
Seeking for structure in a Groupware Pattern Language
Till Schuemmer

FernUniversitaet Hagen
Computer Science VI - Distributed Systems

Universitaetsstrasse 1
55084 Hagen, Germany

+49-2331-987-4371
till.schuemmer@fernuni-hagen.de

ABSTRACT
Our collection of groupware patterns is currently growing
to a large number of patterns. This paper explains our
considerations for adding structure to this pattern language.
It compares different approaches for structuring pattern
languages and derives requirements for an authoring- and
reading environment. The pattern navigator is such an
environment, which is shown in a prototypical state.

INTRODUCTION
Our current activities in the area of groupware patterns
have shown that the problem domain of groupware
development includes a very large number of patterns. One
reason for this may be the interdisciplinary nature of
CSCW. The field brings together expertise from computer
scientists, psychologists, sociologists, or organizational
research to name only a few of them. A pattern language
that aims to cover the whole groupware domain must
therefore integrate all expertise that addresses the way how
collaboration can be supported by computer technology.
During the search for groupware patterns, we found about
100 potential pattern candidates that we collected in a
pattern map at [13] (note that the patterns map shown at the
web site only shows one part of the current language).
Discussions at pattern workshops showed that this map is
not at least exhaustive. On the other hand, we already
notice that the use of such a big pattern language is
problematic. One problem that we observed was the
problem of orientation – a well know issue in any non-
linear piece of literature.
Readers of the pattern catalogue were not able to decide,
which pattern they should read first, how the different
patterns relate to each other, or which patterns are on what
level of abstraction.
The self-containment of a pattern, which is one of its
strengths when the pattern is applied, complicates the
composition of different (isolated) patterns, if the users
don’t know, which patterns they should combine.
Initially, pattern languages were thought as a tool for lay

people so that they could behave like a domain expert [3].
Future residents should be empowered to build their own
houses that fit their needs. This learning process requires
that the expert knowledge is presented in a way that does
not confuse the reader or lets him get lost in the large
quantity of self-contained knowledge bits.
We think that this problem is immanent to most larger
pattern languages. Thus, we are interested in exploring
different strategies for structuring pattern languages –
especially with respect to the relations between patterns
and the flow of reading of a user of the pattern language.
This position paper first provides an overview on different
strategies for structuring pattern languages. The overview
forms the basis for drawing requirements for a pattern
authoring and reading environment in the second part of
this paper. We finally present the pattern navigator, a
prototype of such an environment.

CURRENT APPROACHES FOR STRUCTURING
PATTERN LANGUAGES
The review of literature shows four different strategies for
organizing a pattern language:

1. a linear sequence classified by chapters or pattern
families,

2. a hierarchical structure of patterns,
3. a network of patterns that serves as a map, or
4. sequences of patterns.

The linear structure can be found in most books presenting
a pattern language. For instance, the original publication of
Alexander et al. [1] presents 253 patterns, which are
ordered in three different areas: towns, buildings, and
construction. The different areas group the patterns with
respect to the size of space where they are applied – from
towns as macroscopic spaces to small parts of buildings,
such as windows, which are discussed in the construction
section.
The linear structure was also used by Gamma et al. [8].
Here, design patterns are classified as creational, structural,
and behavioural patterns.

 The problem with using classification schemes for
organizing pattern languages is that patterns can only be
part of one class. This can result in a large number of
classes that does not provide an additional reduction of
complexity. In [6] for instance, the authors used a

classification scheme with 10 classes containing 1 to 3
patterns. If the number of classes is kept small, it can lead
to inconsistencies, as Tichy pointed out in [15].
Larger catalogues such as [15] are often structured using a
hierarchical classification scheme. Patterns are first
classified regarding the problem domain. Then, they are
structured using various classification schemes – which
ever meets the specific problem domain best.
Another application of hierarchical structures was proposed
by Zimmer [17]: He introduces a uses-relation between
patterns that reflects the case when one pattern uses another
pattern in its solution. If one pattern uses another pattern, it
is placed on a higher layer in the hierarchy. The resulting
structure eases the understanding by decomposing the
solution of high-level patterns using low level patterns.
Note that – as in software decomposition – low level
patterns are often used by more than one pattern in its
solution.
Besides the uses relation, Zimmer defines two more classes
of relations: the Variant of X uses Y in its solution relation
and the X is similar to Y relation. He applies all three
classes of relations to the Design-Patterns Catalogue of
Gamma et al. [8] and generates a network of patterns.
Although this network reveals dependencies between the
problems and the solutions of patterns, it is not exhaustive
and does not reflect all dependencies of the pattern
language.
Another kind of network to the same set of patterns can be
found in [8]. The authors generate this map by parsing the
related patterns section of each pattern and inserting an
edge between the patterns that is labelled with a short
version of the explanation that was provided in the related
patterns section.
Recent discussions in the area of architecture patterns focus
on another means for guiding the user through a pattern
language: the concept of sequences. Sequences are guided
tours through a set of patterns, which provide the necessary
glue to relate by definition isolated patterns. They are
discussed in depth in [2].1
A possible way to implement sequences is the use of an
example that runs all the way through the pattern language.
One can find examples or case studies in many recent
pattern languages, such as [12], [11], [16], [5]. Several
pattern languages use a more abstract form of sequences.
They don’t use a concrete example but tell the reader,
which patterns should be applied in a sequence (e.g. [7]).
All cited examples of sequences use a textual form to
describe the sequence.
The TimeTravel pattern language [4] interweaves a pattern
sequence with the pattern descriptions themselves. The
authors use icons to identify parts of the case study (the
description of the problem domain) and meta-comments

