HCI-FRIENDLY Middleware: A CONTEXTUALIZED Pattern Language Approach

John Thomas, Sharon Greene, Paul Matchen, Lauretta Jones

1. USABILITY VISION

Providing systems that are more usable and useful. Potentially, new Information Technology can provide significant benefits in terms of increased productivity for businesses, increased pleasure for individuals and increased effectiveness for communities. Yet, these potentials are often not reached in practice because building effective and efficient systems, especially those in which groups of human beings are “in the loop”, is difficult and time-consuming. Landauer, (1995) among many others, has shown that interactive IT systems developed without proper professional attention to usability result in minimal productivity gains (on the order of 1%/annum). A study of systems that did include proper professional attention to usability resulted in an average per annum increase in productivity of 30%. The cumulative effect of these differences over a decade is staggering. Yet, it is still often the case that applications are developed which ignore or oversimplify the human aspects of complex systems with the result that the systems are error-prone, inefficient, and frustrating. These problems, in turn, provide a significant barrier to the adoption of new systems. How can this barrier be reduced?

Significant improvements in the usability of applications can result from instantiating significant, reusable software components into a middleware layer from which developers can select needed functionality. For example, a social network analysis provides useful input for many office applications. Knowing who communicates with whom can be useful in disambiguating e-mail recipients, in collaborative filtering for web browsing, in putting together teams, in skills mining, in focusing sales effort on opinion leaders and so on. But developers of any one application are unlikely to have the time or the knowledge to include a social network analysis. Similarly, many applications can provide data for a social network analysis. Again, developers of any one application are highly unlikely to provide the monitoring functionality to collect such data. What we propose is that putting such functionality into a middleware layer will enable developers to invoke, rather than design, build, and debug such functionality. An added benefit for the end user is that any explicit information need only be input once, not once per application.

For this vision of useful and usable application software to be realized, however, the development team must become aware of the existence of such functionality and understand how to use it. We believe we can greatly expand the pool of people capable of this via Pattern Languages. Patterns essentially encapsulate, in succinct diagrams, natural language, and/or pseudo-code, the essence of a recurring problem, its analysis and its solution. A Pattern Language is an inter-related set of such Patterns with cross-references.

Inter-related Sets of HCI Pattern Languages. We believe that the entire field of HCI is probably too broad to be handled by any one Pattern Language. Instead, there need to be Pattern Languages developed to focus on a variety of users, contexts, tasks, and technologies. Whether one calls this entire envisioned collection “a” Pattern Language with sublanguages or a set of Pattern Languages seems less important than having ways for the various users of Pattern Languages to be able to select, sequence, and use those that are relevant to the problem at hand. For expository purposes, we will refer to these for now as separate Pattern Languages. A Pattern Language that might focus on a specific set of users might be an HCI Pattern Language for the elderly. While such a Language may have features in common with a “General HCI Pattern Language,” a different set of solutions might be offered to certain recurring problems because the forces at play would form a different balance. For example, aesthetics might lead one to prefer less contrastive materials on a website while legibility would press toward higher contrast. Having all relevant material viewable in one frame might press toward having smaller print while legibility would press toward larger fonts. A Pattern Language specifically aimed at providing good HCI for elderly populations might point toward different examples to illustrate a general HCI Pattern, or alternatively, in some cases, provide completely different Patterns.

An example of a special HCI Pattern Language that might be aimed at a specific context might comprise a Pattern Language for pedagogy. How does one put together excellent learning experiences in the context of formal education? Another, quite different set of tradeoffs might be made in the context of constructing support for collaborative endeavors. We refer to this latter case as a “Socio-Technical Pattern Language” and this language will be used to illustrate related points later in this paper.

An example of a Pattern Language aimed at a specific task might be a Pattern Language for the support of writing fiction or even a Pattern Language aimed at providing support for the task of writing Pattern Languages. Other task areas that might warrant a specific Language might include warfighting, driving a car, operating a nuclear power plant, or creative innovation.

Although the HCI experience of many users today focuses on desktop machines, there are already many exceptions to this focus and it is conceivable that specific form factors may require different Pattern Languages. One might build such a Language for “interactive jewelry” and yet another one for high function cellular phones or handheld devices. Yet others may be appropriate for large screen collaborative displays.

