
A Pattern-Based Approach to User Interface Development

Costin Pribeanu1,2, Jean Vanderdonckt2

1National Institute for Research & Development in Informatics – ICI
Bd.Maresal Averescu Nr.8-10, 71316 Bucuresti, Romania, Bucureşti

pribeanu@acm.org
2Catholic University of Louvain
Information Systems Unit, School of Management, Place des Doyens, 1

vanderdonckt@isys.ucl.ac.be

1 Introduction

Model-based approaches have been developed in close relation with the automatic generation of the user interface. Some of them are using the domain model as the underlying model for this purpose. However, they proved only being able to produce designs with restricted applicability. On another hand, most of them are mainly focused on the derivation of the presentation interface. The mapping between the presentation and the dialog is rarely discussed and the control is assumed to be an implementation detail.

More recent approaches like MOBI-D show a concern for creating software environments for interactive integration of various models into the user interface design rather than software engines with a high degree of automation. Although this shift back from computer-aided generation to computer-aided design with specialized design assistants is more promising in dealing with the complexity of underlying models and with the diversity of user interfaces two questions rise. What is the price to be paid in terms of development effort by the designers? And to which extent task models will have a significant impact on creating usable systems?

Little budgets and low usability awareness in organizations has always been an obstacle in promoting the effective use of user and task models. On another hand, the widespread use of software engineering methodology paying little attention to usability issues but providing with effective integration between subsequent design stages creates a strong appetite for productivity in the development process. Therefore designers rarely consent to pay an extra effort by using task models as driving specifications towards usable designs.

This paper aims at investigating how user interface design patterns could increase the usability while reducing the software development effort. The basic idea of our approach is to identify typical interaction structures in the task and domain models and to elaborate on a pattern language that captures the essential mappings between the various models that are used in the development process. A special emphasis is put on the relationships between the entities of the data model.

The objective of this approach is to get more then just the presentation model. Although selecting appropriate interaction objects, grouping them according to requirements coming from the task model and then structuring the presentation in dialog units leads to more usable user interfaces, this is only a part of the job. In this paper we will investigate also dialog and control issues.

In this paper we will use an example from a previous work (Pribeanu, 2002) where the relation between task and domain models has been investigated. The purpose of the application is to manage a collection of guidelines structured in bases and sections. Guidelines themselves are organized in a hierarchical structure, from more general to more specific. Several tasks could be performed: displaying, selecting, editing, modifying and deleting a guideline as well as associating a reference or an example with a guideline.

The rest of this paper is organized as follows. In section 2, we express some points of our position. The rest of the paper explains this into details. In section 3 we will show how the domain model could help the user interface design and we will discuss: entities, relationships, roles and cardinality. The role played by the task model is presented in section 4. Various approaches to usability and design patterns are briefly presented in section 5. A pattern language model is proposed in section 6. In order to illustrate our approach a set of related patterns is given using the example mentioned above. The paper ends with conclusion and future work in section 6.

2 Position expression

We believe that patterns, although they are a useful and promising approach, need to address several requirements in the way they are structured. Gathering patterns is one important step ; collecting and structuring them into a guide of design patterns is equally important. However, in order to come up with a principled approach, patterns need to be structured in a way that clearly identifies individual contributions (e.g., design questions, artefacts). For example, to select an appropriate pattern for a particular context of use, for a given design case, there is a need to apply the “separation of concern” principle to separate aspects that are relevant to different areas (e.g., task, domain, user, environment, presentation, dialog). It is then important to express patterns in a way that can be both human readable and machine processable so as to create a design repository of patterns. These patterns should then be selected rapidly (e.g., by pattern matching systems) and applied as automatically as possible. Otherwise, there is a risk to loose the momentum gained by using the approach. For example, we suggest to decompose each pattern into a series of rules that can be combined to form other patterns, but also to produce results in a more reusable way. A pattern may be decomposed into rules such as: for each class of the domain model, produce a window that will contain the presentation elements corresponding to the attributes of the class ; for each interactive task, provide dialogue access to all windows associated to the domain elements manipulated by this task.

If we look back to some history, the domain model has been largely used as a starting point, but with many shortcomings (e.g., no involvement of users and task, little or no consideration of usability). Task models have been considered in addition, but a little bit in isolation. Now, there is a need to integrate all these models together.

3 Exploiting the domain model

3.1 Problems with existing model-based approaches

Domain models are built starting from a conceptual model that tries to capture the properties of entities and the relationships between them. Further transformations of the conceptual model produce the logical model, which is describing entities, attributes and relationships in terms of a given technology (data base management system). These developments follows the software engineering approach and produce a specification which is describing the semantics of the target application rather than the user’s needs as regarding the manipulation of different pieces of data.

First generation of model-based approaches produced specifications of interaction objects by using selection rules based on ergonomic criteria and other design knowledge. The information extracted from the data model and manipulated in order to select the appropriate interaction techniques refers mainly to attributes and include, among others: data type, data length, type of data processing (input, output, I/O), number of values to choose, and type of data domain (known / unknown).

Relying on information provided by the data model is good for producing usable design at widget level. Designing presentation and interaction at syntactic (dialog unit) and semantic level needs to take into account relationships between entities in the data model. Most early model-based approaches used only attribution relationships, which are connecting attributes of an entity. Therefore only templates for interacting with isolated objects could be generated.

TRIDENT (Vanderdonckt & Bodart, 1993) also used the functional model in order to group the attributes in functional units, following an activity-chaining graph. Although this is an effective exploitation of the domain model it lacks the use of relationships between objects. On another hand, activity-chaining graphs are useful to specify the application requirements as regarding the data flow but they are not a substitute for the users’ task.

3.2 Entities and relationships

The domain model defines the objects of the applications. There are three kinds of information, which are of particular interest for user interface design: domain objects (entities), object attributes and relationships between domain objects. In this paper we will take a closer look at the domain model, more precisely at the relationships between the domain objects. The objective of this preliminary step is to explore the potential tasks that are afforded by these relationships.

The internal structure of an object and the attribute types are useful to select appropriate interaction objects. Most model-based approaches are featuring this type of mapping. Fewer approaches are exploiting the relationship between objects. In JANUS (Balzert et al, 1996) associations and aggregations are transformed in lists. Items in the list are assigned a dialog window that allows the data entry for each attribute. Pisano, Shirota and Iizava (1993) are exploiting relationships in order to generate master-detail forms for data base applications.

