achieved by a novice requires a very high level of precision

and certainly a much higher level than most (if not all) other subjects.

Dijkstra agrees with this and observes that a feature of programming is that the

“smallest perturbation” [44] of a single bit in a program can render the program totally

useless. This has a lot in common with mathematical proof (and this is the direction

from which Dijkstra comes) and many engineering disciplines but it highlights the

difficulty. There are few everyday situations where this level of precision is required.

Students who start a programming course in higher education have come from their

own familiar academic setting. In this comfortable environment they were studying

topics with which they were, on the whole, happy and familiar and which they had

been studying for some years. They were most likely used to performing quite well

academically and had developed a set of tried-and-tested study skills and approaches

to learning. To arrive in a setting where they are confronted with a totally new

topic (and one that does not respond to their habitual study approaches) must surely

represent a radical novelty in Dijkstra’s terms. It is perhaps no longer study skills

that are required but coping skills.

3.9.6 Language

Any teacher of programming must be sure to draw a clear distinction between learning

to program and learning a particular programming language. Most teachers would

agree that the purpose of an introductory programming course is the former with

the latter providing no more than a convenient vehicle. It is hard for students to

appreciate the higher-level, more abstract, concepts of programming while they are

being taught to deal with the idiosyncrasies of a particular programming language.

This level of understanding comes only when programmers becomes proficient in many



CHAPTER 3. LEARNING TO PROGRAM 76

languages and can reflect on their learning so as to pick out an overall pattern and the

more general context. It is only then that someone can truly claim to have learned

to program.

3.9.7 Interest

Learning (or perhaps here ‘being taught’ is better) programming can be very dull.

Lectures covering the details of syntax are never going to be especially inspiring and

exercises that involve simple mathematical manipulations of collections of student

marks, stock levels, baseball statistics, or bank account details can never claim to be

interesting. At its best programming can be an enjoyable and creative occupation but

this only comes when a certain level of proficiency has been attained. It is not difficult

to see how a novice programmer could quickly form the view that programming was

simply rather boring.

Several teachers have published work describing ways to introduce more interesting

exercises into programming classes (for example [54], [61], and [112]) and also work

on approaches to make the presentation of programming concepts more entertaining

and dynamic (for example [2], [73], and [144]). It is claimed that these ideas make the

learning of programming less dull but, sadly, there is as usual little concrete evidence

to suggest that the students learn any better when exposed to such innovations. Still,

any attempts to make learning to program more interesting must be encouraged.

Students will not engage if they are not inspired.

3.9.8 Reputation and Image

Programming courses acquire a reputation of being difficult. This view is passed to

the new students by their predecessors and is often exaggerated in the telling. This

perhaps makes it acceptable, even expected, that a student will have difficulties in the

course (hinting at learned helplessness). At the same time there is the popular image

of a programmer to consider. This is of a socially-inadequate ‘nerd’ who spends all



CHAPTER 3. LEARNING TO PROGRAM 77

hours of the day and night producing arcane and unintelligible code (they have been

called “code warriors” [153]). It is hard to imagine many students aspiring to this

image.

If students approach a course with an expectation that it will be very difficult, and

with a negative image of those who excel in the subject, it is very hard to imagine

them being especially motivated.

3.9.9 Peers

Students approach a programming course from a wide variety of backgrounds [77].

Some will not have used a computer before (although admittedly this number is

shrinking dramatically) while others will have worked for many years as professional

programmers. The presence of this last group can in some cases have adverse effects

on the progress of the novices.12 It is hard enough trying to learn to program and

the presence of others who find the process so easy and natural can have a seriously

negative effect on motivation.13 Novice programmers may begin to feel inadequate

or feel that programming is simply something they cannot do (learned helplessness

again). This feeling is often sadly reinforced by the questions that some experienced

students will ask in lectures (often simply, it has to be suspected, as a means to expose

their own abilities to the whole class).

The students’ teacher will also make programming appear easy in a lecture setting

and during practical demonstrations. Novice students often report that they find

lectures easy to follow and can understand the programs that they see there. However,

when it comes to applying the higher-level skills [12] and writing their own programs

from scratch they are at a total loss. They cannot understand how something that

12 Hence the work carried out at Leeds [78] and Southampton [36] intended to remove these students
from the mainstream teaching into alternative classes more suited to their experience.

13 Working in groups can, of course, be beneficial. Hence the work at Leeds and Southampton again
which also aimed to group students of equivalent experience and background together so that they
can find support and encouragement from others with similar expertise working at a similar level.



CHAPTER 3. LEARNING TO PROGRAM 78

appears so easy to someone else is totally impenetrable to them. Their motivation and

confidence may well be increased by the experience of following a programming lecture

but the later inability to translate this understanding into practical programming is

a sure recipe for lowered motivation.

3.9.10 Pace

In an academic setting programming is taught (and therefore learned) to some sort of

predetermined set timescale. It matters not whether this is one or two semesters, or

even a number of years, the assumption remains that at some point the programming

course will end and the students who pass will, presumably, be able to program. This

means that the pace of instruction is not under the students’ control [93] and it is

more than likely that in the class there will be students who learn at different paces.

This will lead to the situation where novices cannot follow an example illustrating

some new concept because they do not understand some already-covered material. It

is easy to see how this could lead to feelings of helplessness and disillusionment or

specifically learned helplessness.

3.10 Summary

Programming is certainly a complicated skill to master and learning to program is

correspondingly complex. There are many features of the skill that cause this but it

must be possible to overcome them (or there would be no experienced programmers!).

Since it is a skill, parts of the generally accepted theory of learning do not transfer

especially well. This highlights the essential problem that programming is indeed an

educational novelty for all who approach it. Learning it will therefore be difficult and

probably unpopular. If learning to program is going to be a struggle the motivation

of those who learn it will be even more important than it is with a more conventional

subject.



CHAPTER 3. LEARNING TO PROGRAM 79

This chapter has considered some aspects of the environment in which students learn

to program. They need to acquire the skills possessed by experienced programmers

and a teacher’s primary rôle should be to facilitate this. It is probably safe to assume

that the students are reasonably well motivated before they start to learn to program

(but this will be investigated in the next chapter) and arguably it does not matter

particularly what their motivation is. Nevertheless, this motivation is crucial and

must be maintained. Its nature and development are the focus of the next two

chapters and of the remainder of this work.



Chapter 4

Value – The Class

Mog Edwards: . . . where the change hums on wires . . .

The first stage of the empirical part of this study examines the overall views and

motivations of a cohort of students as they follow an introductory programming course

in a traditional UK University. The aim is to gain an overall impression of the

motivation of a class of students studying an introductory programming course and

of the development of that motivation as the course progresses. In the terms of

the expectancy-value model of motivation the focus here is primarily on the value

component. Why do these students attach value to success in this course?

The classes surveyed were those at the School of Computing at the University of

Leeds and at the Computing Laboratory at the University of Kent at Canterbury.

The two institutions recruit students from roughly the same pool (the main difference

is geographic with Kent taking more students from the south of the country and vice

versa) and have comparable ‘A’ level entry requirements. The main difference in the

teaching of programming is that Java is taught at Kent whereas Leeds teaches C++.

Nevertheless, for the purposes of this investigation the two classes were treated as a

single cohort. The students included were all those taking the programming course

80



CHAPTER 4. VALUE – THE CLASS 81

in the first year of their degree programme. These included both those following

single-subject and joint-honours programmes. All the students were studying for first

degrees. The differences in the backgrounds and learning experiences of the students

will be considered in section 4.1.3.

The students were surveyed by brief questionnaires presented in lectures at three key

points in their course. The first questionnaire was presented at the start of the course

before any programming had been taught and the others followed at the midpoint

and finally at the end. For the purposes of this study and in the interests of simplicity

the whole first year programming stream is treated as one course (in reality it is two

separate modules at Leeds and a part of one module at Kent). The questionnaires

used are included in appendix A.

A somewhat similar study to that described in this chapter was carried out in 1998 at

Middlesex University [34]. This work surveyed students taking programming across

the first two years of their course (and so is not directly comparable to the present

study) but its results are nevertheless interesting. The survey was also carried out

by questionnaires which first asked the students to respond to a free-form question

to express their motivation and secondly asked them to select from a predetermined

list to express the same.

At the start of the course at Middlesex four motivations clearly dominated in the

answers to the unprompted part of the survey. These were:

• to learn to program.

• to become a professional programmer.

• an understanding of programming will help in a future career.

• to understand more about programs and programming.

Over the next two semesters these remained dominant with the proportion selecting

all but the second appearing constant. The exception, ‘to become a professional

programmer’, decreased in popularity from some 20% to a negligible 2% during the



CHAPTER 4. VALUE – THE CLASS 82

lifetime of the survey. At the same time a fifth motivation ‘because you have been told

to do it’ increased in popularity from only 1% to 19% (another ‘to get the credits’ also

increased from 11

2
% to 9% over the same time). This clearly points to a significant

change in the students’ motivation from extrinsic and intrinsic factors to what might

well be classed as null motivation.

When the students were asked to select from a predetermined list two motivations

dominated throughout:

• to learn how to program.

• an understanding of programming with help in your future career.

The first of these choices points to intrinsic motivation while the second indicates

more extrinsic factors. Intriguingly the number selecting ‘because you have been told

to do it’ from the predetermined list remained small throughout in this survey.

The final conclusions from the work at Middlesex stated not unreasonably that the

majority of students approaching a programming course see some future career in

programming as an attractive possibility and are, therefore, (in the terminology of

the present study) extrinsically motivated. This interest decreases as they progress

through their course. The students’ motivation changes and gradually tends to null

factors. It will be interesting to see whether these findings are reproduced at Leeds

and Kent.

4.1 Methodology

The surveys were carried out by means of a series of three short questionnaires (shown

in sequence in appendix A). There were potentially over 400 students to be surveyed

and this method was expected to produce the greatest possible rate of return. With

many potential responses it was not really feasible to rely on other techniques such as

interviews or focus groups. The questionnaires were distributed in lectures in order

to maximise the coverage.



CHAPTER 4. VALUE – THE CLASS 83

One question was included on all the questionnaires in order to identify the dominant

motivation of the class (as defined in section 2.1.1). It asked the students to choose

from a set of statements the statement that which most accurately described their

motivation for their degree course:

1. I want to do well for my own satisfaction.

2. I want to do well to please my parents or family.

3. I want to do well to please my teacher.

4. I want to do well so that I will be able to get a good job.

5. I just want to pass.

These answers guide students to identifying their main motivation (in categories that

correspond to those already described in section 2.1.1) but without making explicit

mention of them. The students chose the most appropriate statement simply by

ticking the box next to it.

These five statements correspond to the types of motivation already identified and

categorised as follows:

1. achievement – the sense of doing well.

2. social – pleasing those whose opinion is valued.

3. social – this time to please another figure1.

4. extrinsic – rewards from a future career.

5. null – no particular motivation.

1 Two statements were used for social motivation because the possibility of a student wanting to
please their teacher seems sufficiently different to a desire to please their family (and much less
likely).



CHAPTER 4. VALUE – THE CLASS 84

It was expected that evidence of the final category of motivation (intrinsic) would

emerge in the answers to other questions on the questionnaires although achievement

motivation is effectively a particular form of intrinsic motivation2 (deriving from the

results of learning in its own right rather than directly from the subject itself).

The questions on the remainder of the questionnaires were different for each and

were chosen depending on the point in the course reached (they are described in

the appropriate sections). Where open subjective responses were required, they were

always asked for in the form of a single word. It was hoped that this would be

preferable to a selection from a list which might guide students to particular answers or

to the answers they might think the investigator wants to hear [118] (a possible cause

of some of the rather incongruous findings from the Middlesex study). The words

can be sorted, categorised, and sets of words taken to indicate the same essential

motivation (for example ‘money’, ‘career’, and ‘salary’ would all indicate that the

motivation lies in the expected financial rewards from some future career). The choice

of categories can also be guided by the words given to allow a highly unrestricted

analysis. The following sections describe the categories that emerged and provide

examples of the words assigned to each. A full list of the words received for each of

the questionnaires is included as appendix B.

The questionnaires were anonymous and included only basic demographic details

from each student. These details allowed analysis by different institutions and degree

programmes. It would also have been possible to analyse the results based on gender,

age, or country of origin but such analyses are beyond the scope of the present study.

The results should be interpreted in the light of the differences in the way in which

programming is taught at Leeds and Kent. It is also recognised that distributing the

questionnaires in lectures will restrict the study to responses from those students who

actually attend lectures. In particular it is to be expected that the later surveys will

have a lower return rate as more students are absent from lectures. Nevertheless,

2 A statement directly addressing an interest in computing was not appropriate due to the range of
joint-honours degree programmes included.



CHAPTER 4. VALUE – THE CLASS 85

the ‘in-lecture’ approach offers the highest possible return rate especially as it was

arranged that the responses would be collected in the same lectures as they were

distributed.

Before presenting the results of the questionnaires the following sections describe the

programming courses and Leeds and Kent and consider whether or not there are any

significant differences that may affect the results.

4.1.1 Programming at Leeds

The School of Computing at the University of Leeds is one of the largest university

computing departments in the UK. In the 2000/01 session there were approximately

800 undergraduate student FTEs3 and 32 teaching staff FTEs. The School offers four

single-subject degree programmes and has a significant stake in many joint-honours

degrees. The past few years have seen a significant increase in student numbers at a

rate well above the overall figures for the University.

The four single-subject degrees cover rather different aspects of computing and so

provide a broad range of options. Computer Science takes a very theoretical view,

while Information Systems is based much more on applications and human issues.

Computing has recently been introduced to provide a third option in the middle

ground between these two. Finally, Cognitive Science gives students the opportunity

to study artificial intelligence together with courses in psychology and philosophy (as

such it is very much more like a joint-honours programme than a single subject).

All degrees run for three years although many students choose to take an optional

placement year between the second and final years to make a four year course. The

degree programmes are modular with each year consisting of 120 ‘credits’, normally

made up of twelve equally weighted modules. Most modules are taught over twelve

weeks either before or after Christmas. There are usually two lectures for each module

3 An FTE is a ‘Full Time Equivalent’. One single-subject student is one FTE and a joint-honours
student is less (the proportion depending on the amount of their time that they spend studying
computing). A similar definition applies to staff FTEs.



CHAPTER 4. VALUE – THE CLASS 86

each week and these may be backed with examples classes. University-wide rules

require a student to spend 75 hours on each module. In addition to their module

commitments students are expected to attend a one hour small group tutorial with

their designated Personal Tutor every week during their first year.

Programming is fundamental to all the degrees in which the School is involved. At

the introductory level it is taught in two modules over the first year. In the year of

this study the first semester module covered a largely procedural subset of C++ and

made some use of a small number of STL features for simplicity. This was followed in

the second semester by a module covering object-oriented C++. These two modules,

together making up a sixth of each student’s time, would be the only programming

studied by most in their first year (a few would study some basic Prolog elsewhere).

Some students will learn more C++, and possibly Java, in the second year of their

course. A few will study some functional programming in ML. All programming

modules use a Unix (specifically LinuxR©) platform with a vi-compatible editor. The

C++ compiler used is the Free Software Foundation-supported g++ from the GNU

Compiler Collection together with the ddd debugger (actually a graphical interface

to GNU’s gdb).

The class size for introductory programming is around 300. The module is taught by

two members of staff and the majority of the formal teaching is by the two lectures

each week. In addition a supervised lab session [38] is provided where students carry

out a practical assignment with immediate support available.

Both modules are assessed completely by coursework (there is no examination). There

are four assessed exercises backed up by two ‘Validation Tests’ on the same material.

These tests are largely intended as devices to detect plagiarism and are thus designed

to encourage the students to engage with the coursework material rather than relying

on the efforts of others.4 All coursework is carried out by the students working alone

4 The consequences for an individual of high coursework marks and low marks in the tests are
unpleasant since this phenomenon is generally taken to cast doubt on the legitimacy of the process
whereby the coursework marks were achieved.



CHAPTER 4. VALUE – THE CLASS 87

but each exercise is set at a series of levels so that each student may work to a chosen

level depending on ability or inclination [38].

A matter of some concern in recent years has been the apparent diversity of the

class [77]. A first attempt to address this has been the establishment of a ‘fast track’

group of students. These are taught separately on the basis that they have significant

prior programming experience. They have only one formal timetabled hour each

week and follow a different assessment regime. The benefit here is that a number of

experienced programmers are removed from the main class and this hopefully makes

that class more homogeneous. At the same time these fast-track students benefit

from working with others of similar experience.

The School of Computing is proud of its friendly atmosphere and students are always

encouraged to seek help directly from staff. Students are also frequently urged to

seek advice and additional help and support if they find the programming module

particularly difficult. The module staff generally form ‘extra help’ groups of these

students who are given the opportunity to attend an informal extra hour’s tutorial

each week. Experience has shown [22] that, for a variety of reasons, these additional

classes are taken mostly by the female students so other support mechanisms are in

place to address the needs of the male students who appear to tend to prefer electronic

and impersonal support. Those provided include module-specific newsgroups [17] and

an anonymous question-asking facility modelled on that used at Kent [5].

Success in the first semester module is a prerequisite for entering the second year of

all degree programmes in the School (and thus for the vast majority of the class). The

second semester module is a prerequisite for all the single-subject programmes and

also for the majority of the joint-honours programmes. Thus failure in either module

will probably prohibit a student from entering the second year of the course.



CHAPTER 4. VALUE – THE CLASS 88

4.1.2 Programming at Kent

The most recent Teaching Quality Assessment rated the teaching in the Computing

Laboratory at University of Kent at Canterbury as ‘Excellent’. It is a somewhat

smaller department (in a rather smaller university) than the School of Computing

with about 600 undergraduate FTEs and 405 teaching staff FTEs. There is only one

single-subject degree programme, Computer Science. There are also joint-honours

programmes that include computer science but there are far fewer than at Leeds.

The content of Computer Science is less theoretical than the course with the same

name at Leeds. In emphasis and content the Kent course probably lies somewhere

between the Computer Science and Computing courses at Leeds.

The Computer Science degree programme runs for three years with the optional

industrial placement year between the second and third years providing the four year

option. The programmes are modular with each year consisting of the usual 120

credits. Modules are taught over the whole session with most assessment taking

place in April or May. Students are expected to spend about 40 hours a week on

their studies (slightly more than at Leeds).

The programming language used is Java. It is taught as part of a module that

occupies a quarter of a student’s year (in terms of credits at least, since 30 of the 120

come from this course). The weekly formal teaching consists of two lectures and one

class (a practical exercise held in a laboratory) each week over the 24 week academic

year. The class size is about 180, 130 of whom are reading Computer Science. The

single-subject students also study some functional programming in Haskell as part

of another module. Success in the programming module is not strictly essential for

progression into the second year.

The approach is ‘objects first’ with simple objects being used in the first assignment.

The platform is Windows NTR© using what amounts to a simple IDE consisting of an

5 This is actually higher than the number at Leeds since a higher proportion of the staff at Kent
are involved in teaching.



CHAPTER 4. VALUE – THE CLASS 89

editor with a simple development environment added. All the required software is

available free-of-charge and many students install it on their home machines. Early

exercises involve altering or extending existing programs and many are graphical (for

example using method calls to move a small graphical object around the screen).

Assessment is 20% by coursework (half of which is carried out by an ‘examination-

style assessment’) and 80% by a formal end-of-session examination. In the 2000/2001

session all coursework was carried out in pairs and exercises (many of which had only

a small summative assessment value) were submitted fortnightly.

Programming is a fundamental part of the whole degree programme. Students can

expect more modules using Java and Haskell and may encounter C and OCCAM.

There is no sensible path through the degree that avoids a significant amount of

programming.

At present all students take the same route through the module. There are a small

number who arrive as highly skilled programmers for whom the programming course

offers little and many students with little or no experience who find the programming

extremely challenging. The examination-style assessment is carried out towards the

end of the first term and is used as the basis for some streaming for the practical

classes in the second term. The students who perform better are allocated to groups

that may tackle some more complex aspects of programming while those who struggle

are grouped together in other classes. The assessment regime remains the same for

all.

Staff knowledge of Java is good and there are many more staff involved in teaching

the course than at Leeds. Many staff supervise the classes and the atmosphere is

informal. Students are free to approach staff for help and many do. Support is also

available through bulletin boards and from an anonymous question-asking system

presented from a web page (in fact the original system that has been adapted for use

at Leeds).



CHAPTER 4. VALUE – THE CLASS 90

4.1.3 Comparison

The students from the two departments in the study are on the whole comparable.

They have been recruited from basically the same pool of applicants and they then

go on to follow similar degree programmes. There is no particular reason to believe

that the geographical difference in catchment area would make any difference to the

ability or learning of the students.

Other work carried out at Leeds and Kent [16] has demonstrated statistically that the

cohorts at these two institution can reasonably be treated as a single one for a study

such as this and they have been treated as such in similar studies [24]. However, there

are some differences which may have an influence on the present study. The main

attractions to students at Leeds are said to be the nightlife in the city while students

choosing Kent are attracted by the sporting facilities [130]. This shows something

of a different motivation for choosing an institution but should have no impact on

intellectual ability or ability to learn to write computer programs.

The main difference in the programming module is that Java is taught at Kent as

opposed to C++ at Leeds. The computing environment is also different. That at

Kent is based on a Microsoft operating system and in this way uses a platform with

which the students are much more likely to be familiar before the start of the course.

The Unix-based system at Leeds is much more likely to be unfamiliar and thus has

a steeper learning curve. This means that students at Leeds are learning to use a

new computing environment as well as learning to program. This is something that

might be expected to cause them extra difficulties. However, there is scant evidence

anywhere in the extensive literature that the language or platform used has much

influence on the effectiveness of the learning. Both Java and C++ are high level

object-oriented6 languages and they each have their own peculiarities and foibles.

There are more students in the class at Leeds but this is not particularly important in

a lecture setting. Both teaching schemes include smaller group activities with plenty

6 In the case of C++, just about object-oriented.



CHAPTER 4. VALUE – THE CLASS 91

of opportunities for students to gain considerable hands-on experience with plenty of

immediate support available. The other support mechanisms are identical (the Leeds

anonymous question-asking facility is a simple adaptation of the code for the system

used at Kent).

The larger class at Leeds appears to be more diverse if only in terms of the number

of degree programmes represented. The great majority of the students in the class at

Kent are studying a single-subject programme while almost half their counterparts

at Leeds are reading a joint-honours degree. The Kent class is thus somewhat more

homogeneous in terms of chosen degree programme at least.

It follows that the measures at Leeds to provide extra support to strugglers and extra

challenges for experienced programmers have no formal counterpart at Kent. They

would be uneconomical (or at best less economical) with the smaller class and the

streamed lab sessions may well render them unnecessary. Equally, the need for them

has never been seen to arise.

While both departments have modular degree structures that in place at Leeds is

rather more compartmentalised with modules being very much free-standing with

limited interfaces to others. Modules at Kent are somewhat broader. A particular

issue is that programming is a part of other modules at Kent whereas at Leeds it is

confined to its own modules. This means that programming is a much more integral

part of the degree at Kent and has much closer links with other subjects. This is

possible mainly because there is only one programme and no ‘softer’, less technical,

course to correspond with Information Systems at Leeds.

There are other differences. The module at Leeds is currently taught by two staff

who have responsibility for all lectures, classes, and assessment. Rather more staff

are involved at Kent where one presents the lectures and many more act as class

supervisors in the lab sessions. The assessment regimes are very different. Leeds

relies on 100% coursework as opposed to 80% formal examination at Kent. The

fortnightly exercises (with little summative value) used at Kent have no equivalent at

Leeds except perhaps the exercises carried out in the weekly lab sessions (but these

have no summative assessment value at all).



CHAPTER 4. VALUE – THE CLASS 92

Overall it is reasonable to treat the students at Leeds and Kent as a single cohort

when a study does not deal with the intricate details of the course that they are

following. Their motivations will have been influenced by a range of issues before

they started their course and these are quite independent of their chosen institution

or of the precise degree course they have chosen. During the course they will have

much the same experience with much the same material being covered and assessed

in similar ways. A Kent student would certainly recognise the experience of a Leeds

student, and vice versa.

While the institutional differences between the two groups of students can be ignored

there may remain differences in the other factors that impact on their motivation. A

thorough investigation of this would require a highly fine-grained investigation into

the activities and cultures of the two departments and is beyond the scope of this

study. A brief informal investigation, in the form of an hour spent chatting with

some students from Kent, seemed to confirm that the two groups of students were

comparable. The students at Kent had undergone experiences and had developed

attitudes that would certainly not have been out of place at Leeds.

Even though the two classes will be treated as one throughout the following surveys

and discussion, the different responses from the two institutions will no doubt be

of interest to some. For one thing they will show whether the decision to treat

the two cohorts as one was correct! For this reason the key tables of data in the

following sections are reproduced showing responses from Leeds and Kent separately

in appendix D and a complete set of results (broken down by degree programme as

well as by institution) is included in appendix E.

4.2 Before the Module

The aim of this part of the study is to establish the dominant motivations of the two

classes at the earliest possible point and certainly before any serious programming has

been started. The students have all made the choice to start on a computing degree



CHAPTER 4. VALUE – THE CLASS 93

programme and, as part of this, have enrolled for a programming module. Why have

they chosen to do this? What is their motivation?

The following sections, and also those for the subsequent surveys, present summaries

of the data gleaned from the questionnaires. The raw results may also be of interest

and are included in appendix E. The questionnaires themselves can be found in

appendix A.

4.2.1 Survey

The first questionnaire (figure A1 in appendix A) was distributed in a lecture at the

same point in the course at both institutions. The chosen lecture was the earliest

possible in the course before any significant academic content had been covered. In

addition to the standard question the students were asked two key free-form questions

that addressed two slightly different aspects of their motivation:

• Please write here the one word that best describes your reason for taking your

degree programme:

• Please write here the one word that best describes your reason for taking this

programming module:

A total of 365 valid responses were received, consisting of 226 from Leeds and 139

from Kent. The return rate (in terms of the number of students registered for the

modules) was around 70%.

4.2.2 Analysis

The words given by the students in answer to the free-form questions were sorted and

categorised (using dictionary and thesaurus when necessary) to group synonyms and

other combinations of words reflecting similar motivations (there was no attempt at

all to prejudge the categories or to work from any predetermined list). The categories

that emerged from this process formed the basis for a numerical analysis of the results.



CHAPTER 4. VALUE – THE CLASS 94

A full list of the words together with the categories to which they were assigned is

included in appendix B. Since the questionnaires were anonymous it was not possible

to confirm the meanings behind the answers. As many as possible were assigned to

categories that seemed to be the most appropriate but the few totally impenetrable

responses that remained were assigned to a don’t know category.

The categories that emerged for the first question (‘Why are you taking this degree

programme?’) were:

• achievement – the main motivator is success for its own ends. Typical words

were satisfaction, challenge, and ambition.

• aspiration – motivations centering on some future goal. Typical words were

career, job, money, and (with commendable honesty) avarice.

• enjoyment – the motivation is found in the enjoyment derived from the process

of studying. Enjoyment, fun, and stimulating were typical.

• learning – words that indicate that the very act of learning was a motivator.

Typically curiosity, enlightenment, and learning.

• passage – there was no clear motivation other than studying for a degree being

seen as the next step in the stages of education. Continuation, progression, and

parents.

• programme – the motivation lies in some aspect of the degree programme itself.

Typical words were consolidation, relevant, and technology. One had chosen the

programme because it was easy.

• university – the main motivation is the opportunity to go to university and this

is seen as a social rather than an academic opportunity. Beer, independence,

and Leeds all featured.

• don’t know – responses that indicated no clear motivation. Examples were

boredom, confusion, and stupidity.



CHAPTER 4. VALUE – THE CLASS 95

A similar process for the question specific to the programming module produced

slightly fewer categories. The full list of words and categories is again included in

appendix B.

• career – the motivation is to acquire a useful skill that will be used in a future

career. Typical words were career, job, and money.

• content – the motivator is in some or all of the module syllabus. Words used

included Java, OOP, and skills.

• compulsory – the module is simply part of the degree course that must be

negotiated and there has been no element of choice involved. Compulsory,

force, and required.

• enjoyment – the main motivation relates to enjoyment of the experience of the

module. Exciting, fun, and enjoyable.