An alternative organization of concepts might allow one to have a “single, general-purpose” HCI Pattern Language that handles all these cases. We believe that that is a conceivable outcome, but one that will grow out of practice and interaction in the community. As a practical matter, we believe it may be more effective to focus on “islands” of special interest and later see whether these coalesce into a more unified whole.

2. PATTERNS AND OTHER KNOWLEDGE STRUCTURES

While the focus of the workshop, and indeed this paper, is on Pattern Languages, this focus is not meant to imply that Pattern Languages are “the only” or even necessarily “the best” way of organizing HCI-relevant material. Indeed, we see Pattern Languages ultimately interconnected with other forms and formats of collective knowledge. The most appropriate “starting point” or “entry point” into a complex knowledge map that is related to HCI (or any other field) probably depends on a number of factors. One major factor is how fluid or changeable the field is. At one extreme, we might consider Newtonian Mechanics. The laws of motion governing everyday life have not changed and it is more effective and efficient to express them mathematically than as patterns. On the other hand, in completely fluid situations where nothing can be counted on to be stable from situation to situation, the only “guide” to intelligent behavior might be one’s sense of values. Over time, we may build up stories or case histories of events that seem to be related to each other. As we collect more and more stories, and as more stability and predictability emerges, we may see certain “principles” or invariant “properties” emerge. As we accumulate still more experience and understanding, we may reach a point where Patterns and Pattern Languages become feasible. If situations are stable enough and we are able to analyze deeply enough, Patterns may eventually give way to algorithms.

The state of knowledge in the field of HCI is somewhat mixed. There are some relevant mathematical formulae such as Fitt’s Law and more recently, the generalization of that law by Shumin Zhai. There are probably other cases, where we are not yet knowledgeable enough to write good patterns and must rely on stories of previous successes and failures or on general principles or looking for properties that are likely to be associated with good human computer interactions. Ideally, we would like to see the creators and users of Pattern Languages have access, not only, to Pattern Languages per se, but also to associated illustrative stories, related algorithms and formulae, general principles and so on. Whether such ancillary knowledge sources would be used would depend on the user, their purpose, and their context of use. We suspect that the typical development team, under pressure of deadlines, would often enter a field of relevant knowledge via a Pattern Language and associated tools, navigate to the appropriate Patterns, and then use that Pattern as a guide for developing something new, or, simply access encapsulated functionality (e.g., Web Services) that expresses that Pattern.

Christopher Alexander’s Fifteen Properties of Good Design. As example properties relevant to HCI, we’ve tried applying the fifteen properties in Christopher Alexander’s new work on the “Nature of Order” to HCI generally and to organizational design specifically and all fifteen seem to be relevant. The fifteen properties are: levels of scale, strong centers, boundaries, alternating repetition, positive space, good shape, local symmetries, deep interlock and ambiguity, contrast, gradients, roughness, echoes, the void, simplicity and inner calm, and not-separateness. Space does not permit an examination of all of these here, but as an example, here is how the concept of “not-separateness” might apply to HCI in general.

Users do not come alive at the instant they begin using your system and die when they exit. They come with preconceptions and the system affects their lives outside and after interacting with your system. This is most dramatic, perhaps, in the case of Repetitive Stress Injury, but applies more subtly in various other cognitive and perceptual domains as well. What is the impact of continually placing the sensitive analog body movement capabilities against the crude, digital, discrete world? Information, artifacts, and results do not live only in the space of the computer system we are designing. I visited a lab with Lewis Branscomb (former Chief Scientist of IBM) once where we were being shown a new printer. The printer was cheap and produced a curly, silver piece of paper about 5 inches by 4 inches. Lew asked the inventor, "what will the person do with this piece of paper after he gets it off the printer?" It was clear that the inventor had never considered this question. There was no existing infrastructure (folders, binders, etc.) to support the collection and use of curly, silvery, 5" by 4" pieces of paper. Further examples of considering the "ecological validity" of design can be found in Thomas and Kellogg (1989).

The following is an example of how the property, “Contrast” might apply to organizational design. An organization must create within it dynamic tensions of opposites. In animals, there are pre-existing, well-defined, and opposite tendencies of behavior. The contrasts can be shaded by events but it is much better to have an animal that sometimes sleeps and sometimes is awake than one that is always half-awake. It is better to sometimes fight and sometimes flee than to always fight half-heartedly. Similarly, an organization needs contrasts of people and of function and of activity. A healthy organization should have people who are complete optimists and believe anything is possible -- and complete pessimists who question everything. An organization should have an organization (or process) whose purpose is to expand the company in every possible direction and an organization (or process) whose purpose is to contract the company as much as possible. When brainstorming, to be as effective as possible, no real-world constraints should be allowed. When choosing which brainstorming ideas to pursue, every real-world constraint should be applied. Helping individuals and organizations do some meta-cognition about the appropriate times, places, roles for various activities would be quite helpful.

