
Pedagogical Patterns: their Place in the Genre

Sally Fincher
Computing Laboratory

University of Kent at Canterbury
Canterbury, Kent, UK

+44 1227 824061

S.A.Fincher@ukc.ac.uk

Ian Utting
Computing Laboratory

University of Kent at Canterbury
Canterbury, Kent, UK

+44 1227 823811

I.A.Utting@ukc.ac.uk

ABSTRACT
This paper describes some constituents of patterns and pattern
languages and examines the Pedagogical Patterns endeavour
against them. Some observations are made with regard to how
pattern languages are developed and some suggestions as to how
these might be applied to pedagogical patterns are made.

Categories and subject descriptors: K.3.2 [Computers and
Education]: Computer and Information Science Education ---
Computer Science Education

General Terms: Design

Additional Keywords: Pattern Languages

1. INTRODUCTION
We have previously described the five components (“functional
requirements”) we believe to be necessary in a Pattern Language,
and commented on the extent to which the pedagogical patterns
endeavour (at that time) embraced them [1]. As the pedagogical
patterns movement has matured, and as Pattern Languages
themselves have been explored in other domains, we look again in
this paper at how pedagogical patterns are constructed
(individually, and especially collectively) and to what uses they
may be put.

2. PEDAGOGICAL PATTERNS TODAY
In its original incarnation, the pedagogical pattern collection was
just that. A collection of single examples, contributed by many
people, on a common theme. Today (November 2001) the thrust
of the endeavour has changed, with the emphasis now on smaller,
more tightly constrained areas (“How to run a Seminar”) either
singly authored, or constructed by a small group of people [2].
This approach, more tightly coupled to specific contexts, is more
coherent, and therefore successful. However, there remain aspects
of pattern languages that these examples do not embody. In the
next section we outline what we believe to be the crucial aspects
of pattern languages, and indicate where the Pedagogical pattern

collections do (or might) incorporate them.

3. WHAT CHARACTERISES PATTERN
LANGUAGES?
3.1 Functional Requirements
A Pattern is most usually described as “a solution to a problem in
a context”. However, we prefer the more specific definition of
Dirk Riehle and Heinz Zullighoven [3], “A pattern is the
abstraction from a concrete form which keeps recurring in specific
non-arbitrary contexts”. Patterns sit within a structure, a
“language” which relates each one to the collection and the
domain. It is relatively easy to capture what might be thought of
as the “functional requirements” of a Pattern Language. They are:
Capture of Practice, Abstraction, Value System, Structuring
Principle and Presentational Form.

3.1.1 Capture of Practice
A Pattern must be about something specific. It is not about an
idea, it is not about something that “might be” (or, even worse,
something that “should be”) it is about things that exist in the
world. A pattern must capture examples of things that embody a
certain common quality—the examples may be disparate, but they
must all exemplify the same essential truth. The nature of this
truth or quality is often debated. It has been variously described as
“the invariant property common to all [instances] which succeed
in solving the problem” or “the quality without a name” or
“aliveness”. These are concepts which sometimes engender
discomfort, but they are fundamental to the pattern endeavour.
Here is how this concept is described with respect to buildings:

We have been taught that there is no objective difference
between good buildings and bad, good towns and bad.

The fact is that the difference between a good building and a
bad building, between a good town and a bad town, is an
objective matter. It is the difference between health and
sickness, wholeness and dividedness, self-maintenance and
self-destruction. In a world which is healthy, whole, alive and
self-maintaining, people themselves can be alive and self-
creating. In a world which is unwhole and self-destroying,
people cannot be alive: they will inevitably themselves be
self-destroying, and miserable.

But it is easy to understand why people believe so firmly that
there is no single, solid basis for the difference between good
buildings and bad.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE'02, June 24-26, 2002, Aarhus, Denmark.
Copyright 2002 ACM 1-58113-499-1/02/0006...$5.00.