• learning – it is simply the process of learning something new that is the main

motivation. Typical words were curiosity, interesting, and knowledge.

• don’t know – words that seemed to indicate no motivation at all. Some of the

answers were somewhat surreal, including elderberries. Other answers seemed

to indicate that the student had no idea why they were studying programming.

All the responses were classified under these headings to determine the dominant

motivations among the students.

4.2.3 Results

The results from the two free-form questions are tabulated in tables 1 and 2 on the

next page. The results from the standard question about general motivation are

presented in table 3 on page 97. The slight variations in the total numbers for each

part of the survey are due to a small number of incorrectly completed questionnaires



CHAPTER 4. VALUE – THE CLASS 96

or blank answers to some questions. The presence of some rounding in the percentages

means that the percentages do not always add up to exactly 100%.

Frequency Percentage
achievement 13 3.78
aspiration 141 40.99
enjoyment 20 5.81
learning 123 35.76
passage 5 1.45
programme 29 8.43
university 4 1.16
don’t know 9 2.62

Table 1: Motivation for Degree

Frequency Percentage
career 23 6.74
content 47 13.78
compulsory 174 51.03
employment 16 4.69
learning 66 19.35
don’t know 15 4.40

Table 2: Motivation for Programming

4.2.4 Discussion

Two factors are clearly dominant in the students’ motivation for their degree courses

(table 1). The aspiration for some future gain (presumably in the form of a financially

lucrative career) is the most important factor. This is closely followed by the desire to

learn. The closeness of these two values is surprising. Many now assume that students

are taking computing degrees largely (even solely) as a route into a lucrative career

in the IT industry (a result already found in Leeds [28]) but these results certainly

seem to indicate that a significant percentage of students claim to be committed to

learning for its own sake.



CHAPTER 4. VALUE – THE CLASS 97

Frequency Percentage
own satisfaction 168 48.98
please family 1 0.29
please teachers 0 0.00
get a good job 164 47.81
just pass 1 0.29
don’t know 9 2.62

Table 3: Attitude to Studies

The low figures for passage and university are also of interest. Universities often try

to sell themselves to potential students on the strengths of their surroundings or of

the city in which they are located. The relatively small number of references to such

contextual factors suggests that this does not appear to be especially important to

the students. Nor do many see a degree as simply the next step after school.

These results indicate that the almost half of students are extrinsically motivated

(aspiration) and that this is the most popular motivation. Slightly fewer students are

motivated intrinsically (learning) but this seems to be more to do with the process of

learning itself rather than with an interest in computing or programming. It is hard

to separate this satisfactorily from achievement motivation and it may be that the

value derived from learning is more to do with the resulting sense of doing well.

The responses to the second question (table 2 on the previous page) show that the

majority of the students perceived the programming module as simply a compulsory

part of their degree. This is worrying, especially when taken with other findings at

Leeds and Kent that show that students do not expect to study programming [25].

The staff of most university computing departments would regard programming as

a fundamental skill that underpins the whole degree and it is disappointing that the

students do not seem to think in the same way. There is a clear danger here that

teachers will find themselves addressing the 20% or so who are interested in learning

to program and will fail to motivate nearly half the class. If departments truly believe

that programming is important they must pass this view on to their students.



CHAPTER 4. VALUE – THE CLASS 98

The low number of students pointing to career aims as a reason to learn programming

is surprising and somewhat at odds with the previous work at Leeds in which students

identified programming as a vital skill in demand by industry. This may suggest that

students are now approaching programming from an ill-informed position in that

they do not now have a clear idea of the marketable skills they need to acquire.

The responses to the first question certainly seem to indicate that this would be of

interest to them and thus would be an important motivator. The answers to these

two questions taken together seem to show that many students are interested in a

lucrative career in the IT industry but do not plan to work as programmers.

The results of the final question concerning the students’ overall attitude to their

degree programme (table 3 on the previous page) are striking. Two motivations are

dominant as the basic motivations of roughly the same number of students. These

represent achievement motivation and extrinsic motivation. The slight dominance of

achievement motivation that emerges here is a surprising finding for those teachers

used to dealing with tactical or strategic students. The fact that very few students

chose the other three motivations suggests that these are effectively absent at least

at the start of the course.7 It will be interesting to see how this motivation develops

over the course and, in particular, whether the interest in achievement is maintained.

These were students in the first week of the first semester of their first year. Their

attitudes will obviously change as they go through their course and these changes are

investigated in the following sections. It is possible that some students will discover

a genuine interest in programming or computing and from this will come to develop

an intrinsic motivation. When they are better informed some may come to value

the learning of programming more for more extrinsic reasons. During this time it is

also to be expected that the poverty of student life will lead some to become more

interested in the possibilities of future financial gain and less inclined to learn for its

own sake. However, it seems that there is very little evidence from any question in

this first survey that any significant number of students are motivated by an intrinsic

7 This also confirms the suspicion that no students are motivated primarily to please their lecturer.
This is a great shame.



CHAPTER 4. VALUE – THE CLASS 99

interest in the subject itself. This is surely a somewhat depressing observation for

computing educators.

Students will not learn about computing at all unless they are taught to (or somehow

otherwise come to) value the outcomes. While this survey suggests that they are not

motivated by an interest in the subject, it does show that they are motivated for

other reasons. In a sense it matters not at all what these reasons are. Students will

engage and participate in the activities devised for them as long as they are motivated

for some reason. It appears that at the outset the value part of the expectancy-

value equation is just about present and correct. The implication is that a teacher

approaching a first-year programming class cannot afford to assume that the students

are motivated to learn to program. Students have a set of aims – an agenda – that

means that they are in a programming class. It is not always the case that they want

to learn to program or even that they are at all interested in the skill. A teacher

must be aware of this motivation and must attempt to address and develop (or at

least maintain) it.

This study now moves on to investigate how the students’ attitudes and motivation

have developed after their first semester’s work. The focus remains very much on the

value that they attach to success in this work.

4.3 Halfway Through the Module

The halfway point in the programming courses was reached at both institutions after

about eleven weeks just before the Christmas break. At Kent this was simply a break

in the single programming course but at Leeds it represented the end of the first

programming module (although the vast majority of the class would go on to study

the second module in the following semester). The material covered to this point was

much the same at each institution with the notable exception that the students at

Kent had been programming with objects from the outset while those at Leeds had

not yet used them. However, both groups of students would have been expected to



CHAPTER 4. VALUE – THE CLASS 100

have spent about the same amount of time on their programming. The aim of this

second survey is to investigate the effect of this first semester’s work on the students’

motivations. The focus is naturally on any possible changes.

4.3.1 Survey

The survey mechanism from the first part of the study was not entirely satisfactory.

The ‘one-word answer’ approach provided responses that were straightforward to

analyse and categorise but there were clearly instances where it was too crude. There

were a few questionnaires (no more than a handful) where the students had tried

to select more than one option, had written more than one word, or had otherwise

managed to convey that their motivation could not be adequately described in a single

word.

The basic design of the questionnaire was retained in spite of this. In retrospect a more

flexible design would have been better but any dramatic changes would have made

comparison with the results from the first questionnaire extremely problematical, if

not impossible.

The second questionnaire was once again distributed to the students in a lecture at

the two institutions. The lectures were at the same point in the courses – the last

possible before the Christmas break. This time the two key free-form questions aimed

to look back to the part of the course just finished and at the same time forward to

the next semester’s work. They were:

• Please write here the one word that best describes your attitude today towards

the C++ or Java programming course you have done this semester:

• Please write here the one word that best describes your attitude today towards

the programming course you will take next semester:

The questionnaire also included the standard question about the students’ overall

attitude to their degree programme. The full questionnaire is included as figure A2

in appendix A.



CHAPTER 4. VALUE – THE CLASS 101

There were fewer valid responses this time. Lecturers at Leeds and Kent both reported

a great deal of absenteeism (something which appears to be an increasing problem and

not just a problem in programming classes). There were 262 responses, consisting of

165 from Leeds and 63 from Kent. This still represents just over 50% of the registered

students.

4.3.2 Analysis

As before, a great deal of variation was to be expected in the answers to the free-form

questions. The same collation process was used as for the first questionnaire. The

answers were grouped and synonyms were removed to allow some general classes to

emerge. At an early stage in the analysis it became apparent that two very broad

categories were appearing. One related to the experience or expectation and another

focused more on the difficulty or otherwise of the material itself. Each of these

attracted answers at the extremes as well as more neutral views. The four extremes

provided final categories as did the more neutral responses. As expected, a don’t know

category was also needed.

The same categories were used for both questions although the interpretation for each

is slightly different. The complete lists of words and their categories are included in

appendix B. For the first question they were:

• positive – the student has in some sense enjoyed the module or has found it

interesting. Typical words were enjoyable, happy, and rewarding.

• negative – the opposite. This category includes a variety of reasons for the

negative experience and a range of strength of feeling. It includes words such

as boring, confusing, hateful, and useless.

• easy – the material in the module had been straightforward. Words such as

intuitive, comfortable, and logical were all used.

• difficult – again the opposite. The response indicated that the main feeling



CHAPTER 4. VALUE – THE CLASS 102

about the course related to the difficulty of the content. Complex, taxing, and

impossible all featured.

• neutral – the programming module had been no particular problem and so the

student appeared not to have any particularly strong feelings about it. Words

used included alright, compulsory, and reasonable.

• don’t know – a final category for answers that were blank, surreal, or otherwise

largely impenetrable. These included money, templateless, and compromising.

There is possibly some potential overlap between the positive and easy categories and

equally the negative and difficult. They are kept separate for the moment since it

seems too simplistic to argue even in an educational context that an easy experience

is of necessity a positive one or that a difficult experience is negative.

The same six categories were used for the responses to the question looking forward

to the next semester’s work. The words provided were rather different and in this

case the categories are interpreted as:

• positive – there is some clear element of looking forward or optimism. Cool,

hopeful, and prepared were typical. There were also words expressing a positive

attitude such as determined, enthusiastic, and aggressive.

• negative – the opposite. The same variety of reasons for this was represented

by words such as horrified, despair, and boring. The words expressed a range of

strength of negative feeling ranging from uneasy through to obscenities.

• easy – the remainder of the course is expected to be straightforward. There

were only three words used – confident, easy, and easier.

• difficult – the course is expected to be hard. The words used were difficult,

hard, and tough.

• neutral – words that seemed to express no particular opinion either way. These

included alright, forward, and (once again) compulsory.



CHAPTER 4. VALUE – THE CLASS 103

• don’t know – the usual category for the answers that defied classification. This

time they included undecided, no idea (which is actually two words), and ahhh.

Once more there is some potential overlap between these categories. In this case some

of the don’t know words could perhaps have been interpreted as neutral and the same

observation about the possibility of combining pairs of the first four categories still

holds.

4.3.3 Results

The results are shown in tables 4, 5, and 6. The slight variation in the total number

of responses to each question is as before due to the small number of incorrectly

completed questionnaires. For reasons that are unclear this time several students

answered only the final question about their attitude to their course as a whole.

Frequency Percentage
positive 96 38.55
negative 44 17.67
easy 9 3.61
difficult 42 16.87
neutral 51 20.48
don’t know 7 2.81

Table 4: Looking Back

Frequency Percentage
positive 107 46.52
negative 62 26.96
easy 4 1.74
difficult 14 6.09
neutral 29 12.61
don’t know 14 6.09

Table 5: Looking Forward



CHAPTER 4. VALUE – THE CLASS 104

Frequency Percentage
own satisfaction 146 55.73
please family 4 1.53
please teachers 0 0.00
get a good job 97 37.02
just pass 11 4.20
don’t know 4 1.53

Table 6: Attitude to Studies

4.3.4 Discussion

Table 4 on the previous page shows a healthy proportion of the students with a

positive attitude to the course they have just finished. This must be taken in the

context of a survey of students who had attended a lecture since it is possible that

those who were absent would have had different views. Less than half as many had

had a negative experience and slightly more than this remain undecided. It might be

suggested that these responses may be linked to prior experience and expectations

but that cannot be demonstrated with any confidence from the present data.

It has been suggested that positive and easy are aspects of the same experience which

might be characterised simply as satisfactory. Similarly it is possible to aggregate

negative and difficult into an unsatisfactory category and to include neutral and

don’t know under a more general neither category. This gives the distribution shown

in table 7.

Frequency Percentage
satisfactory 105 42.17
unsatisfactory 86 34.54
neither 58 23.29

Table 7: Looking Back (Summary)

This again shows a high proportion of students for whom the experience has been

satisfactory but this is still less than half the class. The contrasting view on this is



CHAPTER 4. VALUE – THE CLASS 105

that over a third of the class have had in some sense an unsatisfactory experience.

This may again be linked in some way to previous experience but the proportion in

the unsatisfactory category is worryingly high.

With this summary of the students’ views of the course just finished in mind, table 5

is intriguing when compared to table 4 (both on page 103). A few more students are

looking forward in a positive way than are looking back in a similar way but many

more are looking forward negatively (27% as opposed to 18%) than looked back. These

two increases are explained by decreases in the easy and difficult categories and by

rather more don’t know responses. There is clearly a heady mixture of optimism and

trepidation in the air!

These two extremes can be examined further. The categories from table 5 can be

combined using the same rules that produced table 7 to produce table 8. This table

shows whether the students’ overall expectation is for a generally satisfactory or

unsatisfactory experience. It is now apparent that almost half the students in the

survey are reasonably optimistic about the next course while the proportion looking

forward with trepidation is still about a third.

Frequency Percentage
satisfactory 111 48.26
unsatisfactory 76 33.04
neither 43 18.70

Table 8: Looking Forward (Summary)

These figures would probably make reassuring reading for the teachers preparing for

the second semester. It appears that more than two-thirds of the class are at worst

neutral about the second part of their programming course. This is also surprising

given the interpretation of the students’ views of the first part of the course.

Table 6 on the previous page shows once more that the two dominant motivations for

the students are personal satisfaction and the job prospects associated with successful

completion. The other factors remain insignificant and these responses may in fact



CHAPTER 4. VALUE – THE CLASS 106

represent little more than noise in the system. It is interesting at this stage to compare

these results with the equivalent findings taken before the course began (shown in

table 3 on page 97). The change is shown in table 9.

Change Change in %age
own satisfaction 22 6.75
please family 3 1.24
please teachers 0 0.00
get a good job -67 -10.79
just pass 10 3.91
don’t know -5 -1.10

Table 9: Change in Attitude

The large difference in the two sample sizes (some 80 students) means that any

direct numerical comparison between the numbers choosing each option would be

meaningless. However, in percentage terms a change in the two dominant categories

is immediately apparent. The percentage choosing own satisfaction (essentially a

form of intrinsic motivation) has increased by almost 7% while that for get a good job

(extrinsic motivation) has decreased by an even more significant 11%. It certainly

appears that the experience of the course has made more students determined to do

well mainly for their own satisfaction. This is in line with the Middlesex study and

seems to confirm the finding that experience of programming makes many students

lose their enthusiasm for applying it in a future career.

It might be argued that the extrinsically motivated strategic students who are keen

to get a good job are more likely to be absent from a lecture, busily completing some

assessment, while the intrinsically motivated (associated with own satisfaction) are

more likely to be conscientious attenders. However, there is no evidence for this view

and the change is so marked that this cannot be the sole cause. It is clear that some

students have changed their views.

The numbers choosing the other four categories of motivation remain very small (and

the lecturers will be disappointed to see that it is still the case that no student is

setting out mainly to please them) but the change in the just pass category cannot be

allowed to pass without comment. The proportion choosing this has remained small



CHAPTER 4. VALUE – THE CLASS 107

but the absolute number (this time from a substantially smaller sample) has increased

more than ten-fold from one to eleven. It is not unreasonable to suggest that these

students have had an experience that has had an effect on their motivation. They have

presumably moved from a category suggesting some more positive value component

of motivation into this essentially motivation-free category. There are many other

factors at work here (and the final question refers to the students’ degree programme

as a whole) but it must be a concern that the number of students confessing to this

largely negative form of motivation has increased to this extent.

This second survey shows that at the halfway point the majority of the class remain

motivated to succeed. The reason seems to have shifted slightly to the extent that

more emphasis is now being placed on intrinsic motivation. This is pleasing reading

for any teacher about to embark on a follow-on course with these students. The

value component of the motivation equation is in good health even if the reasons for

attaching the value appear to have shifted somewhat.

As regards their programming in particular there are signs that the first semester

course has not been a universally satisfactory experience. There is, however, certainly

plenty of evidence that it was that for many in the class and that on the whole the

students are positive about their forthcoming second semester’s work. It remains to

be seen whether this will change as they go through that second semester.

4.4 After the Module

The programming courses at Leeds and Kent both finished at the end of the second

semester (or term at Kent). This final survey set out to investigate the students’

views once the teaching had ended. For some of the students this would be all the

programming they would study but for most there would be more programming in

future years of their degree programme. The focus of this part of the study remains

on any changes that are apparent in the students’ views.



CHAPTER 4. VALUE – THE CLASS 108

By this time the content covered in the courses was essentially the same. The Leeds

students had spent the second semester learning about objects and classes and the

Kent students had continued to build on their earlier work. The expectation would

be that both sets of students had now reached the same level of expertise and had

spent roughly the same amount of time on programming.

4.4.1 Survey

The final questionnaire was distributed and collected in the final lecture at the two

institutions. There was just a single one-word answer question on this questionnaire.

This was intended to generate a straightforward summary of the whole programming

experience:

• Please write here the one word that best describes your attitude today towards

the C++ or Java programming course you have done this year:

To complement the usual question about the students’ overall attitude two other

questions were added. The first asked the students to choose a statement that best

described their attitude to programming from the following list:

• Programming is fine. I can do it.

• Programming is OK. I can get by, but I don’t enjoy it.

• I never want to do programming again.

This question attempts to evaluate the overall effect of the experience of the module

on the students’ motivation. In an ideal situation a teacher would hope that most

students would choose the first option and that very few would choose the last (these

two options represent the extremes of opinion). The second option was intended

to sum up a more neutral attitude that many students seem to have after their

programming course and it might be expected that some would choose it instead of

the first. Nevertheless, most teachers would still hope that there would be very few



CHAPTER 4. VALUE – THE CLASS 109

students choosing the final category. The students made their choice by ticking a

box.

The final question simply asked the students to indicate whether they could see

themselves working as a programmer in their future career. Some previous work at

Leeds [28] had shown that at the outset of their course many students saw this as

their intended (or at least expected) future career and it remained to be seen whether

they still believed this at the end. This question would also serve to verify the key

finding from the Middlesex study – the finding that following a programming course

tends to make students less inclined to aspire to a career as a programmer.

As might have been expected there were once again fewer valid responses received

with few students attending the final lectures. This time there were 208 responses,

consisting of 167 from Leeds and only 41 from Kent. However, this is still almost a

third of the class.

The questionnaire itself is included as figure A3 in appendix A.

4.4.2 Analysis

The one-word answer free-form question produced the expected variety of responses.

The words used closely matched those from the responses to the equivalent questions

in the halfway survey and so the same categories (positive, negative, easy, difficult,

neutral, and don’t know) were used. The answers to the other three questions were

simply counted and collated.

4.4.3 Results

The results are shown in tables 10, 11, 12, and 13 (all on the next page). The slight

variations in the total number of responses are as usual due to the small number

of incorrectly or incompletely completed forms. Curiously this time several students

failed to answer the free-form question but answered the other three.8

8 This phenomenon becomes worthy of future study in its own right.



CHAPTER 4. VALUE – THE CLASS 110

Frequency Percentage
positive 58 29.29
negative 36 18.18
easy 4 2.02
difficult 46 23.23
neutral 38 19.19
don’t know 16 8.08

Table 10: Looking Back

Frequency Percentage
“fine, I can do it” 96 46.15
“OK, but I don’t enjoy it” 69 33.17
“never again” 41 19.71
don’t know 2 0.96

Table 11: Attitude to Programming

Frequency Percentage
yes – would work as a programmer 79 37.98
no – wouldn’t work as a programmer 125 60.10
don’t know 4 1.92

Table 12: Attitude to Career

Frequency Percentage
own satisfaction 101 48.56
please family 6 2.88
please teachers 0 0.00
get a good job 81 38.94
just pass 12 5.77
don’t know 8 3.85

Table 13: Attitude to Studies



CHAPTER 4. VALUE – THE CLASS 111

4.4.4 Discussion

The results shown in tables 10 and 11 seem to show very much the same story. In

their reactions shown in table 10 almost half of the class gave a positive or neutral

answer and this is reflected in the similar response to the question about programming

(table 11) where almost half the class consider programming to be fine. Just under

a quarter of the class recorded the difficulty of the course as their first reaction but

it remains debatable whether this is a good or bad thing. It is striking that hardly

any considered the module first and foremost easy (even those who presumably had

prior programming experience). Only 18% gave a wholly negative view of the course.

This figure is unsurprisingly close to the 20% who never want to program again and

a reasonable speculation would be that many of them are be the same people.

As it turns out it is not that simple. A brief further analysis of the responses of

those students who never wanted to program again sheds some light on their reasons

(table 14). Their views on the module focus on negative aspects (34%) or on difficulty

(46%) (the solitary positive response is an intriguing anomaly). This reveals that 14

of the 36 negative views (or 39%) in the class as a whole never wanted to program

again. The dominant reason why these students want to avoid programming in the

future is the perceived difficulty of the activity.

Frequency Percentage
positive 1 2.44
negative 14 34.15
easy 0 0.00
difficult 19 46.34
neutral 3 7.32
don’t know 4 9.76

Table 14: Never Again

If the categories are once more combined into broader satisfactory and unsatisfactory

groups a less happy picture emerges (table 15 on the next page). The students are

now much more evenly split across these three categories. This is largely due to an



CHAPTER 4. VALUE – THE CLASS 112

increase in the difficult category. This is certainly less reassuring since it seems to be

the case that almost 40% of the class are having some sort of unsatisfactory reaction

to the course.

Frequency Percentage
satisfactory 61 29.81
unsatisfactory 82 39.42
neither 64 30.77

Table 15: Looking Back (Summary)

The responses to the second question (table 11 on page 110) also appear to show

that the programming courses have been successful as a learning experience. Almost

80% of the students consider that they can program reasonably well (even if many of

them do not enjoy it). This is a very pleasing outcome even it it must be taken in

the context of representing 80% of the students who attended the final lectures.

There are some less pleasing outcomes. It appears that over 60% of the class now

have no intention of working as programmers in the future (table 12 on page 110).

Something has clearly changed since the earlier work at Leeds indicated that at the

outset the vast majority saw their future career in programming.

This finding is of course in line with the similar study at Middlesex and, when taken

together, these two studies show that the experience of following a programming

course changes students’ attitudes to programming. The change itself may be due to

many influences of which the experience of the programming course is only one – one

suggestion would be that the students may have become better informed overall about

the range of careers in computing – but the change is marked. Especially noticeable

was that not a single student taking the Leeds Information Systems degree or its

joint-honours variants (some 50 students) said that they would consider a career as

a programmer. This is a particularly interesting finding since it was this exact group

whose predecessors had expressed precisely the opposite view in the earlier work.

Of course, the experience of working as a professional programmer is very different



CHAPTER 4. VALUE – THE CLASS 113

to that of studying an introductory programming course but these students already

appear to have firm views on the former even if they have experience of only the

latter.

As would have been expected, the same two factors (own satisfaction and get a good

job) remain dominant in the students’ overall attitude to their course (table 13 on

page 110). The relative importance of these factors has also remained roughly the

same. The number of students choosing the just pass option has increased once more

in percentage terms but not significantly. The staff will doubtless be disappointed

that once again not a single student is motivated mainly to please their teacher. There

remains very little evidence of this or of any form of social motivation.

A healthy proportion (in fact almost half) of the students still claim to be intrinsically

motivated. This is another nail in the coffin of the belief that all today’s students

choose computing solely for the career prospects. However, this extrinsic motivation

does indeed still account for almost 40% of the class. These are clearly very much the

two dominant motivations, with the social aspects in particular continuing to score

very low.

The picture that emerges here is of a group of students who are looking back on

their course with very mixed emotions. Some have had a positive experience and

are enthusiastic about programming. Others have had a much more trying time and

are glad that that part of their academic career is, they hope, over. It is easy to see

the early signs of the students determined to avoid programming at all costs in their

dissertations. At Leeds these students tend to be in the less technical degree subjects

(as is probably to be expected).

As an aside, this finding about the Information Systems programme rekindles to some

extent the debate about the desirability of a mathematical background for a student

starting a programming course. These are the students who would be expected to

have the lowest level of formal mathematical attainment (there is no mathematics

entry requirement beyond GCSE). They appear to have formed strong views about

programming and they are determined never to do it again. They have achieved the



CHAPTER 4. VALUE – THE CLASS 114

same entry standards (albeit very probably in very different subjects) as have their

peers who chose Computer Science but these latter are clearly much more comfortable

with programming. Although far from conclusive this does indeed raise once again

the issue of the importance of a mathematical or scientific background. While there

is no firm evidence here that mathematical ability has any impact either positively

or negatively on programming ability the case for or against is distinctly not proven

either way.

The closing news is that at the end of this part of the study almost all the students

surveyed still appear to continue to attach some suitable value to success in their

course. The nature of this value has changed only slightly since the halfway point

(suggesting that the changes took place during the first semester). There is little

evidence that many of the students have lost their motivation. It merely seems that

its nature has changed. Happily this change continues to be from extrinsic to intrinsic

factors.

4.5 Summary

The students at Leeds and Kent have been surveyed at three key times during their

introductory programming course. A picture of their motivation has emerged at each

stage and it is now possible to combine these into an overall view of the development

of (or the changes that have taken place in) their motivation through the course. The

focus in this chapter has been firmly on the value that the students attach to success

in the course. The good news is that all seems to be well. The vast majority of the

students continue to value success for various reasons and the rather negative ‘I just

want to pass’ attitude has attracted very few.

Most of the students in the surveys have now successfully negotiated the first year of

their course. There will have been some included in the first survey who have left the

course for some reason and these will have had a very slight influence on the results.

Also, since the surveys were distributed in lectures, they represent the views only of



CHAPTER 4. VALUE – THE CLASS 115

those students who attended these lectures. This too may have had some influence.

It might be suggested that the students who fail are those who do not attend the

lectures but the effect of this is probably slight. It could equally be argued that

those who felt that they had already done well and passed the course (at the time

of the final questionnaire all the summative assessment had been completed at both

institutions) would not bother to attend a final lecture9 but the influence of this is

probably also slight. In any case the two possibilities would seem to cancel out each

other’s influence. There is no reason to believe that the views are not representative.

One question has been used on all three surveys. The students were asked to choose

from a list the motivation that most closely matched theirs towards their degree

programme. Table 16 shows the responses from the three surveys in sequence.

Percentage
Before Halfway After

own satisfaction 48.98 55.73 48.46
please family 0.29 1.53 2.88
please teachers 0.00 0.00 0.00
get a good job 47.81 37.02 38.94
just pass 0.29 4.20 5.77
don’t know 2.62 1.53 3.85

Table 16: The Students’ Attitude

The most intrinsic form of motivation (achievement motivation – ‘I want to do well

for my own satisfaction’) has remained the most popular choice throughout and is

the most popular by some margin at the halfway point. The proportion choosing this

increased to over half at this point but returned to something closer to its previous

level at the end (so the halfway result may be just something of a blip). The only

other motivation to be chosen by a significant number is extrinsic (‘I want to do well

so that I will get a good job’). The number choosing this had decreased at the halfway

point and this change was maintained at the end of the course. These two motivations

have consistently accounted for over 85% of the class throughout the study.

9 I am indebted to Simon Myers for this observation.



CHAPTER 4. VALUE – THE CLASS 116

The other three choices (it seems reasonable to ignore the don’t know responses) have

attracted few students but in every case the proportion choosing them has slowly

increased. The null motivation category (‘I just want to pass’) in particular has

increased from virtually zero at the start to some 6% at the end. This most probably

corresponds to students who have become disillusioned with their course and no

longer have any positive form of motivation to succeed. A similar comment may

apply to the less dramatic increase in the family component of the social motivation

category (‘I want to do well to please my family’) which has also increased. This could

represent disillusionment on the part of some of the students but with an emerging

determination to persevere so as not to be a disappointment to their families.

