
Position paper for CHI’2003 Workshop: “Perspectives on HCI Patterns: Concepts & Tools”

Just-UI: Using patterns as concepts for
IU specification and code generation

Pedro J. Molina
CARE Technologies S.A.

Research & Development Department
Partida Madrigueres, 44.

03700 Denia, (Alicante), SPAIN
pjmolina@care-t.com

Javier Hernández
CARE Technologies S.A.

Research & Development Department
Partida Madrigueres, 44.

03700 Denia, (Alicante), SPAIN
jhernandez@care-t.com

Keywords: HCI Patterns, user interface
specification, pattern supported tools, pattern use,
conceptual patterns, patterns driven code
generation.
1 INTRODUCTION
This position paper describes the approach taken by
the authors related to HCI patterns considering both
a theorical approach complemented with our
experience in the field. Patterns are used in this
approach as concepts or building blocks in a user
interface specification model from a conceptual
point of view. In such a model, each pattern
provides a precise semantic for a problem identified
in the problem space and possible solutions in the
solution space. Some editors and code generator
tools have been developed to implement the pattern
supported method.
We will start providing a pattern definition. After
that, we will discuss about how we search patterns,
how we used them and, the tools implemented to
support them. Eventually, conclusions and
references are given.
2 PATTERN DEFINITION USED
A pattern can be seen as a bean of experience. It
describes a well known problem with clues for
detecting the problem in a given context, possible
solutions to such a problem and related forces. In
this way, classic and well known definitions of
pattern like Alexander [1] or Coplien [2] are useful.
Coplien [2] writes:
I could tell you how to make a dress by specifying
the route of a scissors through a piece of cloth in
terms of angles and lengths of cut. Or, I could give
you a pattern. Reading the specification, you would
have no idea what was being built or if you had
built the right thing when you were finished. The
pattern foreshadows the product: it is the rule for
making the thing, but it is also, in many respects,
the thing itself. J. Coplien, 1996

We think that this property “predictability” is
essential for a good pattern. If a pattern is
predictable, practitioners will realize very quickly if
a pattern is suitable for a given context or not.
Furthermore, the frontier dividing the problem and
solution spaces can be crossed using patterns. Used
as bridges, patterns connect both worlds allowing to
cross the former to reach the latter. Patterns connect
different abstractions levels and can be used as
reification mechanisms to cross from an abstract
level to a more concrete one.
Finally, Vlissides [9] discuss about the necessity of
using standard templates for describing patterns,
recognizing that different context has different
needs, and therefore, specialized description
formats could be possible.
3 USE OF PATTERNS
In our daily job, we build tools for supporting the
development of business applications following a
software engineering point of view in order to
improve the productivity, the quality and to save
resources. In particular, we are concerned about the
development of user interfaces involving classical
phases as requirement elicitation, analysis, design,
implementation and, maintenance.
Converse to design patterns [7, 10], we have
developed a pattern language based on Conceptual
User Interface Patterns [5, 6], increasing in this
way, the abstraction level. Figure 1 shows the
pattern language used and its relationships. These
patterns are used in the conceptual or analysis phase
before the design phase. However, design patterns
can also be used in design models as a refinement
of the abstract model to describe design decisions
previously to code generation. Therefore, we are
using a pattern supported development similar to
the presented in PSA [4].
Based on the pattern language, we have build a
model to describe abstract user interfaces, i.e.,
independent from design details, and therefore

