
Patterns as a link between HCI and architecture

Jan Borchers
Stanford University

http://www.hcipatterns.org/

January 24, 2003

Abstract

This position paper for the CHI 2003 patterns work-
shop outlines a few recent thoughts on the value of
pattern languages for HCI as a bridge between our
discipline and the field of architecture. The connec-
tion between architecture and HCI has been made re-
peatedly in the past, and the beginning adoption of
the patterns concept in HCI may be an example of
the closeness of these two fields. This suggests that
maybe the much older field of architecture can give
some guidance for how to further establish and de-
velop the field of patterns in HCI.

1 Introduction

The idea of patterns originated from Christopher
Alexander’s work [1], [2] in urban architecture, al-
though similar formats to document successful design
and engineering solutions emerged among the renais-
sance “master builders” of the fifteenth century [9].
Software engineering adopted the format in the late
eighties [4], leading to the general acceptance of soft-
ware patterns as a very useful form of documenting
successful software engineering solutions (see [8] for
an early and prominent example).

However, this adoption did not include a few cen-
tral points of the original pattern language idea:
“Software design patterns are considered a useful lan-
guage for communication among software designers,
and a practical vehicle for introducing less experi-
enced designers into the field. The idea of end users
designing their own (software) architectures has not
been taken over. On the one hand, this makes sense,
because people do not live as intensely “in” their soft-
ware applications as they live in their environments.
On the other hand, though, a good chance to push the
concepts of participatory design and work ethics for-
ward by introducing patterns has not been taken ad-
vantage of.” [5, p.25] I will look at possible reasons

for this discrepancy in the next section.

2 HCI and architecture

In his influential Software Design Manifesto[10],
Mitchell Kapor points out that, when creating an ac-
tual building, the architect is the professional respon-
sible for the overall design, and the construction en-
gineer, while being a professional peer, takes direc-
tion from the architect’s design in order to build it.
Moreover, the clients or future inhabitants will dis-
cuss their ideas and concerns with the architect, not
the construction engineer, because the architect is the
one responsible for most of the criteria that make the
building work for them.

Now, there is an interesting parallelism between ar-
chitecture and HCI: Architects design physical build-
ings that their inhabitants directly interact with and
live in. User interface designers design virtual inter-
faces that their users directly interact with and, con-
ceptually, often “live” in while at their task. This
closeness to architecture is obvious for 3-D virtual re-
ality environments, but because of the mental model
that a user forms of any system while interacting with
its interface, it also seems a valid claim for user inter-
faces in general.

To complete the analogy, the software engineer
who deals with the internal structure and inner work-
ings of the software product plays a similar role as the
construction engineer in a real building project (see
Figure 1).

Kapor claims that the interface designer, just like
an architect, should be concerned with what the Ro-
man architecture critic Vitruvius calledcommodity
(suitability for the purpose or task) anddelight (the
aesthetic value, or pleasure of using the building or
product), while the software engineer, like the con-
struction engineer, will focus on Vitruvius’ third cri-
terion for a good building, “firmness” (the robust-
ness and functional correctness of the product). The

1



SW EngineeringHCI

Architecture

“User Experience”
“Internal structure”

Structural
Engineering

Figure 1: Patterns were adopted first by software en-
gineering, the equivalent of construction engineering
in the case of real building projects, but have even
more potential in HCI, the equivalent of architecture
in the case of actual buildings.

reason for hard-to-use, non-intuitive software, conse-
quently, is that it is largely engineered instead of de-
signed, with too little influence given to the profes-
sion of interface design.

3 What this means for patterns

Looking at this closeness of HCI and architecture,
it seems almost surprising that software engineering,
not HCI, adopted the patterns concept so quickly and
widely (Figure 1). On the other hand, early references
in key HCI texts such as [11],[12] indicate that there
has long been an interest in this link, although it did
not emerge widely until the late 90’s [3].

However, if we look at how HCI is adopting pat-
terns, the following points support a more fundamen-
tal link to architecture:

• Alexander primarily intended his language for
inhabitants and laypeople, not architects, to al-
low them to voice their concerns during the de-
sign process of their environments and neigh-
borhoods. This coincides with the interest in
user-centered design that is so prominent in HCI.
(This, of course, may not be a link to architecture
in general, but rather just to Alexander’s posi-
tion, which was in fact not very highly regarded
among his peers at the time.)

• HCI has been better than software engineering
at pushing patterns to be readable by people out-
side their own discipline, including end users or
clients. This is partly natural since HCI, just
as architecture, is concerned with the immedi-
ate user experience of the designed artifact. The
inner structure of a software “building” is not re-
ally of primary concern to those outside the en-

gineering profession, just as is the case in struc-
tural engineering.

• If we push the analogy of architecture and HCI a
little further, we could imagine interface design
firms competing with their design proposals for
a new software product, aiming for awards on
design qualities, and once a design firm has been
selected, the construction specialists (software
engineering firms) to be contracted in to turn the
interface design into reality, i.e., a working sys-
tems architecture [13]. Patterns appear to be an
excellent medium to capture the design values
of a “school” or design firm, and their beginning
success in HCI could be an indicator for the fact
that HCI is increasingly becoming a discipline
that cares about design as well as technical and
cognitive issues. (The same trend is suggested
by the stronger focus on design at recent CHI
conferences.) It could, in fact, be a sign of a ma-
turing discipline!