It is clear that a significant majority of the class continue to value the outcome of

their course. The dominant motivation is, perhaps surprisingly, rather intrinsic (being

based on achievement) but that surprise is a pleasant one. The rather smaller number

consistently choosing extrinsic motivation will be a surprise to many of those familiar

with tactical or strategic students.

The free-form questions used in each survey show a less consistent picture. Some

three-quarters of the class were motivated by either aspiration or learning at the

start of the course. At the same time almost half viewed the programming course

as simply a compulsory part of their degree. Most computing educators would argue

that programming is a fundamental, important, part of the whole discipline. There

is perhaps a failure here to convey that to the students.

By the halfway point most were having a satisfactory experience and expected this

to continue. Therefore, the programming courses were addressing the needs of about

half the class while the other half was having a less productive time. The second

survey also showed that there had been a noticeable shift from extrinsic to intrinsic

motivation. It might be hoped that this is evidence of an increasing interest in the

subject but this can be only conjecture.



CHAPTER 4. VALUE – THE CLASS 117

At the end of the course fewer students were able to see the course as satisfactory.

This change may be caused to some extent by ‘end-of-year blues’ but it is none-

the-less worrying. However, a pleasing number of the class thought that they were

reasonable programmers at the end of their courses and so the courses were working

on an academic level at least.10

This is a key point. It appears that the courses were teaching the majority of the class

to program.11 The estimations of the students are reinforced by the pass rates of both

modules (few students failed outright). The problem is that the experience of learning

to program is being less than satisfactory (or even enjoyable) for a significant part of

the class. They are learning to program but at what cost? A negative experience can

surely have a negative impact on a student’s expectancy.

It is worth emphasising again that this study has confirmed the findings of the similar

work at Middlesex University. Students seem to approach a programming course

with an interest in learning to program as a route to a career as a programmer. As

they learn to program (or as they follow a programming course) and as they learn

more about programming this interest wanes. For many it disappears entirely and

programming becomes something that must be avoided. The experience of learning

to program is indeed powerful.

Finally, although it is not explicitly investigated, there is a worrying trend that

emerges as a background theme from this part of the study. Many of the students do

not like programming. It is an activity that many of them feel strongly about and

they do not like it. A dislike of programming has been shown (unsurprisingly) to have

an adverse impact on academic success in programming [57]. It will be interesting

to see if this trend is also apparent in the next chapter when the focus is on the

experience on a more personal level.

10 This observation does not and cannot take into account the views and experiences of those students
who were competent programmers before the course.

11 Although how many of the students included in this survey could sensibly and practically have
been employed as professional programmers at the end of their course is a matter of some concern.
At least most had successfully gained a basic understanding.



CHAPTER 4. VALUE – THE CLASS 118

An apology is in order. The discussion in the chapter is littered with words such as

‘probably’, ‘perhaps’, and ‘conjecture’. This is a problem inherent in any investigation

into so abstract a concept as motivation. It is only ever possible to listen to what

the students say and from this to infer their motivation and the reasons behind it.

The raw data that form the basis of these discussions and the resulting inferences are

included in appendices where they await alternative interpretations.

The inferences presented here seem to be reasonable. The overall picture is of a

group of students who remain well motivated throughout their course. This analysis

of motivation has been largely in terms of the value that they attach to success. In

the following chapter the focus turns on to the question of whether they always expect

this success. If this is not the case then their value becomes effectively worthless.



Chapter 5

Expectancy – The Individual

First Voice: From where you are, you can hear

their dreams . . .

This part of the study is more fine-grained and ‘close-up’ than that described in

chapter 4. It works on a more personal level and thus facilitates a concentration on

the expectancy component of the expectancy-value motivation equation. Expectancy

will be strongly influenced by the day-to-day experiences of learning. This point

cannot be emphasised too much. If students are to be motivated to learn they must

expect to succeed. The definition of success is closely linked with the summative

assessment and the students’ lowest-level academic need. They must believe that

they will pass.

5.1 Methodology

The following sections focus in close-up detail on the experiences of students taking

the introductory programming course in the School of Computing at the University

of Leeds. Two distinct sets of students are included. The more significant (and

119



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 120

the subject of the finer-grained study) is a group of first year students taking the

programming course in the 2000/01 session. The experiences of this group were

followed on a weekly basis throughout their first semester course. A shorter survey

with a second group consisting of ‘veterans’ from the previous year’s class is also

included to place the experiences of the first group in a suitable context

The students all agreed to take part at the start of the study and all gave permission

for the publication of the results (suitably anonymised). The students’ names have

been changed in the sections that follow so as to preserve their anonymity and save

them embarrassment.1 As far as possible their experiences are described in their own

words and as they described them at the time.2 The methodology used for each group

is described in more detail in each of the two sections.

The group of veterans is considered first.

5.2 The Year After

The students whose experiences are described in this section are all veterans of the

programming courses at Leeds (students who had taken the modules in the previous

session (1999/2000)). They were interviewed individually during the first few weeks

of their second year when their memory of learning to program was hopefully still

fresh. The interviews all followed the same structure and were recorded on the same

form (figure C1 in appendix C).

These students had all successfully negotiated both the programming modules in the

School of Computing but at different levels of (summative) attainment. They were

thus intentionally chosen so that they would represent a range of experience and

attainment. The majority had started the programming course with no experience

of programming but one who had had significant experience (and in fact followed the

1 Although the false names that some of them chose are still quite embarrassing.

2 Only the spelling has been changed, hopefully for the better.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 121

fast-track scheme) was included as a control. The students, who all happily agreed to

take part, were drawn from a range of degree programmes, including joint-honours.

Some details of the course that these students followed are necessary as background to

what follows. The course was a fairly traditional introduction to C++ programming

as might be found in any comparable higher education institution. The approach

was ‘objects last’ with the first semester devoted to a procedural subset of C++.

This subset was presented in the traditional order and closely followed a standard

textbook [41]. The course started with variables and assignments and then moved

through conditional statements, loops, and so on. There was also plentiful coverage of

testing and debugging techniques. The second semester introduced objects (classes

in C++) and with them some more advanced features of C++. The presentation

was by three lectures each week and practical work was supported by a hands-on lab

session each week. The students would have been expected to spend about 75 hours

on their programming course in each semester.

The courses in the two semesters were administratively separate modules. Each was

assessed separately and each was worth one twelfth of the assessment for the year.

Success in the first semester was notionally a prerequisite for the second semester but

this cannot be enforced until the end of the year. All the students interviewed were

required to pass in the first semester for progress into the second year of their course

and all the single-subject students needed to pass in the second semester.

The grading system used in the modules is somewhat curious and merits a brief

explanation. The final grade is first calculated, as would be expected, on a scale of

0 to 100, where 37 represents a pass mark. This number is then mapped into a scale

running from 20 to 90. This has the effect that very high and very low grades are

altered. It is impossible to score more than 90 or less than 20.3

3 The theory of this system is that it prevents a single very poor or very good result having a
disproportionate impact on a student’s overall average. No attempt is made here to justify or
defend it!



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 122

In the interview the students were asked to reflect on the experience of learning to

program and to explain whether they felt they had successfully learned to program.

They were asked for their feelings about the ways in which the course was taught and

for any words of advice that they would give students on their degree programme

starting the programming course this year. Finally they were asked to provide a one-

word summary of the experience of learning to program. Figure C1 in appendix C

illustrates the structure of the interview.

The following sections are included in no particular order.

5.2.1 Nikki

The Computing course at Leeds was Nikki’s second attempt at a degree. She had

started a course in European Drama and French at another university but had

dropped out. Some work experience using computers had aroused her interest and

so she had decided on this somewhat radical change of direction. At the start of

the module she considered herself a complete novice. She managed to achieve a final

grade of 59 although she did not consider that she was by any means a competent

programmer.

Nikki felt that the programming course had been proceeding reasonably but had

suddenly and without warning become much harder. She had found this a “scary

experience” and felt that she had panicked. Some time reading the textbook seemed

to have helped but she had the feeling of being behind for the rest of the module.

The learning curve was too steep and was not consistent.

Her biggest problem during the module was (in her own words) “motivation”. She felt

that programming represented a “lot of effort for little return” and disliked the way

that C++ was so “pedantic” about “annoying little details”. Nikki’s advice would be

“don’t get left behind by not keeping up to date, and it’s fatal to miss a lecture”. Her

summary was that learning to program had been an “experience”. This experience

was not a wholly negative one but was certainly far from wholly positive.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 123

Nikki’s experience of a sudden change in difficulty could well be evidence of learned

helplessness. She missed some basic concept (perhaps not through her own fault) and

was thereafter unable to follow the course. This seems to have provoked quite an

emotional response about the “annoying” process of programming when she found

that a lot of effort was required for a small return (one of the key reasons why learning

to program is so difficult). The emotional nature of this reaction also hints that she

did not feel totally in control of the situation. This was something that clearly had a

powerful effect on her motivation. It is to her credit that she had clearly developed

some reasonable coping strategies and had come through the module successfully.

During the first semester of her second year Nikki changed course to Information

Systems. The main reason for her change was to avoid the programming modules

in the Computing course (she actually struggled with the first one for a few weeks

but eventually had to admit defeat). Whether she was capable of completing these

courses is uncertain. What is certain is that she believed that she could not.

5.2.2 David

David was a joint-honours student studying Information Systems and Management.

He had enjoyed the programming part of his course. He described it as “relevant,

practical, hands on, interesting, and satisfying” and added that he had particularly

enjoyed the “sense of achievement when the program works”. Although he had been

a novice at the start of the course he had achieved a very impressive grade of 84

(when the maximum attainable is 90). He summarised the module as “challenging”.

David went on to add that he had no intention of studying programming further and

certainly did not intend to pursue it as part of a career. He felt that he had spent

too much time on it in his first year and that this had been to the neglect of his other

subjects. He thought that writing serious programs would be “drudgery” and would

bring no new challenges. It was these challenges, rather than the content, that had

made the module enjoyable. David’s reaction perhaps starts to throw some light on

the phenomenon of students losing interest in programming as a career.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 124

The lectures had been effective for learning or at least had been effective as part of

an overall learning strategy. David’s strategy had been to listen to the lecture and to

then go and try out what he had seen in the lab. He had some sort of mental model of

the programming process and the workings of the computer and felt that this evolved

over the module as he learned more (constructivism at work). The practical part of

the module was definitely the most interesting and rewarding. David saw many of his

peers who “just wanted to get the answer” and would very soon give up and approach

staff as an alternative to working out the program themselves. David preferred to

work on the program on his own and admitted that sometimes he was perhaps too

stubborn about asking for help. As advice David would tell students to “go at it and

go to the lab, but don’t get too wrapped up in it and spend too much time – and go

to the lectures!”.

David approached learning to program with a mature attitude and was successful.

He relished a challenge and it is this that made him enjoy the module. It is a little

disappointing to find a student who has succeeded in the learning aims of the course

but who is at the same time determined to avoid programming in the future.

5.2.3 Kelly

Kelly, like David, had chosen to study a joint-honours degree in Information Systems

and Management Studies. She expressed her views on programming in emotional

and forthright terms to the extent that her brief summary of the experience has four

letters and is not reproducible. Thinking about the programming module gave her

“nasty thoughts” and made her feel “sick”. She attributed this to her background

and the fact that she “didn’t have that way of thinking” (perhaps evidence of learned

helplessness at work again). She had started the module as a total novice and had

achieved a reasonable pass standard with a final grade of 52. She was quick to thank

the extra help classes for her success. While she certainly did not want to do any

programming ever again, Kelly admitted that she could probably write some basic

programs if she were forced.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 125

Kelly had learned most from the workshop hours and the extra classes. She thought

that the lectures had been counter-productive for her – “a waste of time, I just got

into more and more of a state”. The assessment had been “relentless” and had

taken far too much effort. She had become more and more worried and had become

disillusioned with her degree programme as a whole. The biggest help had been access

to a sympathetic expert4 for one-to-one help at a level she could understand and the

relief of the extra classes where she met others who were also struggling. Her advice

would be “don’t leave it too late – it won’t go away – and ask for help when you need

it”.

Kelly has clearly not had a pleasant experience in her programming course but at

least she has survived. She now believes that programming is simply something that

she cannot do and she attributes this to something in her background. Kelly had

encountered an “educational novelty” [44] and, as predicted by Dijkstra, had not

enjoyed it and had been unable to cope.

5.2.4 Mike

Mike had some programming experience from his ‘A’ level course. This should have

been an advantage even though it was in a very different environment (Microsoft

Visual BasicR©) to that which he would meet in his Computing degree course. After

being unsure of what route to take in the module Mike eventually decided to join

the fast track after having also attended the standard lectures for the first few weeks

while he found his bearings. He was pleased with his final grade of 84 and considered

himself a competent C++ programmer.

The impression of the fast track was of “being thrown straight in”. C++ was not

straightforward to learn and was “unforgiving” of small errors. There was added

pressure because failing the module had significant implications. Mike did not enjoy

programming the “trivial” tasks of the standard coursework where “everyone was

4 Modesty forbids.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 126

writing the same, and there’s no creativity”. Programming would be much more

rewarding and more motivating if he were developing a program for himself. This

problem was addressed to an extent in the fast track where the assignments were

“not as boring”. He estimated that he would have needed 10% of the material from

the standard lectures and his advice would be to consider very carefully which route

to take through the module and then to “buy a really simple book”.

After some initial uncertainty while he found the best way for him to learn Mike

has had a positive experience. It is interesting that the enjoyment from the module

comes to him (as it did partly for David) from the creativity of the programming

process rather than anything more directly related to the academic content. Mike’s

is a clear success story although it is debatable how much of this success was directly

due to the programming course itself and how much can be attributed to Mike’s

previous programming experience. This experience certainly seems to confirm that

prior programming experience is a distinct advantage.

5.2.5 Josh

Josh is included in this study as a form of control. He started the Computer Science

course after many years of programming various AcornR© home micros and before

the course was able to claim extensive experience in BBC BASIC, some machine

code, a little C, and some C++. He naturally followed the fast-track route through

the module and achieved a final grade of 90 (the maximum possible). Josh would

probably not be too offended to be referred to as a ‘typical computer nerd’.

The fast track had been a good thing. It had meant that Josh had not been forced

to sit through lectures dealing with the basics. He felt that there would have been

a strong temptation to miss all the lectures and then miss those rare concepts that

would have been new to him. The process of learning C++ was simply a case of

“picking up the syntax”. While he had been “left to get on with it” there was always

support available if he needed it. It was especially good to be working with similar

people to himself. He described them as “people on the same wavelength”.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 127

Josh considers programming “great fun” and held this view before the start of his

course (he claimed to have started programming at the age of six). He “supposed”

that he was now a competent C++ programmer. He had still found the programming

module a “challenge” and Josh’s advice would be “don’t leave it all to the last minute”

(both these comments must be taken in the context of the demanding fast-track route

that Josh had chosen).

Josh’s fast-track experience reinforces the description in section 3.1 of the process

whereby an experienced programmer acquires a new language. It had simply (and

that is an important word – it was simple) been the process of learning a new syntax.

Most of this could be done from a textbook and then by experimenting by writing a

few programs. Any complications could be resolved with quick access to some guru.

Josh had probably gained little from the course that he could not have picked up

unaided on his own.

5.2.6 Keera

Keera (another student studying Information Systems and Management Studies) was

relieved to reach the end of the programming course. She had started as a complete

novice and was relieved to find that she had achieved a final grade of 52. She felt that

it was an “achievement to have survived”. Her main problem was that programming

was a very “different thing to learn” from anything she had experienced before (in fact

an educational novelty). There is a lot to cope with and it “has to click”. Although

she did not consider herself a competent programmer she thought she could probably

“have a good shot” and “get quite a long way” if called on to write some C++.

Programming had not come easily to her. A major problem was that “you have to

believe you can do it” (expectancy) at a time when you are overloaded with many

other things (the problems of transition to university).

The large class size had been especially intimidating and something of a shock after

school. Keera had at first failed to realise that extra help was available but she made



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 128

much use of it when she found out. The fact that the extra help was available in a

much smaller group made programming much more “approachable”. Keera’s advice

to students like herself is “don’t think of it as a nightmare – stick together, work at

it and go to the lectures”. She had found learning to program “scary”.

Keera seems to have coped better with an educational novelty. She seems to have

had a rather more positive and determined attitude than some of her peers and it

is this that has pulled her through. Importantly, she comments that students must

believe that they can succeed if they are to succeed – they must expect to pass.

5.2.7 Harri

Harri is one of the single-subject students in these sections. He had chosen the

Information Systems degree. His main memory of the programming module was of

“hours and hours spent in the lab”. He had started the module as a complete novice

but had managed to achieve a respectable result largely through determination and

sheer hard work (he was disappointed that his final grade of 69 very narrowly missed

the 70 first class boundary). At the end of the module Harri felt that he was a

competent C++ programmer. He remembered the module as enjoyable “as long as

you stay on top of the work”. The lectures were well taught and useful but the

practical sessions were not long enough. It would have been less stressful if he had

had access to his own computer so that he would not have had to spend so much time

in the labs. The greatest help was a textbook and access to an expert for occasional

assistance. The advice for new students was to “keep up with all the examples given,

and don’t leave this subject to the last minute (or even two or three days before)”.

Harri has had a satisfactory experience. He has succeeded in the academic aims of the

course but was still unsure of whether he would want to program in a future career.

Nevertheless, he seems to have come through the course in a solid position to take on

further programming should he choose to do so. The only criticism that can perhaps

be made of his strategy is that he should have been a little more willing to ask for

help when he needed it.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 129

5.2.8 Kirsty

Kirsty started the programming module with some experience of computing but none

of programming. She achieved a reasonable final result of 50. Her memories of

learning to program were of stress and constant deadlines. Her main reaction was

that she was glad she no longer had to do it and at the end of her first year she decided

to transfer from Computing to Information Systems to avoid more programming

modules. Nevertheless, she did consider herself to be a reasonable programmer and

now found programming enjoyable.

She had learned most from the practical workshops (mostly, she felt, because the class

sizes were much smaller) and rated the lectures as effectively a waste of time. The

biggest program with the practical work was getting started and getting used to the

Unix system. Advice to students learning to program was “don’t panic”. Overall,

learning to program had been a “stressful” experience.

Kirsty found programming stressful but coped well. It is perhaps a shame that she

chose to avoid further programming courses. She might well have enjoyed them and

would probably have performed and learned well.

5.2.9 Siân

Siân was another joint-honours student, having chosen to study a combined degree in

Accounting and Information Systems. She had done a small amount of programming

before (as part of an ‘A’ level course) but rated herself as a total novice at the start

of her degree. Her final grade for programming was a reasonable 57. She had joined

the extra classes at the earliest possible opportunity.

Siân’s views about programming were set in rather emotive terms. She “hated” the

programming module and “pitied anyone who had to do it with her level of aptitude”

(perhaps learned helplessness once more). She was adamant that she never wanted

to do programming again but admitted that she could probably write some simple

programs if she had to. The main reason for her problems was, she thought, that



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 130

she had failed to understand the first few lectures of the module and had then been

totally lost for the rest (clearly learned helplessness). There was no way she could

catch up and the relentless assessment meant that there was no chance of a respite.

Beyond pity, Siân’s advice was to “go to the lectures and listen, read the book a bit,

and go and find help straight away”. In a word, learning to program had been “hell”.

This summary does not paint a happy picture of Siân’s experience but it is probably

accurate. For some reason she had missed some early material and was then in a

quite hopeless position. The additional classes helped to some extent but there was

no way she could ever hope to catch up. It is not especially surprising that she was

determined never to do programming again.

5.2.10 The Veterans’ Experience

The students in this section have clearly had a range of experiences in their first

programming course at university. The only common experience appears to be that

they passed (and this is only because those who failed were unavailable for comment).

Experiences range from that of Josh which appears to have been highly enjoyable to

Kelly’s which she can hardly bear to remember. This is a small sample but there

is no reason not to believe that these are typical experiences and that each example

presented here represents the experience of a group of their peers.

It is noticeable that the language used by some, especially those who struggled, tends

to be emotive. Siân “hated it”, Keera was proud to have “survived”, and Kelly’s

description of her experience could not be recounted in polite company. These are

interesting words to be used about an educational experience. It is hard to imagine

the same students using the same words about a course in databases or professional

issues. It seems that programming has the power to evoke powerful responses from

those who try to learn it.

These students have come from a very wide variety of backgrounds. The diversity is

obvious. Josh has been programming since the age of six, Nikki has previously started



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 131

and left a degree course in Drama and French, and Mike has come from an IT ‘A’ level.

Nevertheless, they have all managed to meet the entry requirements of their degree

programme. They were all judged suitable to start the programming course and were

thus all expected to succeed. There is little compelling evidence here that students

with no previous experience will always struggle – David had none and has done very

well. However, Kirsty, Siân, Keera, and Kelly have indeed all struggled but they

have at least passed. David is also a counter-example to the suggestion that joint-

honours students will struggle more than their single-subject counterparts. There is

no evidence of that here. Mike and Josh confirm the not unexpected notion that

students with previous programming experience will perform better in programming

courses.

Kelly attributes her struggles to something in her background. For some reason

programming was simply something that she could not do. There is no evidence of a

similar view from any of the others but some do make the point that programming

requires special learning skills. For example Keera says that programming “has to

click”. This is at odds with the view set out in section 3.9 that aptitude has little

impact on final results and indeed the view that aptitude for programming does not

actually exist. This may well be a manifestation of a form of learned helplessness

where the students seize on a convenient explanation for their failure to learn or their

struggles.

All these students were learning to program at a time of transition. Keera made the

point that she found it difficult to adjust to learning at university after her experiences

of school. There is so much going on in the first semester of the first year that it

is difficult to devote as much time to programming as it appears to demand. Siân

and Nikki both had the experience of coming to a point in the semester when they

no longer understood the course. They adopted different strategies to cope (both of

which seem to have been effective) and at least they were in a position to notice and

took some effective steps. Failure to do so could well have been academically fatal.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 132

There are clearly some shared experiences. The issue of help seeking is a common

theme. David and Harri both suspect that they may have spent too much time

struggling alone before seeking for help. Nikki, Keera, Siân, and Kelly all joined the

extra classes. This would seem to confirm previous experience [22] where such classes

have been seen to be much more popular with the female students and confirms the

suggestion that male students tend to prefer to work alone [23]. Another general point

is that of the advantage of studying in a group of similar ability. Josh reported this

as the best part of the fast track route and Kelly, Siân, and Keera all found comfort

in working with other strugglers. The experience in the help classes confirms the

findings at Monash [65] of the benefit of informal discussion classes. There are also

clearly advantages in working in a more general sense with others of similar ability.

All the students report that they have spent significant amounts of time on their

programming. Most of this has naturally been concentrated on the assessment. This

appears in most cases to have been well beyond the prescribed 75 hours (which is

expected to include all the time devoted to the module including lectures). Moreover,

many clearly believe that these demands have been such that their other work has

suffered. Words such as ‘stress’ are common in their descriptions and it is surely

significant that the most common theme in their advice is the need for good planning

and a prompt start to assessments.

Assessment itself is thus another common theme. There is strong evidence of a

general view that assessment outside the fast track is unrelenting and gives no chance

of recovery for those who are struggling. This makes it especially important that the

strugglers seek help as soon as they realise that they need it and implies that their

position is difficult indeed if they fail to realise soon enough that they need it. Mike

raises the additional point that the exercises used in the mainstream are, in his view,

uninspiring. He makes the point that (in his case at least) students are more likely

to be motivated if they are writing a program that interests them. The assessment

regime that the students followed was perhaps rather theory X in design. There were

many summative assessments with rigidly enforced deadlines. The experiences of

these students point to the potential benefits of a more theory Y approach.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 133

There are conflicting views on the effectiveness of the various teaching methods. There

is general approval of the practical lab sessions but there is much less agreement on

the lectures. David seemed to find the lectures sufficient to learn new concepts (as

did Harri) but others found them far from helpful. This is especially true of Kelly

who seems to have found them entirely counter-productive. It is apparent that the

students who seem to have gained most from the lectures are those for whom the

whole experience of the module was more straightforward. It is the strugglers who

are being let down (and at times almost intimidated) by the lectures.

The language and platform used are mentioned by many. For Josh the learning of

C++ was simply a case of picking up a new syntax – it is safe to assume that his

programming and debugging skills were already well developed. Others had to learn

much more, including how to ‘drive’ the computer. The basic practical steps of how

to get the program into a file, compile, and run it seem to have troubled many. Kirsty

found the intricacies of Unix a problem and both Nikki and Mike found the platform

unforgiving and pedantic. This confirms the view that a sackcloth (section 3.2.2)

environment is not ideal for novice students, at least in the sense that it can get in

the way of the business of learning to program.

On a positive note there is a constant theme of achievement and challenge running

through all the students’ interviews. Even those who have struggled seem to look back

on the experience with some satisfaction, even if this is sometimes mixed with some

less positive feelings. This is clearly a significant motivator for David who now feels

that he has mastered the challenge. It is odd that he now plans to set programming

aside since there remain no new challenges.

David was clearly achievement motivated. This is also a strong motivation for all the

other students. Their motivation was, as expected, to do well (to pass) in whatever

terms they defined. There is no evidence that any of them ever ceased to value the

outcome of the module. However, there is plentiful evidence that some of them did at

some time not expect to succeed, largely because they started to feel that they were

not in control. Some of Kelly’s, Nikki’s, and Siân’s comments clearly show this point



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 134

of view. It must be assumed that this would sometimes have caused their motivation

to drop dramatically and it is to their credit that they have persevered and eventually

did succeed. The worry is that there must have been students (it is interesting to

speculate on how many) having similar experiences to them who did not persevere

and succeed.

None of these students have had a first programming experience from which they

will not recover. Josh has enjoyed himself learning a new language. Mike and David

have done something that interested them and have gone about it in a way that they

found satisfying. Harri has worked hard and got a good result. Nikki, Kirsty, Siân,

Kelly, and Keera have all succeeded in passing the module and appear to have done

themselves no permanent academic harm.5

In conclusion it is interesting to pause and consider how many of these students could

genuinely program at the end of the module. They had all passed a programming

course but were they programmers? David could certainly program and most of the

others were prepared to confess that they could have done if they were forced too.

Only a few – perhaps David, Mike, and Josh – could have hoped at this point to work

effectively as professional programmers or even to be of any interest to potential

employers. This highlights a problem. These students are passing an introductory

programming course – they are not learning to program. That will come later (and

then only for some).

The focus now moves on to the class of 2000. These students will be following much

the same programming course under much the same regime. They will enter the same

university and department and will have been recruited against the same standards.

It will be interesting to see if they have much the same experience.

5 The striking gender split in these two lists cannot be passed over. This observation (and the
preceding discussion) confirms the pattern noted previously at Leeds [22] that men and women
seek help in different ways in programming modules (accounting in part for the predominance
of women in the extra help classes). It also hints that men and women tend to have different
experiences in a programming module in a more general sense. This should be the focus of further
study. This is particularly important in light of the continuing alarming decline in the proportion
of female students in cohorts enrolling for computing degrees ([24] and [25]).



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 135

5.3 The Novices

This part of the study turns the attention to the personal experiences of a group of

students following the introductory programming course in the School of Computing

at the University of Leeds as part of their first year. The students all professed

themselves to be complete programming novices at the start of the course but their

experience with IT as a whole varied. The restriction of this part of the study to

novices6 ensures as far as possible a consistent and definable starting point for all the

students.

The students were interviewed individually before the start of the course to ascertain

something about their background and expectations. Weekly questionnaires followed

through the first semester and the whole process was completed with a final interview

just before the start of the second semester. The results from these interviews and

questionnaires can now be interpreted in the light of the students’ final results in the

programming module.

There were three groups of students, representing three of the four single-subject

degree programmes in the School of Computing. There was one group from each of

Cognitive Science, Computing, and Information Systems. The modules taken in the

first year by the students on the last two programmes are the same but those taking

Cognitive Science would be taking fewer computing modules (with the rest of their

time allocated to modules in philosophy and psychology). The entry requirement for

all three degrees is the same in that the same ‘A’ level grades are required for each

and none require ‘A’ level mathematics or any previous computing experience.