It happens because the single central quality which makes the
difference cannot be named. [4]

This seems, to us, to be resonant of teaching. Objectively, it is
hard to identify the differences between two lectures—both may
be in the same lecture theatre, both lecturers speak for the same
amount of time, both may use the same kind of visual aids, in the
same medium—and yet, from experience, we know that one may
be good, whole, alive and engaging; the other, unwhole and self-
destructing. Pedagogical patterns, however, do not (very much)
capture practice across instances. The majority of the patterns
appear to be codifications of single pieces of practice, or practice
from single practitioners. At the current time, there seems to be
little variety of input from which selections of practice,
exemplifying the desired qualities, can be selected and captured.

3.1.2 Abstraction
This is a bone of some contention in the wider patterns
community (that is, wider than a single domain). There are those
who staunchly uphold that “abstraction” is at best a meaningless
aim and at worst a dangerous one; that “complex things are
complex” and that abstracting away from that complexity makes a
false goal of simplification. [5] But, as pedagogues, we know that
abstraction is a very difficult step to take [6]; that learners find it
difficult to grasp the principles embodied in a single example (or a
series of single examples) then isolate it as the common referent
they all share (that is, abstract from the details to the principle)
and apply that principle in novel situations. In equal fashion,
novices appear to have a poor grasp of detail and little
appreciation of what is (and is not) important in a given situation.
Both of these extremes are addressed in a good pattern, which
must abstract to a quality from a set of examples and at a level
which is immediately graspable. If it is too abstract, then it will
not be apparent; if it is too concrete, then it will not be perceived
as separate from the detail of the examples themselves. Finding
the correct level of abstraction is a teaching skill; it is also a goal
of the best patterns.

3.1.3 Value System
Patterns don’t simply represent “any old way” of doing things, but
a good way, a better way. At the very least they represent a
purposeful way. These values are not explicated separately from
the Patterns themselves. Patterns don’t justify the values they
embody; the values inform the identification of Patterns.

For example, one of Alexander’s patterns, number 178
Composting Toilets [7], clearly does not have widespread use.
However, if the values that inform it—values of environmental
concerns for sustainability, were widely held—then instantiation
of this pattern would be widespread.

3.1.4 Structuring Principle
Patterns do not exist in isolation; and the links between patterns
are as vital as the components themselves. The Structuring
principle is what organises patterns into a whole. An excellent
example of this can be seen in the anthology of poetry by the UK
Poet Laureate, Andrew Motion [8]. In this work, the poems are
arranged not alphabetically by author (or title); nor
chronologically by when they were written, nor chronologically
by when the author lived; nor categorically, by external categories
discussed and agreed upon, such as “The Pre-Raphaelites”, “The
War Poets” or “The Metaphysical Poets”. Here, the poems are
arranged in a series of ten concentric circles: Self, Home, Town,

Work, Land, Love, Travel, War, Belief and Space. This
arrangement is a profound embodiment of a structuring principle
that everyone can understand, can relate to. We all have meanings
for these categories and most of us can find one of more poems
that we should like to place within them. But use of this
structuring principle carries additional significance: the act of
placement of a poem (within, perhaps, Work rather than Self)
speaks to the values of a specific world-view, not a generic one.

By this structure we recognise something else, too. That the
placing of a poem within one of these categories is as significant
as the choice of poem itself. And that the relationship between the
poems within a category (and the relationship of that category to
another category) is also meaningful. That the act of placement
within this system is not merely one of organisational
convenience, of being able to “put your hand on them” when you
need them again, as would be the case with an alphabetic
organisation.

This sort of structure, which allows the design and construction of
whole environments, not just fragments and facets is the
“Language” that individual Patterns form.

Structuring principles are surprisingly difficult to identify, and
successful ones are intimately connected to domain. (Architectural
patterns, for instance, are arranged by scale, from cities to houses
to rooms). What an appropriate structuring principle of the
domain of pedagogy (or, more tightly, for example, pedagogy in
tertiary-level computer science teaching) might be, is hard to
construct. The most “structured” of the current pedagogical
pattern collections is “Seminars” which takes the teaching
sequence—from preparation through to reflection—as its
structuring principle.

