Perspectives on HCI Patterns:  Concepts and Tools

Position Paper
Jenifer Tidwell

The MathWorks

Natick, MA USA

+1 508 647 7134

jtidwell@alum.mit.edu
The importance of patterns in HCI ultimately boils down to one question:  Do they help designers build better UIs?

Patterns are practical tools.  As pattern writers, our goal should be to put high-quality, useful tools into the hands of designers “in the trenches,” and thus effect the design of better user interfaces.  If designers don’t see any value in UI patterns, or find them impractical to use, then we are failing to understand their needs – or simply not reaching them, for whatever reason.

What should a pattern language be?

At its simplest, a set of patterns is a repository of best practices, expressed at a level of abstraction that is more general than bits on a screen, but more specific than heuristics or principles.  If the patterns don’t work at this level, I don’t believe designers can easily be convinced of their value.  

From what I’ve seen at software companies, there is a need out there for knowledge captured at this level.  Many UI designers – especially those who are primarily software developers – are not aware of design solutions beyond the APIs provided by their UI toolkits and the style guides published by Apple, Sun, and Microsoft. These developers haven’t studied design or human factors; they can’t afford to spend much time analyzing other user interfaces for common approaches. They are more than happy to see working examples of solutions to design problems they face, so they can build more effective designs.

But at its best, a pattern language might be more than this.  Many of us believe that patterns have the potential to link theory with practice in a way that is uniquely understandable and teachable.  A set of patterns built from a solid basis in cognitive science, usability, information design, and other research can help designers build UIs with their eyes open – they can make design decisions with more evidence than “other apps do it this way.” A pattern language that spans many subfields, or that covers patterns at many levels of scale (high-level genre patterns to the mechanics of input controls), could pull together knowledge from many sources into one unified entity.  A work of that depth would be invaluable to the field.

I believe that such a pattern language will be a long time coming.  Having attempted it, I can say that it’s quite difficult to write such a thing!  At the highest levels of artifact organization, it’s not so bad; we can find patterns in high-level workflow and information architecture that work in designs for UIs, Web sites, palmtop applications, and so on.  Likewise, at the lowest level, input and navigation controls are relatively stable across genres – text fields and buttons are found everywhere.  

It’s the middle ground that’s hard.  Can we take lessons learned from large-scale Web design and apply them to a cellphone UI?  What can we learn from video games that would help with desktop applications like Photoshop or MATLAB?  These software genres – different media, in a sense – have diverged so much that patterns found in this middle ground may be too theoretical to be useful. 

What constitutes a useful pattern, collection, or language? 

· Specificity. Does a given pattern try too hard to generalize a solution, thus making it too abstract to apply?  Such a pattern is in danger of becoming a theoretical curiosity. Better are patterns that clearly indicate the problems they solve, and point the designer towards solutions with concrete implementation advice.

· Obvious applicability to design problems faced by designers.  Does a pattern solve a problem that designers actually face?  Trivial problems with obvious solutions aren’t very helpful; neither are patterns that apply only to very rare situations, or to a narrow range of possible applications.

· Examples.  Besides being illustrative, multiple well-chosen examples show how the pattern works in several different contexts.  (We UI pattern writers have an advantage here over the writers of code patterns and architectural patterns, because our examples are so easily illustrated!)  They also give the reader a chance to judge for themselves how well a pattern works, rather than asking them to take our word for it.  Finally, some designers prefer to see a “sourcebook” of design examples than to read someone else’s explanation.

· Evidence that the pattern “works.”  Examples help the pattern speak for itself, to an extent.  But designers also want explanations of why it works, and why they should use this solution instead of a different one.  Explanations from cognitive science or graphic design can work.  An appeal to popularity – e.g., this pattern is found everywhere, so it’s a de facto standard – is sufficient in many cases.  Evidence from usability tests or market research is a bit trickier, since the success of a usability test is highly dependent upon the context in which the pattern instance appears. 