The students were chosen at random within some slight constraints imposed by the

School of Computing’s tutorial system (in effect this meant only that there would

be about five students in each group, that the students would all be standard post-

eighteen ‘A’ level entrants, and that there would be a mix of men and women). No

account was taken of previous academic achievement or, specifically, mathematical

ability or attainment [16].

6 About half of the cohort at Leeds claim to be complete programming novices each year.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 136

There were seventeen students in the group at the start of the study and all agreed

to take part. However, during the semester the numbers fluctuated somewhat. One

of the Computing group dropped out early on (in fact it has to be said that he made

no discernible attempt to attend anything), one of the Information Systems group

dropped out in the middle of the semester, and one of the Cognitive Scientists hardly

attended (although he remained registered throughout). The Cognitive Scientists also

gained an extra member (a transfer from a joint-honours degree) in the third week.

A further member of the Computing group dropped out over the Christmas vacation

but this was after the completion of most of the present study and he kindly agreed to

complete the final interview by email. One of the Cognitive Science group left at the

start of the second semester in order to return in the next session on the Information

Systems programme but this too was after this study was complete. These comings

and goings give a final total of fifteen students who were followed throughout their

course.

There is both a qualitative and quantitative element to this part of the study. The

main part is obviously qualitative, based on what amounts to a series of structured

interviews (mostly carried out by means of brief questionnaires). A small quantitative

element is introduced by asking the students to forecast their expected final grade on

a simple scale in order to gain a crude numerical estimate of their expectation.

The preliminary interview collected some basic demographic data and then asked

the students to explain their reasons for choosing their degree programme and the

University of Leeds in particular. They were then asked whether they felt they had

the skills to become a good programmer (and to define what they believed these skills

were) and to say whether they expected that they would find learning to program

easy. The interview ended with a one-word summary of their initial feelings about the

programming module. The form used to record this interview is included as figure C2

in appendix C.

Each week following this (as a small part of their weekly tutorial) the students were

asked to record any particular successes or problems in the programming module



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 137

in the previous week. They were also asked to record a one-word summary of the

experience of the module, and to estimate their final grade on a simple scale (figure 7).

This scale deliberately makes no mention of actual grades because the students were

0 Pass First
Class

100Average

Figure 7: Results Scale

not to be expected to have a precise or common understanding of the complexities

of how they would be graded. The scale attempts instead to elicit a more general

feeling for how they believed they were performing. In the sections that follow the

marks on the scale are mapped to a numeric value for convenience. The ‘Pass’ line

is taken to correspond to the actual pass mark of 37, the ‘First Class’ to the lower

boundary of that class (70), and the ‘Average’ to a forecast of the mean grade of the

module (567). The sections between these fixed points are mapped to grades using a

straightforward interpolation.8 A plot of the resulting grades on a simple line chart

gives a rough representation of the development of each student’s expectation and

morale as they went through the course.

Most students responded each week but some gaps were caused by illness or other

absences. A ‘half-term’ break in teaching around week seven caused something of a

hiatus in the responses from the Information Systems and Computing groups when

they missed their weekly tutorial. A linear change in the numeric forecast has been

assumed where there are gaps in a student’s responses (it is clear from the charts

where this has happened). The form used for the weekly reports is in figure C3 in

appendix C.

7 The mean grade in the 2000/01 session was in fact 58.

8 The complication of the scaling of grades from a 0. . . 100 scale to a 20. . . 90 scale was ignored when
interpreting the students’ responses.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 138

The final interview was conducted just before the final module results were made

public and summarised the students’ experience. They were asked about their feelings

about programming in general, the programming course in particular, and to look

forward to the following semester’s programming. The interview was again ended

with a one-word summary of the course. The form used to record this interview is

available as figure C4 in appendix C.

These activities were deliberately kept very separate from the students’ normal weekly

tutorial (during which the programming modules were often the topic of much heated

discussion). Their responses were filed, unread, immediately they were completed and

were not to be examined until the end of the semester. The original intention of this

was to avoid their providing answers that fitted in with their group’s view and to

avoid the common phenomenon in such studies of the subjects responding with the

views that they think the interviewer wants to hear [118]. When the forms were finally

examined it became apparent that several students were recording views that were

at odds with, or at least were not expressed as strongly as, those that they expressed

more openly in the tutorial. The privacy of the weekly reports was maintained by

ensuring that the forms were completed by the students themselves.

The course that these students would follow was in most respects the same as that

experienced by the veterans in the previous year (described in the previous sections).

The only change of any significance was that a substantial amount of material on

testing was brought nearer to the start of the module. The intention of this was to

provide a more gentle introduction to the course by leaving hands-on programming

until slightly later. For example the first assessment required the students to test a

provided executable program and did not require them to undertake any programming

at all. Apart from this the presentation, organisation, assessment, and progression

requirements were unchanged.

This leaves a C++ programming course still arranged on fairly traditional lines (with

an amount on testing as an introduction). The textbook was in a new edition [42]

(and some students preferred an alternative [106]) but the order was unchanged.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 139

The topics for the first few weeks were variables, assignments, and so on, followed

by conditional statements and the various types of loop. Built-in and user-defined

functions appeared around week seven and the course concluded having covered a

fairly comprehensive procedural subset of C++.

A few more details of the assessment regime followed in the module will no doubt

help in understanding the descriptions of the novices’ experiences that follow. There

were four pieces of assessable coursework. After the first, on testing, the other three

involved practical programming activities. The specification for each assessment was

presented as a number of ‘levels’. The first level was a basic introduction to the

task and the second and third represented what an average student should achieve.

The fourth was intended only for the more competent or experienced but was often

attempted by the less able as part of their insatiable quest for marks. Each level

carried with it a different number of marks. Successful completion of the first two

levels was a pass standard, the third level was sufficient for ‘first class’ marks, and a

few bonus marks were available for the final level. There were also two tests carried

out in lecture times. These represented 25% of the weight of the assessment, with the

rest coming from the practical work. It was necessary to achieve a pass standard in

both practical work and tests separately in order to pass the course overall.

The final grading of the module required, as before, a grade of 37 for pass standard,

with the raw marks conflated onto a scale running from 20 to 90. The final process of

moderating the assessment scaled the raw marks downwards slightly to compensate

for the fact that most students had scored very high marks on the assessments.

The initial enrolment on the module was over 300 students. 266 lasted the course

and of these 62 secured a first class result. 24 failed.

The following sections do not attempt to present a strictly sequential narrative of

each student’s experience but rather an overview. They are presented in no particular

order.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 140

5.3.1 Lenny

Lenny described his Cognitive Science degree as “inspiring”. He had a mainly arts

background at ‘A’ level and had also taken an Advanced GNVQ. His results were

good. Lenny’s view of a programmer was someone who “likes sitting in front of a

screen for hours” and he was sure that this was definitely not him. He did not expect

learning to program to be easy but expected to be “fair [or] competent” at it. At the

start of the course he was “scared”.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

P
re

di
ct

ed
 G

ra
de

Week

Figure 8: Lenny’s Predicted Grades

Lenny’s prediction of his grades (figure 8) started with a figure exactly at the mean

but then tailed away. He described the first week as “painful” and added that he

had “not much confidence at the moment”. The following weeks were no better –

“help”, “confused”, “nightmare!”, and “clueless”. In week four he recorded that he

did not “get the variable thing”, which seems scarcely a sound basis on which to build

a knowledge of C++. By the fifth week he was “turning up to lectures in body but

not mind”. Things improved after this low point to be “bearable” (this corresponds

with the slight upturn in Lenny’s predictions). At the end of the module his final

grade of 56 was exactly his original prediction.

Lenny described the course as a “struggle” and was adamant that he was by no means

a competent programmer. He felt that the lectures had moved too quickly and that

he had become lost due to not understanding the basic material (the symptoms of



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 141

learned helplessness). The biggest problem was being left to work alone on reasonably

complex programs and the greatest help was when he was able to get help on a one-

to-one basis. He thought he might just pass in the second semester but was far from

sure.

It is worth noting that the story shown by Lenny’s reports during the module is

rather at odds with the public face he was showing in tutorials. He did indeed seem

to be finding the course difficult but he seemed to be coping reasonably well. He

certainly did not appear to be having a nightmare. Presumably he found it difficult

to articulate his problems, or was unwilling to do so, in front of a group all of whom

seemed to him to be coping better than he was. Even so, he succeeded in passing at

a level that should have pleased him. However, it is clear that his expectancy of his

chances of doing so was variable.

5.3.2 Jackie

Jackie had originally intended to study Psychology at university, but changed to

Cognitive Science because it “included a broader range of topics” and “would be

more useful for getting a job”. She was one of the few to mention this extrinsic

motivation at this early stage. She chose Leeds as a university that was quite close

to home but still far enough away. Before the programming course she had little idea

of the skills that would be required but was doubtful that she possessed them. She

was certain that learning to program would not be easy – “I don’t expect to be good

at it because I have never done anything like it before”. In a word she was “scared”.

Jackie found the course difficult from the outset. She found that she was able to

complete only the most basic parts of the assessments and her predictions of her final

grade fell away (figure 9 on the next page). Week four was “horrendous” and the

following week was “atrocious” when even the most basic concepts proved impossible

to grasp. There is a clear sense that she felt that she was losing control of her progress.

Nevertheless, her persistent efforts meant that she was still performing well enough



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 142

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

P
re

di
ct

ed
 G

ra
de

Week

Figure 9: Jackie’s Predicted Grades

to pass and she was especially pleased with her result in the first test. Her predictions

after this gradually increased (perhaps a beneficial effect of summative assessment on

her motivation).

Jackie continually found the whole process of programming “frustrating” and reported

finding the intricacies of getting her program into the computer as difficult as those of

writing it in the first place. This hints at the problems of mastering a multi-levelled

skill. It was very difficult to know where to start with each assignment and weeks

when a new one was to be started were “terrible”.

Her final result of 60 was something of a surprise for her but a fair reflection at

least of the effort that she had put in. It was certainly well above anything Jackie

herself had forecast. She was simply “thankful to have passed”. Programming was

“difficult and frustrating” and she had only “a vague understanding” of the basics.

The understanding that she had managed to acquire had been gained largely from

the lab sessions because she had followed very little in the lectures. A downside at

the end of the semester was a poor performance in her psychology modules. This

was something that she blamed squarely on the amount of time she had spent on her

programming.

Jackie’s experience had not been a pleasant one and is something that she describes

in often emotive terms. Her main problem seems to be that she failed to grasp the



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 143

basic concepts (as did Lenny) and thereafter had nothing to build on when she was

faced with more and more complex assignments. The difficulties were made even

worse by her lack of understanding of the mechanics of making her programs compile

and run. She was understandably thankful that the course was over.

5.3.3 Will

Will had chosen to attend a university close to his home. He lived at home (some 30

miles away) and commuted for the first few weeks but found this too much of a strain.

The main problem was evening access to the labs for his practical work. Information

Systems seemed a logical progression from Will’s ‘A’ level in IT, a subject in which

he had excelled. Will thought that he had the skills to be a good programmer and

expected to be good at it. However, he was prepared to admit that he expected that

some parts of learning to program would be difficult.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

P
re

di
ct

ed
 G

ra
de

Week

Figure 10: Will’s Predicted Grades

Given this attitude it is surprising that Will’s original forecast of his result was only

slightly above the class average. The first few weeks of the course went well with

good results being achieved in the coursework. Will began to describe the work as

“challenging” towards the middle of the semester but still had no real problems.

This changed quite suddenly in week nine which Will described as “frustrating”.

This was due to the introduction of overloaded functions, a concept that Will found



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 144

very difficult to grasp. Will’s expectation of his result from this point on decreased

(figure 10 on the previous page) as he encountered more advanced topics.

Will was quite relieved at the end of the module – “it was difficult but I passed”.

He felt that he “was not by any means” a competent programmer and he had found

it “very boring”. Overall, programming was “definitely something I don’t intend to

pursue”. His advice to other students would be to “attend all the lectures and lab

sessions” and to “start the coursework early”.

It is clear that, while Will had passed the module (with a high grade – 64 – well above

any of his forecasts), his initial expectations have not been met. The initial picture

is of an interested student who is expecting to learn something and to be good at

it. By the end of the module he is disillusioned and determined to avoid any more

programming. This appears to be quite a disappointing outcome even if the module

itself has been a success in purely academic terms.

5.3.4 James

James transferred into the Cognitive Science degree during the second week of the

semester, having originally chosen a joint degree in Computing and Philosophy. His

progress through the course was steady and his predictions of his grades (figure 11 on

the next page) show high expectations and a steady increase in his confidence. His

initial predictions were just below the first class border but he became more optimistic

as his confidence increased. His final grade of 68 was a fine achievement especially

given his late start.

James worked steadily through the course without encountering any real problems.

His late start did not seem to be any significant handicap at any stage. Most weeks

were “manageable”, “normal”, or “good” and he was even prepared to confess to

being “interested”. There was a slight problem when functions were introduced and

the course became “hectic” but even then it seemed “pretty mathematical (i.e. do-

able)”. This was only a brief problem because the next week “it’s all starting to come



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 145

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

P
re

di
ct

ed
 G

ra
de

Week

Figure 11: James’s Predicted Grades

together”. There was still some stress caused by the assessments (the final one was

“frustrating”) but James progressed well. There was never any question of whether

he would pass. The only issue was merely how well he would do.

James’s story is one of success and as such is a contrast to the experiences of many

of his peers. He has understood the material as it was presented to him and, apart

from a few hiccups which he addressed quickly, he has progressed steadily. At the end

of the course he felt that it had been “pretty alright” and was “quite easy once you

get your bearings”. His advice would be to “think like a machine – methodically” (a

mental model of a computer). He was looking forward to the next semester’s work

as more of the same. In the second semester he chose to take the fast-track route.

This was quite an achievement for someone who had not programmed at all only four

months previously and demonstrated James’s high level of confidence.

5.3.5 Steve

Steve took a year out before starting his degree. He chose to study Information

Systems because of his interest and for the future career prospects (more extrinsic

motivation). He chose Leeds for its reputation and surroundings. He had clear views

of the skills required for programming – “clear head, logic, ability to relax” – and was

confident that he possessed these skills (“otherwise I wouldn’t be here”). He did not



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 146

expect that learning to program would be easy but he thought he would be reasonably

good at it. He was viewing the programming course with a sense of “anticipation”.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

P
re

di
ct

ed
 G

ra
de

Week

Figure 12: Steve’s Predicted Grades

Steve’s prediction of his final grade, shown in figure 12, remained reasonably constant

consistently about halfway between the average and first class throughout the module.

This reflects his experience. Steve initially found that the course was “comfortable”

with testing and the basics of programming both “managed well”. It became less

comfortable in week six when the coursework became somewhat more difficult and

was more difficult to start but the overall impression is of steady progress throughout.

At the end of the course Steve “could see the use [of programming]” but had yet

to call on it. He thought he was a competent C++ programmer and was satisfied

with his final grade (even if at 55 it was slightly lower than his expectation). His

comments on the course itself focused on the teaching style and on the organisation

of the course. He felt that it could have been pitched at a higher level (something

with which many of his colleagues would certainly have disagreed).

Steve’s experience was a good one and one that should have pleased him. He had

achieved a reasonable level of competence and had done so mainly on his own with

the aid of the lectures and course notes. The course had been “complicated” but he

had coped well and with maturity. He expected to succeed in the next semester’s

programming but confessed that he was “nervous”.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 147

Steve was a year older than most of the other students taking the module and this

appears to have had an impact. He coped well with a challenging course. It seems

reasonable to suppose that he was facing fewer challenges in adjusting to university

life. His experience was entirely satisfactory and reasonably free of stress.

5.3.6 Karen

Karen’s original applications to university were to study Accounting. She decided

to change to Computing (another of her ‘A’ level subjects) and secured a place at

Leeds in the summer through Clearing.9 Leeds was chosen because of its reputation

and because it was close to home (although Karen decided to live away from home

throughout). Karen did not expect to be good at programming and had very little

idea of what would be required. She summarised her feelings at the start of the

module as “uncertain”.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

P
re

di
ct

ed
 G

ra
de

Week

Figure 13: Karen’s Predicted Grades

Karen’s initial experiences with the programming were positive and she was able to

cope well with the material on program testing. Unfortunately, in the early weeks

of the semester she was ill (corresponding with the blanks in her grade predictions)

9 Clearing is a process that takes place in the summer in the UK to allow students still requiring
places at university to make late applications.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 148

and missed several lectures. These lectures happened to be those that introduced

the basics of C++. From this point on her assessment of her likely final performance

decreased (figure 13 on the previous page) from her early above-average expectation.

She found that week five was especially “stressful” as she struggled to cope with the

lectures and the coursework. From here on the module was “hard” or “difficult” and

all Karen’s comments focused on the difficulties of completing the coursework.

In the circumstances, Karen’s final result of 49 was creditable. After the module she

thought it had been “hard and boring”. The biggest problem had been the completion

of the coursework. Nevertheless, she felt that she was a competent programmer.

The biggest help had been the discussions of the coursework in her weekly tutorial.

Her advice to other students would be to “start the coursework early and listen

in lectures”. She was expecting the following module to be more of the same and

“difficult”.

It is hard to say how much her illness affected Karen’s result in the module (and, more

importantly, her learning of programming). She was certainly ill at a crucial moment

in the module (just as the emphasis changed from testing to development). There

seemed to be no way in which she could catch up as more and more new material was

presented (especially as she was having to catch up in five other modules at the same

time). However, there is no particular evidence that she was experiencing learned

helplessness. It seems more that the module simply became a continual struggle to

complete the coursework.

Karen’s final attitude to programming is clear. It is hard and she was not looking

forward to studying it further. This was why she chose to transfer to the Information

Systems degree in order to avoid the second year programming courses.

5.3.7 Michelle

Michelle chose Cognitive Science as an extension of her interest in psychology. She

had a pure science ‘A’ level background and results that were exactly the entry



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 149

requirement. Leeds was her preferred university because of the social life. At the

start of the programming course Michelle expected that learning to program would

be difficult but also expected to cope reasonably well because of her “logical mind”.

Nevertheless, she felt “apprehensive”.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

P
re

di
ct

ed
 G

ra
de

Week

Figure 14: Michelle’s Predicted Grades

Michelle’s predictions of her grades are quite consistent (figure 14) but there is a

noticeable increase toward the end. She made steady progress through the first few

weeks (even following James and describing one week as “interesting”) but there

were some problems when functions were covered in week four and a coursework

using them had to be started. This was “terrible” and corresponds with a slight dip

in her predictions. However, by the next week the course was “interesting” again

and the coursework was completed. All was well until the last week when the final

coursework was “horrible” but this too was completed well and Michelle carried on

her way to an impressive final grade of 66.

At the end of the course Michelle described programming as “easy now, but wasn’t

at the time”. She thought that she was probably a competent programmer “in some

respects” but would benefit from more practice. The most useful part of the teaching

had been the practical sessions in the laboratory and the practical demonstrations in

lectures.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 150

Michelle’s experience of the module was, in her own words, “varied” but overall it

was a success. Each new coursework presented new challenges but she coped well

and overcame them. Her advice would be to “expect the worst” in the hope that

“it might get better”. At the end of the first semester Michelle decided to leave

the university temporarily in order to return the next session to study Information

Systems. She had enjoyed the computing element of her chosen course (and especially

the programming) and wanted to study it as a main subject – a success story.10

5.3.8 Cynthia

Cynthia chose to study Cognitive Science. Her reasons for choosing this degree did

not, perhaps, bode well for success in the computing part – “computers are essential

in this day and age, but too boring to study on their own”. Her original choice of

degree course was English Literature. She had clear views on the skills required of

a good programmer (“patience, practice, calm”) and was equally sure that she did

not possess them (“I’m very impatient and easily flustered”). She was unsurprisingly

“worried” at the prospect of starting the course but still hoped to succeed “if I practise

enough”. On the whole the omens were not good.

Cynthia’s predictions of her grade decrease steadily (figure 15 on the next page). Even

at the start she was “terrified of failing the courseworks”. She also recorded that she

“had been given the impression” that her lack of previous knowledge in some sense

“limited” what she might achieve. In the third week she was “scared” and thought

she would fail. The week after she was in despair because of a perceived injustice in

the assessment of her work (“my effort was pointless”).

Matters did not quickly improve. The fifth week was “frightening” with the comment

“feel I am sinking . . . hope I get through this”. Week six paints a happier picture with

the latest coursework complete – “amazingly, I understand my completed program

10 A postscript to this is that Michelle returned in the 2001/02 session and successfully completed
the first year of the Information Systems degree. Ironically her programming grade was slightly
lower.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 151

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

P
re

di
ct

ed
 G

ra
de

Week

Figure 15: Cynthia’s Predicted Grades

and have learned lots” – and an attempt to “get more hopeful (although I probably

shouldn’t)”. Cynthia managed to miss the test in week seven and once more despair

set in (with the slight dip recorded in figure 15). After the validation test problem

had been solved (or at least the effects ameliorated) with a resit Cynthia started to

become more cheerful (“understood the lectures pretty well”) even though “I’m sure

the coursework will destroy me soon enough”. The final assessments were in fact

negotiated with only limited suffering (“hectic”).

Cynthia’s comment at the end of the module were, not surprisingly, rather negative.

The course had been “pretty hard and confusing” and she was looking forward to the

follow-on course with “dread”. She described her problem as having been “thrown in

at the deep end”. This had meant that “there’s nothing you can do but drown”. She

would not advise others to take the course – “don’t do it unless you’re desperate to”.

She did not expect to pass the next module.

In retrospect Cynthia should probably be rather pleased with her final grade (41).

This was at least just a pass. She seemed to approach the module with the view

that she would find it difficult and would fail (not a good expectation to start with)

and almost seemed to be determined to fulfil this prophecy. She undoubtedly worked

reasonably hard but could have directed her efforts better. Her occasional brushes

with authority and her failure to attend the test certainly did not help. The overall



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 152

impression is that she was almost working against the system and would pass (if at

all) in spite of the teaching rather than because of it. It is far from certain that she

was ever particularly motivated to succeed. Both value and expectancy must be in

serious doubt.

5.3.9 Anne-Marie

Anne-Marie’s choice of Computing was an extension of her most enjoyable ‘A’ level

subject. As well as being a subject in which she did well, she saw the course as a

route into a highly paid job (more extrinsic motivation but this time with obvious

evidence of intrinsic motivation). Before the module she had little idea of what skills

would be required but “hoped to be good at it”. She confessed to being “worried” at

the prospect.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

P
re

di
ct

ed
 G

ra
de

Week

Figure 16: Anne-Marie’s Predicted Grades

Anne-Marie’s attendance at tutorials during the semester was sporadic as she was

frequently absent for (genuine) hospital appointments. Her forecasts of her result

(figure 16) show a consistent view of slightly above the average grade and this is in

fact exactly what she achieved. Her reports of her weekly experiences are all largely

negative and are sometimes expressed in often quite emotive terms – “stressful”,

“frustrating”, “despairing”, and “numbing”. These reactions all appear to be based

mainly on the experience of trying to complete the coursework to her satisfaction.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 153

There is evidence that Anne-Marie drew much satisfaction from her eventual success

(“I actually managed to do it!”). By the end of the course she was prepared to admit

to “understanding [the course] a bit more”.

At the end of the course Anne-Marie summarised the course as “extremely hard and

boring”. Programming itself was “boring” and Anne-Marie felt that she was “not

really” competent. The biggest help to her was making contact with an “expert”11

who could help her when needed. Her advice to future students was to seek out and

adopt such an expert at the earliest opportunity. Looking forward, she experienced

“despair” but still hoped to pass.

Although she may not have realised it Anne-Marie made good steady progress through

the course and had achieved a solid result (55). She tended to worry when she did

not understand the lectures and often sought help immediately afterwards (which is

certainly no bad thing). The coursework was always started as soon as it was set and

was usually completed in good time. Her (largely misplaced) lack of self-confidence

prompted her to seriously consider changing to the Information Systems degree in

order to avoid more programming but it seems unlikely that she will do so.12 Overall,

this is a success story in terms of learning if not in terms of Anne-Marie’s reaction to

the subject.

5.3.10 Ieuan

Ieuan chose his Computing degree because of a long-standing interest in computers.

He had not studied computing in his ‘A’ levels but had achieved good results in Art,

Geography, and CDT. Before the programming course started Ieuan did not expect

that learning to program would be easy but he expected to succeed “in due time” as

a result of hard work. He described himself as “keen” in his first week.

11 Modesty once again forbids.

12 As it turned out she did not and in fact managed to complete the second year programming course
reasonably well.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 154

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

P
re

di
ct

ed
 G

ra
de

Week

Figure 17: Ieuan’s Predicted Grades

Ieuan found the first few weeks of the course straightforward and he consistently

reported that it was “going well”. This is reflected in his predicted grades, which are

consistently above the mean. This confidence seems to have persisted until the end

of week eight.

In week nine there is a marked change. The module changes almost overnight from

“easy” to “hard”. This seems to have corresponded with the covering of functions and

function prototypes in the lectures.13 In the following week Ieuan’s predicted grade

decreases slightly but still remains above the mean. It is clear that at this stage he

was having serious difficulties understanding the module content. The line in figure 17

clearly shows how his predicted grade increases gradually during the first weeks of

the course and then tails off after the eighth week as the material became harder.

The start of the downward trend corresponds with the introduction of functions and

function prototypes.

Ieuan effectively left the course at this point. This was the result of an accident that

resulted in a serious back injury which required bed-rest. This period away from his

studies produced a large backlog of work in all his modules and this backlog was

sufficient to convince Ieuan to leave the course. At the time he felt that the first half

13 Although other students mentioned this earlier Ieuan’s problem was presumably sparked off by
starting an assessment.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 155

of the semester had been “reasonably successful” but that this had been undone by

his absence. He formally left the university during the Christmas vacation.

Just before he left Ieuan described the programming course as “a good experience

which I originally enjoyed, but towards the end of the semester I found out it was

not my cup of tea”. Programming was “interesting” but “beyond my grasp”. Ieuan

felt that he could “do a fair bit”. The biggest problem with learning to program was

simply that he did not enjoy it.

After Christmas Ieuan realised that his decision to leave had been somewhat hasty.

His experience in the first semester had demoralised him academically and convinced

him that he was not the sort of person who could “expect” to study for a degree

with any success. On calmer reflection he realised that this was probably not so and

applied to return to Leeds to study a Management Studies course.

Ieuan had indeed had a reasonably successful start to the course. He had successfully

negotiated over two thirds of it and was achieving good marks. At this point he seems

to have come up against some material that he simply could not grasp (functions and

prototypes are notoriously difficult for novices to learn) and was not able to cope. His

accident made the situation worse and led to his hasty decision to leave. The main

reason for this was probably the need to avoid failure and to retain control of his own

academic destiny (there are possibly also elements of learned helplessness too). Had

he persevered he would probably have succeeded at a reasonable level.

5.3.11 Carol

Carol chose Leeds as it was one of the few universities at which she could study

Cognitive Science. She had no real idea of what was involved in learning to program

but was “anxious” at the prospect. She was unsure as to whether or not she would

succeed.

Carol’s prediction of her final grade (figure 18 on the next page) is remarkable. After

an initial estimate exactly on the average level all subsequent weeks were bare passes.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 156

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

P
re

di
ct

ed
 G

ra
de

Week

Figure 18: Carol’s Predicted Grades

The first week was described as “stressful” with most of the others “terrible”. The

weeks in which there were coursework deadlines were worse. There was only one

slight respite in week eight when the first part of a coursework was completed easily.

Her final grade, just below the average at 55, was, by her own admission, more than

slightly the result of her seeking out all the possible help available.

After the course Carol was able to reflect on a “terrible experience”. She did not

consider that she was a competent programmer and was “not very positive” about

programming as an activity. She thought that she had passed as a result of the

amount of help available and particularly in the lab sessions. Her advice would be

“don’t miss lectures [or] lab sessions”. Looking forward, she hoped that the following

course would not be as bad and hoped to succeed but expected to struggle. In a word

she was “scared”.