In order to take full advantage from the information provided by the domain model but also to understand how domain and task model are related, a more detailed analysis is needed for each type of relationship. Incorporating semantic relationships into the domain model enhance the capability of this model to support user interface derivation in a model-based approach. Most common abstractions are inclusion (is-a), aggregation (component) and association (membership) relationships.

Storey (1993) proposed a more detailed taxonomy of semantic relationships: inclusion, possession, attachment, attribution, antonyms, synonyms and case. In this taxonomy she distinguishes between three types of inclusion: class, meronymic and spatial. In turn, meronymic relationship can be component-object (aggregation), member-collection (association), portion-mass, stuff-object, phase-activity, place-area and feature-event.

A conceptual design model represents the users’ and applications’ view of information and a specification of the information processing. Then the conceptual model is transformed into a logical model that corresponds to a data model, which is chosen (for example a relational data model). During logical design specific constructs, which are needed to implement the conceptual model, are added.

A relationship has the form A verb phrase B, where A and B are the entities. Each entity plays a role in the relationship. The cardinality of a role is the number of occurrences of the related entity that can exist for each occurrence of the role. The cardinality is expressed as a min/max pair.

Storey (1993) shows that cardinalities of roles are most important since they suggest how to represent the relationship in a relational model. Usually, when the conceptual model is converted into a logical model, each entity becomes a distinct relation. Relationships could be implemented in several ways:

· the relation is extended by adding a foreign key of the second entity, when the cardinality of the relationship is one-to-many;

· a relationship relation is created having as keys the concatenation of the entities foreign keys, when the cardinality of the relationship is many-to-many.

3.3 Conceptual and logical models

Exploiting relationships in a model-based approach to user interface design raises two problems.

First, the conceptual model is not a useful artifact for many reasons. Logical design is produced by database designers taking into account the semantics of relationships from an administrator perspective. This means that they will look for a logical model, which supports different applications. Hence the database design is not tailored for specified users performing specified tasks.

On the other hand, only the logical model could be exploited in an efficient (i.e. computer-aided) way. It does not make sense to work on the conceptual model, which is subject of transformation, nor to ignore the impact of choosing a particular DBMS. Therefore the logical domain model including entities (objects) and relationships among them should be considered for the user interface design.

Second, semantic relationships should be considered in the context of use. This means to take into account the tasks performed by the user and to analyze his needs as regarding entities, attributes and relationships. Human computer interaction is a cognitive activity, which requires adequate support for the user's task. For example, editing objects in a hierarchical structure could be better supported if the user can visualize the hierarchy.

In this paper we will discuss two general types of relationships between objects:

· relationships having the cardinality 1:N (one-to-many); for example, a guideline is part-of a section guide;

· relationships having the cardinality N:M (many-to-many); for example a guideline respects one or more criteria and a criterion is respected by none or several guidelines.

The difference is important for the user interface since in the second case more screen space is needed to display associated items.

The analysis will not start from the conceptual data model since the representation is too general and it illustrates early domain modeling results. Rather, we will use the logical data model, which is more complete in that it comprises additional constructs resulting from the logicalisation process. These constructs (i.e. foreign key attributes, tables) are useful for detailed dialog design and they are also typical for each kind of relationship.

4. Task models

4.1 A layered task structure

Task models are starting with a functional, device independent description of the user’s task that shows task decomposition, temporal ordering between tasks and additional constraints such as pre- and post-conditions. Further transformations of the task model produce a device-dependent task model, which shows how the user is actually interacting with a given interface.
The functional task decomposition stops at unit task level. Unit tasks have been defined by Card, Moran & Newell (1983), as the lowest level task the user really wants to perform. From the point of view of task analysis, unit tasks are showing “what-to-do” knowledge, regardless how this work will be actually carried on. Since the task will be accomplished using a given technology, the representation is said to be device independent.

Next step is the operationalisation of unit tasks up to the level of basic tasks. This task decomposition requires considering the technological means by which the user will accomplish his goals.

A basic task is defined as the lowest level task that is using a single interaction object or a single external objects or serves a communicational goal. In this respect, the stopping criteria for task decomposition are an interaction object (for interaction tasks, application tasks and cognitive user tasks), an external object (for manual user tasks), and a distinct step in communication (for communication user tasks). Decomposition of basic tasks up to action level is beyond our task-based approach.

The decomposition at operational level is device dependent since it shows how the unit task will be actually carried on, using interaction objects. In this respect, it provides with a first form of mapping between presentation and task models. Since interaction objects are chosen according to the nature of domain objects it also integrates information coming from the domain model.

In (Pribeanu & Vanderdonckt, 2002) it was shown that the operational task model suggests the first level of aggregation of interaction objects into IO groups. Interaction object groups are the lowest level units of the interface that have associated both semantics (the task goal) and syntax (the ordering of basic tasks as defined by the temporal relations). However, if we consider also relationships in the domain model the mappings between domain, task and presentation models are more complicated and depends on the task context.

4.2 Operational task structure

In order to illustrate how the relationships between domain objects affect these mappings we will take an example. The task is to build a guide using a tool for working with guidelines. A guideline could be hierarchically structured, from more general to more specific guidelines. A guide can have several bases; a base contains several sections an each section contains several guidelines. A guideline can be associated with other objects like references, examples and criteria. In Figure 1 task decomposition for the unit task “edit guideline” is presented. For the sake of simplicity, only a part of basic tasks having as goal the data input have been included.

The representation is using the CTT graphical notation (Paterno, 1999) and highlights four types of tasks: abstraction (complex tasks that are further decomposed), interaction (data input), application (tasks performed by the system, including display of application data) and user tasks. The graphical notation is illustrated in Table 1.

Abstraction
Interaction
Application
User

[image: image1.png]

[image: image2.png]

[image: image3.png]

[image: image4.png]

Table 1 Graphical notation of tasks in CTT

In our task-based approach interaction, application and user tasks are basic tasks (as in CTT, although the definition and the stopping criteria are different). Interaction tasks are using an information control or a function control interaction object whilst application tasks are using information control objects (for data output only).

At first sight, the task decomposition in Figure 1 suggests several interaction object groups, corresponding to semantic decomposition criteria. This representation shows the nested structure of unit tasks that are used in different task contexts. In this task context, a function control object (“new” button) enables the user to create a new guideline section if he does not find it in the list and could be useful when the guidelines are recorded in a source-oriented approach.