mailto:jhernandez@care-t.com
mailto:pjmolina@care-t.com

useful for different target platforms like Desktop,
Web or PDA UIs.
4 PATTERNS HUNTING
During the last five years, we have developed the
pattern language to describe the problems we have
found in our domain or context.
For us, the pattern hunting process is a slow
searching task done after developing many UIs,
identifying and abstracting recurrent problems and
comparing with other existing and related patterns.
After that, the pattern can be considered to be added
to the pattern language or not. The main criterion
used by us to solve such a question is to consider it
as a cost/profit analysis: How important is the
problem solved by the pattern? How frequent is the
occurrence of the pattern in a given domain? How
the expressiveness power of the model is increased?
Sometimes, the pattern identity is still unclear: How
to be sure if is this a pattern or not? Some excellent
hints for answering this question are provided by
Winn & Calder [11].
Once a pattern is added into the pattern language,
the full language must be reconsidered. Some
patterns could be opposite to others or
complementary, i.e., the relationships among
patterns could be affected. Once added, the
extended pattern language is used in real cases in
order to test its usefulness. Iteration by iteration,
and empirically verified, the patterns distilled in
this way can be finally validated as useful for the
given context (or domain).
5 THE DELTA (∆∆∆∆) EFFECT
Seen as bridges, patterns allow us to cross
abstraction levels: going down (reification) an also
coming back (reverse engineering) supported by
pattern matching. As reported in [5], we have
experienced the following effect in the usage of
patterns: A conceptual pattern helps to cross form
requirements to analysis, a design pattern helps to
cross form analysis to design, etc. To choose
implies discarding other alternatives and therefore,
constraining the specification/design/solution.
Whenever a decision is taking, e.g. selecting a
pattern, no matter the level we are, we have
constrained the set of applicable solutions in the
next levels. Such constraint has as a conical scope
or ∆ effect (see Figure 2): The question marks in
Figure 2 represent questions made in the
requirements phase. Such questions with its
correspondent answers can instantiate a conceptual
pattern in the analysis phase. The scope of such
decision has a ∆-form triangle where parts of the
subsequent phases are constrained or guided by
such decision.

Hierarchical
Action Tree IU Service

UI Instance

UI Population

UI Master/Detail

Introduction

Defined Selection

Argument Grouping

Supplementary
Information

Status Recovery

Order Criterium

Display Set

Filter

Dependency

Offered Actions

Navigation

Master UI

Details UIA uses B
A B

Legend

Figure 1. Pattern Language.
In this sense, decisions taken in upper levels
(conceptual patterns selected at analysis level) can
guide or help to take decisions in design levels
where design patterns could be selected in order to
delegate the implementation. A wizard can be
provided to select patterns in the design phase
guided from the information captured in previous
phases. For example, a wizard could suggest the
reification of the Conceptual Pattern Master/Detail
[6] at the design level with the design pattern
Container Navigation [7] or, alternatively, using the
Navigation Spaces [10].

Requirements Gathering

Analysis

Design

Implementation

? ? ??

Figure 2. Delta (∆∆∆∆) Effect.
6 PATTERNS SUPPORTED TOOLS
The described process has been tested in an
industrial environment with success. The process of
developing IUs has been improved in CARE
Technologies S.A. using a pattern and model based
approach. An editor for building such a model
(OlivaNova Modeler®), a validator for checking

the correctness of models (embedded in the
modeler) and a set code generators (OlivaNova
Transformation Engines®) that translates the
specifications into implementations for different
target platforms such Desktop, Web or, PDA
environments.
In the modeler tool, the analyst uses the patterns as
building blocks to build the specification. Later on,
the validator can check if the specification is valid,
e.g., respect to a set of constrains imposed by the
pattern composition language or detecting missing
information. Finally, a Pattern Driven-Code
Generator translates the patterns to a UI
implemented in a particular environment. Each
translator implements different solutions for each
pattern due to the implementation and the design
considerations are different from platform to
platform.
To achieve the goal: multiple user interfaces from a
unique specification, the patterns take into account
structural, behavioral and semantic aspects at the
same time. A pattern contains a family of possible
parametric solutions, at least one solution for each
target implementation environment. The parametric
solution will be instantiated in a given context of
use.
7 CONCLUSIONS
Based on our experience in the domain of
developing UIs for business applications, patterns
can be successfully exploited for increasing the
abstraction level and providing reuse. Patterns are
an effective way of communication of ideas shared
by the developers and users as stated by Erikson
(lingua franca) [3].
On the other hand, in our domain, pattern-driven
code generation has been proven as a useful
technique to implement UIs from an unambiguous
pattern based specification and implementing
reliable Model Execution tools.
However, the use of patterns for building systems is
a clear empirical approach. For a well-defined
domain, it is possible to specify and generate
applications. Nevertheless, in open domains a new
pattern or a new type of problem not yet classified
could appear. This consideration justifies the search
for extensibility features to properly deal with these
new requirements.
As desired property in a pattern tool, extensibility
could be excellent. However, in the domain
described, it is difficult to achieve due to the need
of having a precise frame-work to describe the
patterns in a formal language (natural language it is
not enough) in terms of structure, behavior,
consequences, trade-offs, etc. at the same time.
Interoperability can be achieved in general purpose
patterns builders/explorers tools using standardized