3.1.5 Presentational Form
The presentation of a Pattern is often mistaken for the thing itself.
Patterns do have a distinguished form, and it is often tinkered
with, (see [9]) yet certain common elements persist. For the most
part, the common elements of the form are definitional: if a
pattern is a “solution to a problem within a context” then it is not
surprising that Patterns almost universally contain a problem
statement and a solution statement. That is about the extent of
commonality of expression. In a “pure” Alexandrian form, what
comes between these two is an exposition of the reasons why one
would make this design choice, drawn from research and some of
the many examples of its use. It is preceded by a statement of the
“larger” Patterns of which the one in question can be seen as a
component, and followed by a list of the “smaller” Patterns which
can be used to comprise this. Pedagogical patterns are still striving
for a common form, appropriate to the pedagogic domain. The
current collection exhibits two differing forms, and the form
which was suggested by the project originators [10] is used by
only one of the current proponents.

3.2 Non-functional Requirements
As we know, however, a system is never composed solely of
functional requirements; and that in terms of both usability and
customer satisfaction, it is more often the non-functional
requirements that make the difference. In the case of the non-
functional requirements of Patterns and Pattern Languages they
are not “speed of response” or “ease of use”; however, they do lie
in equally intangible areas; we call these areas “non-obvious”;
“insight”, “generative power” and “communicative power”. As is

also often the case in systems specification, non-functional
requirements are frequently (although not inevitably) related to
functional requirements. Where we believe this to be the case, we
have indicated such relationships.

3.2.1 Non-obvious (Paired with Capture of Practice)
One of our favourite architectural patterns is 159 Light on Two
Sides of Every Room [7]. Simply put, this pattern says that people
prefer to inhabit rooms that have natural light from two sources,
indeed that they gravitate towards such rooms, and so every room
in a house should be designed in such a way that this is
achievable.

Light on Two Sides of Every Room is not “obvious”. Build a
Room with Windows is obvious. Furthermore, the choice of
specific windows: frames, shutters, the size and number of panes,
the materials (wood, aluminium, UPVC), single, double or triple
glazing are choices dictated by a combination of availability,
locality, specific site, the preference and budget of the client and –
most importantly – the skill of the designer. The domain of this
"lower" level of design choices, these details of implementation,
are properly the province of the architect/builder. That is precisely
what they are trained for, where their professional expertise
resides: they know what sort of decisions can be made, together
with their associated constraints and subsequent design trade-offs.
Patterns will help you with precisely none of these choices.

Light on Two Sides of Every Room is an exploration of a different
level of design space. It is not to do with how you put windows in
a room, or that you do so at all, but with why you do so. It is
drawn from considerable domain expertise, supplemented with
extensive exploration and reading of others’ work. Sadly, many of
the Pedagogical patterns still capture practice that is obvious
(Gold star; Open the Door [2]) that describes our stuff-in-trade,
our implementation detail, not the rationale that allows us to make
differences in our design of learning experiences.

3.2.2 Insight (Paired with Abstraction)
The design insights that are conveyed by patterns rest on deeper
and more complex issues than details of implementation, they
distil the expertise that makes the choice of solution appropriate.
A pattern provides a solution to a recurring problem, yes. But a
design choice is always made for a reason, and patterns provide
that reason. As Brad Appleton puts it “a pattern does more than
just identify a solution, it also explains why the solution is
needed”. [11]

3.2.3 Generative (Paired with Structuring Principle)
By generative we do not mean that a set of design rules (be they
guidelines, rationales, style guides, curriculum templates or
handbooks) “automagically” create a complete design. Design is
always a creative act. Patterns can be seen to provide a collection
of re-useable ideas, but never complete designs

What we do mean by “generative” is that a single pattern is, more-
or-less, useless. It’s the Structuring Principle that allows a user to
find an appropriate pattern at an appropriate level when they need
one, combined with the driving coherence of the Value System
that allows a complete design to be generated which expresses a
certain way of doing things. [12]

3.2.4 Communicative Power (Paired with
Presentational Form)
Pattern Languages have an unusual communicative power. Partly
this is because they all have a name, and this becomes used as
synecdoche, a shorthand form, to represent the whole of the
pattern. For example, in programming terms, to say to someone
“You need a Singleton/Factory/Flywheel here” is to convey a
complete approach to the solution of a problem in a very
compressed manner. Patterns Languages are also powerful at
communicating design concepts across communities.