[image: image5.png]selsection file statement rationale [reference] [example] specificgdln ok cancel

selbase section id sectionname description comment ok cancel

criterion delete add
new baseid basename description comment ok cancel

[type] [section] displayall criterion ~sel associate

Figure 1. Decomposition for the task “edit guideline”

In a similar way, the user could add a new base when editing the data for the new section. In the case of nested unit tasks there are two situations:

· both IO groups that implement the unit tasks are placed within the same dialog unit – this is the situation when there is a semantic relation between the IO groups and the user could be provided with feedback;

· a separate dialog unit is allocated for the inner task – this is the situation when either there is not enough screen space or when the task is invoked from different task contexts.

In the second case the inner task can be factored out in the task model. For example, “new base” could be invoked from base management tasks as well as from the “edit section” unit task. This situation is very frequent in data base applications.

We took this example in order to show that interaction object groups derived from the domain model are covering only a part of the basic layer of the interface model. This example also highlights the limitations of existing approaches that are either mainly based on one model (task or domain) or do not take into consideration the relationships between domain objects. Performance of tasks like “new section” or “new base” depends on the task context: in a final organization of guidelines they might not be allowed.
5 Usability patterns and design patterns

Pattern languages are representations that focus on the interaction between physical form and social behaviour and express design solutions in an understandable and generalizable form (Bayle et al, 1997). Generality means that patterns are a sort of meta-languages that could be applied to particular situations thus generating contextualized patterns. The debate of Bayle et al tried to find solutions for two challenges: complexity and diversity. Complexity is related to small yet sophisticate technologies that are embedded in more environments making interaction design relevant for an increasing number of new application domains. Diversity is related with the multidisciplinarity of the design team and the increasing requirements for customizable designs.

The original model for patterns was the work of Christopher Alexander and his colleagues (1979) who applied pattern languages in architecture and urban design. The emphasis was put on the characteristics of the physical form of the built environment, which can afford certain social behaviour. Like in architecture, human-computer interaction design is a collective and interdisciplinary activity. It has to integrate features and find solutions to requirements that are concerning various domains.

There are several ways of using patterns. The report of Bayle et al (1997) enumerate five of them: capture and description of key characteristics in a context sensitive way, generalization across places and situations, prescriptive solutions to commonly encountered problems (guidelines), rhetorical use among members of the design community and predictive reflection on the impact of changes.

Mahhemoff (1998) identified three main goals for a pattern language: usability in context, user and computer in collaboration and variety of interaction styles. Usability should be considered in the context of other software attributes, which means to look for a pattern language concerned with other forces in the development process.

Welie et al (2000) proposed patterns as contextual design and evaluation tools. They argued that patterns are more useful than guidelines since they provide with solutions in the context of use. This approach seems promising for evaluation purposes but does not address design issues like how to harmonize various requirements coming from the context of use, task model, domain model or platform model.

Molina et al. (2002) recommend to raise the level of abstraction by dealing with conceptual patterns than merely with traditional patterns. From a conceptual model describing the domain of discourse, various conceptual patterns can be applied to automatically generate a UI corresponding to the conceptual model for various contexts of use.

For example, presentation will look different when deploying the same application on mobile devices having restricted display area and on a personal computer with a high-resolution display unit. Available screen space will also affect dialog design since the number of presentation units will be different. Also, the same domain model will be used in a different way in order to accommodate the processing and storage capabilities as well as the underlying operating system.

Patterns are also used in software engineering community as means to cope with the complexity and diversity of the development process. In this respect they show a concern for more adaptive and pragmatic design, able to satisfy specific requirements while preserving software re-use and thus reducing the development effort.

A similar requirement could be found in user interface development. If we take the perspective of CAD of user interfaces, a pattern language could be an attractive approach to deal with complexity and diversity of user interfaces, which is difficult to manage using existing model-based approaches. Design of user interfaces is constrained by several models: user model, task model, application-domain model and platform model. First generation of model-based approaches focused on domain models that were exploited to derive appropriate interaction objects.

Task-based design of user interfaces aims at supporting the design of usable interfaces by focusing on user’s goals and task performance. Task-based design is a special kind of model-based approach in that the task model is given the leader role among other models that constrain the design. It aims at derivation of presentation and dialog from the task specification.

Like the patterns of Alexander, UID patterns could help in deriving characteristics of the presentation environment, which can afford certain cognitive behavior. Using the information contained in the domain model helps in deriving what information the user has to manipulate in order to perform his task. Using the task model makes it also possible to derive how to present and organize this information in a usable way.

6 A pattern language for user interface design

6.1 Research method

In terms of a pattern language philosophy, domain and task models are the main forces competing for a model-based design of user interfaces. On another hand, user demands are also competing with his own (limited) cognitive capacity and the constraints imposed by the presentation and dialog parts of the user interface. This means that design patterns should address both user interface development and usability requirements.

Since a pattern language is integrating related patterns we will focus on the application example mentioned in section 1 and we will take the following approach.

1) We will identify interaction patterns based on the relationships in the domain model. In this respect we will analyze the categories of tasks, which are afforded by each type of relationship, and we will look for mappings between the domain model and the operational task structure. This also includes a basic mapping with the presentation since task decomposition at operational level is done after selecting the appropriate interaction objects.

2) Then we will propose a set of design patterns that provides with a usable solution for both parts of the user interface:

· presentation: grouping of abstract interaction objects and allocation of dialog units;

· dialog: interaction at dialog unit level and interaction object level.

3) In this respect we will analyze the mappings between four models: task and domain models on one hand and the presentation and dialog model on the other hand. The proposed pattern is providing with a solution, which consists in the resulting user interface building block. Additionally we will investigate the extent to which control issues could be included in a pattern definition.

4) We will investigate the relation between design patterns and we will propose a method for integrating them into a pattern language. In order to do this, we will further exploit the task and domain models in order to integrate the resulted building blocks into bigger user interface components.

6.2 Identifying interaction patterns in one-to-many relationships

In most of the situations when the user wants to perform tasks using hierarchically organized data it is important to provide him with means to visualize the relationship between entities. Depending on the relationship type several interaction patterns could be identified in the domain model. In this respect we can say that relationships are affording certain tasks.

These interaction patterns are potential since they reveal inherent capabilities of the interactive system as provided by the domain model. Both domain objects and relationships could be visualized and modified by the user and there are several ways to provide him with usable interaction techniques to do it.