1 since the book is not yet published, one can refer to [10]

for a discussion on sequences from a PLoP perspective.

that describe the user who applies the pattern (as test cases
and implementation parts). The patterns are embedded
within these stories and the pattern description is reduced
to a problem solution pair.
Although sequences serve as a good means for relating
patterns in a concrete example, they only provide one
example. The danger is that this example is taken literally
and other relations between patterns are diminished in
value.
Additional help for providing an overview of the pattern
language is often given by adding all patterns’ intent to a
so-called intent catalogue. In [8] for instance, the whole
catalogue of 23 design patterns can be presented with an
intent catalogue of two pages.

REQUIREMENTS FOR A PATTERN AUTHORING AND
READING ENVIRONMENT
From the discussion in the previous section, one can see
that different approaches coexist in the pattern community
to ease the reception of a pattern language. All these means
share a common goal: explain the structure of a pattern
language and make relations explicit. All can be expressed
using labelled relations between patterns.
We argue to support the user by illustrating a combined set
of relations in a pattern graph. The relations can be
modelled as (labelled) edges between two pattern nodes X
and Y. We propose the following relations:

- X uses Y in its solution.
- X is a variant of Pattern Y.
- X has a similar problem as Y.
- X is related in the related patterns section to Y.
- X specializes Y (in the sense of pattern

inheritance).
- X connects to Y as part of the sequence S. In this

case, the label includes S and a descriptive text
that serves as the glue text in the sequence.

- X mentions Y in its context. This means that Y was
applied before Y.

Besides these relations between patterns, we propose to add
relations between patterns and other artefacts:

- X and Y are members of the same class or family.
This relation is used to express classification
schemes.

- X and Y involve a common participant P. In this
case, X and Y are related to P. The label of the
edge between the pattern and the participant
describes the role of the participant in the pattern.

- X and Y can be found in the same known use U.
This is modelled using an edge between the
pattern and U. The label explains, how the pattern
is used in the known use.

All these relations have been part of the textual pattern
description. But especially the latter relations between

patterns and other artefacts were not made explicit (because
neither the participants nor the known uses were
considered as first class objects in current pattern
structures). It is possible to generate the pattern graph from
the patterns textual description.
Unfortunately, the number of relations may soon exceed
the number of relations that can be visualized on the
screen. It should thus be possible to filter relations so that
only some of them are shown. For example by filtering all
relations except the sequence relation, one can arrange the
patterns in a linear sequence that can be read like
traditional text.2 Filtering all but the uses relations will
result in an acyclic graph that can be visualized in a layered
way. We refer to this combination of the pattern graph with
the filtering algorithms as interactive pattern map.
Two more aspects can ease the usability of this interactive
pattern map: Firstly automatic layout algorithms can help
the user to detect clusters (e.g. classes of a classification
scheme) and gain a better overview of the language.
Secondly, the nodes should directly link to the textual form
of the pattern. This means that the map serves as a
navigation aid for the user.
Finally, from an author’s point of view, it is very difficult
to keep the textual pattern description and the interactive
pattern map in synch. Changes of one representation should
therefore automatically cause the change of the other
representation.
In summary, a pattern authoring and reading environment
should meet the following requirements:
(R1) Model patterns, artefacts, and relations in a patterns

graph.
(R2) Provide interactive filtering mechanisms.
(R3) Make use of automatic layout algorithms.
(R4) Link the textual and the graphical representation of

a pattern.
(R5) Automatically synchronize graphical and textual

pattern representations.

A PROTOTYPICAL ENVIRONMENT
We are currently working on an authoring and reading
environment, which meets all the requirements mentioned
in the previous section.

2 This is more complicated if the sequence contains cycles.

Figure 1: The rendered textual version of the pattern.

It consists out of two parts: The textual authoring
environment provides a form-based interface to enter the
pattern itself. From our point of view, this part is the most
important part of our environment since we still consider
patterns as literature – although this literature is written in a
very structured way. The authoring environment assists the
author in linking patterns and formatting the textual output.
An example of the textual output is given in figure 1.

Figure 2: Prototype of the pattern navigator.

From the textual patterns, we generate a graphical
representation in the pattern navigator (extracting some of
the relations mentioned in the previous section). The
pattern navigator shows all patterns as movable boxes.
Relations between patterns are labeled directed edges. The
navigator is based on the FUB Brainstorming system,
which we used at our faculty to support collaborative
brainstorming [9]. It allows the entering of new patterns
and the manual connection between patterns and can be
used by a group of users that is connected via the internet.