Such properties as those listed above are more general than Patterns, and encapsulated functions that instantiate Patterns are more specific. Here are some candidate components for “HCI-friendly Middleware”; that is, there are functions that we claim many specific applications could use if they existed and, if used appropriately, these functions could result in better user experiences. However, the claim continues, any specific application programmer is unlikely to be in a position to write these functions. Therefore they belong in a “Middleware” layer or, just as feasibly, they could be published as findable, bindable Web Services. In that case, Pattern Languages could help guide people to the appropriate functions.

Patterns and Associated Candidates for Encapsulated Functionality. Here are some examples of the types of functionality that might be incorporated in Middleware or published as Web Services.

Reciprocal Linking Management: Indicates who links to us and who we link to, checks them out, keeps statistics on traversals. (Could generalize to N-way links and use some of the same code as SNA).

Correlational Module: Calculates behaviors (such as hits, dwell time, etc.) with respect to various characteristics of a site, subsite, page, or to the extent feasible, subpage. The characteristics could be design rationale information or formal information about the page.

Trend Detection: Detects trends (could be linked to the above or any other statistical input).

Special Role Support: Manages the relationships among identity, role, and access to data and functionality. It may also include reminders, content, or even training associated with that role. It could include software tools useful for that role. For instance, a facilitator might have a display that simply kept track of the contribution profile of various individuals. This could help a facilitator make sure an attempt, at least, was made to include everyone’s input.

Value Miner: Uses various NL Processing rules to make a profile of values as expressed in various textual messages. Could be used to find candidates for a variety of purposes; e.g., partnering.

Group Process Support: Software to provide frameworks and reminders for various group processes; keep track of where people are. This could include pointers to appropriate “look and feel” backgrounds and behaviors that are appropriate to the current process for a designer to consider; alternatively, may simply “paint in” background elements as defaults that are conducive to certain behaviors. Sub-modules could be added incrementally for additional processes. For instance, such modules could support idea generation, idea evaluation, the group clustering (K-J) method, risk identification, planning, project management, Bohm Dialogue and so on.

Social Network Analysis: Software to calculate and display as well as software to allow people to indicate regions of an SNA and allow actions to be performed upon it.

Identity Manager: Manages identity, pseudonymity, and anonymity.

Place Access Manager: Keeps track of who is allowed to go where and who tries to go where.

Social Password Manager: Allows individuals as well as various overlapping groups, teams, and communities to have shared passwords. Deals, e.g., with the implications of someone leaving the group by “shutting off” access to an area till group password has been changed (if that is the policy that is adopted).

Behavioral Profile and Biometrics Module: Monitors evidence from several sources and combines to give probabilities that someone is who they “claim” to be. Updates based on performance.

Reputation Management: Associates identity (in its various forms) with evaluation by peers, trusted others, authority figures or by objective measures; is capable of combining various sources of information by various rules.

Trace Management: Keeps track of, and provides ways to display, the activity of individuals, groups and subgroups over time. Allows the provision of rules both to limit what is monitored and what is displayed according to time, place, person, and circumstance.

Flexible Greeking Function: According to easily specifiable rules, allows the “Greeking out” at various levels, the textual (or other information) in a system for various audiences. E.g., Babble or other chat conversations whole may only be available to the community, but management may have access to summaries or Greeked out anonymized versions. People outside of the organization may only have access to block summary “Greekings.”

Thread Management System: An easy way for members, authority figures, facilitators, etc., according to specified rules, to reorganize, summarize and repost information with links back to original material provided as part of the editing process that creates the summaries.

Special Event Manager: Helps keep track of time lines, invitations, special exceptions (if any) to access to places.

Profile Manager: Helps make it easy for people to provide a profile and makes that profile information accessible by directly providing a link to it from anywhere the person’s represented by an image (e.g., in a social proxy) or behavior (e.g., a posting). At least, that would seem to be a reasonable default rule; there may be provision for exception rules.