On another hand, these patterns are typical interaction structures which could be identified both in the domain and task models. The task model at operational level is a useful artifact because it shows how a unit tasks is actually decomposed in basic tasks pointing to interaction objects of the interface. Interaction patterns are closely related to unit tasks and they are intended to be usable operational structures. In this respect, complex operational structures having several levels of unit tasks, like the one depicted in Figure 1, are the target of this research.

The general case of the one-to-many relationship is illustrated in Figure 2. There are two object types involved: section and guideline. The name and length of each attribute is not relevant for our purpose. However, there is an additional construct – the foreign key that is pointing to the primary table (section). The dialog model at interaction object level can manipulate this attribute in various ways, in order to satisfy user’s task requirements.

[image: image6.png]SECTION

Sectonid
SectoniName

GUIDELINE

i Sectonid
ac

G
GnName

Gomposect-at

o Galnie
ac
ect: Composedtof
ac

Figure 2. One-to-many relationship
Another relationship type taking a similar form is classification. For example, guidelines are classified as regarding importance level (good practice, confirmed good practice, etc). The mechanism of manipulating the relationship is similar in that a foreign key attribute is used in the first table in order to have access to the data in the second table.

In order to perceive the relationship between domain objects the user needs some additional information to be displayed: either the “one” part (the higher level entity), either the “many” part. We can distinguish between 3 types of displaying patterns, which are supporting tasks afforded by the relationship:

a) showing the higher level entity, for example to display the section to which it belongs – this is usually accomplished using text box placed on the top of the interaction object group presenting the attributes of the entity;

b) showing the lower level entities, for example to display the more specific guidelines (recursive aggregation) – this is usually accomplished using a list box placed at the bottom;

c) showing both the higher and lower level entities, for example to display the general guideline and the more specific guidelines – this could be accomplished using a text box and a list but also embedded dialog units showing a master-detail relationship.

The diagrams in Figure 3 show these typical situations.

[image: image7.png][Op
[Op

—— ——

) Show higher b)Show fower c)Show higher and lower

Figure 3. Display patterns in one-to-many relationships

More complicated interaction structures occur when the task is to change something in the relationship: add or delete an item from a collection or move an item from one collection to another. In this case there are several types of tasks: displaying an item, selecting an item and performing some action upon the selected item. We can distinguish between three interaction patterns:

a) selecting the higher level entity while editing the attributes of the part entity, for example, selecting the section while editing a guideline (moving a guideline from a section to another i.e. editing the relationship itself) – this could be accomplished using a selecting device like a drop down list;

b) selecting a lower level entity from a collection in order to perform some action upon it - for selecting a criterion from a criteria group – this could be accomplished with two associated selection devices (selection of higher level object updates the content of the list) and additional function control objects, applying to the selected entity in the list;

c) selecting an entity from the hierarchy and performing some actions upon, for example a section or one of its guidelines – this could be accomplished with two associated lists (selection of higher level object updates the content of the list) and additional function control objects, applying to the selected entity.

The interaction pattern in Figure 4b is the best as information provided to the user: he can perceive both the objects and their relationship. This is why it is recommended when performing editing operations on the lower level objects. This interaction pattern corresponds to the situation when the focus is on the management of these objects.

The interaction pattern in Figure 4c could raise some usability problems since there are two lists and in each list an object could be selected. Therefore some additional information denoting the selection to which editing operations apply should be provided. For example, displaying the object type (guideline or section) on the right of buttons. Even so, this pattern should only be designed for experienced users or for special context of use.

Depending on the user’s task the relationships could be manipulated in several ways thus expanding to many other cases. In each situation, specific interaction objects for function control can be used. For example, in e-commerce applications selection is often combined with the display of related content in a separate window.

We could also consider that the user might want to examine in more detail an object from the list. In this case a “show” button could be added or just a double click on the item could invoke a dialog unit where all attributes of the given object are displayed. Also, more complex user interface constructs could be derived after selecting the first object, like for example master-detail dialog units.

[image: image8.png]—

EOH
¢
0

—

Tiew) (edil) gel

& Select higher b)Select and show related) Select and show reated

Figure 4. Interaction patterns in one-to-many relationships

Therefore an analysis of relationships between domain objects should be complemented with a task analysis taking into account the tasks the user may want to perform. The domain model itself does not provide with sufficient information to derive the user interface since there is a huge potential of possible tasks.

6.3 Identifying interaction patterns in many-to-many relationships

The general case of this kind of relationship is illustrated in Figure 5.

In this case two constructs are resulted from logicalisation:

· foreign keys which are pointing to the data in the primary table

· a new relation (table Item-Association) that holds the explicit associations.

Several tasks could be afforded by this kind of relationship. We distinguish two interaction patterns supporting in a usable way the specific tasks afforded by a many-to-many relationship:

· showing the associated objects, for example showing the criteria respected by a guideline – this goal could be achieved by using a list box with associated entities and one or more functional control objects for editing the relation (add new items or delete existing ones);

· changing the current association by removing or adding an existing object to the list – this could be done by using an accumulator (two list boxes and function control IOs for moving objects from one box to another and for removing objects).

[image: image9.png]Respect

it
GUIDELINE Ganig CRITERIA]
Galnid i Galnld ittt
GnName Gl Critiame
ac
o Galnid ecq: Galnid o Criid

ac

ac
. il
ac

ac

Figure 5. Many-to-many relationship

These two situations are illustrated in Figure 6.

[image: image10.png]associated

associate] all

=) (@

]

!
=i

KNNED

9 Show associated

1)Select and move (acoumuiate)

Figure 6. Interaction patterns in many-to-many relationships

In the first case editing the associated objects is not a typical task. This is usually done apart, within the context of their organization. For example, ergonomic criteria are organized in general and elementary criteria. In this case interaction patterns afforded by one-to-many relationships apply. Also, in the second case a device for selecting several values is used and this is typical for many-to-many relationships.

6.4 Transforming interaction patterns into design patterns

6.4.1 Design patterns derived from the task and domain models

Interaction objects are embodying basic interaction techniques. They are covering both presentation and dialog model at a basic level, which we may term as lexical level. In this respect, interaction objects are the basic constituencies of the user interface.

Interaction object groups, which have one or more information, control AIO and one function control AIO (sometimes two, but the user could choose only one of them at a given time – for example OK vs. Cancel) provide with a first level of structuring the interface. Interaction object groups could be used as basic building blocks for the presentation model in a task-based approach.

An example is given in Figure 7 where searching by identification number is used to identify an old client. Grouping of interaction objects is done around the function control.