Carol certainly worked hard during the module but seemed to discover that the

lectures could not be missed (by her own admission she had been absent on more

than one occasion but this was much less of a problem in her other subjects). She

did not find programming by any means easy but was not afraid to seek help and

can attribute her success largely to this. Her predictions reinforce the view [75] that

students’ expectations should be interpreted in their own terms. Effectively, Carol’s

aim and expectation were simply to survive and pass and this was achieved.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 157

5.3.12 John

John’s original application to the University of Leeds was to study a joint-honours

degree in Accounting and Information Systems but he decided to drop the accounting

element and entered the School of Computing through Clearing. He chose Leeds

“because the campus and facilities looked good” and felt that he had chosen a subject

that would be “interesting and useful”. John was not sure whether he had the skills

to be a successful programmer but was sure that learning to program would not be

easy (a “challenge”). At the same time he thought he would not find it too difficult

“because I can pick up new things well”.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

P
re

di
ct

ed
 G

ra
de

Week

Figure 19: John’s Predicted Grades

At first, John found the course “simple” and had no real problems. By the fourth

week (when C++ itself was introduced) it had become more “challenging” and his

expectation of his final grade decreased slightly (figure 19). From this point on he

described the course as variously “hard” or “difficult” but maintained his prediction

of his grade in roughly the same area (slightly above the average).

John’s final result was actually slightly below the class average at 51. He thought that

the module has been “quite hard” and thought programming was “hard and boring”

(as did Anne-Marie). The biggest problem had been completing the coursework to

an adequate standard. John’s advice would be to “ask for help if you have any

difficulties”. His expectation for the next semester was that the module would be

“dull” but he hoped to “scrape a pass”.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 158

John was a quiet student who seemed to find it difficult to ask for help when he

needed it. It is to his credit that he did so and, indeed, he rated personal help from a

tutor as the greatest help to him during the module. He had worked steadily through

the module and had achieved a reasonable final result. It is worrying that he was

approaching the second semester with a negative attitude of hoping to merely scrape

a pass when he was capable of achieving a lot more. It is hard to be certain that he

was expecting to succeed even if he did continue to value the outcome of the module

to a reasonable extent.

5.3.13 Nigel

Nigel was rather vague about his reasons for choosing Computing. His ‘A’ level results

were exactly the entry requirement but he had not studied computing at any level

before. Nigel recorded that his main reason for choosing the University of Leeds was

the city’s reputation for nightlife. The course itself simply “sounded interesting”. He

had applied to study a range of degree subjects at various universities – a distinctly

odd situation.

Nigel did not expect that learning to program would be easy but expected to be good

at it because “I pick things up easily”. Before the module he was “curious” about

what it would involve.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

P
re

di
ct

ed
 G

ra
de

Week

Figure 20: Nigel’s Predicted Grades



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 159

Nigel’s initial forecasts for his grade were slightly above the class average and he was

pleased that programming was “not as hard as I thought”. This carried on until week

five when he suddenly discovered that he had failed the coursework (probably due to

having spent too much time on the local nightlife and not enough on his academic

work). As time went on he discovered that he had unwisely failed the easiest of the

coursework exercises and so had to score even better on the later exercises. At this

point his predicted grade fell below the mean (figure 20 on the previous page) and

fell away slightly thereafter.

At the end of module Nigel had managed a bare pass (40). This was a considerably

worse result than he had forecast and well below his original expectations. He was

another that thought programming to be “boring” and “hard”. However, he did

imagine that he was “just about” a competent programmer. The biggest problem he

had encountered was doing enough of the coursework in order to pass and the biggest

help had been the practical sessions.

Two other comments made are rather worrying. Nigel recorded his attitude to the

following programming course as “hate” and his advice for students following his

degree in the next session was “do something else”. Both of these are emotive negative

reactions (it is hard to see how he would expect to succeed in the subsequent semester

with this attitude) but Nigel nevertheless expected to succeed.

Nigel’s academic work suffered in the first semester, as it did later (and spectacularly,

as it turned out) in the second, because of too great a concentration on the social

side of student life (this concentration in fact eventually led to the highlight of his

eviction from his hall of residence). He found himself in a position where he had to

do coursework of a high standard in order to pass, and probably to a higher standard

than he would have done otherwise. This experience had left him disillusioned and

rather negative about programming as an activity. It is not surprising that he decided

to transfer to the Information Systems degree. His reasoning for this was that he could

avoid programming while remaining in Leeds.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 160

In fact Nigel seems to be an example of a form of motivation identified in chapter 4

– his main motivation for going to university was the social opportunities that would

arise, with the academic content being secondary and almost unimportant.

5.3.14 Max

Max chose the degree in Cognitive Science as he was attracted to its mixture of useful

disciplines and its “alternative nature”. His ‘A’ level results were average for the entry

requirement but had required a resit. At the start of the programming course Max’s

views were mostly negative. He did not expect that learning to program would be

easy and did not expect to be good at it. He felt “queasy”.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

P
re

di
ct

ed
 G

ra
de

Week

Figure 21: Max’s Predicted Grades

Even so Max’s initial assessment of his likely achievement was just about above the

average. At first he found the course “interesting” and experienced no real problems.

However, at the same time his forecast of his final result moved to below average. An

explanation provided in week three for this was that “everyone’s cleverer than me”.

As the semester went on Max appeared to become more and more negative about

the course. He became “confused” and found the course “hurried”. His coursework

marks still remained good and were a source of some pride.

Disaster struck in week seven (corresponding to the remarkable dip in Max’s forecasts

in figure 21). Max managed to miss the first test in the module through oversleeping.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 161

In principle this could have meant that all of his hard-won coursework marks to date

would have been lost as well as a zero mark on the test. This provoked the comment

“gonna get 0 – gonna fail – gonna die” and the only occasion where any student in

the study forecast a clear fail grade. Happily by the following week a resit test had

been successfully negotiated, the coursework marks had been secured, and Max was

again more positive.

In the following week the final coursework was described as “tortuous” and a marginal

fail grade was the forecast. By the time this work had been completed the forecast

was at least back in the pass zone.

At the end of the course Max had interesting views about programming – “I detest it

– but I really want to like it”. The course had been “intimidating” (a reaction which

might reasonably be traced back to the missed test or possibly to the view that he was

in some sense less clever than all his peers). Max would have preferred more practical

teaching rather than lectures and was another to consider the lab sessions to have

been the most helpful form of teaching. In spite of his experiences he was positive

about the next semester’s work, describing his feelings as “hopeful” and saying that

he was “approaching [it] with a better attitude”.

Max’s final grade was a bare pass (at 38). After an uncertain start he had made

reasonable progress until the disaster of the missed test. This experience seems to

have affected him deeply. He felt that this was very unfair (it was an honest mistake)

and should not be allowed to have such a drastic effect on his final result. In essence

he saw himself losing control over his destiny in the course. The fact that the missed

test could jeopardise his hard-earned coursework marks was especially difficult to

accept. Even when this had been resolved it is clear that Max’s attitude was much

more negative even if he did claim a positive attitude to the following semester. As

matters turned out he failed the following semester’s module very badly, attending

and attempting very little. Partly this was caused by his realising that a pass in

programming was not essential for his progress into the second year but there was

clearly also an element of believing that programming was simply something he could

not do – a clear failure of motivation.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 162

5.3.15 Lizzie

Lizzie chose a degree in Information Systems as a logical follow-on from a subject

that she had enjoyed at GCSE and ‘A’ level. Her ‘A’ level results were good and

included an A grade in Information Technology. Before the programming course she

was unsure as to what skills would be required but was sure that learning to program

would not be easy. She thought that she would struggle at first because “it will take

a bit of getting used to”. On the whole, though, she felt “OK” about the prospect.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

P
re

di
ct

ed
 G

ra
de

Week

Figure 22: Lizzie’s Predicted Grades

Lizzie found the course challenging from the outset but her estimate of her final

result increased steadily through the semester (figure 22) even if it was never greater

than the average (some confusion over attendance accounts for the missing forecasts

from the first four weeks). Her weekly reports all rated the course as “difficult” or

“challenging” with all the problems being caused by the pressure of completing the

coursework. Her final result of 68 was well above her expectations but was probably

a fair reflection of a lot of effort put in through the course.

At the end of the course Lizzie had very strong views about programming. It was

(once more) “difficult and boring” and she was convinced that she “didn’t like it”. She

did not consider herself a competent programmer (which is surprising given the grade

she achieved) and would tell next session’s students that the course was “nasty”. Her

expectation for the next semester was that the course would be “more difficult” but

that she hoped “to pass it at least”.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 163

It is difficult to reconcile Lizzie’s negative views with the rather more optimistic

impression given by her steadily increasing forecast of her grade. She seemed to

worry a great deal about her progress and required a lot of help from staff. However,

much of this help was simply reassurance or confirmation that what she had done was

correct. Lizzie made a very successful start to learning to program even if it seems

that she has not quite appreciated that herself.

5.3.16 The Novices’ Experience

The most striking thing about this collection of narratives is that so many of the

students appear to have had a largely negative experience. Few of them are looking

forward to the second semester’s programming with any great positive feeling. It is

all too easy to see in many of them the signs of final-year student determined to avoid

programming at all costs. The positive aspects are that they have all acquired some

knowledge of programming (even if they do not all seem to realise how much), have

all passed, and have hopefully not done themselves any lasting academic harm.

This is not to suggest that these novice programmers and their experiences are of

necessity representative of the entire class. They were chosen because they were

complete novices and so their experiences must be typical of those students on the

course who had done no programming before. Most students negotiate the course

successfully (there were only 24 failures out of 266 students) and many go on to

study programming in various forms at higher levels. Nevertheless, the students in the

study were selected randomly from among the novices and their experience has been

sufficiently consistent to suggest that they are representative of that particular type

of student. Other students who had some prior experience (which can be expected

to be an advantage [64]) will have had a less negative experience.

Some of the experiences make rather depressing reading. There is the recurring theme

of initial enthusiasm being gradually eroded until the course is viewed in a wholly

negative light. The language used at this point is strikingly emotive with words



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 164

such as “frightening”, “nightmare”, and “horrendous” appearing to carry a weight of

meaning beyond their mere dictionary definitions. In the case of Ieuan the experience

was a strong contributing factor in his decision to drop out of the whole course.

This initial enthusiasm is generally tempered with no little apprehension. Most of

the students are nervous about the prospect of the programming course. None were

actually looking forward to it. This is a sobering thought for those teaching a subject

so fundamental to the discipline of computing. This points, perhaps, to a problem

with the intake or, more likely, to a failure to motivate the intake. Of course the

students may well have been equally apprehensive about the other parts of their

course. If this is so there is all the more reason to make sure that they are motivated.

This may seem to be an attempt to target the blame for the students’ difficulties on

the students themselves. It could equally be argued that the course is badly taught

or is simply too demanding in terms of time and content. The truth may well be that

all these things are partially to blame and that the problem is systemic in nature.

Perhaps students who are poorly prepared and apprehensive are being called on to

negotiate a course that is simply too demanding.

James, and to a lesser extent Steve, are the exceptions to the general rule. They

both seem to have had much more positive experiences (James even chose the fast-

track route in the second semester). Both have followed the module in the manner

expected and both have achieved creditable results. There is no sign that either

of them found the programming module anything other than ‘just another course’.

Michelle is another exception, with her enthusiasm leading her to choose to drop out

in favour of starting a more mainstream computing course in the next session. But

these are three students out of fifteen – only a fifth.

The students’ predictions of their final grades give a general impression of how well

they that felt they were doing in the course. It is noticeable that the majority showed

a decline in the prediction as the semester went on. This is surely a sign of a gradual

decrease in enthusiasm and expectation. While students cannot be expected to be

able to forecast their grades accurately (particularly in the first semester of the first

year) the consistent downward trend is nevertheless surely significant.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 165

Recalling the expectancy-value model of motivation (section 2.1.2), it is clear that

many of these students were not expecting to do well (or even to succeed) in the

programming course. This attitude was being carried on to the following course –

hardly a positive sign. They had this attitude even before the course had started and

this is something that again highlights the need to motivate and reassure. In terms

of the students’ basic needs it is clear that there were many times when they felt that

their lowest level need – to pass – was not going to be met.

It is also noticeable that for some reason the programming course (or simply ‘learning

to program’) has a clear reputation. The students have the view that it is difficult (or

worse) before the start. Before the course had even started Michelle said that she was

“nervous”, Cynthia and Anne-Marie were “worried”, and Max felt “queasy”. While

some uncertainty is to be expected it is hard to see this as a positive attitude. From a

motivational perspective the expectancy component appears already to be worryingly

low even at the start of the course.

There is worse to be seen in what follows. There is scant evidence that the students’

expectancy increases very far from this low starting point. Their views of the course

seem at best to remain constant or, if anything, to become more negative. Only Steve

and James appear to have remained confident of success throughout – only two out

of fifteen.

The impact of assessment and coursework cannot be ignored. The most obvious point

when this came into play was Max’s missed test but the majority of other comments

relate to assessment and problems completing the assignments or the tests. It is

almost as if the students felt driven by the assessment, making it appear to them

to be the module rather than simply one aspect of it. The assessment regime they

were following is not unusual (and is indeed rather less intensive than that used at

Kent) but it appears to have had a profound impact on the students’ experience and

a detrimental effect on their motivation.

Assessment is thus shown to be the most important factor in the novices’ experience.

It dominates their experience of the module and hides from them the learning on



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 166

which it would be hoped that they were concentrating. Cynthia’s comment (and the

language she uses) is powerful. She was pleased at some success but expected that

the next assessment would “destroy me soon enough”. Even where assessment is not

mentioned it is a background theme. The novices’ initial feelings about the course

(“queasy”, “nervous”) surely have more to do with their expectations of successfully

negotiating the assessment than with the nature of the subject material.

Perhaps the course that they were following had too much assessment or perhaps the

assessment itself was too demanding. But there were only four summative assessments

and only three of those involved any actual programming. This would seem to be close

to the minimum possible to allow meaningful final summative results to be arrived at.

These assessments were all specified to various levels of complexity so it should have

been possible for the novices to find an appropriate level. Assessment is necessary in

any module but should it really be allowed to dominate to the extent that it appears

here that it does?

Closely linked with assessment is the question of workload. The course that these

students were following was nominally to occupy them for 75 hours but there is ample

evidence that many spent much more. This excessive workload was produced by only

four assessable exercises and two tests. The problem seems to be that the students

are expending a great deal of effort, are experiencing an immense workload, but are

not getting the results that they believe they deserve. It is inevitable that this will

have an adverse effect on their motivation.

Overall, though, almost all of the students in the study should be satisfied with

their first semester’s work even if they do not themselves see that. James, Michelle,

and Steve have worked well and have, to varying extents, taken to programming. The

others have all worked well and have achieved reasonable results. Apart from Cynthia

and Nigel the only real disappointment is Ieuan who could perhaps have persevered.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 167

5.4 Summary

Nothing much appears to have changed. There are many clear parallels between the

experiences of the two groups of students. For example David and James were both

in some sense ‘natural’ programmers and both were able to learn effectively from the

lectures and classes with occasional advice from an expert. It is worrying that they

appear to be such a minority. The others all struggled at times but at least they all

succeeded (or would have in Ieuan’s case) in the end.

There are a number of instances where the students experienced a sudden change in

the difficultly of the material in the module and felt that they were suddenly unable

to cope (both Nikki and Ieuan reported this as a major problem). They struggle from

this point on, perhaps experiencing some of the symptoms of learned helplessness. A

slight variation on this phenomenon is provided by Karen who experienced a similar

situation but as a result of classes missed through illness.14 A course that proceeds

relentlessly and quickly is bound to risk this effect.

Nikki’s suggestion that the learning curve was inconsistent is connected to this notion

of a sudden change in difficultly. This is shown again with this year’s class able to

cope at first but then becoming suddenly lost. It can be assumed that this is not

intentional on the part of the instructors and so presents a clear issue. Experience

shows that some topics (parameter passing, functions, arrays) are most likely to

cause these discontinuities. It follows that they must be taught with care. Their

introduction (and, worse, the teacher’s carrying on without verifying the students’

understanding of them) can have a profound effect on motivation and expectation.

Some of the veterans (Kelly for example) seem to attribute their struggles to a lack

of aptitude. Some of the novices felt that they did have an aptitude, while others did

not. There is no compelling reason from these results to believe that aptitude has a

significant effect (or even that it exists in any meaningful way). This is in line with

14 Cynics would, of course, question whether Nikki and Ieuan had actually attended the relevant
lectures but there is nothing to suggest that they did not.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 168

other findings at Leeds and Kent which have shown that academic background has

little impact on final performance [16] but is at odds with recent findings in Ireland [21]

which suggested that a mathematical background was indeed an advantage.

The question of control is a recurring background theme although it is never explicitly

mentioned. There are clearly times when the students felt that their own destiny

(the locus of control) was no longer in their own hands. Max and Cynthia both

experienced this in relation to assessment and Nikki almost seemed to believe that

the very computer was conspiring against her. The students must feel that they are

in control and the educational setting must promote this. It is clear that for many

this programming course was taking this crucial control away from them.

A comment made consistently by those among the veterans who had struggled was

that an enormous help had been finding others who were similarly struggling (Kelly,

Keera, and Siân all reported this as did Josh at the other extreme). The extra help

classes that had facilitated this were available to the novices and several chose to join.

At the same time several informal pairings emerged (Lizzie and Anne-Marie, Jackie

and Carol, Cynthia and Max) who worked together. Such arrangements, whether

formal or informal, appear to provide much needed support to the novices and should

be encouraged (although not to the extent of encouraging or condoning plagiarism,

of course), perhaps by the use of methodologies that promote group working (such

as Extreme Programming [157]). Interest in such approaches to programming is

increasing [115] and working on programming assignments in a pair has already been

shown to promote effective learning [158].

Programming is best learned in a positive social context [152] and this can best

be provided in a social group of students at a similar level. This observation also

provides strong support for the streaming of the programming class to account for

prior experience at as early a point as possible, as is currently practised at Leeds [77]

and Southampton [36]. Josh and Mike also reported that this arrangement also has

clear benefits for the more experienced programmers.

The work at Leeds and Southampton is based around the idea of dealing with the

diversity of the student intake by making available a different, more tailored, learning



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 169

experience for certain groups. For example experienced programmers can be expected

to learn with little formal teaching while those with no previous experience will need

more formal contact hours. The form of teaching is based on a classification [77] of

aptitude and experience. It is now possible to devise a similar classification (but this

time of actual experience rather than prior experience) from the present study. Seven

distinct groups can be identified (table 17).

Group Examples Description

Programmer Josh Can already program. Will learn the new
language (if necessary) from textbooks with
very occasional support from an expert.

Natural David,
James

Takes to programming quickly and easily.
Will learn from lectures, experimentation,
and textbooks with occasional support from
an expert.

Competent Steve,
Michelle

Finds programming difficult but copes well
and succeeds. Approaches expert for help
when needed and is able to ask sensible
questions. Follows most of lectures and can
use textbooks for reference.

Worrier Lizzie,
Anne-
Marie,
Kirsty

Finds programming difficult but perseveres
and succeeds in the end. Follows some of the
lectures but learns best from practical work.
Needs support and encouragement from an
expert.

Silent Lenny,
Will,
Harri,
John

Similar to the Worrier but less likely to seek
out appropriate support. Will tend to try to
solve problems through sheer effort and will
probably succeed eventually.

Trier Keera,
Karen

Finds programming very difficult but seeks
out appropriate help and eventually succeeds.
Needs significant support and advice from an
expert, probably as part of a smaller group.
Follows little of the mainstream teaching.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 170

Group Examples Description

Struggler Siân,
Kelly,
Lenny,
Carol

Finds programming extremely difficult.
Follows none of the mainstream teaching and
lacks an understanding of basic concepts.
Small group teaching from an expert is
essential.

Table 17: Student Experiences

There are clear connections between this new classification and that already in place

at Leeds and Southampton. The Leeds classification used four broad groups [78]:

• Rocket Scientists – those who can already program.

• Copers – those who would find the module challenging but who would cope and

eventually pass reasonably well.

• Strugglers – those who would find the module difficult and who would not pass

without significant extra support.

• Competents – those who remain, who will pass with limited support provided

when needed.

These can readily be mapped to the student types identified here, as shown in table 18

on the next page. The mapping between the two extreme groups (Rocket Scientists

and Strugglers) is as expected and it follows that the students’ experience could to

some extent have been forecast from some knowledge of their background. This study

has described the experiences that students in the other two classes are likely to have.

From this it should be possible to refine the methods currently in place for dealing

with the student diversity.

Moreover, the work carried out at Southampton [36] has shown that the students’ own

description of their feelings before the module is related to their final outcome. This

work used a scale of six categories ranging from ‘I am an experienced programmer,



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 171

Rocket Scientists ⇐⇒ Programmer
Copers ⇐⇒ Worrier, Silent, Trier
Strugglers ⇐⇒ Struggler
Competents ⇐⇒ Natural, Competent

Table 18: Mapping Between Classifications

and will not learn much from this course’ to ‘I have no experience of computing, and

I am worried’. The Southampton work has shown that it is possible to predict the

outcome for these students. Although its sample size is small, this study has shown

that it may also be possible to predict the experience. And it is the experience that

most strongly influences motivation and expectation.

Is it possible to draw further on this concept of relying on the students’ own perception

of their abilities to forecast their experience from their feelings before the start of the

module? The evidence here is inconclusive but it is interesting enough for it to be

worth studying more in the future. Certainly if some basic background information is

added it is possible to make some general comments. For example the Strugglers were

all joint-honours students15 with a limited mathematical background. The Worriers

were all single-subject students who had studied some IT in the past. Also of interest

is the remarkable fact that all the Silents are male and all the Worriers are female.

This again reinforces the previous work at Leeds and Kent on gender differences in

learning to program ([22], [23]). There is clearly something going on.

The question of access to some expert appears in the description of each of the

categories and echoes a common comment from the students. Ready access to some

sort of sympathetic expert is essential. Most of the students in this study preferred

to consult the expert in person (even if for some, like John, this was something of

a struggle) but it is equally possible to make such expertise available by electronic

means. Several students attributed their success in the module to this help above all

other things (a view that probably demeans their own efforts to some extent). With

15 Here including Cognitive Science.



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 172

ever-increasing class sizes it is difficult to see how this can be provided for all students.

Perhaps the teacher’s personal attention should be focused on those struggling while

other students rely on electronic means (which are at least relatively cheap to run)

but this seems hardly fair. As well as providing technical help the expert can have

a crucial motivational and reassuring rôle, as witnessed by Lizzie’s need to be told

frequently that her program was correct.

In their different ways Harri and Lizzie show the qualities that are needed to succeed

in an introductory programming course – determination and the willingness to put

in the hours needed. Others (notably Nigel) seemed to realise that this is what is

required only when it was too late. This fits with the concept of learning to program

as an educational novelty and something that requires skills and application that are

not exercised in previous (or indeed current) academic work. In particular last-minute

cramming before an assessment deadline is a recipe for disaster. These demands also

do not fit well with the popular perception that the first year of a three-year university

course is easy and simply a question of fitting in before the real work starts in the

final two years. Some education (and motivation) is needed before the course starts!

The advice given by the veterans was not available to the novices and this is a shame.

There are clear indications that they made some of the same mistakes and that they

too have come to the same views about the best way to approach a programming

course. This should surely become part of induction programmes in all Computing

departments. The novices could learn some useful lessons (and meet survivors) before

they start the course.

An issue that is specific to the degree programme structure (more accurately to the

relationship between the four degree programmes) in the School of Computing, but

which is nevertheless interesting, is that many of the students chose to change degree

course at the end of their first year. Their main reason (in many cases the only reason)

for doing this is to avoid the higher-level programming modules (Kirsty and Nikki

took this route and were followed the next year by Karen and Nigel). It may be that

these changes reflect a genuine change in interest and perhaps poor initial research



CHAPTER 5. EXPECTANCY – THE INDIVIDUAL 173

into the degree programmes but the suspicion must be that this is largely a purely

tactical move. Again it might be suspected that elements of learned helplessness are

at work here or it could just be a case of trying to avoid ‘hard’ modules. In either case

the first programming experience has clearly made a powerful and lasting impression

on the students’ self-belief and motivation.

The view that the impressions are powerful and lasting is reinforced by the highly

emotive language used by the veterans and novices alike to describe their experiences.

Negative words such as ‘hell’ and ‘nightmare’ suggest that the experience itself is very

powerful and is making lasting impressions. It is not difficult to imagine the effect

this is having on the students and it is not difficult to imagine them passing this on

to the following year’s class. Programming thus acquires an unwanted (and hopefully

undeserved) reputation and it is a reputation that perpetuates. This reputation

incorporates a dislike of programming and it is easy to see how this could lead to a

vicious circle including poor performance in programming [57].

This study has confirmed much of what was previously anecdotally believed. The

students have a highly varied experience during their first programming course. For

many their expectations and motivation are on a roller-coaster as their morale goes up

and down due to assessments. It is a strong word but many seem to genuinely suffer

during the course as they become increasingly anxious and desperate to succeed.

There has been little change over the two years covered here and the class of 2001/02

will very probably contain students who have the same range of experiences.

A teacher’s rôle in this situation is complex. It is important that academic content

is covered as well as possible but there is also a need to pay close attention to the

experience that the students are having and closer attention to the effect that this

experience is having on their expectations and motivation.

The students’ expectation is a problem. Many of them do not expect to succeed.

Many of them are not motivated.



Chapter 6

Conclusions

Mrs Pugh: Has Mr Jenkins said his poetry?

Mr Pugh: Yes, dear . . .

The double meaning in the title of this thesis emphasises the two main themes that

have underpinned this work:

• The nature of the motivation of programming students.

• A teacher’s crucial rôle in motivating those students.

A picture of the motivations of the students has emerged from chapter 4. They are

motivated for a range of reasons embracing a variety of both intrinsic and extrinsic

factors. Chapter 5 showed how a student’s motivation can be influenced by the teacher

and the teaching. Sadly the evidence here is that the effect is often negative. The

overall conclusion must be that, taking the expectancy-value model of motivation, it

appears that the value component is in good health but there are problems with the

expectancy.

174



CHAPTER 6. CONCLUSIONS 175

The objectives of this work were:

• To understand the experience of learning to program in today’s higher education

system in the UK.

• To understand how the students’ motivation for and attitudes towards their

programming course alter as the course proceeds.

• To understand the reasons why students choose to take programming courses.

The first of these objectives was addressed in chapter 5 where the focus was on the

experience of various individuals as they followed a programming course. The news

in that chapter was not, on the whole, especially encouraging. At the very least

there are strong indications that the experience is not a pleasant one. Chapter 4

addressed the second objective by investigating the motivations and attitudes of a

substantial cohort of students at two institutions and showing how these motivations

and attitudes changed as the programming course progressed. The final objective has

been more of a background theme. There is evidence that students are not actually

choosing to take programming courses. A programming course is simply a compulsory

part of a degree programme and is seen as nothing more than an academic hoop

through which the students must jump in order to get a computing degree. These

objectives are considered further in the sections that follow.

At the same time as presenting the main investigation of motivation this thesis has

of necessity considered in passing many other issues surrounding the teaching and

learning of programming. This chapter begins with a discussion of what this study

has shown about the experience of learning and teaching programming as part of a

degree course in the UK’s higher education system in the early 21st century. The

question of the students’ motivation, and of their teachers’ crucial rôle in supporting

this, is crucial to understanding the students’ experience and to making it as profitable

for them as possible. After a discussion of the nature of the students’ motivation and

of the teachers’ rôle in ensuring their motivation the chapter ends with some general

concluding remarks about the experience of undertaking this study. There are also



CHAPTER 6. CONCLUSIONS 176

some ideas for future work that might be undertaken in this area and some more

general reflections.

6.1 Teaching (and Learning) Programming

Teaching programming is a problem. This study has confirmed this and has also

confirmed that learning programming is a problem. Chapter 5 showed the range of

experiences that a student can have when studying programming. These range from

the experience of those students who start the course already competent programmers

(classified as Programmers), through those who pick programming up quickly and

easily (Naturals), to those who struggle severely (Strugglers). This dramatic range of

experience is surely a reflection of the increasing diversity of the student population.

Computing continues to expand as an academic subject and expansion inevitably

brings more diversity as more and more students are taken from more and more

backgrounds.1 Problems associated with this will worsen in the future.