All users can manipulate the map at the same time, which
allows real-time collaboration (the system was
implemented using the COAST groupware framework
[14]). Figure 2 provides an example of the pattern
navigator.
Currently, the mapping between patterns and the patterns
map is only implemented in one direction – from patterns
to the map. Thus, we don’t yet support a full
synchronization. Manipulations in the graphical version are
not yet connected to the textual representation.
Requirements 2 and 4 are also currently under
development. We hope to be able to show an integrated
version of our environment at the CHI patterns workshop.

CONCLUSIONS
We have noted that the area of groupware development
opens the field for a large collection of design patterns.
Users need assistance when working with a large pattern
catalogue. From other disciplines, we classified different
relations that were used to provide such guidance.
We propose that the relations that we found in the literature
combined with additional relations described in this paper
should be used to create an interactive pattern map. To
make this map comprehensible, tool support is needed. A
pattern authoring and viewing environment should model
the structure of the pattern language, provide filters, layout
the language, link it to the textual representation and keep
all visualizations in synch.
The collaborative pattern navigator that we showed in this
paper is a first prototype for such an environment.

REFERENCES
1. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson,

M., Fiksdahl-King, I. and Angel, S.: A pattern
language. New York: Oxford University Press, 1977.

2. Alexander, C.: The Nature of Order: The Process of
Creating Life. Oxford University Press, 2003 (to
appear).

3. Alexander, C.: The timeless way of building. New
York: Oxford University Press, 1979.

4. Arnoldi, M., Beck, K., Bieri, M. and Lange, M.: Time
Travel: A Pattern Language for Values That Change. In
Dyso, P. and Devos, M. (Ed.): Proc. of EuroPLoP
1999, Konstanz, Germany, 2000, 121-136.

5. Bergin, J.: Coding at the Lowest Level - Coding
Patterns for Java Beginners. In Rüping, A., Eckstein, J.
and Schwanninger, C. (Ed.): Proc. of EuroPLoP 2001,
Konstanz, Germany, 2002, 251-285.

6. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad,
P. and Stal, M.: A system of patterns. Chichester, West-
Sussex, UK: John Wiley & Sons, 1996.

7. Fricke, A. and Völter, M.: Seminars - A Paedagogical
Pattern Language about teaching seminars effectively.
In Devos, M. and Rüping, A. (Ed.): Proc. of EuroPLoP
2000, Konstanz, Germany, 2001, 87-128.

8. Gamma, E., Helm, R., Johnson, R. and Vlissides, J.:
Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, MA: Addison-Wesley, 1995.

9. Haake, J. M., Schümmer, T. and Haake, A.: Supporting
Collaborative Exercises for Distance Education. Proc.
of HICSS 36, IEEE: Hawaii, USA, 2003.

10. Harrison, N. B. and Coplien, J. O.: Pattern Sequences.
In Rüping, A., Eckstein, J. and Schwanninger, C. (Ed.):
Proc. of EuroPLoP 2001, Konstanz, Germany, 2002,
549-550.

11. Meira, N., e Silva, I. C. and Silva, A.: A Set of Agent
Patterns for a More Expressive Approach. In Devos, M.
and Rüping, A. (Ed.): Proc. of EuroPLoP 2000,
Konstanz, Germany, 2001, 331-346.

12. Schmidt, D. C., Stal, M., Rohnert, H. and Buschmann,
F.: Pattern-Oriented Software Architecture - Patterns for
Concurrent and Networked Objects. Chichester, West-
Sussex, UK: John Wiley & Sons, 2001.

13. Schümmer, T., Fernandez, A. and Holmer, T.:
Groupware Patterns Homepage. http://www.groupware-
patterns.org/, 2002.

14. Schümmer, T., Schümmer, J. and Schuckmann, C.:
COAST - An Open Source Framework to Build
Synchronous Groupware with Smalltalk. OpenCoast
Development Group, 2001.

15. Tichy, W. F.: A Catalogue of General-Purpose Design
Patterns. Proc. of TOOLS 23, IEEE Computer Society:
1998.

16. Völter, M.: Server-Side Components - A Pattern
Language. In Rüping, A., Eckstein, J. and
Schwanninger, C. (Ed.): Proc. of EuroPLoP 2001,
Konstanz, Germany, 2002, 87-128.

17. Zimmer, W.: Relationships Between Design Patterns. In
Coplien, J. O. and Schmidt, D. C. (Ed.): Pattern
Languages of Program Design, Addison-Wesley:
Reading, MA, 1995, 345-364.

	ABSTRACT
	INTRODUCTION
	CURRENT APPROACHES FOR STRUCTURING PATTERN LANGUAGES
	REQUIREMENTS FOR A PATTERN AUTHORING AND READING ENVIRONMENT
	A PROTOTYPICAL ENVIRONMENT
	CONCLUSIONS
	REFERENCES