Tom Erickson describes an example of this power in his paper
Lingua Francas for Design: Sacred Places and Pattern
Languages [13] in which he relates the work of urban designer
Randolph Hester in the town of Manteo in North Carolina. Hester
was brought in to work on a plan for achieving economic renewal
without sacrificing the town’s character. One of the things that he
and his team did was to map the “sacred structures”; the places
that the residents valued, the places which made Manteo the sort
of town they wanted to live in. Interestingly, “these places [were]
almost universally unappealing to the trained professional eyes of
an architect, historian, real estate developer, or upper-middle-class
tourist.” and “only two were protected by historic preservation
legislation … that is, the existing planning and legal mechanisms
that were intended to help preserve the character of places missed
most of what the residents of Manteo actually valued”. Not only
was the list of “sacred structures” a driving force for the re-
development at the time, it was still being used and referred to
seven years later. As Erickson concludes, “this is an amazing and
inspiring result, perhaps the highest goal to which a designer can
aspire. Hester’s work in Manteo resulted not only in a plan for
achieving economic renewal without sacrificing the town’s
character (the explicit goal he was employed to achieve), but it
also resulted in a shared, self-sustaining system of beliefs and
values that enabled the plan to be realized over a much longer
period of time”.

This “communicative power” is partly a function of the expression
of the value system as it is exposed through the Patterns, but it is
also a function of the format in which they are presented. As well
as the name, one of the important parts of a pattern is the
“sensitising example”, a representation of the use of the pattern,
which sensitises the reader to the wholeness of the solution. In
Alexander’s work this function is fulfilled by photographs of
places; in GoF, code fragments. As yet, there is nothing that fulfils
this for pedagogical patterns. (Although Jutta Eckstein [14] does
preface her patterns with a quotation, the function of this is
unclear).

4. THE WAY FORWARD?
In current form, Pedagogical patterns still lack widespread
acceptance.

Partly we believe this is because they miss some of the
requirements: they are either so abstracted from the domain (of
tertiary computer science education), and therefore generic, that
they lack insight; or they are so tightly coupled to specific
instances of practice that they are not transferable. The chosen
form(s) lack some of the elements that provide patterns with their
peculiar communicative power; sometimes they capture practice
which is obvious, sometimes the lack of a value system it is
difficult to generate new designs from the solutions they propose.

Partly, we suggest that this is because of the ways in which they
are being generated, and the material they are drawing on.

The processes of creating a successful pattern language are rarely
modelled, or talked of. Consequently, notions of how to proceed
successfully are only found in fragments of description from
pattern language authors. However, there are some fragments. The
best-known pattern languages are still A Pattern Language [7]
and Design Patterns: Elements of Reusable Object-Oriented
Software [15]; and they were created in similar ways. Both
involved a small group of like-minded people (that is people who
shared, or forged, a common value system). Both involved
conscious effort over a considerable period of time, drawing on an
immense background of joint domain expertise, empirical studies,
theoretical and bibliographical knowledge and other sources of
primary (and secondary) data. Alexander says little of this, but
does comment that it couldn’t have been achieved without
photocopiers; Vlissides [16] says that it took four years to
generate the 23 GoF patterns, and that much “archaeology” was
involved in identifying and characterising recurrences, and that
each pattern was then iterated and re-written 10-20 times. Others
reinforce this. In one of the most complete descriptions of pattern
language creation, Brown and Whitenack [17] say “To discover
the patterns we first immersed ourselves in the literature and
subject area. We found our patterns in numerous places … our
own experience … studying the documentation of existing
frameworks … reading the OO literature … feedback from our
colleagues”.