At any conference on computing education there will be many sessions presented in

the area of teaching and learning programming. Papers describe new assignments,

new assessments, new languages, new paradigms, and cunning software for detecting

plagiarism. Vary rarely, if ever, do the presenters produce any convincing evidence

that these innovations improve the students’ learning (although some do admittedly

make the teacher’s lot a little easier). There has to be the suspicion that none of

these changes have any real impact. Cynically, perhaps they serve only to make the

teachers believe that they are trying something. This is thinking and research in

Biggs’s level 2 terms. It is not getting to the root of the problem.

The following sections consider some of the factors that seem to lie behind the system

of teaching programming. They are, as always, in no particular order and certainly

not in any implied order of importance.

1 It is noticeable that the student population is more diverse at Leeds than at Kent. This is
presumably because of the range of degree programmes available at Leeds.



CHAPTER 6. CONCLUSIONS 177

6.1.1 Diversity

Chapter 5 highlighted the diversity of the students learning to program. It must be

remembered that this diversity was within a subset of the cohort since the students

were essentially all traditional entrants and novice programmers. This small group

had a range of different experiences, learned in a range of different ways, and coped

with problems in still more different ways. It follows that the whole cohort must learn

to program in so vast a range of ways that it is surely all but impossible to devise a

single programming course to suit all the students. It is a shame that in an academic

setting with many constraints (finances and physical space to name but two) this is

precisely what is required.

Students acquire the skill of programming in different ways. It is quite senseless to

attempt to teach them all in the same way. Previous work at Leeds showed a rough-

and-ready range of routes through a module [38] based on an idea of something called

aptitude. This study has shown that there is a diverse range of experience that the

students have as they follow the single course provided for them. It has also hinted

(but for the hint to become a certainty a much more detailed study will be required)

that it may be possible to forecast a student’s likely experience from information

available before the course starts. It must surely be possible to adapt the course (and

essentially it is only the course procedures and assessment that need to be changed)

to serve the audience more effectively. It is surely more important that the students

learn rather than that they all follow the same scheme.

6.1.2 Aptitude

The question of aptitude for programming is indeed a complex one. It is possible

to find ample convincing evidence in many studies that there is no such thing as

aptitude for programming [101] and experience with aptitude testing at Leeds has

been far from convincing. But then logic seems to dictate that there must be some

attribute of an individual that makes a student a natural programmer. At the start



CHAPTER 6. CONCLUSIONS 178

of their year the novice programmers in section 5.3 certainly seemed to believe that

there was some sort of aptitude and many were very sure that they did not have it.

It is hard to see too much evidence of the existence of aptitude in this study. The

students who struggled have little in common and some of the strugglers had much

the same educational background as those who excelled. It is worth noting that all

the students passed and that even those who had struggled had achieved some level

of competence (even if some had competence but lacked confidence). It may have

taken them longer to achieve this competence but achieve it they did. The evidence

for aptitude remains at best inconclusive.

A particular (and popular) candidate for determining aptitude or likely success (or

failure) is a student’s previous experience with mathematics. As before, it is possible

to find work that shows that mathematical background has no influence on success [16]

and work that shows equally convincingly that it does [21]. Confusingly, recent work

at Kent [26] appears to once again show some slight connection (this time between

success in programming and mathematical ability (measured in terms of success in

mathematics at university) rather than mathematical qualifications). The present

study appears at first sight to add some weight to the former view. There is little

evidence that those of the students with a more mathematical (or indeed scientific)

background found learning to program any easier. The doubt comes from the final

survey in chapter 4 which showed a remarkably unanimous view about programming

from the Leeds Information Systems students – they did not want to do it. These

are students who would not necessarily have had a mathematical background so

there may be some influence. Overall, the influence or otherwise of mathematics on

programming ability is decidedly ‘not proven’ as is the case for even the existence or

otherwise of aptitude for programming.



CHAPTER 6. CONCLUSIONS 179

6.1.3 Expectation

A diverse student body approaches a degree course for a range of reasons and with a

range of motivations. It is clear from chapters 4 and 5 that the potential for a future

career is a strong motivator for some but increasingly students choose computing as an

extension of the IT that they have studied previously. Herein lies a problem. The IT

that they have studied in schools and colleges (in Wales and England probably as part

of the National Curriculum) is very far removed from the subject that they encounter

at university. Other work involving students studying at Leeds and Kent [24] has

shown that many arrive expecting to study a degree that involves learning to use

various packages and creating spreadsheets and databases. They are not expecting

and so are not prepared for the subject that they actually meet. And worse, they are

not prepared for programming in particular. There is a clear need to provide much

more detailed information in the schools about the subject of Computing in higher

education [25] so that students understand what it is that they are applying to study

and arrive more suitably prepared.

Expectation is a two-sided affair. The students have expectations and so do those

who teach them. It seems that some staff (and their institutions) have not recognised

the dramatic changes that have happened in the nature of the student cohort in the

past years and have not adapted to them. It is no longer safe to assume that students

approach a programming course with the desire to learn to program – they must be

motivated. It is no longer safe to assume that students approach a programming

course with the ideal background – they must be motivated. The risk is that many of

them will simply regard the programming course as just another compulsory course.

If teachers are to maintain the position that programming is such a fundamental part

of the discipline that they teach they must be prepared to motivate the students to

make them come to believe this too.

There is also an expectation among many teachers that today’s student is studying

for a degree solely for future financial gain or “to acquire a piece of paper that would

make them eligible for certain jobs” [142]. Chapter 4 of this study has thrown serious



CHAPTER 6. CONCLUSIONS 180

doubt on this popular view. It seems that many students are actually motivated by

achievement and learning.

There is a problem with expectations from at least two directions.

6.1.4 Control and Learned Helplessness

Students must always feel that they are in control of their own destiny and of their own

success or failure. Chapter 5 showed many occasions when this was clearly not the

case. Max’s missed test and Cynthia’s problems with the marking of her coursework

are clear cases in point. On both occasions these students no longer felt that they

were in control. They felt that their success or failure depended solely on the whim

of some other person. They did not think that this was very fair. There is also the

sense at times that some of the students appear to believe that they are engaged in

some sort of battle with the computer. Its pedantry and refusal to co-operate appear

calculated to frustrate rather than to encourage. Perhaps here the students sense

control passing from them to a machine.

The question of learned helplessness is closely linked with the question of control.

Signs of learned helplessness are common in chapter 5 when students seem to arrive

at the view that programming is simply something that they personally cannot do. In

one case (Karen) this was largely because of illness but in many others (for example

Ieuan, Lenny, and Siân) it seems to have been simply because of the pace of the

course. They each failed to follow some basic material and were totally unable and

unequipped to cope with what came afterwards. The picture is one of students happily

negotiating the course and then suddenly coming upon a mental brick wall that they

simply cannot pass – everything on the other side is a total mystery.

While the ‘brick wall point’ in the module will obviously be different for different

students, some of the likely points can be predicted. Experience shows that loops,

functions (and especially parameters), and arrays are all likely candidates. A teacher

must make sure that the students have understood these topics (perhaps with a simple



CHAPTER 6. CONCLUSIONS 181

formative test) before carrying on. After all, what chance is there of understanding

C++ class methods without an understanding of functions and parameters? Or

complex data structures without understanding arrays?

The control is clear in a traditional academic setting. Here the teacher is in total

command and dictates the pace of the class. This somewhat authoritarian system

presumably works when the subject being taught is essentially a body of knowledge.

Unfortunately this simple model appears to breaks down when a more complex subject

is being learned. For programming to be taught and learned effectively the control

must pass to some extent from the teacher to the students. The students must be

trusted to decide how they will best learn (theory Y) and must be trusted to engage

in the tasks set them. The traditional approach is far too relentless and unforgiving.

It leads inexorably to a loss of control and learned helplessness.

6.1.5 Programming in Context

The experience of learning to program at university does not take place in isolation.

At the same time as they attempt to come to terms with the intricacies of C++ the

students are studying other topics (sometimes in completely different subjects). It is

clear that the immediacy of the programming (and in particular the feedback from

its assessment) is making many students neglect these other subjects, especially those

that will not be assessed until the end of the semester. This cannot be a good thing.

A worrying thought is that this neglect may encourage the teachers of other courses to

(in true theory X-style) set more summative assessments to prevent students ignoring

the other subject. This potential spiralling in the amount of summative assessment

could be disastrous.

The students are also trying to find their feet in a new environment as well as trying

to deal with the academic demands of their course. Many are coming to terms with a

new city, are making new friends, and are getting used to living away from home for

the first time. This is clearly a stressful time of transition and the additional stress

from the academic demands cannot be a good thing.



CHAPTER 6. CONCLUSIONS 182

This clearly raises the question of whether it is sensible to retain programming in

its traditional place in the first semester of the first year.2 To move it would be a

radical step indeed but there are many powerful arguments in favour of doing just

that. As well as the social aspects there are strong academic arguments. Surely

it is easier to learn to program when a student has a sound idea of the internal

workings of a computer? Chapter 5 also showed that many students are approaching

the programming course with some trepidation. Again, surely it would be better to

wait until they have settled in. The extra time would also give them a greater chance

of becoming comfortable with the university’s computing environment. This might

reduce some of the problems experienced in getting the program in to the computer.

Section 3.2 raised the possibility of using HTML or JavaScript as part of some more

gentle introduction into programming. Given the extremely widespread and persistent

nature of the problem in teaching ‘traditional’ programming, surely this is worth

investigating further? A short course in HTML would exercise many of the same

skills and would surely be less stressful (not least because HTML is much more likely

to be familiar to the students). Such a short course could provide a useful confidence-

building introduction to programming. It would exercise skills and processes (the

compile-edit-test cycle and the use of editors are two examples) that are not dissimilar

to those that will be needed for programming in a more general-purpose language.

In many ways learning to program in an academic setting is an inherently artificial

experience. Programming is not something that is learned by listening to lectures

or by reading textbooks. Programming is a practical skill. It is best learned by

apprenticeship in the company of an expert. The shame is that this is an environment

that it is very difficult, if not impossible, to provide in a mass higher education system.

There are few, if any, other skills that are taught in this way. For example imagine

teaching the skill of driving a car by a series of lectures. No-one would argue that

that was sensible so why persist in teaching programming in the same way?

2 When asked about this, a learned academic of high repute in a prestigious computing school in a
prestigious university once said “It has to be taught first. Otherwise the students wouldn’t get to
use the new computers in the new lab we showed them on the Open Day.”.



CHAPTER 6. CONCLUSIONS 183

6.1.6 “Boring and Difficult”

This study has tried to consider some of the key issues surrounding the difficulties

of teaching and learning programming in higher education. Section 3.9 considered

some of the reasons why the subject itself is difficult to learn and the study itself has

highlighted some factors which exacerbate this basic difficulty. The title of this section

is a quotation. The most common feeling of the students after their programming

course was that programming was “boring and difficult” (or slight variations on this

theme). When questioned, they were generally not sure whether it was boring because

it was difficult or difficult because it was boring but they were adamant that it was

indeed both. It is easy to see how this feeling could lead to a determination to avoid

programming in the future.

It is hard to argue that learning to program is not difficult but does it have to be

boring? Lectures on programming syntax are certainly unlikely to be particularly

inspiring (especially for a student who is struggling) but do assessments have to be

boring? A cursory glance through some programming textbooks reveals an extensive

range of uninspiring exercises and examples – class grade averages, examples based

on libraries and shops, and students and lecturers as examples of objects. Some of

the students mentioned that for them an enjoyable part of programming was the

creativity. This is something that could be easily be fostered with more open, theory

Y, examples and assessments.

The students are correct that learning to program is difficult but that is not to say

that it has to be boring. But does it have to be so difficult? Is it perhaps the case

that the way in which it is taught (relentlessly, first, with dull examples) makes it

appear more difficult than it actually is?

6.1.7 Learning Styles and Activities

Section 3.4 considered the difficulty in identifying the most appropriate learning style

for learning to program. It seems that a range of styles is required – a superficial view



CHAPTER 6. CONCLUSIONS 184

might be surface learning for syntax and deep learning for applications – and that a

student must therefore engage in activities that promote a range of types of learning.

The traditional view of learning styles seems to break down when confronted with a

subject as unusual as programming.

The students in this study have certainly adopted a range of learning approaches and

have engaged in all manner of activities. Some chose to spend hours in the laboratory

poring over their programs while others sought help at the first sign of difficulties

(some probably too soon). Many chose to work in pairs, perhaps to double the brain-

power or else to share the suffering. It is very hard to see any of them engaging in

learning in a particularly deep or surface manner. Nor is it easy to see a particularly

serialist or holist approach.

The only model that appears to even come close to describing how a student learns

to program is the Kolb Learning Cycle. A student must have some sort of experience

by writing a program and must then reflect. This reflection involves adapting the

student’s mental model of programming in the light of the new experience before

passing on to more experiences. This view, which sounds rather like constructivism,

is visible in some of the students (David is a fine example) but others seem to have

been spending so much time on assessments that they never paused to reflect. It is

as if the teaching (or particularly the assessment) is designed to prohibit reflection

and learning.

If there is currently an adequate model of the process whereby a student learns to

program it is constructivism. Marton and Säljö’s deep and surface classification (and

others similar to it) does not seem to be directly applicable to such a skills-based

area.

6.1.8 Educational Novelty

The term ‘educational novelty’ is Dijkstra’s [44]. He argued that programming was

difficult simply because it was beyond the immediate experience of those who learned



CHAPTER 6. CONCLUSIONS 185

it. This means that the study skills that they have used before (and that have served

them well) no longer apply. There is ample evidence of that in this study. Many

students reported that their strategy for debugging code involved reading a textbook.

This is a strategy that might conceivably work but one that is far from ideal.3

Herein lies the problem. Programming is such a novelty that the students do not have

the learning skills required. However, they have learned many things in the past and

have acquired learning strategies that have served them well. They naturally tend to

try to apply these. The problem is that they do not map to the new domain and the

system breaks down.

Therefore, teachers do need to understand more about the ways in which students

learn to program. If students are wrong to try to learn programming in the way that

they have learned other subjects in the past teachers are equally wrong to try to teach

them in the way in which these other subjects are taught. While programming courses

at different institutions are, of course, different in their detail the underlying way in

which programming is taught (mirrored in the mountain of programming textbooks)

appears to vary little between institutions.

Programming is learned by experience and reflection. It is an important part of the

teacher’s job to facilitate these, not just to give lectures on syntax.

6.1.9 Summary

There are many problems and issues surrounding the teaching of programming, of

which the key theme of this work – motivation – is only one. A cursory glance at the

submissions to any conference on computing education shows many papers describing

new approaches to teaching programming or bemoaning the various problems. The

problem is international [102]. There is nothing special about the universities of Leeds

and Kent.

3 The ideal strategy that would be used in industry is, of course, to show the code to some other
programmers and to ask them to point out the error. In an academic context such an approach
would be considered by some a dangerous first step on the road to plagiarism.



CHAPTER 6. CONCLUSIONS 186

Even though the main focus has been on an examination of motivation, this study

has shown once again some of the reasons why some students, even if apparently well

prepared and well motivated at the start, find learning to program difficult. There

are so many facets to this problem that it is difficult to know where to start but there

is, perhaps, one common theme. In general the students do not enjoy the experience

of learning to program. If they do not enjoy it they will not engage in the activities

required of them. If they do not do that they will not reflect and they will not learn.

It follows that a (perhaps the) key factor lurking behind the issues described in this

section is the motivation of the students.

6.2 The Motivation of the Students

If nothing else has been achieved this study has certainly confirmed the suggestion

that motivation is an extremely difficult concept to investigate. The students have

answered questions about their motivation, and these responses have been interpreted,

but it is not possible to be sure that the interpretation is correct. There remain

the possibilities that students would be tempted to give the answers they believe to

be ‘correct’ or even that some would through mischief give deliberately misleading

answers. Nevertheless, if the interpretation is accepted a picture of the students’

motivation has emerged.

The two essential components of motivation – value and expectancy – have been

treated separately. The study of the entire class in chapter 4 throws light on the

value students attach to their course while the more focused small-group study in

chapter 5 looks more at their expectations. Both these components must be present

for a student to be motivated and on the whole the news is good.

As regards value it is not a surprise to discover that the students do indeed value

success in their studies. The surprise perhaps comes more from the reasons why

they seem to value it. The initial survey showed that many (surprisingly many) were

motivated by achievement, a fact that rather goes against the current stereotype of



CHAPTER 6. CONCLUSIONS 187

the strategic students interested only in a future career. These students clearly exist

(and future career was indeed the second most popular motivation) but they are

far from the majority or norm. The later surveys showed something of a change in

the reasons why the students valued success but there were no signs that they were

ceasing to attach value in some form. The change was (again surprisingly) away from

future career and toward achievement. This change was partly maintained in the final

survey when achievement motivation was again the most popular.

So the students are motivated largely by the sense of achievement that they derive

from doing well. While this is not related directly to their subject, it is essentially an

intrinsic form of motivation, and a good thing. If they want to learn they will learn!

It is clear that the value part of the motivation equation is at least positive (or, in

slightly more mathematical terms, positive and non-zero). A slight concern is the

increase over the study in the number of students claiming to just want to pass. This

choice seems to reflect a lack of motivation or perhaps a problem in the expectancy

element.

It could be argued that the different types of motivation used in this study are less

than comparable. For example it might be suggested that achievement represents a

short-term objective while motivations relating to a future career are clearly more

long-term. These two may even represent different levels of motivation, with some

forms of motivation corresponding to lower levels in Maslow’s hierarchy. This said,

at least the students are motivated in some way.

If the students are motivated it follows that a Biggs level 1 view of teaching (which

holds that the students are basically unmotivated and lazy) is completely untenable.

The problem in teaching programming has therefore moved at least to level 2. Lack

of motivation (at least in terms of value) is not an issue.

Expectancy is more of a problem. There were clearly times in the module when some

of the students did not expect to succeed. Max’s “gonna get 0 – gonna fail – gonna

die” is the most obvious case in point but there are many more. Overall there is a

feeling that most of the students started the course with high hopes (or at the least



CHAPTER 6. CONCLUSIONS 188

with a reasonable level of expectancy) even if some were a little nervous. During the

course many (but happily not all) found their confidence gradually eroding until they

no longer believed that they would pass. Assessment, and in particular feedback on

assessment, has a crucial rôle here. There are clear signs that each assessment and

the workload associated with it knocked back confidence and expectancy further and

further. There are, of course, exceptions but enough of the study group showed this

pattern for it to be taken as a significant issue.

If expectancy or value fall to zero the value of the other component does not matter

and the student will not be motivated. Chapter 4 has shown that the value component

is constant and positive (even if the reasons do seem to shift). However, chapter 5

has highlighted some clear problems with expectancy. A teacher must motivate a

programming class. It follows from this that a teacher’s primary focus should be the

expectancy of the class. The teacher must be sure to satisfy the students’ lowest level

need. The students must believe that they will pass. This done, they can get on with

the more important business of learning to program.

6.3 Motivating the Students

There are few books about learning to program.4 One of the few is Oh! Pascal!

by Doug Cooper and Mike Clancy. In the preface to the third edition [30] Cooper

wrote “when I lecture I encourage any student who isn’t so confident to make a smart

friend, and to stick by her for the term.”. This is an interesting quote. The student

is lacking in confidence, not intelligence, and the lecturer’s job is to encourage. This

quote highlights the rôle that a teacher must adopt. The didactic instructor must

become a sympathetic motivator.

If this approach is to work there must be a particular relationship between the teacher

and the students. This relationship must be based on trust and, perhaps as part of

4 There are many books about programming languages and some of these claim to be books about
learning to program. They are not.



CHAPTER 6. CONCLUSIONS 189

this, mutual respect. Unfortunately, many staff and students would prefer to operate

in a ‘them and us’, theory X, climate. This might well be possible or even appropriate

in some subjects or disciplines but surely it is not in programming. Programming is

an unusual subject. It is best learned when the learners have ready access to a skilled

programmer (presumably their teacher) for advice and support. This will not be the

case in a theory X climate.

But how is a teacher to motivate a class? The first stage is obviously to acquire

an understanding of the students’ reasons for taking the course. Almost half of the

students in this study saw the programming class as simply a compulsory part of

their degree. It was little more than an academic hoop through which they were

required to jump. This does not point to motivation to learn or to any form of

interest. The teacher must explain why the students should be interested and must

gain their enthusiasm. Above all, this must happen before anyone goes anywhere

near any programming syntax.

Assessment has a powerful effect on motivation. Some students in a class will be

motivated particularly to do well in assessments while other students will instead find

their motivation deflated by failure. There are plentiful examples of both in chapter 5.

There is often too much assessment in programming courses, often perhaps deriving

from a level 1 “if I don’t assess it they won’t do it” view. This is terribly wrong.

The students in this study are almost not following a programming course. They

are lurching unhappily from one programming assessment to the next. If the teacher

wants them to reflect on an assessment (and therein lies the true value of the exercise)

they can hardly be expected to do so if there is too much assessment. The students

have other subjects to study. There must be summative assessment, of course, but

there should be the minimum necessary to ensure that standards are met. Far more

valuable are well designed formative assessments. This is a type of assessment that

can have a powerful and beneficial motivating effect.

The idea that programming can be taught in lectures is a quaint one. Experienced

programmers approaching a new language do not immediately seek out a lecture



CHAPTER 6. CONCLUSIONS 190

course. They acquire a book, try a few simple programs, perhaps chat to an expert,

and gradually the book becomes a reference. Why can student programmers not learn

in the same way? There is no reason at all. The ‘lecturer’ could easily take on the

job of choosing a book, prescribing some weekly readings, providing some suitable

examples, and would then take on the expert rôle. This is a tried-and-tested scheme

in the commercial world so why should it not be used or at least tried in universities?

In such a model the teacher’s rôle is very much that of a motivator. Yes. Learning

to program is difficult but it is not impossible. A teacher’s job is to reassure students

(to address expectancy) and to provide occasional help. This rôle involves no-one in

entering a lecture theatre.

If teachers are to teach students to program effectively they must become motivators.

Motivation is not taking place in lecture theatres.

6.4 Future Work

This study has raised some interesting questions and many of these could and should

form the basis of future work.

The data collected, especially that for the two classes at Leeds and Kent, could be

analysed in different ways to address questions such as:

• Are the trends in motivation significantly different at the two institutions?

• Are there any differences between the attitudes of male and female students?

• Or between home and overseas students?

• Or between traditional 18-year-old entrants and mature students?

• How do the motivations of students with a particular initial motivation change

over the course? Are there any trends visible?



CHAPTER 6. CONCLUSIONS 191

Appendix D presents a very brief comparison between the results at Leeds and Kent

(which might form a start in considering the first question) and more of the raw data

is presented in appendix E.

The students followed in chapter 5 have now just completed the second year of their

courses. It would be interesting to revisit their experience of programming with them.

Do the feelings that they revealed about programming during this study persist?

Do they now seem to think in the same way as the veterans did here? All these

students were studying the same course at the same institution. It would certainly

be interesting to follow other groups of students to investigate whether or not the

experiences at other institutions were comparable.

This work has touched once again on the thorny issue of whether or not mathematical

skills or attainment have any influence on programming ability or on the ability to

learn to program. It is possible to find studies that hold that mathematical ability is

a good measure of aptitude for programming and equally possible to find studies that

present quite the opposite opinion. This is certainly worthy of further investigation,

not least to inform admissions procedures and requirements.

The two institutions considered here are essentially traditional UK universities. A

wider study at more institutions in the UK, ideally including some of the ‘post-1992’

universities,5 would enable the findings to be extended or refined. A comparison with

part-time or distance students (where the motivational issues are rather different [71])

would also broaden the findings. A more ambitious study would be to extend the

work beyond the UK to see if the same issues are present in other countries. There

is already evidence that the problems are shared [102].

There has been no attempt in this study to separate the factors that are generic to

all students from those that are more specific to programming students. It would

be interesting and informative to try to identify these and separate them out. The

UNIQoLL6 [150] project (started in the School of Computing at the University of

Leeds) considers student well-being using a variety of metrics [37]. This project has

5 These are universities that were, until 1992, polytechnics or similar colleges. They tended to offer
more vocational courses and usually had lower entry standards than universities.

6 University National Initiative on Quality of Life and Learning.



CHAPTER 6. CONCLUSIONS 192

now been extended to the entire university and it is now possible to separate trends

in student well-being according to degree programme. It would be interesting to

combine the results from this study with the UNIQoLL data for the same cohort of

students. Such work might seek to provide answers to questions such as:

• What are the additional pressures faced by programming students?

• Are programming students in any sense worse off than students not studying

programming?

• Do the observable changes in student well-being match any observed changes

in motivation?

The teaching of programming at both Leeds and Kent continues to evolve. It would

be very interesting to repeat this study after the teaching has been refined in some

way. For one thing this would serve as a way to evaluate the effectiveness of the

change. This work has been in many ways only a start.

6.5 Reflections

The end of any substantial piece of work such as this presents a fine opportunity for

some reflection. There follow some thoughts on the process of carrying out this work

and what, perhaps, could have been done better. It will not be a surprise that these

are not presented in any particular order of importance.

The questionnaires delivered to the complete classes were designed for ease of analysis.

They were indeed easy to analyse but this was not without its costs. The method

was at times too crude and it was sometimes evident that some students had a more

complicated tale to tell than the questionnaire was allowing them to record. Some of

them indicated this and there were no doubt others who did not. A more free-form

approach, perhaps by providing some factors to rank rather than to choose from,

would have provided a richer set of primary data.



CHAPTER 6. CONCLUSIONS 193

The questionnaires were anonymous. This meant that it was not possible to follow up

any of the particularly interesting responses. It was also not possible to compare the

responses to the students’ final grades (something that might have formed the basis

of an interesting comparison between motivation, attitudes, and final result). Less

anonymous questionnaires would have allowed each student’s changing views to be

tracked through the course but it is possible that less anonymous questionnaires would

have produced different responses if the students felt in some sense more accountable

for their answers.

The distribution of the questionnaires in lectures may also have skewed the findings.

The detailed results (appendix E) clearly show how the number of responses decreased

with each questionnaire (especially at Kent). However, it is hard to think of an equally

convenient method that would have provided better numbers of returns.

The process of following the novice students through their course was an interesting

one. It is fascinating that several of them were recording on their weekly sheets

experiences and emotions that were quite at odds with those they were presenting in

public. If only each could have seen what the others were writing! This is perhaps

understandable since during the first semester at university most students are trying

to find their feet and are not sure where they fit in. Looking at their private thoughts

during the semester would to an extent have defeated the object of the study by

introducing an artificial intervention but it certainly might have meant that they

would have got the help they needed sooner.

This work has involved the study of a great deal of literature. There is an immense

amount of educational literature and so much of it seems to be so relevant. It is

disappointing that so much of it seems to be rooted firmly in theory and is so far away

from the practicalities of UK higher education today. There was at times depressingly

little that was directly relevant to the issues at hand. There is also, of course, an

increasing literature in computing (some call it computer science) education. So

much of this is also disappointing. It rarely draws on the educational theory and

many papers amount to little more than descriptions of courses or novel methods of

assessment. There are honourable exceptions but they are exceptions.



CHAPTER 6. CONCLUSIONS 194

Motivation itself has proved to be a difficult business. It is an inherently abstract

concept, impossible to measure and difficult to identify. This is unlike so much else in

the field of computing where an algorithm can be proved categorically to be correct,

a database can be shown to be correctly normalised, or a problem can be shown to be

insoluble. Motivation is not like this. It is possible only to enquire, observe, and make

suggestions or assumptions. Some of the work presented here may seem unscientific

for this reason but that is inevitable when dealing with so abstract a concept. It

is also possible that at times the findings are the result of over-enthusiasm and are

taken beyond what is shown by the data. If any instances of this remain, apologies

are offered. The raw data are included in appendices and wait there for further

interpretation.

This has indeed been an interesting exercise.

6.6 The Final Word

I7 talk to many students during their first year. If I mention their academic progress

the talk will always turn to programming. More often than not the programming

course is seen as a nightmare that has (hopefully) passed and the students are keen

to see how they can avoid programming in the future. I have on several occasions

seen students leave the university simply to avoid programming. Every year I see

students spending untold hours on their assignments. I see misery and suffering.