Transition Detection Function: Take input from other modules and determine when individuals, groups or subgroups appear to be making a “qualitative shift”; obviously, somewhat of a tough problem, but not impossible. Among sources of evidence for an individual would be key words in self-referential comments, “I’m moving to Oklahoma.” More subtle background processing could be done on the basis of behavioral activity level or content changes.

Meme Tracker: Actual memes could be tracked but probably only via the intervention of labor-intensive human effort. However, ersatz measures based on word frequencies could be taken and illustrate how ideas move through the community. Spot checks on the efficacy of word frequencies as markers for memes could be done by hand.

3. THE ORGANIZATION OF PATTERN LANGUAGES

Returning to Pattern Languages per se, the complexity of having multiple Pattern Languages to “cover” the field of HCI as well as the proposition that these Pattern Languages should have “pointers” to various other knowledge structures such as supporting cases, properties and principles, mathematical laws, and encapsulated functionality (i.e., code) raises an important issue as to how all this should be organized. One of the chief underlying rationales for having Pattern Languages in the first place is that most people on a development team are not going to have the time or inclination to read the primary HCI literature in order to discover what is relevant to the problem at hand. The Pattern Language purports to put this knowledge into a design-oriented, problem-oriented form and format so that this knowledge may be used effectively and efficiently.

Our position on organization is two-fold. First, no single organization will be likely to be perfect for all users in all contexts and for all tasks. Second, it is possible to build tools to help various users in a variety of contexts and with a variety of goals. In the remainder of this paper, we will discuss explorations of a variety of ways of organizing a specific HCI-related Pattern Language; viz., a socio-technical Pattern Language. In a companion paper, we will elaborate on and describe an evolving set of tools for creating, finding, selecting, and using Pattern Languages and associated software components.

An Example: Organizing a Socio-Technical Pattern Language. A Socio-Technical Pattern Language aims to encapsulate relevant knowledge from social psychology, sociology, and CSCW in a highly understandable, usable, and useful form for the overall software development cycle. This Pattern Language can serve as a lingua franca and can help facilitate meaningful conversations among marketers, end users, computer scientists, graphics designers, financial decision makers, and junior programmers about the purpose of a system, the desired functionality, and the shape of the instantiation of that functionality. Such a Pattern Languages can be useful throughout the software development process. It can help developers understand and analyze problems and create designs. Because a Pattern tends to collect together those sub-problems that must be dealt with in concert, a Pattern Language such as this can also serve as a useful guide for project management structure, for testing and debugging, for maintenance, for documentation, and for migration; indeed, it can even help guide marketing and sales efforts by providing a succinct way of relating functionality to benefits. Theoretically, any form of “design rationale” might be useful in these same ways throughout the software life cycle. Inducing developers to write detailed “design rationale” documents de novo, however, has in practice proven extremely difficult. By contrast, once a community of practice becomes familiar with a Pattern Language, it is much easier to simply refer to the utilized Patterns and add a few notations.

Pattern Languages are useful, however, not only in solving problems; they are one of the few intellectual tools specifically useful in finding problems. Essentially, this means that a Socio-Technical Pattern Language can help lead people to perceive unmet needs and thereby design and build previously unanticipated systems, perhaps even expand IT into completely new industries.

One of the ways we have organized the socio-technical patterns (See http://www.truthtable.com/websitewelcome_page_index.html) at the top level is according to which one of four primary goals a person or team might be working on. This classification is based on Lawrence and Nohria's book (2002), Driven: How human nature shapes our choices. These are not mutually exclusive; that is, the user may be interested in meeting several of these goals, in which case, they may want to examine patterns under more than one category. The four major goals are to acquire, to learn, to bond, and to defend. If someone were building a website, for instance, and the primary purpose of the site were to enhance social capital, build trust or foster a community, they would begin with those patterns most relevant to bonding. On the other hand, if the primary design concern was with the safety, integrity, and security of a system, they would begin with patterns relevant to defending. Yet again, if a site were being built whose primary purpose was to make a profit or increase market share, they should begin with patterns most relevant to acquiring. And, finally, if the site were primarily for information or education, they should begin with those patterns relevant to learning. Organizing the Pattern Language in this way is predicated on the notion that teams or individuals are aware of which of these four goals are most important in their current context.