[image: image11.png]Client identification number

Number | 1667

inputid search enormessage display results

Figure 7. Design pattern for a task-based AIO grouping

We can further decompose the task “display results” like in Figure 8 in order to obtain we have the full operational structure for the task “identify-by-id”, including the feedback presented to the user. The task structure suggests a grouping of interaction objects in the interface according to semantic and functional criteria.

[image: image12.png]inputid search error message di

w7 xs
firstname lastname strest number city postcode

Figure 8. Operational task structure

AIO groups could further be grouped together to form higher-level groups. An example is given in Figure 8 where three groups are grouped following a higher-level goal in the goal hierarchy. In this example the goal structure for “Get old client data” is clearly represented in the interface. Moreover, the task structure is fully represented for each group, which makes possible a semantic feedback after a successful search.

According to ergonomic criteria (Bastien & Scapin, 1993) this is good for at least three reasons:

· provides for user guidance, by grouping related interaction objects;

· reduces memory workload, by creating chunks of information and reducing the articulator distance needed to perform a given task;

· provides for compatibility with the user tasks.

[image: image13.png]Client information

Client identification number

Number [t6a7]
<@ Clientname

Fanily name [Pribeans
FirstNeme [Costin

Search by mame
Rr-0 @ e
Askstatus [OKfChagt] [New cient] Steet [Flace des Sports

o

ldeptpidelient Update client pddress

b o ==
Getid |[Identify by id] [Identify by name.

HNumber

Ea—

> O err—
.
oty

[
PostCode [1248

Hodity

Figure 8. Design pattern for AIO grouping

We can put it all together and propose a design pattern. In order to propose a pattern language we will start by describing the following: problem, context, forces, solutions and comment.

Problem

Functions could be chained such as the same data is used as prompting for future actions and feedback for previous actions. Ideally, the user should be provided with semantic feedback showing the effect of his actions to the application data.

Context

The same operational structure could be used in several sub-tasks. It usually happens when there are several functions performed upon the same object. For example, the client address is used as feedback after two search methods and for data entry for a new client or when the address changes.

The user is performing a search function. If successful, the attribute data of the found object is displayed in the interface. Then the user could act upon the displayed data in order to perform further actions. This situation is typical in data base applications when we first search for a record and then edit it.

Forces

There are several search keys. For example, the user can search using a client id, a personal id number or the name. Some search methods could be faster other could be more easy to use. If a method fails, possible because of a data entry error, the user might want to try another.

There are a huge number of possible groupings of AIOs in the interface. Grouping of interaction objects could be done according to semantic criteria provided by the data model or in a task based approach. Semantic criteria help to perceive the data structure including relationships. A task-based approach minimizes user actions.

There is always a tradeoff between the information density and the articulator tasks for navigating between different dialog units.

Solution

First level of AIO grouping should mirror the operational task structure. Assign a static interaction object denoting the semantics of data or function to each AIO. This design step is performed in a bottom-up approach.

Higher-level groups are based on the goal hierarchy. Assign a static interaction object denoting the task goal to each AIO group. Use up to three levels of grouping in a dialog unit. Allocation of dialog units should be done in a top-down approach based on the task model.

Comment

This pattern applies mainly for the presentation part of the interface and helps in organizing the information on the screen in a way that provides with user guidance. It can be integrated in more complex patterns.

We can also derive design patterns based on display patterns like those presented in Figure 3. We will take the more general example depicted in Figure 3c and we will propose a pattern which is mainly based on one-to-many relationships in the domain model.

Problem

When the attribute data of an entity are displayed the user also needs to perceive the relationships with higher level and lower level entities.

Context

The attribute data is displayed as a feedback to a user action or a prompting to data entry. In the first case the user can only visualize the data. In the second he may select the desired higher-level object.

Forces

The user needs to perceive both attribute data and the relationships with higher level objects and lower level objects. For example, he needs to see the guideline attributes, the more general and the more specific guidelines. A one-to-many relationship leads to different display requirements according to the cardinality (one vs. many).

Solution

Display the attribute, which is the most relevant for the user (usually the name).

The higher-level entity should be placed on top of the attributes of the target object and the lower level entities at bottom of the attributes of the target object. The position is consistent with the relationship (first higher, then lower). If appropriate, use grouping / distinction by location to show the difference between attributes which are denoting the relationship and the rest of attributes.

Use a drop down list or a text box for the higher-level entity (the “one” part of the relationship) and a list for the lower level entities (the “many” part of the relationship). If the user can change the higher-level entity use a drop down list, otherwise use a text box.

Comment

This pattern applies mainly for the presentation part of the interface and helps in organizing the information on the screen in a way that provides with user guidance. It can be integrated in more complex patterns.

An example using this pattern is presented in Figure 12 where a dialog unit for the task “edit guideline” was designed.

The user can manipulate one-to many relationships as follows. Base name is only displayed. Section could be selected from a drop-down list. If not found, a new section could be created. The user could also select the general guideline and he is provided with a list of more specific guidelines. A classification relationship is used to select the importance level of the guideline from a drop-down list.

In this example, the recursive aggregation of guidelines was implemented according to the case 3c in order to provide with maximum of feedback. Seeing both the ancestor and the descendants helps the user to better perceive the underlying domain model. However, the design decision is also dependent on the available screen space.

5.3.2 Design patterns derived from interaction patterns

More complicated interaction structures like those afforded by many-to-many relationships in the domain model need a closer look in order to be embedded in useful task structures and thus aid the design of the user interface.

For example, the operational structure of the unit task “new base” (see Figure 1) suggests a dialog unit having one group composed of interaction objects for information control and a group composed of two interaction objects for function control. The interaction pattern is simple: the user is pressing the “new” button while editing the section. Then the dialog unit is displayed so the user can enter attribute data by using information control objects like text boxes (profiled text box for base id and base name and multiline text boxes for description and comments. Then he can record the new base in the database by pressing the “ok” button or cancel the operation by pressing the “cancel” button.

[image: image14.png]new

new hase

oW SeCiion

new.

<

baseid

—/

i B—

description

comment

=

)
=

g
(=
=

@

TR
e hn

baseid

base name _description

comment ok

=
g —

Figure 9. Design pattern for creating a new entity

The task and domain models are providing with useful information for user guidance:

· the dialog unit will display the name of the unit task in the window title;

· static interaction objects (labels) denoting the semantics of data are composed with the information control objects.

The design pattern is illustrated in Figure 9. Both presentation and dialog part at dialog unit level are provided.