I confess that I had formed the view that these students were the norm. During this

work I have met other students. My teaching rôle in the programming course has

always been ‘Master of the Novices’. I look after the strugglers and persevere with

the hopeless cases. This work has given me the chance to meet other students. I have

met some who take to programming quite easily and enjoy it. I had heard rumours

about these people but I am not convinced that I believed in them. It was something

of a relief to discover that they did indeed exist.

7 The author is afraid that he is going to lapse into the first person again.



CHAPTER 6. CONCLUSIONS 195

This said, though, I have also found many more students who matched only too well

my previous experience. There are more than a few of them (the number is impossible

to determine) and they genuinely suffer. This cannot be right. One topic should not

dominate the curriculum and the student experience to this extent. It has to be the

case that there is something fundamentally wrong with the way in which we teach

programming. One step (and I do not claim a panacea) is to appreciate the crucial

rôle that motivation has to play in teaching programming. Students will not learn

unless they are motivated. It must be a teacher’s main task, therefore, to ensure that

all the students are properly motivated.

Undertaking this study has been an interesting experience. For the first time in many

years I have been able to take an outsider’s view of the programming course (even

if I could not resist joining in with the occasional lab session). My views have been

challenged and have been changed. I started this work two years ago with the idea

that the students were not motivated to learn programming (yes, level 1!) and that

what was needed was some new instructional techniques. I planned to throw Frisbees

in even more interesting ways. I think that I now realise just how wrong I was. I have

learned much about the ways in which students learn to program and I have thought

much about the ways in which they are taught. I can only hope that in some way I

am now a better teacher.

I am, the students tell me, no longer ‘Master of the Novices’. I am now their ‘Morale

Officer’. We will see what happens.

Thanks for reading. This was fun. Like history [140], this work has now also come to

a .



References

[1] Archer, J. Encouraging students’ motivation to learn. On-line

at http://www.newcastle.edu.au/oldsite/services/iesd/publications/

eunexus/articles/teaching guides/encouraging/encouraging 1.htm.

[2] Astrachan, O. Hooks and props in teaching programming. In Proceedings of

ITiCSE ’98, Dublin, Ireland (1998), ACM, pp. 21–24.

[3] Baldwin, D. Discovery learning in computer science. In Proceedings of

SIGCSE ’96, Philadelphia, USA (1996), ACM, pp. 222–226.

[4] Ball, S., Ed. Motivation in Education. Academic Press, 1977.

[5] Barnes, D. J. Public forum help seeking: The impact of providing anonymity

on student help seeking behaviour. In Computer Based Learning in Science ’99,

G. M. Chapman, Ed. CBLIS, 1999.

[6] BBC News. BBC News 22nd April 2002. Student debt ‘tops £10,000’. On-

line at http://news.bbc.co.uk/hi/english/education/newsid_1939000/

1939528.stm.

[7] BBC News. BBC News 22nd May 2002. University a goal for many

pupils. On-line at http://news.bbc.co.uk/hi/english/education/newsid_

2002000/2002531.stm.

[8] BBC News. BBC News 22nd October 2001. Universities ordered to widen

access. On-line at http://news.bbc.co.uk/hi/english/education/newsid_

1612000/1612614.stm.

196



REFERENCES 197

[9] BBC News. BBC News 25th July 2001. Students face growing debt bur-

den. On-line at http://news.bbc.co.uk/hi/english/education/newsid_

1456000/1456269.stm.

[10] BBC News. BBC News 4th March 2002. Getting students to work. On-

line at http://news.bbc.co.uk/hi/english/education/newsid_1849000/

1849549.stm.

[11] Ben-Ari, M. Constructivism in computer science education. In Proceedings

of SIGCSE ’98, Atlanta, USA (1998), ACM, pp. 257–261.

[12] Bereiter, C., and Ng, E. Three levels of goal orientation in learning.

Journal of the Learning Sciences 1 (1991), 243–271.

[13] Bereiter, C., and Scardamalia, M. Surpassing Ourselves – An Inquiry

into the Nature and Implications of Expertise. Open Court, 1993.

[14] Biggs, J. Teaching for Quality Learning at University. Society for Research

into Higher Education, 1999.

[15] Bloom, B. S. Taxonomy of Educational Objectives: The Classification of

Educational Goals. Longman, 1956.

[16] Boyle, R. D., Carter, J., and Clark, M. What makes them succeed?

Entry, progression and graduation in computer science. Journal of Further and

Higher Education 26 (2002), 3–18.

[17] Boyle, R. D., Jackson, J., and Wade, R. Changing learning culture

with electronic bulletin boards. Research Report 95.02, School of Computing,

University of Leeds, 1995.

[18] Brilliant, S. S., and Wiseman, T. R. The first programming paradigm and

language dilemma. In Proceedings of SIGCSE ’96, Philadelphia, USA (1996),

ACM, pp. 338–342.



REFERENCES 198

[19] Brown, G., and Atkins, M. Effective Teaching in Higher Education. Rout-

ledge, 1988.

[20] Brown, S. Institutional strategies for assessment. In Assessment Matters in

Higher Education, S. Brown and A. Glasner, Eds. Society for Research into

Higher Education, 1999, pp. 3–13.

[21] Byrne, P., and Lyons, G. The effect of student attributes on success in

programming. In Proceedings of ITiCSE 2001, Canterbury, UK (2001), ACM,

pp. 49–52.

[22] Carter, J., and Jenkins, T. Gender and programming: What’s going on?

In Proceedings of ITiCSE ’99, Krakow, Poland (1999), ACM, pp. 1–4.

[23] Carter, J., and Jenkins, T. Gender differences in learning to program.

Computing Research News 12 (2000), 2 and 14.

[24] Carter, J., and Jenkins, T. Redressing the decline – How can we encourage

women back into computer science? In Proceedings of Higher Education Close

Up 2, University of Lancaster (2001), pp. 6–8.

[25] Carter, J., and Jenkins, T. Where have all the girls gone? What entices

female students to apply for a computer science degree. In Proceedings of 2nd

Annual LTSN for Information and Computer Science Conference, London, UK

(2001), Learning and Teaching Support Network for Information and Computer

Science, pp. 72–77.

[26] Carter, J., Tardivel, J., Fincher, S., Fuller, U., Johnson, C., Lin-

ington, J., and Utting, I. Portrait of 2000/01 part I assessments, part 1:

Statistical analysis. Technical Report 10-01, Computing Laboratory, University

of Kent at Canterbury.

[27] Chamillard, A. T., and Karolick, D. Using learning style data in an

introductory computer science course. SIGCSE Bulletin 31 (1999), 291–295.



REFERENCES 199

[28] Clark, M., and Jenkins, T. What are they going to do now? The expec-

tations and intentions of new information systems undergraduates. In UKAIS

’99: Information Systems The Next Generation, L. Brooks and C. Kimble, Eds.

McGraw-Hill, 1999, pp. 755–764.

[29] Colsant, Jr., L. C. “Hey, man, why do we gotta take this...?” Learning

to listen to students. In Reasons for Learning: Expanding the Conversation

on Student-Teacher Collaboration, J. G. Nicholls and T. A. Thorkildsen, Eds.

Teachers College Press, 1995, pp. 62–89.

[30] Cooper, D. Oh! Pascal!, third ed. Norton, 1993.

[31] Cowan, J. On Becoming an Innovative University Teacher. Society for Re-

search into Higher Education, 1998.

[32] Cox, B. Practical Pointers for University Teachers. Kogan Page, 1994.

[33] Culwin, F. Objects first, objects last or objects at all? In Proceedings of the

Fifth All Ireland Conference on the Teaching of Computing (1997), Centre for

Teaching Computing, Dublin City University.

[34] Curzon, P., and Rix, J. Why do students take programming modules? In

Proceedings of ITiCSE ’98, Dublin, Ireland (1998), ACM, pp. 59–63.

[35] Dall’Alba, G. Foreshadowing conceptions of teaching. Research and Devel-

opment in Higher Education 13 (1991), 293–297.

[36] Davis, H. C., Carr, L., Cooke, E., and White, S. Managing diversity:

Experiences teaching programming principles. In Proceedings of 2nd Annual

LTSN for Information and Computer Science Conference, London, UK (2001),

Learning and Teaching Support Network for Information and Computer Science,

pp. 53–59.

[37] Davy, J. R., Audin, K., Barkham, M., and Joyner, C. Student well-

being in a computing department. In Proceedings of ITiCSE 2000, Helsinki,

Finland (2000), ACM, pp. 136–139.



REFERENCES 200

[38] Davy, J. R., and Jenkins, T. Research-led innovation in teaching and

learning programming. In Proceedings of ITiCSE ’99, Krakow, Poland (1999),

ACM, pp. 5–8.

[39] DeCharms, R. Personal Causation: The Internal Effective Determinants of

Behavior. Academic Press, 1968.

[40] Deci, E. E., and Ryan, R. M. Intrinsic Motivation and Self-Determination

in Human Behavior. Plenum Press, 1985.

[41] Deitel, H. M., and Deitel, P. J. C++ How to Program, second ed.

Prentice-Hall, 1998.

[42] Deitel, H. M., and Deitel, P. J. C++ How to Program, third ed. Prentice-

Hall, 2001.

[43] Dewey, J. Experience and Education. MacMillan, 1938.

[44] Dijkstra, E. W. On the cruelty of really teaching computer science. Com-

munications of the ACM 32 (1989), 1398–1404.

[45] du Boulay, B. Some difficulties of learning to program. In Studying the

Novice Programmer, E. Soloway and J. C. Spohrer, Eds. Lawrence Erlbaum

Associates, 1989, pp. 283–299.

[46] du Boulay, B., O’Shea, T., and Monk, J. The black box inside the

glass box: Presenting computing concepts to novices. In Studying the Novice

Programmer, E. Soloway and J. C. Spohrer, Eds. Lawrence Erlbaum Associates,

1989, pp. 431–446.

[47] Dunn, B. An exploration of student experiences and ethos through narra-

tives. In Proceedings of Qualitative Evidence-Based Practice Conference (2000),

Coventry University.

[48] Earwaker, J. Helping and Supporting Students. Society for Research into

Higher Education, 1992.



REFERENCES 201

[49] Elton, L. Strategies to enhance student motivation: A conceptual analysis.

Studies in Higher Education 21 (1996), 57–68.

[50] Entwistle, N. Motivation and approaches to learning: Motivating and con-

ceptions of teaching. In Motivating Students, S. Brown, S. Armstrong, and

G. Thompson, Eds. Kogan Page, 1998, pp. 15–23.

[51] ETH Zürich. ETH Oberon home page. On-line at http://www.oberon.

ethz.ch/.

[52] Evans, G. E., and Simkin, M. G. What best predicts computer proficiency?

Communications of the ACM 32 (1989), 1322–1327.

[53] Fallows, S., and Ahmet, K. Inspiring Students: Case Studies in Motivating

the Learner. Kogan Page, 1999.

[54] Fell, H. J., and Proulx, V. K. Exploring Martian planetary images: C++

exercises for CS1. In Proceedings of SIGCSE ’97, San Jose, USA (1997), ACM,

pp. 30–34.

[55] Fincher, S. What are we doing when we teach programming? In Frontiers

in Education ’99 (1999), IEEE, pp. 12a41–5.

[56] Fleury, A. Acting out algorithms: How and why it works. In Proceedings of

the 4th Annual CCSC Midwestern Conference (1997). Also published in Journal

of Computing in Small Colleges, 13:83–90, 1997.

[57] Goold, A., and Rimmer, R. Factors affecting performance in first-year

computing. SIGCSE Bulletin 32 (2000), 39–43.

[58] Gray, J., Boyle, T., and Smith, C. A constructivist learning environment

implemented in Java. In Proceedings of ITiCSE ’98, Dublin, Ireland (1998),

ACM, pp. 94–97.



REFERENCES 202

[59] Grayson, A., Clarke, D. D., and Miller, H. Help-seeking among stu-

dents: Are lecturers seen as a potential source of help? Studies in Higher

Education 23 (1998), 143–155.

[60] Greasley, K. Does gender affect students’ approaches to learning? In Moti-

vating Students, S. Brown, S. Armstrong, and G. Thompson, Eds. Kogan Page,

1998, pp. 105–112.

[61] Greening, T. Students seen flocking in programming assignments. In Pro-

ceedings of ITiCSE 2000, Helsinki, Finland (2000), ACM, pp. 93–96.

[62] Guckes, S. The VIM home page. On-line at http://www.vim.org/.

[63] Habeshaw, S., Gibbs, G., and Habeshaw, T. 53 Problems with Large

Classes. TES Associates, 1992.

[64] Hagan, D., and Markham, S. Does it help to have some programming

experience before beginning a computing degree program? In Proceedings of

ITiCSE 2000, Helsinki, Finland (2000), ACM, pp. 25–28.

[65] Hagan, D., and Sheard, J. The value of discussion classes for teaching in-

troductory programming. In Proceedings of ITiCSE ’98, Dublin, Ireland (1998),

ACM, pp. 108–111.

[66] Herzberg, F., Mausner, B., and Snyderman, B. B. The Motivation to

Work. Wiley, 1959.

[67] Higginbotham, T. F. Converting experienced C++ programmers to Java.

Presented at the Sixth Java and the Internet in the Computing Curriculum

Conference, University of North London, January 2002. Available on-line at

http://www.ics.ltsn.ac.uk/pub/jicc6/.

[68] Holmes, G., and Smith, T. C. Adding some spice to CS1 curricula. In

Proceedings of SIGCSE ’97, San Jose, USA (1997), ACM, pp. 204–208.



REFERENCES 203

[69] Howard, R. A., Carver, C. A., and Lane, W. D. Felder’s learning styles,

Bloom’s taxonomy, and the Kolb learning cycle: Tying it all together in the

CS2 course. In Proceedings of SIGCSE ’96, Philadelphia, USA (1996), ACM,

pp. 227–231.

[70] Hughes, S. Strategies adopted by academic staff in a mass higher education

system. In Proceedings of Higher Education Close Up, University of Central

Lancashire, July 1998 (1998).

[71] Isroff, K., and del Soldato, T. Students’ motivation in higher education

contexts. In Motivating Students, S. Brown, S. Armstrong, and G. Thompson,

Eds. Kogan Page, 1998, pp. 73–82.

[72] Jacobs, P. A., and Newstead, S. E. The nature and development of

student motivation. British Journal of Educational Psychology 70 (2000), 243–

254.

[73] Jenkins, T. A participative approach to teaching programming. In Proceedings

of ITiCSE ’98, Dublin, Ireland (1998), ACM, pp. 125–129.

[74] Jenkins, T. The motivation of students of programming. In Proceedings of

ITiCSE 2001, Canterbury, UK (2001), ACM, pp. 53–56.

[75] Jenkins, T. Teaching programming – A journey from teacher to motivator.

In Proceedings of 2nd Annual LTSN for Information and Computer Science

Conference, London, UK (2001), Learning and Teaching Support Network for

Information and Computer Science, pp. 65–71.

[76] Jenkins, T. Learning to Program (with C++). Palgrave Macmillan, 2002. In

press.

[77] Jenkins, T., and Davy, J. R. Dealing with diversity in introductory pro-

gramming. In Proceedings of 1st Annual LTSN for Information and Computer

Science Conference, Edinburgh, Scotland (2000), Learning and Teaching Sup-

port Network for Information and Computer Science, pp. 81–87.



REFERENCES 204

[78] Jenkins, T., and Davy, J. R. Diversity and motivation in introductory

programming. ITALICS (Innovations in Teaching and Learning in Information

and Computer Sciences) 1 (2001). On-line at http://www.ics.ltsn.ac.uk/

pub/italics/issue1/tjenkins/003.html.

[79] Jenkins, T., and Gillespie, C. Learning to Program (with Java). Palgrave

Macmillan, 2003. In press.

[80] Jenkins, T., and Towle, W. Teaching programming to novices – Can

technology help? In Proceedings of the Fifth All Ireland Conference on the

Teaching of Computing (1997), Centre for Teaching Computing, Dublin City

University.

[81] Keller, J. M. Motivational design of instruction. In Instructional-Design

Theories and Models: An Overview of their Current Status, C. M. Reigeluth,

Ed. Lawrence Erlbaum Associates, 1983, pp. 383–434.

[82] Kernighan, B. W., and Ritchie, D. M. The C Programming Language.

Prentice-Hall, 1978.

[83] King, C. Pay as you learn? Students in the changing university. In The Chang-

ing University?, T. Schuller, Ed. Society for Research into Higher Education,

1995, pp. 116–127.

[84] Kneale, P. E. The rise of the “strategic student”: How can we adapt to cope?

In Facing up to Radical Changes in Universities and Colleges, S. Armstrong,

G. Thompson, and S. Brown, Eds. Kogan Page, 1997, pp. 119–130.

[85] Knight, P. T., and Trowler, P. R. Department-level cultures and the

improvement of learning and teaching. Studies in Higher Education 25 (2000),

69–83.

[86] Kolb, D. Experiential Learning: Experience as the source of learning and

development. Prentice-Hall, 1985.



REFERENCES 205

[87] Kolb, D. Learning Style Inventory. McBer, 1985.

[88] Kölling, M. BlueJ – Teaching Java. On-line at http://www.bluej.org/.

[89] Laurillard, D. Rethinking University Teaching. Routledge, 1993.

[90] Lefcourt, H. M. Locus of Control: Current Trends in Theory and Research.

Lawrence Erlbaum Associates, 1976.

[91] Lewandowski, G., and Morehead, A. Computer science through the eyes

of dead monkeys: Learning styles and interaction in CS1. In Proceedings of

SIGCSE ’98, Atlanta, USA (1998), ACM, pp. 312–316.

[92] Lewis, S., and Mulley, G. A comparison between novices and experienced

compiler users in a learning environment. In Proceedings of ITiCSE ’98, Dublin,

Ireland (1998), ACM, pp. 157–161.

[93] Liffick, B. W., and Aiken, R. A novice programmer’s support environment.

In Proceedings of ITiCSE ’96, Barcelona, Spain (1996), ACM, pp. 49–51.

[94] Linn, M. C., and Clancy, M. J. The case for case studies of programming

problems. Communications of the ACM 35 (1992), 121–132.

[95] Lister, R. Objectives and objective assessment in CS1. In Proceedings of

SIGCSE 2001, Charlotte, USA (2001), ACM, pp. 292–296.

[96] MacFarlane, A. G. J., Ed. Teaching and Learning in an Expanding HE

System (the ‘MacFarlane Report’). Committee of Scottish University Principals,

1992.

[97] Machiavelli, N. The Prince. Philip Allan, 1925.

[98] Marton, F., and Säljö, R. On qualitative differences in learning I: Out-

come and process. British Journal of Educational Psychology 46 (1976), 4–11.

[99] Maslow, A. H. Motivation and Personality. Harper, 1954.



REFERENCES 206

[100] Mayer, R. E. The psychology of how novices learn computer programming. In

Studying the Novice Programmer, E. Soloway and J. C. Spohrer, Eds. Lawrence

Erlbaum Associates, 1989, pp. 129–159.

[101] Mazlack, L. J. Identifying potential to acquire programming skill. Commu-

nications of the ACM 23 (1980), 14–17.

[102] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D.,

Kolikant, Y. B.-D., Laxer, C., Thomas, L., Utting, I., and Wilusz,

T. A multi-national, multi-institutional study of assessment of programming

skills of first year CS students. SIGCSE Bulletin 33 (2001), 125–140.

[103] McGregor, D. The Human Side of Enterprise. McGraw-Hill, 1960.

[104] McKeachie, W. J. Learning styles can become learning strategies. The

National Teaching & Learning Forum 4 (1995), 1–3.

[105] McKeithen, K., Reitman, J. S., Reuter, H. H., and Hirtle, S. C.

Knowledge organization and skill differences in computer programmers. Cogni-

tive Psychology 13 (1981), 307–325.

[106] Mercer, R. Computing Fundamentals with C++. Macmillan, 1999.

[107] Mercuri, R., Hermann, N., and Popyack, J. Using HTML and

JavaScript in introductory programming courses. In Proceedings of SIGCSE

’98, Atlanta, USA (1998), ACM, pp. 176–179.

[108] Merriam-Webster Inc. Merriam-Webster OnLine. On-line at http://www.

m-w.com/.

[109] Metrowerks Inc. Metrowerks, Inc. On-line at http://www.metrowerks.

com/.

[110] Moodie, G. Standards and Criteria for Higher Education. Society for Research

into Higher Education, 1986.



REFERENCES 207

[111] Moore, J. Singing to students – A study in entertaining education. Final

Year Project, School of Computing, University of Leeds, 2001.

[112] Moser, R. A fantasy adventure game as a learning environment: Why learning

to program is so difficult and what can be done about it. In Proceedings of

ITiCSE ’97, Uppsala, Sweden (1997), ACM, pp. 114–116.

[113] Mowl, G. Innovative student assessment. On-line at http://www.lgu.ac.

uk/deliberations/assessment/mowl.html.

[114] Newstead, S. Individual difference in student motivation. In Motivating

Students, S. Brown, S. Armstrong, and G. Thompson, Eds. Kogan Page, 1998,

pp. 189–199.

[115] Nosek, J. T. The case for collaborative programming. Communications of

the ACM 41 (1998), 105–108.

[116] November, P. Learning to teach experientially: A pilgrim’s progress. Studies

in Higher Education 22 (1997), 289–299.

[117] Nulty, D. D., and Barrett, M. A. Transitions in students’ learning styles.

Studies in Higher Education 21 (1996), 333–345.

[118] Orne, M. T. On the social psychology of the psychological experiment: With

particular reference to demand characteristics and their implications. American

Psychologist 17 (1962), 776–783.

[119] Oxford English Dictionary. Oxford English Dictionary On-line. On-line

at http://www.oed.com/.

[120] Palfrey, C., and Roberts, A. The Unofficial Guide to Wales. Y Lolfa,

1994.

[121] Parnas, D. L. Response to Dijkstra’s Article [44]. Communications of the

ACM 32 (1989), 1405–1406.



REFERENCES 208

[122] Pask, G. Styles and strategies of learning. British Journal of Educational

Psychology 46 (1976), 12–15.

[123] Perkins, D. N., Schwartz, S., and Simmons, R. Instructional strategies

for the problems of novice programmers. In Teaching and Learning Computer

Programming, R. E. Mayer, Ed. Lawrence Erlbaum Associates, 1988, pp. 153–

178.

[124] Peterson, C., Maier, S. F., and Seligman, M. E. P. Learned Help-

lessness: A Theory for the Age of Personal Control. Oxford University Press,

1993.

[125] Pratchett, T. Interesting Times. Victor Gollancz, 1994.

[126] Prosser, M., and Trigwell, K. Understanding Learning and Teaching.

Society for Research into Higher Education, 1999.

[127] Protz, R., Ed. The Good Beer Guide 2002. Campaign for Real Ale, 2001.

[128] Ramsden, P., and Entwistle, N. J. Effects of academic departments on

students’ approaches to studying. British Journal of Educational Psychology 51

(1981), 368–383.

[129] Rankin, A., Ed. The Leeds Beer Drinkers’ Companion. The Leeds Branch of

the Campaign for Real Ale, 2002.

[130] Red Mole. The Red Mole Alternative Guide to Universities. On-line at

http://www.redmole.co.uk/.

[131] Reek, M. M. A top-down approach to teaching programming. In Proceedings

of SIGCSE ’95, Nashville, USA (1995), ACM, pp. 6–9.

[132] Rickinson, B. The relationship between undergraduate counselling and suc-

cessful degree completion. Studies in Higher Education 23 (1998), 95–102.



REFERENCES 209

[133] Roberts, E., Lilly, J., and Rollins, B. Using undergraduates as teach-

ing assistants in introductory programming courses: An update on the Stan-

ford experience. In Proceedings of SIGCSE ’95, Nashville, USA (1995), ACM,

pp. 48–52.

[134] Rowland, S. The Enquiring University Teacher. Society for Research into

Higher Education, 2000.

[135] Rowntree, D. Assessing Students: How shall we know them? Kogan Page,

1987.

[136] Schank, R. C. Revolutionizing the traditional classroom course. Communi-

cations of the ACM 44 (2001), 21–24.

[137] Schmeck, R. R. Strategies and styles of learning. In Learning Strategies and

Learning Styles, R. R. Schmeck, Ed. Plenum Press, 1988, pp. 317–347.

[138] Schoenfeld, A. H. Cognitive Science and Mathematics Education. Lawrence

Erlbaum Associates, 1987.

[139] Schön, D. A. Educating the Reflective Practitioner: Toward a New Design

for Teaching and Learning in the Professions. Jossey-Bass, 1987.

[140] Sellars, W. C., and Yeatman, R. J. 1066 and All That. Methuen, 1931.

[141] Seltzer, S. The IJDb Video Database. On-line at http://www.jugglingdb.

com/videos/.

[142] Shea, R., and Wilson, R. A. The Illuminatus! Trilogy. Raven, 1998.

[143] Sheard, J., and Hagan, D. Our failing students: A study of a repeat group.

In Proceedings of ITiCSE ’98, Dublin, Ireland (1998), ACM, pp. 223–227.

[144] Siegel, E. V. Why do fools fall into infinite loops: Singing to your computer

science class. In Proceedings of ITiCSE ’99, Krakow, Poland (1999), ACM,

pp. 167–170.



REFERENCES 210

[145] Sloane, K. D., and Linn, M. C. Instructional conditions in Pascal pro-

gramming classes. In Teaching and Learning Computer Programming, R. E.

Mayer, Ed. Lawrence Erlbaum Associates, 1988, pp. 207–235.

[146] Spohrer, J. C., and Soloway, E. Novice mistakes: Are the folk wisdoms

correct? Communications of the ACM 29 (1986), 624–632.

[147] Spohrer, J. C., and Soloway, E. Novice mistakes: Are the folk wisdoms

correct? In Studying the Novice Programmer, E. Soloway and J. C. Spohrer,

Eds. Lawrence Erlbaum Associates, 1989, pp. 401–416.

[148] Thomas, D. Under Milk Wood. Dent, 1954.

[149] Tynjälä, P. Traditional studying for examination versus constructivist learn-

ing tasks: Do the outcomes differ? Studies in Higher Education 23 (1998),

173–189.

[150] UNIQoLL Project. UNIQoLL. On-line at http://www.comp.leeds.ac.

uk/uniqoll/.

[151] van Rossum, G., et al. Computer Programming for Everybody. On-line at

http://www.python.org/cp4e/.

[152] Webb, N. M., and Lewis, S. The social context of learning computer pro-

gramming. In Teaching and Learning Computer Programming, R. E. Mayer,

Ed. Lawrence Erlbaum Associates, 1988, pp. 179–206.

[153] Weber-Wulff, D. Combating the code warrior: A different sort of program-

ming instruction. In Proceedings of ITiCSE 2000, Helsinki, Finland (2000),

ACM, pp. 85–88.

[154] Weinberg, G. M. The Psychology of Computer Programming. Van Nostrand

Reinhold, 1971.

[155] Wilcox, S. Fostering self-directed learning in the university setting. Studies

in Higher Education 21 (1996), 165–176.



REFERENCES 211

[156] Willcoxson, L. The impact of academics’ learning and teaching preferences

on their teaching practices: A pilot study. Studies in Higher Education 23

(1998), 59–70.

[157] Williams, L. A. Pair programming experiment. On-line at http://www.

extremeprogramming.org/stories/pair6.html.

[158] Williams, L. A., and Kessler, R. R. All I really need to know about

pair programming I learned in kindergarten. Communications of the ACM 43

(2000), 108–114.

[159] Wirth, N. The programming language Pascal. Acta Informatica 1 (1971),

35–63.



Appendix A

Class Questionnaires

The following pages contain the questionnaires distributed to the classes at Leeds

and Kent as they progressed through their course. They were distributed as they

are presented here and with no introduction or instructions. The responses to these

questionnaires formed the basis of the discussions in chapter 4.

The elephant is something of a mystery, its origins clouded in the mists of time.