However, another way that a user might want to consider which patterns are most relevant depends on where they are in a software development process or where they stand in terms of solving a problem. So, another cut at looking at some socio-technical patterns is based on a “stage model” of development and problem solving. Different organizations have different methodologies, processes or procedures that differ somewhat in the order of stages and what they are called; however, chances are that the user can nonetheless map their preferred or dictated process fairly well into some of the following categories: Problem Finding, Problem Formulation (Requirements), Project Definition, Idea Generation (Invention), Idea Evaluation (Prioritization), Idea Integration and Organization (High Level Design), Low Level Design, Prototyping, Evaluation, Redesign, Implementation, Testing, Deployment, Field Evaluation, Post-Mortem, Service, Maintenance. Some Patterns are appropriate to more than one phase; e.g., the Pattern: “Who Speaks for Wolf?” is appropriate both very early during problem formulation and later on during evaluation. Similarly, the Pattern: “Help Desk Supports Design” is appropriate during Problem Formulation as well as during Field Evaluation and Service.

It seems clear there is value to a Pattern Language such as that of Christopher Alexander, that is presented in one structure (a lattice) and presented in a specific linear order (though of course, in use, readers skip around). However, we believe that software tools can help in the creation of Patterns and Pattern Languages as well as helping individuals and teams navigate to appropriate patterns and help find and modify associated software components. These ideas are explored more fully in a companion paper.

4. RELEVANT REFERENCES

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I, and Angel, S. A Pattern Language. New York: Oxford University Press, 1977.

Bayle, E., Bellamy, R., Casaday, G.,Erickson, T., Fincher, S., Grinter, B., Gross, B., Lehder, D., Marmolin, H., Potts, C., Skousen, G. & Thomas, J. Putting It All Together: Towards a Pattern Language for Interaction Design. Summary Report of the CHI '97 Workshop. SIGCHI Bulletin. New York: ACM, 1997.

Coplien, Schmidt, eds. Pattern Languages of Program Design, Addison-Wesley, Reading, MA, 1995.

Danis, C., Lee, A., Karadkar, U., Zhang, J, and Girgensohn. Getting to Know People: Social Browsing to Support Emerging Community. Manuscript under review.

DIAC '02, "SHAPING THE NETWORK SOCIETY: Patterns for Participation, Action, and Change". See http://www.cpsr.org/conferences/diac02/

Erickson, T. "Lingua Francas for Design: Sacred Places and Pattern Languages." In The Proceedings of DIS 2000 (Brooklyn, NY, August 17-19, 2000). New

York: ACM Press, 2000, pp 357-368.

Gamma, E., et al. Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, Reading, MA, 1995.

Landauer, T. The trouble with computers. Cambridge: MIT Press, 1995.

Lawrence, D. and Thomas, J. Social dynamics of storytelling: implications for story-base design. Presented at AAAI workshop on Narrative Intelligence, Nov. 1999, N. Falmouth, MA.

Lee, A., Danis, C., Miller, T. and Jung, Y. Fostering Social Interaction in Online Spaces. In Proceedings of INTERACT, '01 (Tokyo, Japan, July 2001), IOS Press, 59-66.

Lee, A. and Girgensohn. Design, experiences and user preferences for a web-based awareness tool. International Journal of Human Computer Studies, v. 56, #1, January 2002, pp. 75-107.

Thomas, J. and Carroll, J. The psychological study of design. Design Studies, 1(1), 5-11, 1978.

Thomas, J. and Carroll, J. Human factors in communication. IBM Systems Journal, 20(2), 237-263, 1981.

Thomas, J. Studies in office systems I: The effect of communication medium on person perception. Office Systems Journal, 1(2), 75-88, 1983.

Thomas, J. and Kellogg, W. Minimizing ecological gaps in interface design. IEEE Software. January, 1989, 78-86.

Thomas, J. The long-term social implications of new information technology. In R. Dholakia, N. Mundorf, and N. Dholakia (Eds.), New infotainment technologies in the home: demand side perspectives. Hillsdale, NJ: Erlbaum, 1996.

Thomas, J. An HCI agenda for the next millennium: Emergent global intelligence. In R. Earnshaw, R. Guedj, A. Van Dam and J. Vince (Eds.), Frontiers of human-centered computing, online communities, and virtual environments. London: Springer, 2001.

Thomas, J., Kellogg, W.A. and Erickson, T. "The Knowledge Management Puzzle: Human and Social Factors in Knowledge Management." The IBM Systems Journal, Vol. 40, No. 4, 2001.

Vlissides, Coplien, Kerth, eds. Pattern Languages of Program Design 2, Addison-Wesley, Reading, MA, 1996.