XML DTD or Schemas following a given pattern
format description. And it will be very valuable to
have tools for describing patterns in a normalized
way [8].
Easy of use is another desired property. Patterns
languages must be comprehensible for users;
otherwise they will not use the pattern language at
all.
To sum up, IU patterns can improve the common
knowledge of the concepts involved in a domain.
They can be used as a common language for users,
analysts and developers, and used for learning
about the domain. Also, as shown in this position
paper, the can be used for formal specification and
code generation of user interfaces.
8 REFERENCES
[1] Alexander C. The Timeless Way of Building. Oxford

University Press, New York, 2000.
[2] Coplein J.O., Software Patterns, SIGS Books &

Multimedia, New York, USA, 1996.
[3] Erickson T. Patterns Languages as Languages.

CHI’2000 Workshop: Pattern Languages for
Interaction Design, 2000.

[4] Granlund Å., Lafrenière D. A Pattern-Supported
Approach to the User Interface, Design, In
Proceedings of HCI International 2001, 9th,
International Conference on Human-Computer
Interaction, pages, 282-286, New Orleans, USA,
August, 2001. Also available at
http://www.sm.luth.se/csee/csn/publications/HCIInt
2001Final.pdf

[5] Molina P.J., Meliá S., Pastor O. User Interface
Conceptual Patterns. In Proceedings of Design,
Specification Verification of Information Systems,
DSV-IS 2002, June, 2002. Also in Lecture Notes in
Computer Sciences, vol. 2545, Springer Verlag,
2002.

[6] Molina P.J., Meliá S., Pastor O. Just-UI: A Model
for User Interface Specification. In Proceedings of
CADUI’2002, Valenciennes, France, Kluwer
Academics, May, 2002.

[7] Hallvard Trætteberg, Model based design patterns,
(position paper) Workshop on User Interface Design
Patterns, CHI’2000, The Netherlands, 2000.

[8] Sharon Greene, Paul M. Matchen, Lauretta Jones.
(position paper) CHI’2002 Workshop: Patterns in
Practice: A Workshop for UI Designers, 2000.

[9] Vlissides J., Seven Habits of Successful Pattern
Writers, C++ Report, November/December, 1996.
Also available at
http://www.research.ibm.com/designpatterns/pubs/7
habits.html

[10] Weile M. van, Veer G. van der, Eliëns, A. Patterns
as Tools for User Interface Design.
http://www.cs.vu.nl/~martijn/gta/docs/T
WG200.pdf. 2000

[11] Winn T., Calder P. Is This a Pattern?, IEEE
Software, pages 59-65, January/february, 2002.

http://www.research.ibm.com/designpatterns/pubs/7habits.html
http://www.research.ibm.com/designpatterns/pubs/7habits.html
http://www.sm.luth.se/csee/csn/publications/HCIInt2001Final.pdf
http://www.sm.luth.se/csee/csn/publications/HCIInt2001Final.pdf

	1 Introduction
	2 Pattern Definition Used
	3 Use of Patterns
	4 Patterns Hunting
	5 The Delta (?) Effect
	6 Patterns Supported Tools
	7 Conclusions
	8 References