In our own experience [18] in a project analogous to the creation
of a pattern language, a group of people who were all experienced
in a technique (using projectwork to teach Computer Science)
came together to explore the use of projectwork within the
discipline. We first undertook a large survey of this specific
technique only; we swamped ourselves with detail and example.
Over three years our small group debated (and argued) the
underlying issues. We did not all agree with each other, but we
did come to intimately understand why and where we differed,
and to share a common idea of what was important. Only at the
very end of this process were we able to distil, iterate and refine
our examples; this would have been impossible at the start of the
project. It would have been extremely difficult for a less closely
connected group to have accomplished this, and practically
impossible for any one person alone.

The pedagogical pattern leaders may be the necessary sort of
small, dedicated group, that a patterns endeavour needs (although
there is currently little evidence of a shared value system).
However, their major obstacle may lie in gathering the necessary
type and quantity of examples. For, in pedagogy, this crucially
means taking ourselves outside of our own classrooms. Unlike
architecture, or software or interaction design, there are no public,
apprehensible artefacts to draw on. We can, maybe, rely on the
pedagogical pattern leaders to do this for us: to read, talk,
endlessly enquire and sift the literature for examples.

Given the problematic nature of examples in this field, however,
perhaps a different, more distributed model might be effective.
For example, if the pedagogical patterns leaders were to create a
framework, then smaller groups could work within it to reflect on
those aspects of practice which particularly interest them; in this
way, the inherent problems of privacy and variety of example
might be overcome. There has never been a successful example of

a pattern language being generated in such a way, but that is not
to say it cannot be done.

5. REFERENCES
1. Fincher, S., Analysis of Design: an exploration of

patterns and pattern languages for pedagogy. Journal
of Computers in Mathematics and Science Teaching:
Special Issue CS-ED Research, 1999. 18(3): p. 331-
348.

2. The Pedagogical Patterns Project. 2001. Available:
http://www.pedagogicalpatterns.org

3. Riehle, D. and H. Zullighoven, Understanding and
Using Patterns in Software Development. Theory and
Practice of Object Systems, 1996. 2(1): p. 3-13.

4. Alexander, C., The Timeless Way of Building. 1979,
Oxford: Oxford University Press.

5. Gabriel, R., Patterns of Software: Tales from the
Software Community. 1996, New York: Oxford
University Press.

6. Bloom, B. and D. Krathwohl, Taxonomy of Educational
Objectives: The Classification of Educational Goals.
1956, New York: Longmans, Green.

7. Alexander, C., S. Ishikawa, and M. Silverstein, A
Pattern Language: Towns, Buildings, Constructions.
1977, New York: Oxford University Press.

8. Motion, A., Here to Eternity. 2001: Faber & Faber.

9. Fincher, S., The Pattern Gallery. 2000. Available:
http://www.cs.ukc.ac.uk/people/staff/saf/patterns/gallery
.html.

10. PPTOT, Pedagogic Patterns: Successes in Teaching
Object Technology. 1998. Available: http://www-
lifia.info.unlp.edu.ar/ppp

11. Appleton, B., Patterns and Software: Essential
Concepts and Terminology. Available:
http://www.enteract.com/~bradapp/docs/patterns-
intro.html.

12. Bransford, J., A. Brown, and R. Cocking, eds. How
People Learn: Brain, Mind, Experience and School
(expanded edition). 2000, National Academy Press:
Washington DC.

13. Erickson, T. Lingua Francas for Design: Sacred Places
and Pattern Languages. in DIS 2000. 2000. Brooklyn,
NY: ACM Press.

14. Eckstein, J., Learning to Teach and Learning to Learn:
Running a Course. 2000. Available:
http://www.pedagogicalpatterns.org/examples/Learning
AndTeaching.pdf.

15. Gamma, E., et al., Design Patterns: Elements of
Reusable Object-Oriented Software. 1994, Reading,
Massachusets, US: Addison-Wesley.

16. Vlissides, J., Patterns: The Top Ten Misconceptions.
1998. Available:
http://www.research.ibm.com/designpatterns/pubs/top1
0misc.pdf

17. Brown, K. and B. Whitenack, A Pattern Language for
Relational Databases and Smalltalk. 1996. Available:
http://www.ksc.com/article2.htm.

18. Fincher, S., M. Petre, and M. Clark, eds. Computer
Science Project Work: Principles and Pragmatics.
2001, Springer-Verlag: London.