· Thoroughness of a collection or language.  Does it cover a wide range of possible applications?  Does it have a rich set of ideas to draw from, or just a few?  Patterns may be used as idea generators, rather than a database of problem solutions.  Scanning through a long pattern language can prompt a designer to think of new features, reconsider previous design decisions, etc.

· Interconnectivity.  Does each pattern show how it sets the stage for subsequent patterns?  Or how it relates to similar patterns, such as being an alternative solution to a similar problem?  This helps a designer “connect the dots” between the patterns, and may guide a less-experienced designer through an appropriate design progression.

I compiled this list from observations of several other pattern collections.  First, we should take note of the quality and commercial success of a book published earlier this year, The Design of Sites.  This is a substantial pattern language for Web sites, clearly modeled on Alexander’s work.  The Amazon sales ranking for this book is currently 1674.  (For comparison, Steve Krug’s Don’t Make Me Think! is 474, the Gang of Four’s Design Patterns is 917, Jakob Nielsen’s Homepage Usability is 2238,  and Web Redesign: Workflow That Works is 4551.)  It appears to have caught on with its intended audience.  Furthermore, I have personally found it to be a useful and enlightening reference, as have several people I’ve spoken with in the Web design field.

I am also drawing on my experience with the two pattern languages I’ve written.  The feedback I’ve gotten on them, both good and bad, has indicated that examples, applicability, and evidence are the most important features to people who are trying to use them. Therefore, the second work (“UI Patterns and Techniques”) emphasizes these features, while deemphasizing the formal aspects of pattern languages – completeness, pattern format, and the ill-defined difference between a “technique” and a “pattern.”  Specificity was another goal of mine while I was writing it; I discuss this below. For many months now, pages in the site have been hit between 200 and 400 times every weekday (unadjusted for crawlers and other automated access).  Apparently it’s drawing readers.

There is evidence from Martijn van Welie’s online pattern collection too.  It appears to be well-used, and is among the top Google hits for the phrase “UI patterns.”  Specificity and applicability are key features of this collection.  On the other hand, Jan Borchers’s book, A Pattern Approach to Interaction Design, while it has many excellent features, applies to a narrow range of HCI problems.  As such, it isn’t as generally useful as one might hope.

What can we do to write better HCI pattern languages?  

First, we can narrow the focus.  I’m basing this strictly on my own experience, but there might be value in it nonetheless:  When I started writing “UI Patterns and Techniques,” I decided to focus on the user interfaces being developed and shipped by my company, The MathWorks.  The idea was to reach just those designers, working on those products, with a set of concrete, reusable, and flexible design ideas that could be applied as needed to improve the products.  I had very specific users in mind. It shouldn’t have been surprising, but that approach turned out to be much easier than trying to write a pattern language with no particular users in mind!  (This undoubtedly happens for the same psychological reasons that cause personas to be such a useful UI design tool.)  At this point, it might be useful to expand the pattern collection to cover other kinds of UIs, since a solid groundwork has already been laid.

Second, we shouldn’t get hung up on the formal aspects of patterns and languages.  Most designers who have commented about the collection to me haven’t cared a whit about the difference between “techniques” and “patterns,” nor about whether I used the traditional Alexanderian pattern format.  (There is a huge silent majority that might care, but I have no evidence one way or the other.)  Furthermore, The Design of Sites contains many patterns that may not meet a strict definition, such as “Action Buttons” and “About Us” – they’re fairly obvious – but they do contribute to the completeness of the pattern language, and they fit neatly into the network of interconnected patterns.

I believe we can pool our resources and put together a useful and thorough pattern language in the near future. With more time and research, we might be able to write one that covers more genres – Web sites, handhelds and other consumer electronics, video games, etc. – and with more theoretical depth, but we shouldn’t wait to build the perfect pattern language.  Let’s put useful tools into the hands of designers now.