A1



APPENDIX A. CLASS QUESTIONNAIRES A2Understanding the First Programming ExperienceForm 1 - Class, BeforeProgyQuoLPlease provide the following information about yourself by circling the answer that applies:Age:             Under 21                  Over 21Gender:       Female                      MaleOrigin:          UK                             EU                     OverseasWhere are you studying?       Kent       LeedsWhat degree programme are you studying?Is the programming part of your course compulsory or optional for you?                                                                                                               Compulsory         OptionalPlease write here the one word that best describes your reason for taking this programming module:Please write here the one word that best describes your reason for taking your degree programme:Which one of these statements best  describes your attitude to your degree programme? Please tick one.
❒ I want to do well for my own satisfaction.
❒ I want to do well to please my parents or family.
❒ I want to do well to please my teachers.
❒ I want to do well so that I will be able to get a good job.
❒ I just want to pass.This project aims to understand the experience of learning to program for the first time.  Programming is an unusual academic subject in that different people learn it best in very different ways. By better understanding the ways in which different types of people learn, we hope to be able to provide a better learning experience for all.Thanks for your time.  Any queries on this work can be sent to tony@comp.leeds.ac.uk.

Figure A1: Questionnaire – Before the Module



APPENDIX A. CLASS QUESTIONNAIRES A3Understanding the First Programming ExperienceForm 7 - Class, AfterProgyQuoLPlease provide the following information about yourself by circling the answer that applies:Age:             Under 21                  21 or OverGender:       Female                      MaleOrigin:          UK                             EU                     OverseasWhere are you studying?       Kent       Leeds  What degree programme are you studying?Is the programming part of your course compulsory or optional for you?                                                                                                               Compulsory         OptionalPlease write here the one word that best describes your attitude today towards the programming course you will take next semester:Please write here the one word that best describes your attitude today towards the C++ or Java programming course you have done this semester:Which one of these statements best  describes your attitude to your degree programme as a whole? Please tick just one.
❒ I want to do well for my own satisfaction.
❒ I want to do well to please my parents or family.
❒ I want to do well to please my teachers.
❒ I want to do well so that I will be able to get a good job.
❒ I just want to pass.A long time ago you probably complete a questionnaire with an elephant on it.  Would you mind too much filling in just one more?  Many thanks.This project aims to understand the experience of learning to program for the first time.  Programming is an unusual academic subject in that different people learn it best in very different ways. By better understanding the ways in which different types of people learn, we hope to be able to provide a better learning experience for all.

Figure A2: Questionnaire – The Halfway Point



APPENDIX A. CLASS QUESTIONNAIRES A4Understanding the First Programming ExperienceForm 8 - Class, EndProgyQuoLPlease provide the following information about yourself by circling the answer that applies:Age:             Under 21                  21 or OverGender:       Female                      MaleOrigin:          UK                             EU                     OverseasWhere are you studying?       Kent       LeedsWhat degree programme are you studying?Which one of the following statements best describes your attitude to programming now?Please write here the one word that best describes your attitude today towards the C++ or Java programming course you have done this year.Which one of these statements best  describes your attitude to your degree programme as a whole? Please tick just one.
❒ I want to do well for my own satisfaction.
❒ I want to do well to please my parents or family.
❒ I want to do well to please my teachers.
❒ I want to do well so that I will be able to get a good job.
❒ I just want to pass.This project aims to understand the experience of learning to program for the first time.  Programming is an unusual academic subject in that different people learn it best in very different ways. By better understanding the ways in which different types of people learn, we hope to be able to provide a better learning experience for all.Thanks for your time.  Any queries on this work can be sent to tony@comp.leeds.ac.uk.
❒   Programming is fine.  I can do it.
❒   Programming is OK.  I can get by, but I don't enjoy it.
❒  I never want to do programming again.Can you see yourself working as a programmer in the future?
                                                                    
                                                              Yes  ❒         No  ❒

Figure A3: Questionnaire – After the Module



Appendix B

Words and Categories

The key to the analysis of the one-word answer questions used in the surveys of classes

at Leeds and Kent (described in chapter 4) is the category to which each word was

assigned. The questions were completely free-form and so there was a wide variety of

responses. This appendix lists all the words given in responses and the category to

which each was assigned.

The words in each section are simply in alphabetical order.

Motivation for Degree Programme

The following sections list all the words corresponding to the categories of response

to the first question (‘Why are you taking this degree programme?’) in the survey

of the class before they had started their course. This is a complete version of the

description in section 4.2.2 on page 93.

Achievement Words – Achievement, Ambition, Ambitious, Challenge, Challeng-

ing, Experience, Myself, Qualification, Satisfaction, Self-Actualisation, Success.

Aspiration Words – Advancement, Avarice, Career, Employability, Employment,

Future, Greed, Job, Money, Necessary, Opportunities, Opportunity, Prospects, RAF,

Unemployment, Want.

B1



APPENDIX B. WORDS AND CATEGORIES B2

Enjoyment Words – Enjoyable, Enjoyment, Enthusiasm, Exciting, Fascinating,

Fascination, Fun, Like, Stimulating.

Learning Words – Curiosity, Curious, Educated, Education, Enlightenment, Inter-

est, Interesting, Knowledgeable, Knowledge, Learning, Scholarship, Understanding.

Passage Words – ALevel, Continuation, Fate, Inevitable, Parents, Progression.

Programme Words – Alternativeness, Change, Choice, Combination, Computers,

Consolidation, Creativity, Easy, Einstein, Essential, Gadgets, Good, Hobby, Impor-

tant, Logical, Maths, Programming, Relevant, Skills, Technology, Useful, Variety,

Versatility.

University Words – Beer, Best, Independence, Leeds, Popular, University.

Don’t Know Words – Boredom, Confusion, Date, Fish, Love, Madness, Stupidity,

Wheee.

Motivation for Programming

The analysis for the question on the same questionnaire specific to programming

produced the following categories. This was also summarised in section 4.2.2.

Career Words – Ambition, Career, Contribute, CV, Employability, Future, Invest-

ment, Job, Money, Opportunities, Professionalism, Prospects.

Content Words – Abilities, Compatibility, Different, Essential, Foundation, Hard,

Important, Inclusive, Insight, Java, Necessary, Necessity, Need, OOP, Practicality,

Relevant, Skills, Software, Specialisation, Standards, Useful.

Compulsory Words – Compulsory, Force, Forced, HaveTo, Mandatory, Must,

Obligation, Required, Requirement.

Enjoyment Words – Exciting, Enjoy, Enjoyable, Fun, LikeIt, Passion, Satisfac-

tion, Stimulation.



APPENDIX B. WORDS AND CATEGORIES B3

Learning Words – Challenge, Curiosity, Diversification, Experience, Interest, In-

teresting, Intrigued, Knowledge, Learning, Perfectionist, Veritas Vincit, Want.

Don’t Know Words – Didn’t, Elderberries, Foolishness, Love, None, Uninformed,

Whooo.

Attitude – Looking Back

The full lists of words for the survey halfway through the module (section 4.3.1 on

page 100) are below. The first describes the students’ attitude to the programming

course that they had just completed.

Positive Words – Achievement, Amazing, Best, Cool, Enjoy, Enjoyable, Enjoyed,

Enthusiasm, Enthusiastic, Essential, Excellent, Fine, Friendly, Fun, Good, Great,

Happy, Helpful, Interesting, Joy, Keen, Out of this World, Positive, Rewarding, Sat-

isfaction, Satisfied, Satisfying, Useful, Wicked, Yummy.

Easy Words – Comfortable, Confident, Easy, Intuitive, Logical, Manageable.

Difficult Words – Complex, Complicated, Demanding, Difficult, Hard, Impossible,

Intense, Taxing.

Negative Words – Arghh, Bad, Bored, Boring, Confused, Confusing, Crap, Dull,

Exhausted, Exhausting, Flippant, Frustrated, Frustration, Grr, Hate, Hateful, Hatred,

Infuriating, Lazy, Nasty, Nightmare, Painful, Stressed, Struggle, Struggling, Tedious,

Time-Consuming, Tiresome, Tiring, Too Much Work, Trying, Unhappy, Useless,

Why?.

Neutral Words – Alright, Basic, Bumpy, Challenging, Compulsory, Coping, Ded-

ication, Information, New, OK, Perseverance, Reasonable, Relieved, Slow, Under-

standable.

Don’t Know Words – Compromising, Developing, Indifferent, Money, Template-

less, Testing, Varied.



APPENDIX B. WORDS AND CATEGORIES B4

Attitude – Looking Forward

Finally these words were used to answer the question at the halfway point about the

students’ attitude to their programming course in the following semester. This was

also discussed in section 4.3.1.

Positive Words – Aggressive, Anticipation, Arseingear, Better, Cool, Curiosity,

Curious, Determined, Diligent, Eager, Enthusiasm, Enthusiastic, Excited, Expecta-

tion, Friendly, Fun, Good, Happy, Helpful, Hope, Hopeful, Important, Improve, In-

terest, Interested, Interesting, Intrigued, Joy, Keen, Laziness, More Aggressive, Op-

timistic, Positive, Potential, Prepared, Smooth, Useful, Yummy.

Easy Words – Confident, Easier, Easy.

Difficult Words – Difficult, Hard, Harder, Tough.

Negative Words – Annoyance, Apprehension, Apprehensive, Boring, Clueless,

Concerned, Confused, Confusion, Daunting, Depressed, Despair, Dread, Effort, Fear,

Grr, Help!, Horrified, Mysterious, Nasty, Nervous, Nightmare, Oh God!, Scared,

Scary, Shit, Trepidation, Unconfident, Undesirable, Uneasy, Unfortunate, Unneces-

sary, Unsure, Wary, Worried, Worry, Worrying.

Neutral Words – Alright, Careful, Cautious, Challenging, Compulsory, Continue,

Essential, Forward, New, OK, Planning, Practice, Progress, Undeterred, Unworried,

Waiting, Well.

Don’t Know Words – Ahh, Blank, Don’t Know, Holiday, Indifferent, Inevitable,

No Idea, Opaque, Templateless, Undecided, Understanding, Unknown.



Appendix C

Individual Questionnaires

The following pages contain the forms and questionnaires used to investigate the

individual students’ experiences. This formed the basis of chapter 5.

The first questionnaire (figure C1) was used as the basis of structured interviews with

the veterans. It was completed by the interviewer.

The novices were given one questionnaire before they started their course (figure C2),

one every week (figure C3), and one when the course was over (figure C4). They

completed the forms themselves with no guidance.

‘SO11’ (mentioned on the forms) is the School of Computing’s code for the first

semester programming module. SO12 is the second semester module.

C1



APPENDIX C. INDIVIDUAL QUESTIONNAIRES C2Understanding the First Programming ExperienceForm 3 - VeteransProgyQuoLPlease provide the following information about yourself by circling the answer that applies:Age:             Under 21                  Over 21Gender:       Female                      MaleOrigin:          UK                             EU                     OverseasLooking back, what do you think about SO11 and SO12 now?Would you say you were now a competent C++ programmer as per the stated aims of SO11?What are your general feelings about programming as an activity?Can you pinpoint anything that was especially good or bad about the way SO11 and SO12 were taught?What do you think was the biggest problem for you in SO11?What was the biggest help?What advice would you give people on your degree starting SO11?Can you summarise SO11 in one word?
Figure C1: Questionnaire – The Veterans’ Experience



APPENDIX C. INDIVIDUAL QUESTIONNAIRES C3Understanding the First Programming ExperienceForm 2 - Group, BeforeProgyQuoLPlease provide the following information about yourself by circling the answer that applies:Age:             Under 21                  Over 21Gender:       Female                     MaleWhat degree programme are you studying?What do you think are the main attributes of a good computer programmer?Do you think you have them?Do you expect that learning to program will be easy?Do you expect to be good at it? Why do you think that?What one word summarises how you feel about SO11 today?Why have you chosen this degree?And why have you chosen this University?This project aims to understand the experience of learning to program for the first time.  Programming is an unusual academic subject in that different people learn it best in very different ways. By better understanding the ways in which different types of people learn, we hope to be able to provide a better learning experience for all.Thanks for your time.  Any queries on this work can be sent to tony@comp.leeds.ac.uk.Name:
Figure C2: Questionnaire – The Novices Before the Module



APPENDIX C. INDIVIDUAL QUESTIONNAIRES C4Understanding the First Programming ExperienceForm 4 - Group, DuringProgyQuoLThis project aims to understand the experience of learning to program for the first time.  Programming is an unusual academic subject in that different people learn it best in very different ways. By better understanding the ways in which different types of people learn, we hope to be able to provide a better learning experience for all.Thanks for your time.  Any queries on this work can be sent to tony@comp.leeds.ac.uk.Name:                                                               Week:Please summarise your experience of SO11 this week in one word:Have there been any particular problems for you in SO11 this week?Have there been any particular successes for you in SO11 this week?On this scale, how well do you think you will do in SO11? Draw a line.Why? 0 Pass FirstClass 100Average
Figure C3: Questionnaire – The Novices’ Weekly Experience



APPENDIX C. INDIVIDUAL QUESTIONNAIRES C5Understanding the First Programming ExperienceForm 6 - Group, AfterProgyQuoLLooking back, what do you think about SO11 now?Would you say you were now a competent C++ programmer as per the stated aims of SO11?What are your general feelings about programming as an activity?Can you pinpoint anything that was especially good or bad about the way SO11 was taught?What do you think was the biggest problem for you in SO11?What was the biggest help?What advice would you give people on your degree starting SO11 next year?Can you summarise SO11 in one word?What are you expecting from SO12?  Are you expecting to succeed in it?Can you summarise your feelings about SO12 in one word?
Figure C4: Questionnaire – The Novices After the Module



Appendix D

Leeds and Kent Results

The following tables show the results from the surveys described in chapter 4 with

the results separated into those from Leeds and Kent. The two groups of students

were treated as if they formed a single cohort throughout the main body of this study.

This appendix provides the raw data which could be used to determine whether this

was a justified approach. The tables are presented with some brief comments but any

firm conclusions would require some detailed statistical work.

Table D1 is a complete version of table 1 on page 96. There do not appear to be

any significant differences between the two sets of students except, perhaps, that only

students at Leeds chose the university option.

Leeds Kent Total
Freq. % Freq. % Freq. %

achievement 8 3.98 5 3.50 13 3.78
aspiration 84 41.79 57 38.86 141 40.99
enjoyment 12 5.97 8 5.59 20 5.81
learning 70 34.83 53 37.06 123 35.76
passage 4 1.99 1 0.70 5 1.45
programme 16 7.96 13 9.09 29 8.43
university 4 1.99 0 0.00 4 1.16
don’t know 3 1.49 6 4.20 9 2.62

Table D1: Motivation for Degree

D1



APPENDIX D. LEEDS AND KENT RESULTS D2

Table D2 is a complete version of table 2 on page 96. It is apparent here that a

rather larger proportion of the Leeds students were viewing the module as simply a

compulsory part of their course. The counter-side to this is that the Kent students

appear to be somewhat more interested in learning for its own sake. Curiously there

are also signs that the Kent students are more interested in the future employment

and career prospects but the proportion of Leeds students choosing any category

other than compulsory was small.

Leeds Kent Total
Freq. % Freq. % Freq. %

career 10 4.98 13 9.29 23 6.74
content 29 14.43 18 12.86 47 13.78
compulsory 123 61.29 51 36.43 174 51.03
employment 6 2.99 10 7.14 16 4.69
learning 27 13.43 39 27.86 66 19.35
don’t know 6 2.99 9 6.43 15 4.40

Table D2: Motivation for Programming

Table D3 is a complete version of table 3 on page 97. There are no immediately

apparent significant differences here. If there is a difference it is that the students at

Leeds are more likely to be studying for their own satisfaction, while those at Kent

are more inclined to be interested in their future career. That said, the difference is

slight and students at both institutions are almost unanimous in rejecting the other

choices.

Leeds Kent Total
Freq. % Freq. % Freq. %

own satisfaction 103 50.49 65 46.76 168 48.98
please family 0 0.00 1 0.72 1 0.29
please teachers 0 0.00 0 0.00 0 0.00
get a good job 94 46.08 70 50.36 164 47.81
just pass 1 0.49 0 0.00 1 0.29
don’t know 6 2.94 3 2.16 9 2.62

Table D3: Before the Module – Attitude to Studies



APPENDIX D. LEEDS AND KENT RESULTS D3

Table D4 is a complete version of table 4 on page 103. The only significant difference

seems to be that the Leeds students were a little more likely to be negative, while

those at Kent were more likely to be neutral. This may be because there had been

less summative assessment at Kent.

Leeds Kent Total
Freq. % Freq. % Freq. %

positive 71 39.01 25 37.31 96 38.55
negative 35 19.23 9 13.43 44 17.67
easy 8 4.40 1 1.49 9 3.61
difficult 30 16.48 12 17.91 42 16.87
neutral 34 18.68 17 25.37 51 20.48
don’t know 4 2.20 3 4.48 7 2.81

Table D4: Looking Back

Table D5 is a complete version of table 5 on page 103. It seems here that the Kent

students are slightly more optimistic at this point in their course. Again it might be

that they have at this point experienced less potentially demotivating assessment. The

expected workloads of the two groups have been the same (or at least comparable)

up to this stage so this should not have had a significant effect. The only other

potentially interesting difference seems to be that a rather higher proportion of the

Leeds students are focusing on the difficulty of the course – this could also be related

to assessment. Very few students at either institution are reporting the course as

primarily easy.

Leeds Kent Total
Freq. % Freq. % Freq. %

positive 70 42.17 37 57.81 107 46.52
negative 49 29.52 13 20.31 62 26.96
easy 3 1.81 1 1.56 4 1.74
difficult 12 7.23 2 3.13 14 6.09
neutral 21 12.65 8 12.50 29 12.61
don’t know 11 6.63 3 4.69 14 6.09

Table D5: Looking Forward



APPENDIX D. LEEDS AND KENT RESULTS D4

Table D6 is a complete version of table 6 on page 104. There are no immediately

obvious differences. The trend from table D3 is maintained, though, with the Leeds

students slightly more likely to choose the own satisfaction option and the Kent

students more likely to opt for get a good job. There still seems to be more extrinsic

motivation at Kent.

Leeds Kent Total
Freq. % Freq. % Freq. %

own satisfaction 108 56.84 38 52.78 146 55.73
please family 3 1.58 1 1.39 4 1.53
please teachers 0 0.00 0 0.00 0 0.00
get a good job 68 35.79 29 40.28 97 37.02
just pass 8 4.21 3 4.17 11 4.20
don’t know 3 1.58 1 1.39 4 1.53

Table D6: Halfway Through the Module – Attitude to Studies

Table D7 is a complete version of table 10 on page 110. Here the pattern first seen

in table D4 is again apparent, with the Kent students more likely to be neutral while

those at Leeds were more likely to focus on difficult. Of course, at this point the Leeds

students had completed their assessment, while the Kent students were still awaiting

the majority of theirs in the examination.

An emerging trend is that the students at both institutions are now less likely to be

positive – the situation is the same at both. The closeness of the proportions of don’t

know responses is intriguing.

Leeds Kent Total
Freq. % Freq. % Freq. %

positive 46 28.75 12 31.58 58 29.29
negative 30 18.75 6 15.79 36 18.18
easy 3 1.88 1 2.63 4 2.02
difficult 40 25.00 6 15.79 46 23.23
neutral 28 17.50 10 26.32 38 19.19
don’t know 13 8.13 3 7.89 16 8.08

Table D7: Looking Back



APPENDIX D. LEEDS AND KENT RESULTS D5

Table D8 is a complete version of table 11 on page 110. The Kent students seem

to be significantly more positive about their programming. Just under 10% of them

never want to program again while the figure is some 22% at Leeds. The other figures

also seem to indicate that the students at Leeds are much less confident about their

programming abilities.

Leeds Kent Total
Freq. % Freq. % Freq. %

“fine, I can do it” 72 43.11 24 58.54 96 46.15
“OK, but I don’t enjoy it” 56 33.53 13 31.71 69 33.17
“never again” 37 22.16 4 9.76 41 19.71
don’t know 2 1.20 0 0.00 2 0.96

Table D8: After the Module – Attitude to Programming

Table D9 is a complete version of table 12 on page 110. Once again the story is the

same and the Kent students have a significantly more positive attitude. The different

stages reached in the assessment regimes means that these figures are not directly

comparable (it is possible that the Kent students’ enthusiasm would wane after the

examination or specifically the results of the examination) but this does hint that

there may be some differences in the cohorts. One reason may be the wider range of

degree programmes represented in the Leeds students and the remarkably unanimous

view of the Information Systems students at Leeds (page 112).

It is also noticeable that the Kent students are very much split on this issue with

precisely the same proportion choosing each of the two main options. At Leeds, on

the other hand, there is a very clear majority.

Leeds Kent Total
Freq. % Freq. % Freq. %

yes – would work as a programmer 59 35.33 20 48.78 79 37.98
no – wouldn’t work as a programmer 105 62.87 20 48.78 125 60.10
don’t know 3 1.80 1 2.44 4 1.92

Table D9: Attitude to Career



APPENDIX D. LEEDS AND KENT RESULTS D6

Finally table D10 is a complete version of table 13 on page 110. The trend in the first

two tables in this sequence (D3 and D6) seems to have changed. The Leeds students

are still more likely to have chosen own satisfaction but the proportion has dropped

slightly from the previous 57%. At the same time the proportion of students at Kent

choosing this option has increased by some 6%. Apart from this the only phenomenon

of interest is that all the Kent students now have an opinion.

Leeds Kent Total
Freq. % Freq. % Freq. %

own satisfaction 78 46.71 23 56.10 101 48.56
please family 4 2.40 2 4.88 6 2.88
please teachers 0 0.00 0 0.00 0 0.00
get a good job 70 41.92 11 26.83 81 38.94
just pass 7 4.19 5 12.20 12 5.77
don’t know 8 4.79 0 0.00 8 3.85

Table D10: Attitude to Studies

This brief look at the results from the two institutions shows that there may be some

differences between the attitudes of the two groups of students. As well as the hard

data, there is a general sense that the students at Kent are more positive about their

experience and about programming. This may well be because they have experienced

less summative assessment, or there may be other causes. It would be interesting

to investigate the differences, their causes, and their effects, in more detail than has

been possible here.



Appendix E

Detailed Results

The tables in this appendix show the detailed breakdown of the results from the

various surveys described in chapter 4. The tables show the actual number of students

choosing each option for each question on each questionnaire.

The abbreviations used for the degree programmes at Leeds are Cognitive Science

(CG), Computer Science (CS), Computing (CT), and Information Systems (IS). The

students are divided into the single-subject and joint-honours variants of each of the

last three of these programmes. There are far fewer degree programmes at Kent. The

results from Kent are split into just two groups – Computer Science (CS) and Others.

The first three tables present the results from the first questionnaire (figure A1 on

page A2). Table E1 shows the students’ attitude to their degree programme, table E2

shows their motivations for following a programming course in particular, and table E3

shows their general motivation for their studies.

The next three show the results from the second questionnaire (figure A2 on page A3)

presented halfway through the programming course. Tables E4 and E5 show the

students’ attitudes to programming as they look back on the course just ended and

forward to the next semester respectively. Table E6 once again shows the students’

attitude to their studies and can be compared with table E3 to show how this attitude

has changed.

E1



APPENDIX E. DETAILED RESULTS E2

Finally the remaining tables present the results from the final questionnaire (figure A3

on page A4). Table E7 shows the students’ final view of programming and the final

two tables (E8 and E9) show how they plan to approach programming in the future

(if indeed they do). Table E10 completes the series of tables E3 and E6 to show the

final state of the students’ attitudes to their degree.

In all of these tables the don’t know category has been used to include responses that

were largely impenetrable or clearly flippant as well as more explicit choices for this

option. The total numbers of responses within each questionnaire differ because of a

small number of incorrectly or partially completed responses.

Leeds
Single Subject Joint Honours Kent

CG CS CT IS CS CT IS CS Others
achievement 0 2 1 1 2 2 0 2 3
aspiration 0 15 23 14 8 10 14 38 19
enjoyment 3 4 1 1 1 1 1 6 2
learning 6 20 16 9 8 6 5 35 18
passage 0 0 0 2 0 1 1 1 0
programme 2 3 2 1 2 4 2 9 5
university 0 2 0 1 0 1 0 0 0
don’t know 0 1 2 0 0 0 0 3 3

Table E1: Before the Module – Motivation for Degree

Leeds
Single Subject Joint Honours Kent

CG CS CT IS CS CT IS CS Others
career 1 0 6 1 0 0 2 7 6
content 0 6 3 9 1 8 1 9 9
compulsory 8 28 25 16 16 12 18 36 15
employment 0 4 1 1 0 0 0 7 3
learning 0 7 10 0 4 4 2 24 15
don’t know 2 0 0 2 1 1 0 7 2

Table E2: Before the Module – Motivation for Programming



APPENDIX E. DETAILED RESULTS E3

Leeds
Single Subject Joint Honours Kent

CG CS CT IS CS CT IS CS Others
own satisfaction 5 21 20 17 12 16 12 40 25
please family 0 0 0 0 0 0 0 1 0
please teachers 0 0 0 0 0 0 0 0 0
get a good job 5 23 25 12 7 10 12 45 25
just pass 0 0 1 0 0 0 0 0 0
don’t know 1 2 0 0 3 0 0 3 0

Table E3: Before the Module – Attitude to Studies

Leeds
Single Subject Joint Honours Kent

CG CS CT IS CS CT IS CS Others
positive 2 28 16 5 8 5 7 21 4
negative 3 5 9 9 1 5 3 7 2
easy 1 2 1 2 0 0 2 1 0
difficult 3 2 5 10 3 1 6 6 6
neutral 1 6 10 2 4 7 4 11 6
don’t know 1 1 1 0 0 0 1 3 0

Table E4: Halfway Through the Module – Looking Back

Leeds
Single Subject Joint Honours Kent

CG CS CT IS CS CT IS CS Others
positive 5 21 17 3 10 9 5 28 9
negative 6 7 10 11 2 3 10 11 2
easy 0 1 0 1 1 0 0 0 1
difficult 0 1 4 2 0 1 4 1 1
neutral 0 5 4 6 1 4 1 6 2
don’t know 0 4 2 1 0 1 3 3 0

Table E5: Halfway Through the Module – Looking Forward



APPENDIX E. DETAILED RESULTS E4

Leeds
Single Subject Joint Honours Kent

CG CS CT IS CS CT IS CS Others
own satisfaction 4 30 21 19 10 12 11 31 7
please family 0 0 0 1 1 0 1 0 1
please teachers 0 0 0 0 0 0 0 0 0
get a good job 5 16 19 6 7 6 9 20 9
just pass 1 0 2 2 0 0 3 1 2
don’t know 1 0 1 1 0 0 0 1 1

Table E6: Halfway Through the Module – Attitude to Studies

Leeds
Single Subject Joint Honours Kent

CG CS CT IS CS CT IS CS Others
positive 1 14 15 1 6 7 2 10 2
negative 4 7 6 4 3 2 4 4 2
easy 0 1 1 0 0 1 0 1 0
difficult 1 1 6 12 4 6 10 3 3
neutral 0 8 11 1 3 4 1 6 4
don’t know 0 2 3 4 1 0 3 2 1

Table E7: After the Module – Looking Back

Leeds
Single Subject Joint Honours Kent

CG CS CT IS CS CT IS CS Others
“fine, I can do it” 2 26 21 1 9 8 5 18 6
“OK, but I don’t enjoy it” 1 7 15 8 6 9 10 7 6
“never again” 3 1 6 15 2 4 6 3 1
don’t know 0 0 1 1 0 0 0 0 0

Table E8: After the Module – Attitude to Programming



APPENDIX E. DETAILED RESULTS E5

Leeds
Single Subject Joint Honours Kent

CG CS CT IS CS CT IS CS Others
yes – would be a programmer 3 19 23 0 6 8 0 15 5
no – wouldn’t be a programmer 3 15 20 25 9 13 20 13 7
don’t know 0 0 0 0 2 0 1 0 1

Table E9: After the Module – Attitude to Career

Leeds
Single Subject Joint Honours Kent

CG CS CT IS CS CT IS CS Others
own satisfaction 4 15 15 10 9 13 12 17 6
please family 0 0 0 1 0 1 2 2 0
please teachers 0 0 0 0 0 0 0 0 0
get a good job 2 15 24 11 5 7 6 7 4
just pass 0 3 1 2 1 0 0 2 3
don’t know 0 1 3 1 2 0 1 0 0

Table E10: After the Module – Attitude to Studies