On another hand, this pattern is composed from several abstract interaction objects (generic interaction techniques), which are, providing with presentation, dialog and control at interaction object level. These patterns are presented in Table 2.

Task goal
Presentation
Dialog
Control

select a category

[image: image15.png]

click to show list + select + show current
category id – internally available

category name – displayed

add a new category

[image: image16.png]

Click on button

edit attribute value

[image: image17.png]base id

]

Enter
text box value – internally available

...
...
...
...

record / cancel

[image: image18.png]ok)

Click on “ok”
perform transaction (record AIO values)

update the category list

Click on “cancel”

Table 2. Interaction techniques for creating a new entity

Although this design pattern is well known, it is mentioned because is needed when combining several patterns in a pattern language. It also shows how we van integrate useful information from both task and domain models. In this respect, showing the current selected value for the base and the possibility of adding a new base corresponds to the interaction pattern in Figure 4b.

Note that this pattern occurs three times in the task model depicted in Figure 1:

· when selecting the section for a guideline;

· when selecting the base for a new section;

· when selecting a criteria section.

In the third case we will not provide with a new button since we are working with a well-established set of criteria. This is a variation in the context of use, which should be recorded in the context and solution parts of the pattern. In this respect, the pattern language should be flexible enough to capture different situations of use if they lead to a similar design.

Since a strong feature of patterns is to be context sensitive we will need to describe several solutions: a general one, corresponding to the common part of the problem and several detailed solutions, corresponding to the diversity of the use situations.

Problem

When editing the attributes of an entity (either new or existing), which is member of a higher-level entity (collection or category), the user needs to select the higher-level entity.

Context

Selecting the category occurs during the editing of the data object, usually at creation time. It could be also a frequent task when the categories are re-organized. It is also needed in case of errors but this is rare.

There are two typical situations:

· the task is to collect new objects or to update the existing ones and the organization is imposed in that the user cannot add a new category;

· the task is to collect a big amount of data from various sources and the organization of objects within the hierarchy is subject of change.

Forces

The object attributes are the focus of attention. For complex objects having many attributes, possible grouped according to semantic criteria the presentation should minimize the cognitive workload.

The user needs to perceive both attribute data, including their possible grouping and relationships with higher level objects. For example, when editing a guideline he needs to see the guideline attributes, the section and the more general guideline.

The cognitive charge will further increase if the user needs to add a new higher-level object. In this situation he will change the dialog context with the attributes of another entity. After entering data for the new object he will return to the former dialog context. Hence a need for good user guidance in order to be aware of the context and to keep track on his work.

Solution

Display the higher-level entity on top of the attributes of the target object. The position is consistent with the relationship (first higher, then lower). If appropriate, use grouping distinction by location to show the difference between this attribute, which mirrors the relationship and the rest of attributes.

Use a drop down list, which only displays the name of the current selected category, and hide the foreign key. The drop down list provides with the best interaction technique since it shows all categories only when the user want to select a new category (when a change is needed or at creation time once). Not only it saves screen space but it also maintains the cognitive workload at minimum level.

According the context of use, use a “new” button placed on the right of the drop down list if the user is allowed to add a new category. Edit the attributes of the new higher-level object in a separate and modal dialog unit. In this case use the interaction pattern described in Figure 7 and Table 2.

An example of implementation is given in Figure 12.

Comment

In order to maintain a reasonable cognitive workload this pattern should be applied only for higher-level objects, which are different from the object being currently edited. Reason: the information is too similar and will lead to interference effects. For example, it should not be applied for the higher-level guideline because it might lead to confusion when entering the values of the two guidelines.

This pattern is based on the display pattern depicted in Figure 3a and the interaction pattern depicted in Figure 4a. It includes the design pattern described in the previous section. Additionally, it describes the whole interaction process by including the data input for the higher-level object and the relation between the two dialog units.

From an implementation point of view, we assume that this data is recording in a transaction process when the user is pressing the “OK” button (explicit user action). In this case, the attributes are taking the values stored by the interaction objects and the drop down list is updated with the new value. Ideally, the new category should be displayed as the current selected value in order to save the selecting action.

[image: image19.png]associated

references (-
otera Iy

assoviate

[del asgobjation] close| f o

=

jselitem _accumulate selitem _remove

Figure 10. Editing a many-to-many relationship in one dialog unit

We will further analyze the two situations described in Figure 6, but in a more concrete task context. For example, the relation between guidelines and criteria could be edited in a separate dialog unit, where both unit tasks of adding a new item and deleting an existing one are possible. The diagram in Figure 10 shows the mapping between the task and the presentation models. In Table 3 the mappings at interaction object level are presented.

Task goal
Presentation
Dialog
Control

Main dialog unit

see associated
label+ button
Click on button
displays the dialog unit

Relationship dialog unit

select an object
any list
scroll+click on item
object id internally available

associate
list box “all”
click on button ”<”
creates a record in the relationship table

delete an object
list box “associated”
click on button ”>”
deletes a record in the relationship table

return to main
button “close”
Click on “close”
close the relationship windows

Table 3. Interaction techniques for editing an association

A different context for editing the association is presented in Figure 11. In this case the user is provided with a list of associated items. He can remove an association or he can add a new one by selecting it from a list. This is a better solution since the user is provided with some information about the existing state of association. On another hand, this requires more screen space in the first dialog unit.

[image: image20.png]selitern

remove

associated

all within category

[sel category |

selitem

accumulate

close

Figure 11. Editing a many-to-many relationship in two dialog units

A design pattern integrated both situations is presented below.

Problem

The user needs to edit a many-to-many relationship by adding new members or deleting existing ones.

Context

The context of use is related to editing the attributes of an entity.

Depending on the information density and the available space there are two typical situations:

· the associated items are not displayed in the editing frame but only a piece of information (a button) denoting the possible existence of such relationship;

· the associated items are displayed and it is possible to delete them directly.

The associated entities could only be added or removed from the relationship. No editing operation upon their attributes is assumed.

Forces

The object attributes are the focus of attention. However, the user needs to see perceive the relationship. Perceiving the type of relationship he will know what operations are possible.

The task model is providing the designer with guidance for structuring the presentation. However, the operational structure could be very complex for an editing task, like the task to edit a guideline, which is presented in Figure 1. In this case a relationship is acting as a switch to the attribute data of other entities.