• There is a fundamental difference in the way
students of architecture and computer science
are taught; architecture begins by studying good
(and bad) examples of existing buildings and
styles, both ancient and recent, and students
gradually discover the timeless qualities behind
those very different schools. This is exactly what
Alexander tried to capture in his language and
approach, and if user interface designers are to
be taught in a similar fashion, then HCI design
patterns would be the natural vehicle to com-
municate the timeless qualities that user inter-
face designs as varied as a command-line inter-
preter and a virtual reality environment might
have in common (for example, using concepts
and objects from the user’s domain of expertise).
What this requires, of course, is to strike the
right balance between too technology-centric,
short-lived patterns that essentially only describe
what one particular (often graphical) user in-
terface toolkit already implements, and “golden
rules” that are always right, but never concrete
and constructive enough to be of real value to
the designer. I have used pattern approaches in
two quite different university courses with some
encouraging results [6], and the Stanford HCI
curriculum (http://hci.stanford.edu/), in which I
have taught several courses, is an example of a
program that tries to move somewhat more to-
wards course contents and structures as they are
known from architecture, using curricular vehi-

2



cles such as case studies and design studios.

• Finally, there are other voices that have con-
sidered links between architecture and HCI.
Winograd [13, p. 10–16] gives a well-rounded
overview of the potential – and dangers – of
drawing analogies between the two fields, and
points out that interaction styles (such as the
3270 terminal style or the Microsoft Windows
application style) have evolved that suggest
some similarity to the styles and fashions in the
much older field of architecture. In the same vol-
ume, Rheinfrank and Shelley show that design
languages are a common feature of architecture,
HCI, and other areas, and that their emergence
and explicit creation can move forward the qual-
ity of interaction and design in a field; and Den-
ning and Dargan base their action-centered de-
sign theory directly on Alexander’s pattern lan-
guage concept. On a more theoretical level,
Chalmers [7] proposes that in fact informatics
(in particular HCI), linguistics, and architecture
are all subfields of the same discipline, semiol-
ogy.

4 What now?

I believe that the excitement that the patterns concept
from architecture has created in at least some parts of
HCI is in fact to a large extent a result of a deeper link
between the two disciplines. I would like to find out if
we can use this connection to get some guidance and
precedence in the decisions we are facing in order to
move the idea of HCI design patterns forward. (And,
on a more practical side, I would like to extend the
portal for more of the recent activities in the field of
HCI Patterns at http://www.hcipatterns.org/.)

References

[1] Christopher Alexander, Sara Ishikawa, Mur-
ray Silverstein, Max Jacobson, Ingrid Fiksdahl-
King, and Shlomo Angel.A Pattern Language:
Towns, Buildings, Construction. Oxford Univer-
sity Press, 1977.

[2] Christopher Alexander.The Timeless Way of
Building. Oxford University Press, 1979.

[3] Elisabeth Bayle, Rachel Bellamy, George Casa-
day, Thomas Erickson, Sally Fincher, Beki

Grinter, Ben Gross, Diane Lehder, HansMar-
molin, Brian Moore, Colin Potts, Grant Sk-
ousen, and John Thomas. Putting it all to-
gether: Towards a pattern language for interac-
tion design.SIGCHI Bulletin,30(1):1723, Jan-
uary 1998.

[4] Kent Beck and Ward Cunningham. Using pat-
tern languages for object-oriented programs.
Technical Report CR-87-43, Tektronix, Inc.,
September 17, 1987. Presented at the OOP-
SLA87 workshop on Specification and Design
for Object-Oriented Programming.

[5] Jan Borchers.A Pattern Approach to Interaction
Design. Wiley, 2001.

[6] Jan Borchers. Teaching HCI Design Pat-
terns: Experience From Two University
Courses. Patterns in Practice: A Work-
shop for UI Designers, CHI 2002, online at
http://www.hcipatterns.org/, 2002.

[7] Matthew Chalmers. Informatics, Architecture
and Language. In A. Munro, K. Hook and D.
Benyon (eds.):Social Navigation in Informa-
tion Space,Springer, 1999.

[8] Erich Gamma, Richard Helm, Ralph John-
son, and John Vlissides.Design Patterns: El-
ements of Reusable Object- Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[9] Stephan de Haas. Softwarearchitektur?! Ein
Vergleich mit dem Bauwesen.OBJEKTspek-
trum,6:60–70, 1999.

[10] Mitchell Kapor. A software design manifesto:
Time for a change.Dr. Dobb’s Journal172:62–
68, January 1991.

[11] Donald A. Norman and Stephen W. Draper.
User-Centered System Design: New Per-
spectives on HumanComputer Interaction.
Lawrence Erlbaum Associates, Hillsdale, NJ,
1986.

[12] Donald A.Norman.The Psychology of Everyday
Things.Basic Books, New York, 1988.

[13] Terry Winograd.Bringing Design to Software.
Addison-Wesley, 1996.

3