It is a trade-off between the screen space and the amount of relevant information to be displayed about related entities. If the associated entities are displayed in the same dialog unit then is possible to delete them here and to add new entities in a different dialog unit. It is also possible to display in a separate dialog frame the attribute data of the associated entity. At least, the user needs to see the relationship type as well as a tool to see the associated items and to change the relationship.

Solution

If there is not enough space then use a static interaction object denoting the type of the relationship (for example: criteria, reference, example etc) and a button that gives access to another dialog unit where the user can perform adding and deleting operations. Use the presentation and dialog solution suggested in Figure 10.

If the space is enough then display the most relevant information related to associated items in list box, corresponding to the “many’” cardinality of the relationship. On right of the list box provide with two little buttons labeled with “+” and “x” for adding and deleting. Adding task will be performed in a separate dialog unit. If the user double clicks an associated item from the list then display all the attribute data of that item in a separate dialog unit.

Use an accumulator for adding new items. One list will show all available items and the other the items already associated. If deleting is performed in the same dialog unit the provide the accumulator with two buttons, otherwise with only one. Provide with a shortcut like a double click to associate an item.

If the associated entities are grouped in categories then provide with a drop down list to select the category.

Comment

This pattern is integrating parts from all previously discussed patterns.

The interaction techniques are presented Table 4.

Task goal
Presentation
Dialog
Control

Main dialog unit

select an object
list box “associated”
scroll+click on item
object id internally available

delete an object
list box + button
click on button ”X”
deletes a record in the relationship table

associate
list box + button
click on button ”+”
opens the “associate” window

Available objects dialog unit

select a category
category combo box
click + select
updates “all” list box

select an object
list box “all”
scroll+click on item
object id internally available

associate
list box
click on button ”<”
creates a record in the relationship table

return to main
button “close”
Click on “close”
close the relationship windows

Table 4. Interaction techniques for editing an association

The item collection could also be structured. In this case the user will first select the category and then the item. Actually this is a combination of association and aggregation relationships. It is possible to create pre-defined (typified) dialog units that accept as parameters the data source extracted from the domain model.

This way the code needed to handle the dialog is re-used for similar interaction structures. The data model could be also exploited in order to derive appropriate interaction objects (for example, criterion instead of item) and to edit their properties (list width).

In Figure 8 an example of presentation derived from task and domain models is presented. It corresponds to the operational task structure in Figure 1.

[image: image21.png]& EDIT GUIDELINE [=[ofx]

Criteria section [Compatibiity =

Base fwal
Section [Authoring Tools <1 new section
General [Bl
Guhie awitzey_{] &5 ASSOCIATE CRITERIA [[=] B3
Titl [Support accessible authoring practices
Statement [Support accessible authoring practices Crteratype [ergonoric 5]
Rationale [Fhe tool automatically generates markup, ¥
Jwill be unaware of the accessibiliy status of L“k “””pa“‘s“““y
cantent unless they expend extra sfort 1o re | U2%" compatisilty
make appropriate conections by hand. Sincs EmTonment compatbilty
authors are unfamilir with accessibilty, autl
Comment [This s a gudeline
Exception
Impattance level [Confimed good practice
Examples
Refeences [Wac ATA T _olse |
Criteria ergonomic | Accessibilty K K| @
Specific [11 Produce accessible content in the markup language

Presenve all accessibilty information
Conform to Web Content Accessibilty Guidelines 1

OK | cancal

Figure 12. Adding a criterion while editing a guideline

For each domain object associated with a guideline we have an interaction object group in the interface. Each group has a label, a list box and two buttons. Although not shown in Figure 1, the decomposition for the unit tasks “edit ref”, “edit ex” and “edit criteria” takes the form presented in Figure 11. This means it enables removing associations in the main dialog unit and adding new objects from another dialog unit.

6.5 Towards a pattern language

A problem with pattern languages for user interface design is the difficulty of relating them. For example, we need a more complete set of patterns in order to include cross-references in each pattern. However, this seems to go very deep in the design process and prone to reduce generality. In this moment it seems to be more feasible to catch only a general design problem and to develop and document a set of related patterns. While the pattern definition could follow a template, there is still a need of some common information to discuss, illustrate and justify the pattern.

Since the task of elaborating of patterns is time consuming and may need further steps (in order to gather valuable design knowledge from several designers) we propose a pragmatic approach, based on a short template (formal description) for each pattern and additional (informal) description including examples, discussion, figures and tables. Together these will form an exploratory framework for identifying new patterns and will preserve the findings for further work. This initial form of pattern language will also serve as a design rationale for the user interface.

When enough knowledge is gathered, the template could be expanded in order to record in a formal way the pattern definition. However, a pattern language will integrate patterns with different granularity, according to their scope and scale. Different scope means that patterns will mainly focus on some component: presentation, dialog or control. It also means that they will be different in covering design and implementation. Different scale means that only that for large-scale patterns how to combine other patterns will be described.

In order to develop a usable pattern language we need to start with some basic heuristics, which are too simple or too informal to be recorded in a complex template but which, are useful in identifying and justifying a pattern. On another hand, having this basic layer, pattern descriptions could be more concise and thus easier to elaborate and manage.

For example, a more synthetic presentation of our task-based approach is done In Table 5 where five types of mappings are illustrated.

Domain
Task model
Presentation

[image: image22.png]

[image: image23.png]

[image: image24.png]

[image: image25.png]

[image: image26.png]

[image: image27.png]

[image: image28.png]

[image: image29.png]

[image: image30.png]

[image: image31.png]

[image: image32.png]

[image: image33.png].o

[image: image34.png]))
W DWW

[image: image35.png]

Table 5. User interface derivation from task and domain models

First row shows how interaction object groups are derived from task and domain models. Domain objects are providing with attribute information from which interaction objects for information control are derived. In our task modeling framework this row corresponds to the operational level in task decomposition and shows how unit tasks are performed with a given technology.

Grouping of interaction objects is done either according to the semantics of the domain model (rarely, for objects having many and / or compound attributes) or around function control IOs (often). Static IOs denoting the group meaning are also added in order to increase user guidance. For example, IO groups could take the name of the unit task they support. This mapping is shown in the second row.

Third and fourth rows represent the derivation of more complex unit task structures by considering relationships between domain objects. In turn, these structures are further exploited in order to derive interaction object groups and dialog units.

The last row is incomplete in that it illustrates allocation of dialog units only by considering the task model. In a task-based approach early task modeling is assumed to integrate systems functions. Therefore they are not further exploited during operational task modeling.

Clearly, these mappings are not a substitute for patterns. However, they show an underlying task-based design philosophy and help in organizing design patterns in a more systematic way and describing them in a more concise manner.

This basic level could be then completed with heuristics for typical derivation rules providing with more detailed design knowledge. For example, in a previous work several heuristics were proposed for grouping of interaction objects (see Table 6).

No.
Statement

H1
Assign a static interaction object, denoting the data meaning, to each information control object.

H2
Assign a static interaction object, denoting the goal name, to each goal at unit task level.

H3
First level grouping of interaction objects should mirror the operational task structure.

H4
Higher level grouping of interaction objects should mirror the goal structure

H5
Assign a static interaction object to each higher level grouping of interaction objects, denoting the goal it represents

Table 6 Heuristics for grouping of interaction objects

In a similar way, we can use heuristics for dialog unit allocation following a given strategy. Heuristics could be illustrated with examples.

This basic layer will be the most general in that it will provide designers with heuristics and design rules that apply to a variety of patterns. We can summarize its content as following:

· ergonomic criteria;

· selection rules for choosing the most ergonomic AIO (interaction technique);

· task-domain-presentation mappings

· detailed heuristics for the derivation of presentation;

7 Conclusion

Operational task structures describe how users are manipulating domain objects. Interaction object groups are formed by grouping information control objects around a function control object that is designed according to requirements coming from the task model. More complex task structures at operational level are afforded by relationships between domain objects. In this case not only interaction object groups could be derived but also dialog units. Thus bigger building blocks having both presentation and dialog parts could be derived.

A problem with patterns is the diversity of design situations. Although patterns are intended to satisfy requirements related both to complexity and diversity, it is difficult to address methodological aspects from many reasons:

· applications are very different as regarding the driving model: some are driven by task and functional requirements, others by complex relationships or by large data structures and other by content;

· although attractive, patterns could easily trap the designer into futile work which could be saved by using design heuristics – it is difficult to find a stopping criterion in elaborating a pattern language;

· patterns languages are difficult to elaborate: the more formal definition is used, more time is spent to integrate related patterns and this may lead to narrow their applicability.

In this paper we investigated design patterns, which are based on the information provided by task and domain models. On the basis of our previous work and this investigation we proposed a method to develop pattern languages in two steps:

· identifying patterns by using information from task and domain models and recording them in an initial pattern language combining formal definition with informal description;

· formalization of the pattern language by expanding the initial pattern template.

References

Alexander, C. (1979) The Timeless Way of Building. New York: Oxford University Press.

Bayle, E., Bellamy, R., Casaday, G., Erickson, T., Fincher, S., Grinter, B., Gross, B., Lehder, D., Marmolin, H., Potts, C., Skousen, G. & Thomas, J. (1997) Putting It All Together: Towards a Pattern Language for Interaction Design. Summary Report of the CHI '97 Workshop. SIGCHI Bulletin

Balzert,H., Hofman, F., Kruschinschi, V., Niemann, C. (1996) “ The JANUS Application Development Environment - Generating more than the user interface”. J.Vanderdonckt (Ed.) Computer-Aided Design of User Interfaces. Proceedings of CADUI’96. Presses Universitaires de Namur. pp.183-206.

Card, S. K., Moran, T. P. and Newell, A., The Psychology of Human-Computer Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, USA, 1983.

Chaffin, R. & Herrmann, D.J. & Winston, M.E. (1988) “An empirical taxonomy of part-whole relations: Effects of part-whole type on relation identification”. Language and Cognitive processes, 3(1):17-48.

Molina, P.J., Melia, S., Pastor, O. (2002) “User Interface Conceptual Patterns”. Proceedings of DSV-IS’2002, pp. 159-172.

Paternò, F. Model-based design and evaluation of interactive applications. Springer Verlag, 1999

Pizano,A., Shirota, Y. & Iizawa, A. “Automatic generation of graphical user interfaces for interactive database applications”. Proceedings of second international conference on Information and knowledge management - CIKM ’93. ACM Press, 1993. pp.344-355.

Pribeanu, C. (2002) “Investigating the relationship between the task model and the design model in a task-based approach to user interface design”. Proceedings of 1st International Workshop on Task Models and Diagrams for User Interface Design – Tamodia 2002 (Bucureşti 17-18 July 2002), INFOREC, Bucureşti 2002 pp. 78-85.

Pribeanu, C. & J. Vanderdonckt (2002) “Exploring Design Heuristics for User Interface Derivation from Task and Domain Models”. Chapter 9, in Proceedings of 4th Int. Conf. on Computer-Aided Design of User Interfaces CADUI'2002 (Valenciennes, 15-17 May 2002), Kluwer Academics Pub., Dordrecht, pp. 103-110.

Puerta, A. “The MECANO project: Comprehensive and Integrated Support for Model-based Interface Development”. J.Vanderdonckt (Ed.): Computer Aided Design of User Interfaces. Namur, Presses Universitaires de Namur. pp.19-36, 1996

Storey, V. (1993) “Understanding Semantic Relationships”. VLDB Journal, 2, 455-488.

Sukaviriya, P., Foley, J.D. & Griffith, T. “A Second Generation User Interface Design Environment: The model and the Runtime Architecture”. Proceedings of InterCHI’93, pp.375-382.

Mahemoff, M. J. and Johnston, L. J. (1998). Principles for a Usability-Oriented Pattern Language In Calder, P. and Thomas, B. (Eds.), OZCHI '98 Proceedings , 132-139. Los Alamitos, CA. [In Adelaide, Australia, November 30 to December 4, 1998]

Vanderdonckt, J. & Bodart, F. “Encapsulating Knowledge for Intelligent Automatic Interaction Objects Selections”. Proceedings of InterCHI’93. ACM Press, 1993.

Welie, M. van, H. Trætteberg (2000) Interaction Patterns in User Interfaces:, In: 7th. Pattern Languages of Programs Conference, 13-16 August 2000, Allerton Park Monticello, Illinois, USA.

Welie, M. van, G.C. van der Veer, A. Eliëns (2000). Patterns as Tools for User Interface Design In: International Workshop on Tools for Working with Guidelines, pp. 313-324, 7-8 October 2000, Biarritz, France.

Winston, M.E., Chaffin, R. & Herrmann, D. (1987) “A taxonomy of part-whole relations”. Cognitive Science, 11:417-444.

PAGE
2

_1103367231

_1103437286

_1103367912

_1103367133

